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Abstract: New cancer therapies, methods and protocols are needed to treat affected patients.
Oncolytic viral therapy is a good suggestion for such treatment. This paper proposes a diffusive cancer
model with virotherapy and an immune response. This work aims to study the aforementioned model
while theoretically including positivity, boundedness and stability, as well as to find the analytical
solutions. The analytical solutions are found by using the tanh-expansion method. As a result, we
realized that the relative immune cell killing rate can be controlled by the viral burst size. The viral
burst size is the number of viruses released from each infected cell during cell lysis. The increasing
diffusion of the activated immune system leads to an increase in the uninfected cells. The presented
model can be used to study the combination of immunotherapy and virotherapy.
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1. Introduction

Recently, cancer therapies have been heavily developed in order to find a therapy that is able to
decay the tumor in a short time without harming the neighboring healthy tissue. In the field of genetic
engineering, scientists discovered a new cancer treatment by using genetically altered viruses [1].
Oncolytic viruses are genetically altered viruses that infect cancer cells. They grow in an abnormal
tumor cell and destroy it without infecting healthy cells or normal tissue. The oncolytic viruses interact
with the tumor cell and generate a burst of an oncolytic virus (see Figure 1). The burst size is the
number of new viruses resulting from the lysis of an infected tumor cell, and some of the new viruses
may infect nearby tumor cells. The burst size is used to measure the replicability of an oncolytic
virus [2].
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Figure 1. Burst of viruses released from each infected cell during cell lysis.

Mathematical models are able to describe biological and medical problems, such as cancer models
with a variety of therapies [3, 4], epidemic models [5], HIV infection models [6–8] and prey-predator
models [9]. A few researchers have studied mathematical models of cancer with virotherapy and
described the interaction between the virus and the tumor. Wodarz introduced a basic mathematical
model that studied tumor growth in the presence of virotherapy treatment [10]. The model has been
modified to study the relationship between burst size and virus replicability. The results showed that
cancer cells decrease if the burst size is large [11]. On the other hand, some mathematical models have
demonstrated the immune system response to virotherapy. Since the immune system treats viruses as
foreign bodies and thus destroys them, it shows a negative response to virotherapy that may reduce the
quality of viral treatment [12]. Also, many studies describe the interactions between uninfected and
infected cells and different kinds of immune responses [13, 14].

Herein, we will review the basic model of oncolytic virus replication which was introduced by
Wodarz [15]. The model studies the tumor growth and the infection term and it is given by the following
system of ordinary differential equations (ODEs):

d f
dt

=r̄X( f , y) − β̄yG( f , y),

dy
dt

=β̄yG( f , y) − δ̄y, (1)

where f and y are the uninfected and infected cells, respectively, the function X represents the growth
of f and y and the function G denotes the rate at which tumor cells become infected by the virus.
The coefficients β̄ and δ̄ are the infection rate of the virus and the death rate of virus-infected cells,
respectively, and the coefficient r̄ is the logistical growth rate of uninfected cells. Then, Tian [2]
proposed a following common basic model for the virotherapy of three populations:

d f
dt

=r̄ f (1 −
f + y

k
) − β̄ f v,

dy
dt

=β̄ f v − δ̄y,

dv
dt

=b̄δ̄y − β̄ f v − γ̄v, (2)
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where v is the free virus population and γ̄ is the death rate of the virus. The coefficient b̄δ̄ refers to
the burst size of new viral swarms resulting from killing an infected cell y. The model (2) was also
modified in [16] to study the dynamics of oncolytic virotherapy, and it includes four populations, as
follows:

d f
dt

=r̄ f (1 −
f + y

C
) − β̄ f v − α f z − d f ,

dy
dt

=β̄ f v − δ̄y − µ̄yz,

dv
dt

=b̄δ̄y − β̄ f v − γ̄v − k̄vz,

dz
dt

=s̄yz − p̄z, (3)

where z denotes the innate immune cell population, s̄ is the rate of stimulation of the innate immune
cell and p̄ is the rate of immune clearance. Moreover, some models have demonstrated the spread of
tumor cells under viral therapy and radiation therapy [17, 18].

The immune response and its impact in both uninfected and infected cells were considered in the
model (3) in Reference [19] as follows:

d f
dt

=r̄ f (1 −
f + y

C
) − β̄ f v − α f z − d f ,

dy
dt

=β̄ f v − δ̄y − µ̄1yz,

dv
dt

=b̄δ̄y − β̄ f v − γ̄v − k̄vz,

dz
dt

=s̄1yz + s̄2z f − p̄z, (4)

where the infected and uninfected cells stimulate the immune response at rates s1 and s2, respectively.
The novelty of this paper is its study of the mathematical model in [19] by distinguishing between the
naive and activated immune system cells. In addition, we study the spread of viruses and cells by taking
a diffusion term into account. Thus, we obtain a system of partial differential equations (PDEs). The
immune system cells can be activated by immunotherapy or biological therapy. Therefore, it is very
important to distinguish between the naive and activated immune system cells in the mathematical
model. Thus, the model introduced in this paper can be useful to study the effects of combining
immunotherapy with virotherapy.

The paper is organized as follows. The second section introduces the studied mathematical model,
the third section is the theoretical study of the system, the fourth section shows the analytical solutions
obtained via the tanh-expansion method, the fifth section discuses the results and the last section is a
summary of the work.

2. Mathematical model

In this section, we reformulate the mathematical model in [19] by considering the five cell
populations, which are uninfected cancer cells f , infected cancer cells y, the free virus v, the naive
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immune cells z and the activated immune cells za, as follows:

∂ f
∂t

=r̄ f (1 −
f + y

C
) − β̄ f v − ᾱ f f za + d1

∂2 f
∂x2 ,

∂y
∂t

=β̄ f v − δ̄y − µ̄1yza + d2
∂2y
∂x2 ,

∂v
∂t

=b̄δ̄y − β̄xv − γ̄v − k̄vza + d3
∂2z
∂x2 ,

∂z
∂t

=λ̄z − p̄z − s̄1yz − s̄2z f + d4
∂2z
∂x2 ,

∂za

∂t
=s̄1yz + s̄2z f − µ̄2za + d5

∂2z
∂x2 , (5)

where di, i = 1, 2, 3, 4, 5 denotes the diffusion terms of f , y, v, z and za, respectively. The rest of the
parameters are converted to dimensionless parameters in the following system of PDEs and described
in Table 1.

Table 1. Descriptions of the parameters in System (6) [17].

Parameters Description
c Carrying capacity of the tumor cells
r Tumor growth rate
λz Stimulation rate of the immune response
b Burst size of the virus
α f Rate of immune-mediated uninfected tumor cell death
δ Death rate of infected tumor cells
β Infection rate of the virus
p Clearance rate of the immune response
κ Rate of immune-mediated virus death
γ Clearance rate of the virus
µ1 Rate of immune-mediated infected tumor cell death
µ2 Clearance rate of active immune cells
s1 Stimulation rate of the immune response by infected cells
s2 Stimulation rate of the immune response by uninfected cells

The system becomes dimensionless by setting t = τ
δ
, F = C f , Y = Cy, V = Cv, Z = Cz and

Za = Cza and renaming the parameters as follows:

r =
r̄
δ
, β =

Cβ̄
δ
, α f =

Cᾱ
δ
, µ1 =

µ̄1

δ
, γ =

γ̄

δ
, k =

k̄
δ
, λz =

λ̄z

δ
, p =

p̄
δ
, s1 =

s̄1

δ
,

s2 =
s̄2

δ
µ2 =

µ̄2

δ
.

Thus, we obtain the following diffusive PDEs:

∂F
∂t
− d1

∂2F
∂x

=rF(1 − (F + Y)) − βFV − α f FZa,
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∂Y
∂t
− d2

∂2Y
∂x

=βFV − Y − µ1YZa,

∂V
∂t
− d3

∂2V
∂x

=bY − βFV − γV − κVZa,

∂Z
∂t
− d4

∂2Z
∂x

=λz − pZ − s1YZ − s2FZ,

∂Za

∂t
− d5

∂2Za

∂x
=s1YZ + s2FZ − µ2Za. (6)

Then, the initial conditions become F(0) =
f0
C , Y(0) =

y0
C , V(0) = v0

C , Z(0) = x0
C , Za(0) =

xa0
C .

3. Theoretical study

3.1. Positivity and boundedness of the solutions

Theorem 1. Let (F(x, t),Y(x, t),V(x, t),Z(x, t),Za(x, t)) = ( f̂ (ξ), ŷ(ξ), v̂(ξ), ẑ(ξ), ẑa(ξ)) ∈ R5
+, where ξ =

kx+ct+ξ0; then, the solutions ( f̂ (ξ), ŷ(ξ), v̂(ξ), ẑ(ξ), ẑa(ξ)) are nonnegative and bounded in the following
region:

Ω = ( f̂ , ŷ, v̂, ẑ, ẑa) ∈ R5
+ |, f̂ ≤ 1, f̂ + ŷ ≤ 1, v̂ ≤

b
γ
, ẑ + ẑa ≤

λz

ζ
,

where ζ = min{p, µ2}.

Proof. First, we specify the initial value problems for System (6) as follows:

∂F
dt
− d1

∂2F
∂x

= 0,

∂Y
dt
− d2

∂2Y
∂x

= βFV,≥ 0,

∂V
dt
− d3

∂2V
∂x

= bY,≥ 0,

∂Z
dt
− d4

∂2Z
∂x

= λz ≥ 0,

∂Za

dt
− d5

∂2Za

∂x
= s1YZ + s2FZ,≥ 0.

As a result, the solutions are non-decreasing. In order to study the boundedness for the aforementioned
system of PDEs, we will transfer the system to a system of ODEs using the traveling wave
transformation. Let us define ξ = kx + ct + ξ0; then, we get

d f̂
dξ

=
r
c

f̂ (1 − ( f̂ + ŷ)) −
β

c
f̂ v̂ −

α f

c
f̂ ẑa +

d1k2

c
f̂ξξ,

dŷ
dξ

=
β

c
f̂ v̂ −

1
c

ŷ −
µ1

c
ŷẑa +

d2k2

c
ŷξξ,

dv̂
dξ

=
b
c

ŷ −
β

c
f̂ v̂ −

γ

c
v̂ −

κ

c
v̂ẑa +

d3k2

c
v̂ξξ,
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dẑ
dξ

=
λz

c
−

p
c

ẑ −
s1

c
ŷẑ −

s2

c
f̂ ẑ +

d4k2

c
ẑξξ,

dẑa

dξ
=

s1

c
ŷẑ +

s2

c
f̂ ẑ −

µ2

c
ẑa +

d5k2

c
ẑaξξ. (7)

From the first equation in System (7), we have

d f̂
dξ

=
r
c

f̂ (1 − ( f̂ + ŷ)) −
β

c
f̂ v̂ −

α

c
f̂ ẑa ≤

r
c

f̂ (1 − f̂ ).

Let us assume the differential equation dF1
dt = r1F1(1 − F1) with the initial condition F1(0) = F0, which

satisfies

F1(t) =
F0

F0 + (1 − F0) exp−r1t ;

hence,

lim
t→∞

sup F1 = 1.

Note that d f̂
dt ≤

dF1
dt , which implies that limt→∞ sup f̂ ≤ limt→∞ sup F1. Therefore, we have

lim
t→∞

sup f̂ ≤ 1.

From the first and second equations in System (7), we have

d f̂
dξ

+
dŷ
dξ
≤

r
c

f̂ (1 − ( f̂ + ŷ)),

≤
r
c

(1 − ( f̂ + ŷ)),

which satisfy

lim
t→∞

sup f̂ + ŷ ≤ 1.

Again, from the third equation in System (7), we have

dv̂
dξ
≤

b
c

ŷ −
γ

c
v̂,

≤
b
c
−
γ

c
v̂,

which yields

lim
t→∞

sup v̂ ≤
b
γ
.

Also, from the fourth and fifth equations in System (7), we note that

dẑ
dξ

+
dẑa

dξ
≤
λz

c
−

p
c

ẑ −
µ2

c
ẑa,

AIMS Mathematics Volume 8, Issue 5, 10905–10928.



10911

≤
λz

c
−
ζ

c
(ẑ + ẑa),

where ζ = min{p, µ2}. Thus, we obtain

lim
t→∞

sup ẑ + ẑa ≤
λz

ζ

and

ẑ + ẑa ≤
λz

ζ
.

3.2. Equilibrium points

Model (6) has equilibrium points of the form (F,Y,V,Z,Za) such that F ≥ 0,Y ≥ 0,V ≥ 0,Z ≥ 0
and Za ≥ 0. The equilibrium points of the system are the steady-state solutions, which are obtained by
setting the following:

∂F
dt
− d1

∂2F
∂x

= 0,

∂Y
dt
− d2

∂2Y
∂x

= 0,

∂V
dt
− d3

∂2V
∂x

= 0,

∂Z
dt
− d4

∂2Z
∂x

= 0,

∂Za

dt
− d5

∂2Za

∂x
= 0.

However, with help of Mathematica, we obtained five equilibrium points:

E0 =(0, 0, 0, 0, 0),
E1 =(1, 0, 0, 0, 0),

E2 =

(
γ

(b − 1)β
,

γ

(b − 1)β

(
βr(b − 1) − γr
(b − 1)β + γr

)
,

r((b − 1)β − γ)
β((b − 1)β + γr)

, 0, 0
)
,

E3 =

(
(λz − p)

s2
, 0, 0,

µ2r (−λz + p + s2)
α f s2(λz − p)

,
r (−λz + p + s2)

α f s2

)
,

E4 =(F4,Y4,V4,Z4,Za4),

where

r (1 − (F4 + Y4))−βV4 − α f Za4 = 0,

Y4 =
βF5V4

µ1Za4 + 1
,

V4 =
bY4

βF4 + κZa4 + γ
,
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Z4 =
λz

s1Y5 + s2F5 + p
,

Za4 =
s1Y4 + s2F4

µ2
Z4.

E2 is positive if b > 1 + (γ/β), and E3 is positive if p < λz < p + s2.

3.3. Basic reproduction number

The basic reproduction number is the number of cases that are generated by a signal virus in the
population [20]. Let P = (Y, F,V,Z,Za), model (7) is rewritten as

P′ = υ1(P) − υ2(P),

where

υ1(P) =


βFV

0
0
0

 , υ2(P) =


µ1YZa

−rF(1 − (F + Y)) + βFV + α f FZa

−bY + βFV + κVZa + γV
−λz + pZ + s1YZ + s2FZ
−s1YZ − s2FZ + µ2Za


.

Next, the Jacobian matrix for υ1(P) and υ2(P) at E1 are computed as follows:

Υ1 = D(υ1(E1)) =


0 0 β 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

Υ2 = D(υ2(E1)) =


1 0 0 0 0
r r β 0 αF

−b 0 β + γ 0 0
0 0 0 p + s2 0
0 0 0 −s2 µ2


,

(Υ1Υ
−1
2 )


bβ
β+γ

0 β

β+γ

0 0 0
0 0 0

 ,

R0 = ρ(Υ1Υ
−1
2 ) =

bβ
β + γ

, (8)

where ρ is the spectral radius. Thus, if R0 < 1, the cancer will decline; if R0 = 1, the cancer will
stay alive and stable; if R0 > 1, the cancer will experience growth and outbreak. Therefore, E0 and E1

always exist, E2 exists if R0 > 1, E3 exists if p + s2 > λz > p and E4 exists if R0 > 1.
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3.4. Local stability analysis

We investigate the local stability of the equilibrium points by evaluating the Jacobian matrix of the
nonlinear system [21].

Theorem 2. The trivial equilibrium E0 of the system is locally unstable.

Proof. The Jacobian matrix of System (6) at E0 is

J(E0) =


r 0 0 0 0
0 −1 0 0 0
0 b −γ 0 0
0 0 0 −p 0
0 0 0 0 −µ2


. (9)

It is obvious that the eigenvalues for J(E0) are as follows:

λ1 = r, λ2 = −1, λ3 = −γ, λ4 = −p, λ5 = −µ2.

All eigenvalues are negative if r < 0. Hence, E0 is locally unstable if r > 0.

Theorem 3. The equilibrium point E1 is locally asymptotically stable if only if R0 < 1.

Proof. By the calculation of the Jacobian matrix at E1, we obtain

J(E1) =


−r −r −β 0 −α

0 −1 β 0 0
0 b −β − γ 0 0
0 0 0 −p − s2 0
0 0 0 s2 −µ2


. (10)

The characteristic polynomial is

det(J(E1) − λI) = (−µ2 − λ)(−(p + s2) − λ)(−λ − r)
(
(−bβ + β + γ) + λ(β + γ + 1) + λ2

)
.

The eigenvalues of J(E1), which are λ1 = −µ2, λ2 = −r and λ3 = −(p + s2), are negative. By the
Routh-Hurwitz criteria, since (β + γ + 1) is positive, λ4,5 has a real negative part if b ≤ 1 +

γ

β
, which

implies that R0 < 1. Biologically, when the viral burst size b is smaller than the critical value which is
1 +

γ

β
, the new produced viruses will be enough to infect tumor cells.

Theorem 4. The equilibrium point E2 is locally asymptotically stable if b > 1 and β < r .

Proof. The jacobian matrix J(E2) is

γr
β−bβ

γr
β−bβ −

γ
b−1 0 αγ

β−bβ
r((b−1)β−γ)
(b−1)β+γr −1 γ

b−1 0 −
γµ1r((b−1)β−γ)

(b−1)β((b−1)β+γr)
r(−bβ+β+γ)
(b−1)β+γr b bγ

1−b 0 kr(−bβ+β+γ)
β((b−1)β+γr)

0 0 0 γ(rs1(−bβ+β+γ)+s2(−bβ+β−γr))
(b−1)β((b−1)β+γr) 0

0 0 0 γ(rs1((b−1)β−γ)+s2((b−1)β+γr))
(b−1)β((b−1)β+γr) −µ2


, (11)
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det(J(E2) − λI) = (−µ2 − λ)(−βs1F3V3 − s2F3 − p − λ)(λ3 + A1λ
2 + A2λ + A3),

where

A1 =
bβγ + β(b − 1) + βγr

(b − 1)β
,

A2 =

(
r
β
− 1

)
(γr(−β + bβ − γ))

(b − 1)(−β + bβ + γr)
+

r(bγ2 + (b − 1)γ)
(b − 1)2β

,

A3 =
γr(β − bβ + γ)((b − 1)β + γr)

(b − 1)β(β − bβ − γr)
.

The eigenvalues are λ1 = −µ2 and λ2 = −βs1F3V3 − s2F3 − p, which are both negative, while λ3,4,5

denotes the zeros of the polynomial λ3 + A1λ
2 + A2λ + A3. It is obvious that A1 > 0 if b > 1, A2 > 0 if

b > 1, β < r and R0 > 1, A3 > 0 if b > 1 and R0 > 1, and

A1A2 − A3 =
β(b − 1)(bβ − β + rγ)

bβγ − β + bβ + γr
−

(b + γr − 1)(bβ − β + γr)
(b − 1)β(bβ − β + γ)

=
β(b − 1)(β(b − 1) + rγ)
β(bγ − 1) + bβ + γr

−
(b + γr − 1)(β(b − 1) + γr)

(b − 1)β(β(b − 1) + γ)
.

Therefore, by the Routh-Hurwitz criterion, λ3,4,5 have negative real parts if A1A2−A3 > 0,which occurs
if b > 1 and β < r. Thus, E2 is locally asymptotically stable.

Biologically, if the viruses are powerful, which means that the burst size is greater than the critical
value, then the system has the equilibrium E2 with the balance of tumor cells, infected tumor cells and
viruses.

Theorem 5. The equilibrium point E3 is locally asymptotically stable if b < 1, bβ < R0 and R0 < 1. If
λz = 0, the point E3 is locally asymptotically stable under the conditions that αβ < κ and bβ < r.

To find the eigenvalue, solve the Jacobian J(E3):
r (s2F3 − 2F3 + 1) −rF3 −βF3 0 −α f F3

0 −µ1Z3a − 1 βF3 0 0
0 b −γ − βF3 − κZ3a 0 0

s2Z3 s1Z3 0 −s2F3 − p 0
−s2Z3 −s1Z3 0 −s2F3 −µ2


.

The characteristic polynomial of this matrix is evaluated as follows:

P(λ) = λ5 + b4λ
4 + b3λ

3 + b2λ
2 + b1λ

1 + b0 = 0,

where b0, b1, b2, b3 and b4 are defined in the Appendix. All coefficients are positive if b < 1. By using
Descartes’ rule, the number of sign changes is zero; thus, the point E3 is locally asymptotically stable
if b < 1.

Theorem 6. The equilibrium point E4 is locally stable if b < 1 , bβ < r ,s1 > s2, λz > Z4a and Z4 > Z4a.
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Proof. To find the Jacobian at the equilibrium point E4, we evaluate |J(E4) − λI| = 0, where J(E4) is
given by 

E1,1 −βF4 0 −αF4

βV4 −µ1Z4a − 1 βF4 0 −µ1Y4

−βV4 b −γ − βF4 − κZ4a 0 −κV4

−s2Z4 −s1Z4 0 −F4s2 − s1Y4 − p 0
s2Z4 s1Z4 0 F4s2 + s1Y4 −µ2


,

where E1,1 = r(1 − Y4 − 2F4) − αZ4a − βV4 − rF4. The characteristic polynomial is

a0λ
5 + a1λ

4 + a2λ
3 + a3λ

2 + a4λ + a5 = 0,

where a0, a1, a2, a3, a4 and a5 are defined in the Appendix. All coefficients are positive if b < 1, bβ < r,
λz > Z4a, s1 > s2 and Z4 > Z4a. By using Descartes’ rule, the number of sign changes is zero; thus, the
point E4 is locally asymptotically stable if b < 1 , bβ < r, λz > Z4a,s1 > s2 and Z4 > Z4a.

3.5. Global stability

In this section, the global stability of the equilibrium points will be investigated by using Lyapunov
functions [22], which must be positive definite.

Theorem 7. E1 is globally asymptotically stable if 1 + b ≤ r ≤ 2, b ≤ 1.

Proof. The Lyapunov function is defined at point E1 as follows:

L1(F,Y,V,Z,Za) =F − F1 − ln F + Y +
1 − r

b
V + Z + Za.

The derivative of L1 is

L′1 =F′ −
F′

F1
+

(1 − r)V ′

b
+ Y ′ + Z′ + Z′a,

=
(1 − r)V ′

b
+ Y ′ + Z′ + Z′a,

=AYY + AVV + AZZ + AZaZa + AFV FV + AYZaYZa + AVZaVZa,

where

AY = − 2 + r = −(2 − r),

AV =
γ

b
− r

γ

b
=
γ

b
(1 − r),

AZ = − p,

AZa = − µ2,

AFV =β +
β

b
− r

β

b
= 1 +

1
b

(1 − r),

AYZa = − µ1,
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AVZa =
κ

b
−
κr
b

=
1
b

(1 − r).

The equilibrium equations at E1 are

rF1(1 − F1) =rF1 − rF2
1 = 0,

λz =0.

We found that L′1 ≤ 0 if 1 + b ≤ r ≤ 2, b ≤ 1. Hence, E1 is globally asymptotically stable if
1 + b ≤ r ≤ 2, b ≤ 1.

Theorem 8. E2 is globally asymptotically stable if 2 < b, r > β R0 < 1 and 2 < Y2 <
γr
bβ .

Proof. The Lyapunov function is defined at E2 as follows:

L2(F,Y,V,Z,Za) =A1(F − F2 − F2 ln
F
F2

) + A2(Y − Y2 − Y2 ln
Y
Y2

) + A3(V − V2 − V2 ln
V
V2

)

+ A4Z2 + A5Z2a.

Thus, we have L′2 as follows:

L′2 =A1(1 −
F2

F
)F′ + A2(1 −

Y2

Y
)Y ′ + A3(1 −

V2

V
)V ′ + A4Z′ + A5Z′a.

The equilibrium equations are

rF2(1 − (F2 + Y2)) − βF2V2 =0,
r − rF2 − rY2 =βV2,

βF2V2 =Y2,

βF2V2 + γV2 =bY2,

γ =
1
V2

(b − 1)Y2,

λz =0. (12)

Using the equilibrium equations in L′2 gives

L′2 =CF F + CYY + CVV + CZZ + CZaZa + CFZa FZa + CvzaVZa + CYZaYZa + CF2 F2

+ CFVFV + CFYFY + CFZFZ + CYVVY + CYZYZ + CFYV FVY + C∗,

where

CF =A1F2r + A1r + A3βV2,

CY =A3b + A1F2r − A2,

CV =A1βF2 − A3γ,

CZ = − A4 p,

CZa =αA1F2 + A3κV2 + A2µ1Y2 − A5µ2,
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CF2 = − A1r,

CFY = − A1r,

CFV = − A3β − A1β + A2β,

CFZ = − A4s2,

CYZ = − A4s1,

CFZa = − A1α f ,

CVZa = − A3κ,

CYZa = − A2µ1,

CYV = − A3bV2,

CFYV = − A2βY2,

C∗ = − A1F2r + A3γV2 + A2Y2 + A4λz.

Note that
CV = A1βF2 − A3γ = A1

Y2

V2
− A3

1
V2

(b − 1)Y2 =
Y2

V2
(A1 − A3(b − 1)),

and CV = 0 if A3 = A1
b−1 . Let A2 = A3 = A1

b−1 ; then, CFV = −A1β and CF = A1(r(2 − Y2) − βV2 +
β

b−1V2).
We have that CF < 0 if Y2 > 2. Thus, we obtain CY as

CY =
A1

b − 1
(b − 1) + A1F2r = A1(1 + r − βV2 − rβF2V2),

= A1(1 + r − βV2 − r
γ

b − 1
V2),

=A1(1 + r −
(b − 1)β

γ
Y2 − rY2).

Since Y2 > 2, CY < 0. Thus, CZa becomes

CZa =A1(α f F2 +
κ

b − 1
V2 +

µ1

b − 1
Y2) − A5µ2,

=
A1

b − 1
(
α fγ

β
+ κV2 + µ1Y2) − A5µ2 = 0.

If A5 = A1
µ2(b−1) (

α f γ

β
+ κV2 + µ1Y2) and we let A4 = A1, we obtain C∗ as follows:

C∗ = − A1F2r + A3γV2 + A2Y2,

= − A1F2r +
A1

b − 1
((b − 1)Y2 + Y2),

=A1(−F2r +
b

b − 1
Y2).

We get that L′2 ≤ 0 if 2 < Y2 <
γr
bβ . Hence, E2 is globally asymptotically stable.

Theorem 9. E3 is globally asymptotically stable if b < 1; then, p < λ <
p(µ2r+α f s2Z3)
µ2r+α f s2

,
γ
(
r+

α f s1Z3
µ2

)
1−b < β,

and r > 2λzα f

µ2
.
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Proof. The Lyapunov function at E3 is defined as follows:

L3(F,Y,V,Z,Za) =A1(F − F3 − F3 ln
F
F3

) + A2Y + A3V + A4(Z − Z3

− Z3 ln
Z
Z3

) + A5(Za − Za3 − Za3 ln
Za

Za3
),

and its derivative is

L′3 =A1(1 −
F3

F
)F′ + A2Y ′ + A3V ′ + A4(1 −

Z3

Z
)Z′ + A5(1 −

Za3

Za
)Z′a.

After substituting the points F3,Z3 and Za3 in L′3, we get

L′3 =BF F + BYY + BVV + BZZ + BZaZa + BFZa FZa + BvzaVZa + BYZaYZa + BF2 F2 + BFVFV

+ BFYFY + BFZFZ + BYZYZ + BFZZa FZZa + BYZZaYZZa + B∗,

where

BF =A1r + A1F3r + A4s2Z3,

BY =A4s1Z3 + A1rF3 + A3b − A2,

BV = − A3γ + A1βF3,

BZ = − A4λzZ3 − A4 p,

BZa = − A5µ2 + A1F3α f ,

BF2 = − A1r,

BFY = − A1r,

BFV = − A3β + A2β − A1β,

BFZ =A5s2 − A4s2,

BYZ =A5s1 − A4s1,

BFZa = − A1α f ,

BVZa = − A3κ,

BYZa = − A2µ1,

BFZZa = − A5s2Z3a,

BYZZa = − A5s1Z3a,

B∗ = − A1F3r + A5µ2Z3a + A4λz + A4 pZ3.

The equilibrium equations at (F3, 0, 0,Z3,Za3) are

0 =r(1 − F3) − α f Z3a,

0 =λz − pZ3 − s2F3Z3,

0 =s2F3Z3 − µ2Z3a. (13)

If A4 = A5, then BFZ = 0 and BYZ = 0. If A3 = A2, then BFV < 0, A3 =
A1βF3
γ

and BV = 0. If A5 =
A1F3α f

µ2
,

then BZa = 0. Thus,

BY =A4s1Z3 + A1rF3 + A3b − A2,
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=A1(
F3α f s1Z3

µ2
+ rF3 +

βF3(b − 1)
γ

);

and since b < 1, we have that
γ
(
r+

α f s1Z3
µ2

)
1−b < β and

BF =A1r + A1F3r + A4s2Z3,

=A1(r + F3r +
α f F3s2Z3

µ2
),

=A1(2r − α f Z3a + α f Z3a),

and

B∗ = − A1F3r + A5µ2Z3a + A4λz + A4 pZ3,

= − A1F3r +
A1α f F3

µ2
(µ2Z3a + λz + pZ3),

= − A1F3r +
A1F3α f

µ2
(2λz),

=A1F3(−r +
2λzα f

µ2
);

L′2 ≤ 0 if r > 2λzα f

µ2
. Hence, E3 is globally asymptotically stable.

4. Analytical solution

Finding the solutions of the system helps to understand the dynamics of the solutions. Some
researchers have found numerical solutions for biological systems by using Galerkin meshless
method [23] or traveling wave solutions [24]. Since there are no initial conditions available, the best
way is to apply an analytical method which does not require initial or boundary conditions. We shall
the use tanh-expansion method to find the solutions [25]. The following are the steps to construct the
solution:

(1) Transfer the system of PDEs given by (6) into the system ODEs given by (7) using a traveling wave
transformation, which is defined by ξ = kx + ct + ξ0.

(2) Assume that
f̂ = η1u(ξ), ŷ = η2u(ξ), v̂ = η3u(ξ), ẑ = η4u(ξ), ẑa = η5u(ξ), (14)

and substituting (14) into the equation of System (7) gives a polynomial of u and its derivatives:

P(u, u′, u′′, ...) = 0. (15)

(3) Assume that

u(ξ) = S (Φ) =

M∑
i=0

aiΦ
i, (16)
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where M is a positive integer and

Φ = tanh(µξ), (17)

where µ and ai are constants such that

du
dξ

=
dS (Φ)

dΦ
= µ(1 − Φ2)

M∑
i=0

ai
dΦi

dΦ
,

d2u
dξ2 =

d2S (Φ)
dΦ2 =µ2(1 − Φ2)

−2Φ

M∑
i=0

ai
dΦi

dΦ
+ (1 − Φ2)

M∑
i=0

ai
d2Φi

dΦ2

 .
(4) Apply the homogeneous balance theorem to find the value of M, i.e., balance the linear terms of

highest order in the previous equation with the highest-order nonlinear terms.

(5) Substitute Eq (16) into the equations of System (15) to obtain an equation of Φi.

(6) Equate the confections of Φi to zero to obtain the ai’s and η’s. By following Steps (1) and (2), we
obtain the following system of equations:

η1
d
dξ

u =η1
r
c

u(1 − (η1u + η2u)) − η1η3
β

c
u2 − η1η5

α f

c
u2 + η1

d1k2

c
uξξ,

η2
d
dξ

u =η1η3
β

c
u2 − η2

1
c

u − η2η5
µ1

c
u2 + η2

d2k2

c
uξξ,

η3
d
dξ

u =η2
b
c

u − η1η3
β

c
u2 − η3

γ

c
u − η3η5

κ

c
u2 + η3

d3k2

c
uξξ,

η4
d
dξ

u =
λz

c
− η4

p
c

u − η2η4
s1

c
u2 − η1η4

s2

c
u2 + η4

d4k2

c
uξξ,

η5
d
dξ

u =η2η3
s1

c
u2 + η1η3

s2

c
u2 − η5

µ2

c
u + η5

d5k2

c
uξξ. (18)

Then, we sum all of the equations to obtain a single equation, as follows:

A1u + A2u2 + A3u′ − k2A4u′′ − A5 = 0, (19)

where

A1 =η2
1
c
− η2

b
c

+ η3
γ

c
+ η4

p
c

+ η5
µ2

c
− η1

r
c
,

A2 =η2
1
r
c

+ η1η2
r
c

+ η1η5
α f

c
+ η2η5

µ1

c
+ η1η3

β

c
+ η3η5

κ

c
,

A3 =η1 + η2 + η3 + η4 + η5,

A4 =d1η1 + d2η2 + d3η3 + d4η4 + d5η5,

A5 = −
λz

c
.

AIMS Mathematics Volume 8, Issue 5, 10905–10928.



10921

Next, we follow Steps (3) and (4) and balance between the nonlinear term u2 and the highest order
of the derivative u′′; we get 2M = 4 + M − 2, which satisfies M = 2. Thus,

u(ξ) = S (Φ) =a0 + a1Φ + a2Φ
2. (20)

Substituting Eq (20) into ODE (19) gives

A1S (Φ) + A2S 2(Φ) + A3µ(1 − Φ2)
dS (Φ)

dΦ
− A4µ

2(1 − Φ2)(−2Φ
dS (Φ)

dΦ

+ (1 − Φ2)
d2S (Φ)

dΦ2 ) − A5 = 0. (21)

Note that

S =a0 + a1Φ + a2Φ
2,

dS
dΦ

=a1 + 2a2Φ,

d2S
dΦ2 =2a2. (22)

Substituting Eq (22) into Eq (21) and collecting all of the terms with the same power of Φ together
implies the following:

A1(a0 + a1Φ + a2Φ
2) + A2 + (a0 + a1Φ + a2Φ

2)2 + A3(a1 + 2a2Φ)
− A4(2a2) − A5 = 0;

this can be rewritten as

b0 + b1Φ + b2Φ
2 + b3Φ

3 + b4Φ
4 = 0.

Then, we equate the constant bi’s to zero to obtain the algebraic system of equations and find the
ai’s and η’s.

Thus, the solutions are in the following form:

F = η1u(x, t), Y = η2u(x, t), V = η3u(x, ti), Z = η4u(x, t), Za = η5u(x, t), (23)

where
u(x, t) = a0 + a1tanh (µ (ct + kx)) , (24)

and

d5 =
1
η2

5

(
η5(6.58537d3 − 36.5854d4)

a1cµ
+ η2

5(1.6d1 − 1.17143d2 − 6.85366d3 + 7.42509d4)

−66.9643d2 − 423.018d3 + 489.983d4) ,

η1 = − 1.6, η2 = 1.17143η5 +
66.9643
η5

,

η3 = −
6.58537

a1cµ
+ 6.85366η5 +

423.018
η5

, η4 =
36.5854

a1cµ
− 7.42509η5 −

489.983
η5

.
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5. Discussion of results

The presented mathematical model aims to elucidate the effects of combining viral therapy with the
immune response and its spread. First, we ignored the diffusion terms and solved the problem by using
the Runge-Kutta 4th-order method using the values of the non-dimensionless parameters according to
Reference [16], as follows:

r = 0.36, β = 0.1, α f = 0.36,
µ1 = 0.48, b = 2, γ = 0.2, κ = 0.16,

, s1 = 0.6, s2 = 0.29, p = 0.036,
λz = 0.2, µ2 = 0.036.

We considered two cases: (a) µ1 = µ2 = 0.2, s1 = 0.2, s2 = 0.6 and (b) µ1 = µ2 = 0.7 s1 = 0.2, s2 =

0.6, where the initial conditions are F = 0.9, Y = 0.5, V = 0.5, Z = 0.1 and Za = 0.2.
The results in Figure 2 show that, in Case (a), the unaffected cells F decreases during the treatment

when the concentration of activated immune system cells is low. On the other hand, the high
concentration of Za helps to maintain the level of healthy cells in the body. Therefore, we predict
that the combination of biological therapy and virotherapy reduces the side effects of the virotherapy,
and the patient’s body may become less weak during the treatment.

The immune response against cancer cells has been investigated for decades. It has been determined
that the immune system actively patrols the body [26]. From this standpoint, we investigate the
diffusion coefficient of the immune system d5. The solutions of Model (6) are found by employing
the tanh-expansion method to study the effect of the treatment on cancer growth. The solution is
presented in Eq (24), which indicates that d5 is dependent on d1, d2, d3 and d4. The diffusion of
activated immune system cells (d5) increases when the diffusion of the unaffected cells (d1) or naive
immune system cells (d4) increases, while it decreases by increasing the diffusion of the virus (d2) or
infected cells (d3).

Note that η5 is another parameter that affects the solution, as we can see in Figures 3–5. The
parameter η5 is a coefficient that is associated with Za. When η5 increases, the concentrations of
uninfected cells F and activated immune system cells Za increase, while the concentrations of infected
cells y, virus v and naive immune system cells Z decrease. We observed that the immune cells Z
have the highest concentrations compared to other components in the system, and this indicates the
response of the immune system for viral treatment. However, the immunotherapy has been widely
used in different protocols to treat cancers [27]. We predict good results of the combination between
immune therapy and virotherapy. The results are aligned with the clinical trial in Reference [28]. This
clinical trial confirms the possibility of combining the immunotherapy and virotherapy.
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Figure 2. Solutions obtained by ignoring diffusion terms and considering two cases: (a)
the activated immune system (Za) has low concentration in the body and (b) Za has high
concentration.
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(a) Uninfected cancer cells.

-5 -4 -3 -2 -1 1
x

200

400

600

800

1000

1200

1400
Y

ℏ5= 0.1

ℏ5=0.5

ℏ5=0.9

(b) Infected cancer cells.

Figure 3. Solutions for different values of η5.
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(a) Virus.

Figure 4. Solutions for different values of η5.
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(a) Naive immune cells.
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(b) Activated immune cells.

Figure 5. Solutions for different values of η5.

6. Conclusions

In this work, we modified a mathematical model of cancer and virotherapy to study the dynamics
of virotherapy with tumor cells and the effects of the immune response. In addition, this modification
distinguishes between two types of immune system cells, which are the activated cells and naive cells.
The results predict that the high concentration of activated immune cells leads to enhanced results of
virotherapy. The activated immune cells can be generated in the patient’s body through biological
therapy. Moreover, the model was analyzed by using the stability theory of nonlinear systems. We
studied the stability of five equilibrium points and determined the conditions of the existence and local
and global stability of the equilibrium points. As a result, the success of viral treatment depends on the
size of the burst b, the viral infection rate β and the clearance rate of viruses γ, which depend on the type
of the virus. The treatment by virotherapy can be more effective by stimulating the activated immune
cells. Furthermore, we found the analytical solutions for the studied model by using the tanh-expansion
method because of a lack of initial and boundary conditions. We found that, if the concentration of
activated immune cells Za increases, the unaffected cells f increase, which indicates the improvement
of the treatment results.

However, for future work, the studied model can be solved numerically by finding the associated
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initial and boundary conditions based on real data, and by using the Galerkin method [23]. Also,
diffusion terms can be added in many biological models to study the spread of the model components
and deal with a system of PDEs.
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Appendix

The definitions of b0, b1, b2, b3 and b4 that are related to the characteristic polynomial for E2 are as
follows:

b0 =(1 − b)βF3 + γ + µ1Z3a(γ + βF3 + κZ3a)
(
F3µ2 pr + F3s2

(
F3µ2r + α f pZ3

))
+ κZ3a,

b1 =F3
3((1 − b)βrs2 + βµ2rs2 + βµ1rs2Z3a) + F2

4((1 − b)βpr + (1 − b)βµ2r

+ (1 − b)βµ2s2 + α f (1 − b)βs2Z3 + kµ1rs2Z2
3a + κµ2rs2Z3a + κrs2Z3a + βpr

+ α fβps2Z3 + γµ2rs2 + γrs2 + µ2rs2 + γµ1rs2Z3a + µ1µ2rs2Z3a + 2βµ1µ2rZ3a

+ α fβµ2s2Z3a + βµ1µ2s2Z3a + α fβµ1s2Z3aZ3) + F3((1 − b)βµ2 p

+ κµ2 prZ3a + α f κps2Z3aZ3 + 2kµ1µ2rZ2
3a + κµ2rZ3a + kµ1µ2s2Z2

3a

+ α f κ + µ1s2Z2
3aZ3a + kµ2s2Z3a(α f Z3a + 1) + α f κs2Z3aZ3 + γµ2 pr

+ γpr + µ2 pr + µ1µ2 prZ3a + αµ1 ps2Z3aZ3 + α fγps2Z3 + α f ps2Z3

+ βµ1µ2 pZ3a + γµ2r + 2γµ1µ2rZ3a + γµ2s2 + αγµ2s2Z3aZ3a + γµ1µ2s2Z3a

+ α fγµ1s2Z3aZ3 + αγs2Z3) + κµ1µ2 pZ2
3a + γµ2 p + α fµ2 pZ3a + γµ1µ2 pZ3a,

b2 =F2
3((1 − b)βr + (1 − b)βs2 + κrs2Z3a + µ1 pr2Z3a + βµ1 prZ3a + pr + µ1µ2r2Z3a

+ βµ2r + γrs2 + µ2rs2 + µ1rs2Z3a + rs2 + βµ1rZ3a + βµ1µ2rZ3a + βµ2s2

+ βµ1s2Z3a + α fβs2Z4) + F3((1 − b)βµ2 + (1 − b)βp + bβr + κµ1 prZ2
3a + κprZ3a

+ kµ1rZ2
3a + κµ1µ2rZ2

3a + κµ2rZ3a + κµ1s2Z2
3a + κµ2s2Z3a + α f κs2Z3aZ3

+ κs2Z3a + βµ2 p + γpr + µ2 pr + γµ1 prZ3a + µ1µ2 prZ3a + pr + α f ps2Z3

+ γµ2r + γr + µ2r + γµ1rZ3a + γµ1µ2rZ3a + γµ2s2 + γs2 + µ2s2

+ γµ1s2Z3a + µ1µ2s2Z3a + α fµ1s2Z3aZ3 + α fγs2Z3 + α f s2Z3) + γµ2

+ α f (1 − b)βZ3Z3a + βF3
3rs2 + κµ2 pZ3a + κpZ3a + κµ2Z3a + γµ2 p + γp + µ2 p,

b3 =F3((1 − b)β + βµ2 + κrZ3a + κs2Z3a + βp + pr + γr + µ2r + µ1rZ3a

+ r + γs2 + µ2s2 + µ1s2Z3a + α f s2Z3 + s2 + βµ1Z3a) + γµ2 + γ

+ F2
3(βr + rs2 + βs2) + Z3a(γµ1 + κµ2 + κp + κ + µ1µ2 + µ1 p) + κµ1Z2

3a

+ µ2 + γp + µ2 p + p,

b4 =γ + βF3 + 2F3r + F3s2 + κZ3a + µ2 + p + α f Z3a + µ1Z3a + 1.
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The definitions of a0, a1, a2, a3, a4 and a5 that are related to the characteristic polynomial for E4 are as
follows:

a1 =µ1Z4a +
bY4

V4
+ F4r + µ2 +

λz

Z4
+ 1,

a2 =(1 − b)βF4 + Z4a(
bµ2Y4

V4
+ γµ1 + βF4µ1 + F4κr + F4µ2r + F4µ1r

+ κµ2 + κp + κ + µ2
2 + µ1µ2 + µ2 + µ1 p + βµ1V4 + α fµ1µ2Z4)

+ γµ2 + γ + βF2
4r + βF4µ2 + F4 pr + γF4r + F4µ2r + F4r

+ µ2 + γp + µ2 p + p + µ1µ2Z2
4a,

a3 =
1

V4Z4
F4(V4(µ1rZ4aλz + µ1µ2rZ4Z4a + α f s2Z4(µ1Z4Z4a − µ2Z4a

+ λz + Z4) + rY4Z4(bβ + µ1Z4(s1 − s2) − bβ(λz + µ2Z4)
+ µ2rλz + rλz + µ2rZ4) + βV2

4 (Z4(−βµ1Z4a − (1 − b)β
+ µ2(r − β)) + (r − β)λz + Z2

4(s1α f + κ(s1 − s2))
+ bY4(rZ4(µ1Z4a + µ2 + 1) + rλz + α f s2Z2

4))
+ Y4(λz(b(µ1Z4a + µ2 + 1) + µ1s1V4Z4) + µ2Z4(−µ1Z4a(s1V4 − b) + b))
+ µ2V4λz(µ1Z4a + 1) − β(F2

4rV4Z4(−V4 − b) + bµ1s1Y2
4 Z2

4 ,

a4 =
1

V4Z4
− β2(κF4s1Z2

4V3
4 + α f F2

4 s1Z2
4V2

4 − bF4λzV2
4 )

− β2F4V2
4 (λz + Z4aλzµ1 + Z4µ2(1 − b) + λzµ2 + Z4Z4aµ1µ2)

− βF4s1Z4(−((α f + κ)λz) + βY4Z4µ1 + (α f + κ)Z4aµ2)V2
4

− βκF4s2Z4(λz + Z4 (Z4aµ1 + 1) − Zaµ2) V2
4 − bα fβF2

4 s2Z2
4V4

+ bα fβF4s1Y4Z2
4V4 + α f F4s2Z4λzV4 − bβF4s2Y4Z2

4µ1V4

+ α f F4s2Z4Z4aλzµ1V4 − bβF4λzµ2V4 − α f F4s2Z4Z4a (Z4aµ1 + 1) µ2V4

+ bαF4s2Y4Z2
4 + bα f F4s2Y4Z4λz + bα f F4s2Y4Z2

4Z4aµ1

− bα f F4s2Y4Z4Z4aµ2 + bY4(λz(Z4aµ1 + 1)µ2 + s1Y4Z4µ1(λz − Z4aµ2))
+ r(βκs1V2

4 Z2
4 F2

4 − βκs2V2
4 Z2

4 F2
4 − βV4(b + βV4)(λz + Z4µ2)F2

4

+ bY4λzF4 + bβV4Y4λzF4 + bs1Y2
4 Z2

4µ1F4 − bs2Y2
4 Z2

4µ1F4

− s2V4Y4Z4λzµ1F4 + bY4Z4aλzµ1F4 + bY4Z4µ2F4 + bβV4Y4Z4µ2F4

+ βV2
4λzµ2F4 + V4λzµ2F4 + bY4λzµ2F4 + bY4Z4Z4aµ1µ2F4

+ s2V4Y4Z4Z4aµ1µ2F4 + V4Zaλzµ1µ2F4 + s1V4Y4Z4µ1(λz − Z4aµ2)F4),

a5 =
F4

V4Z4
F4r(−bµ1s2Y2

4 Z4(−µ2Z4a + λz) + bµ1µ2s1Y4Z4a(Y4λz − s1Y4Z4)

+ βF4κs1V2
4 Z4(λz − µ2Za) − βF4κs2V2

4 Z4(λz − µ2Z4a) − βF4µ2V4λz(b + βV4)
+ bµ1s1Y2

4 Z4λz + bβµ2V4Y4λz + bµ2Y4λz + F4(−α f bβF4s2V4Z4(λz − µ2Z4a)
− bβµ1s2V4Y4Z4(−µ2Z4a + λz) − α f bβµ2s1V4Y4Z4Z4a

+ α f bs2Y4Z4(µ1Z4a + 1)(−µ2Za + λz) − α fβ
2F4s1V2

4 Z4 (λz − µ2Z4a)

+ β2µ1µ2s1V2
4 Y4Z4Z4a − βκs2V2

4 Z4 (µ1Z4a + 1) (−µ2Z4a + λz)
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− β2(−κµ2s1V3
4 Z4Za + µ1µ2V2

4 Zaλz) + α f bβs1V4Y4Z4λz

− β2(µ2V2
4λz(1 − b) + µ1s1Y4Z4 + κs1V3

4 Z4λz).
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11. Ž. Bajzer, T. Carr, K. Josić, S. J. Russell, D. Dingli, Modeling of cancer virotherapy with
recombinant measles viruses, J. Theor. Biol., 252 (2008), 109–122.

12. G. Marelli, A. Howells, N. R. Lemoine, Y. H. Wang, Oncolytic viral therapy and the immune
system: A double-edged sword against cancer, Front. Immunol., 9 (2018), 866.

13. N. L. Komarova, D. Wodarz, Targeted cancer treatment in silico, Model. Simul. Sci. Eng. Technol.,
Springer, 2014.

AIMS Mathematics Volume 8, Issue 5, 10905–10928.

http://dx.doi.org/https://doi.org/10.1111/cas.13027
http://dx.doi.org/https://doi.org/10.13005/bbra/947
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110321
http://dx.doi.org/https://doi.org/10.3390/e19120681
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.112194
http://dx.doi.org/https://doi.org/10.3934/math.2021395
http://dx.doi.org/https://doi.org/10.1089/104303403321070847 


10928

14. D. Wodarz, Viruses as antitumor weapons: Defining conditions for tumor remission, Cancer Res.,
61 (2001), 3501–3507.

15. D. Wodarz, N. Komarova, Towards predictive computational models of oncolytic virus
therapy: Basis for experimental validation and model selection, Plos One, 4 (2009), e4271.
https://doi.org/10.1371/journal.pone.0004271

16. T. A. Phan, J. P. Tian, The role of the innate immune system in oncolytic virotherapy, Comput.
Math. Method. M., 2017 (2017).

17. N. Al-Johani, E. Simbawa, S. Al-Tuwairqi, Modeling the spatiotemporal dynamics of virotherapy
and immune response as a treatment for cancer, Commun. Math. Biol. Neurosci., 2019 (2019).

18. E. Simbawa, N. Al-Johani, S. Al-Tuwairqi, Modeling the spatiotemporal dynamics of oncolytic
viruses and radiotherapy as a treatment for cancer, Comput. Math. Method. M., 2020 (2020).

19. S. M. Al-Tuwairqi, N. O. Al-Johani, E. A. Simbawa, Modeling dynamics of cancer virotherapy
with immune response, Adv. Differ. Equ., 2020 (2020), 1–26.

20. P. M. Ngina, R. W. Mbogo, L. S. Luboobi, et al., Mathematical modelling of in-vivo dynamics of
HIV subject to the influence of the CD8+ T-cells, Appl. Math., 8 (2017), 1153.

21. L. Edelstein-Keshet, Mathematical models in biology, SIAM, 2005.

22. M. Martcheva, Analysis of complex ode epidemic models: Global stability, In An Introduction to
Mathematical Epidemiology, Springer, 2015, 149–181.

23. H. Jahanshahi, K. Shanazari, M. Mesrizadeh, S. Soradi-Zeid, J. F. Gómez-Aguilar, Numerical
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