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Abstract: In recent years, fossil fuel resources have become increasingly rare and caused a variety of
problems, with a global impact on economy, society and environment. To tackle this challenge, we
must promote the development and diffusion of alternative fuel technologies. The use of cleaner fuels
can reduce not only economic cost but also the emission of gaseous pollutants that deplete the ozone
layer and accelerate global warming. To select an optimal alternative fuel, different fuzzy decision
analysis methodologies can be utilized. In comparison to other extensions of fuzzy sets, the
T -spherical fuzzy set is an emerging tool to cope with uncertainty by quantifying acceptance,
abstention and rejection jointly. It provides a general framework to unify various fuzzy models
including fuzzy sets, picture fuzzy sets, spherical fuzzy sets, intuitionistic fuzzy sets, Pythagorean
fuzzy sets and generalized orthopair fuzzy sets. Meanwhile, decision makers prefer to employ
linguistic terms when expressing qualitative evaluation in real-life applications. In view of these facts,
we develop an extended multi-attributive border approximation area comparison (MABAC) method
for solving multiple attribute group decision-making problems in this study. Firstly, the combination
of T -spherical fuzzy sets with 2-tuple linguistic representation is presented, which provides a general
framework for expressing and computing qualitative evaluation. Secondly, we put forward four kinds
of 2-tuple linguistic T -spherical fuzzy aggregation operators by considering the Heronian mean
operator. We investigate some fundamental properties of the proposed 2-tuple linguistic T -spherical
fuzzy aggregation operators. Lastly, an extended MABAC method based on the 2-tuple linguistic
T -spherical fuzzy generalized weighted Heronian mean and the 2-tuple linguistic T -spherical fuzzy
weighted geometric Heronian mean operators is developed. For illustration, a case study on fuel
technology selection with 2-tuple linguistic T -spherical fuzzy information is also conducted.
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Moreover, we show the validity and feasibility of our approach by comparing it with several existing
approaches.

Keywords: 2-tuple linguistic T -spherical fuzzy set; Heronian mean operator; MAGDM; MABAC; fuel
technology selection
Mathematics Subject Classification: 03E72, 03E75, 90B50

1. Introduction

The conventional production and consumption relying on fossil fuel resources can lead to a number
of serious problems including greenhouse gas emission, energy shortage, oil price fluctuation and
so forth. The idea of sustainable production and consumption is gradually becoming a universally
accepted goal of human society [13]. Policy makers in various countries around the world are paying
increasingly more attention for seeking cheaper and cleaner alternative fuels. Relevant research reveals
that the use of alternative fuel technologies can be crucial in gaseous pollutant control, biomass waste
management, socioeconomic growth and sustainable development. Alternative fuels can be chosen
from a large variety of different options such as ethanol, natural gas, propane, bio-diesel, hydrogen
and others. In the selection of an optimal alternative fuel technology, one should take into account
multiple criteria such as economic viability, quality of performance and environmental safety. In fact,
alternative fuel technology selection can be viewed as a multiple attribute decision-making (MADM)
problem [24, 44].

As a prominent branch of MADM research, multiple attribute group decision-making (MAGDM)
refers to a process in which alternatives are assessed by a group of decision makers (DMs) based on
several conflicting criteria to reach a consensus on ranking all alternatives or selecting the optimal one
from them. Much attention has been paid to the methodological approaches to tackle the generalized
fuzzy circumstances in recent publications on MAGDM. Because of the high intensity of MAGDM
issues, it is not easy for DMs to obtain all the feasible information of alternatives accurately.
Therefore, how to deal with vagueness and ambiguity becomes crucial for choosing the most
acceptable alternative in realistic decision-making [55, 63] issues. In the MAGDM framework, many
researchers and scientists have committed themselves to explore methodologies that can effectively
describe fuzziness in decision-making information. However, it is very difficult to communicate the
assessment details in various group decision-making [19, 34] problems because of the fuzziness of
human perception and the ambiguity of the environment. To resolve this issue fuzzy set (FS) theory
was proposed by Zadeh [61] as an extension of classical sets. Researchers have paid interest to FS and
its various applications, but the limitation of FS is that it only describes the information about
membership degree (MD). To enhance the ability of uncertainty modeling, scholars put forth some
more sophisticated fuzzy theories such as the intuitionistic fuzzy set (IFS) [12], the Pythagorean fuzzy
set (PyFS) [59], and the q-rung orthopair fuzzy set (q-ROFS) [60], with a restriction that the sum,
square sum, and q-th sum of both MD and non-membership degree (NMD) on a scale of 0 to 1,
respectively. These advanced FSs have shown great power in decision-making under uncertainty. For
instance, Zhao et al. [64] took advantage of IFSs to capture the uncertain information, which is useful
for stock investment selection. Liang et al. [30] applied three-way decision theory to research and
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development project selection with Pythagorean fuzzy information. Rani and Mishra [50] established
a weighted aggregated sum product based assessment scheme to choose optimal fuel technology with
the aid of q-ROFSs.

Maji et al. [38] defined the intuitionistic fuzzy soft set (IFSS) by combining soft sets with IFSs.
Agarwal et al. [1] further introduced the generalized intuitionistic fuzzy soft set (GIFSS). Feng et
al. [17] improved the GIFSS and simplified this notion as a synthesis of a basic IFSS and a parametric
IFS. Using IFSS information, Feng et al. [18] further extended the preference ranking organization
method for enrichment evaluation method. Liu et al. [32] proposed the q-ROF linguistic family of point
aggregation operators (AOs) for linguistic q-ROFSs and designed a novel MAGDM methodology to
process the linguistic q-ROF information. But all of the above described FSs have duplet forms such as
MD and NMD, these approaches are unable to address the degrees of abstinence and refusal of human
opinion. To handle that situation the concept of picture fuzzy set (PFS), as the direct extension of FS
and IFS was introduced. Cuong and Kreinovich [15] introduced the concept of PFS in the form of
triplets using MD, abstinence degree (AD), and NMD with a restriction, their sum must not exceed 1.
To overcome the limitation of PFS, Gündogdu and Kahraman [21] presented the idea of spherical fuzzy
sets (SFSs) which is the generalization of PyFS and PFS in which the square sum of MD, AD, and
NMD lies between [0,1]. Further, Kahraman et al. [27] studied the TOPSIS method in spherical fuzzy
circumstances and select the best hospital location. When a decision maker assigns a positive grade of
0.9, an abstinence grade of 0.85, and a negative grade of 0.8, the PFS and SFS are unable to deal with
that case. Therefore, to tackle the sum and square sum limitation of PFS and SFS, Mahmood et al. [39]
proposed the T -spherical fuzzy set (T -SFS), whose structure is a generalization of q-ROFS and SFS,
with a great ability to deal with uncertainties. In certain scenarios, because of the non-applicability
of the PFS and SFS, the T -SFS was introduced. The T -SFSs, based on three characteristic functions
known as MD, AD, and NMD with the restriction that the sum of q-th powers of all three degrees
must not exceed 1. The structure of T -SFSs is diverse in nature but, similar to q-ROFSs. T -SFSs can
manage all circumstances in which the theories of FSs, IFSs, PyFSs, PFSs, and SFSs are invalid. The
AOs in the T -SFS environment have been effectively addressed by many researchers. Garg et al. [20]
defined several T -spherical fuzzy power AOs and explored their application to MADM based on T -
SFSs. Guleria and Bajaj [22] studied the idea of T -SF soft set. The generalized T -SF weighted AO
was introduced by Quek et al. [49]. Ullah et al. [52] investigated T -SFS-based correlation coefficients
and their applicability in two real-life applications regarding clustering and decision-making. Munir
et al. [40] developed the Einstein hybrid AOs for the aggregation of T -spherical fuzzy information.
Ullah et al. [53] proposed several T -spherical fuzzy Hamacher AOs and considered how to use them
to estimate the performance of search and rescue robots. Liu et al. [33] proposed the linguistic T -
spherical fuzzy numbers, the linguistic T -spherical fuzzy weighted averaging operator, and extended
the MABAC method to the linguistic spherical fuzzy environment.

Researchers have proposed multiple research theories on the FS’s extension and these theories can
be divided into two categories. The first is based on quantitative FSs, and the second is based on
qualitative FSs, which are usually represented by linguistic variables. Zadeh [62] firstly introduced
the notion of linguistic variables. To better reflect the human perception in MADM problems,
linguistic information processing approaches can effectively prevent distortion and loss of data. One
of the most important approaches to deal with linguistic decision-making issues is the 2-tuple
linguistic (2TL) representation model [45], firstly proposed by Herrera and Martinez [25]. Several
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2TL AOs and decision-making approaches have been proposed. Deng et al. [16] proposed the
generalized and geometric 2TL Pythagorean fuzzy Heronian mean (HM) AOs by combining the
generalized, geometric HM AOs and their weighted forms with 2TL Pythagorean fuzzy numbers. As
many kinds of research have been done to become conscious about the correlation of arguments,
which is a crucial aspect of aggregated results. The HM [14] operator proves to be an effective tool in
this regard, which gains too much attention from researchers. The three-parameter HM operator and
the three-parameter weighted HM operator defined by Liu and Chin [31] and extended to a linguistic
environment. On the basis of Archimedean t-norm and t-conorm, Mo and Huang [41] developed the
dual hesitant fuzzy geometric HM operator and dual hesitant fuzzy geometric weighted HM operator.
Jiang et al. [26] devised a set of dual hesitant fuzzy power HM AOs with interval values. Yang and
Li [56] presented the multiple-valued picture fuzzy linguistic generalized weighted geometric HM
aggregating operator, which extends the traditional generalized HM operators to a multiple-valued
picture fuzzy linguistic environment. Yu et al. [57] suggested some linguistic hesitant fuzzy HM AOs
after generalizing the HM in a linguistic hesitant fuzzy environment.

Further, Akram et al. [4–7] introduced several decision-making methods under generalized fuzzy
scenarios. In addition, there are two basic types of approaches for making decisions that are
frequently used. The first is the information AOs through which many data can be compiled into a
single consistent value. Operators that are commonly used include weighted averaging AOs, ordered
weighted averaging AOs, power AOs, etc. The conventional MADM method is the second method,
which mainly includes TOPSIS, VIKOR, TODIM, MOORA, and MABAC methods, etc. The theory
of different decision-making methods [35, 36] is widely used in MADM problems according to
requirements. It is worth noting that all of the above-mentioned methods have some deficiencies to
select an optimal alternative from the given set of finite alternatives. To overcome that issue, the
MABAC method was proposed by Pamučar and Ćirović [46] which is a very suitable and informative
method for solving the MAGDM problems. They used the MABAC method for the transportation and
processing resource selection in the logistics center and explained its effectiveness by comparison
with the SAW, COPRAS, TOPSIS, MOORA, and the VIKOR methods. Pamučar et al. [47] later
modified the original MABAC approach. Mishra et al. [42] present a novel interval-valued IFS-based
multi-criteria MABAC approach. Many scholars have studied and expanded the MABAC
method [23, 48, 51], for example, Xue et al. [54] applied the MABAC method to do a material
selection.

1.1. Motivation and innovation of this study

The overall aim of this study is to identify the alternative fuel that may help some undeveloped
countries to reduce their economic cost. After executing, various data from DMs, the MAGDM
approach is used to determine the most acceptable alternative fuel. DMs who prioritize membership,
abstinence, and non-membership degrees think clearly when they use the 2-tuple linguistic
T -spherical fuzzy set (2TLT -SFS) [2] in this type of MAGDM. Furthermore, adopting the 2TLT -SF
generalized weighted Heronian mean (2TLT -SFGWHM) operator and the 2TLT -SF weighted
geometric Heronian mean (2TLT -SFWJHM) operator allows DMs to make more informed judgments
on their significant and 2TLT -SF ideas. The MABAC method is a useful tool as it calculates the
distance between each alternative and border approximation area (BAA), and also provides
information about lower approximation area and upper approximation area. Furthermore, the
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MABAC method has some merits which other methods have not been endowed with: (1) computing
results are stable; (2) calculating equations are not complicated; (3) it evaluates the hidden values of
gains and losses into account; (4) the model can combine with other approaches. As a consequence,
we deduce that the MABAC framework is a valuable tool in the modern decision-making
environment. In particular, the outcomes of the 2TLT -SF-MABAC approach are comparable to those
of the 2TLT -SF-EDAS and the 2TLT -SF-CODAS approaches in this article. All these techniques are
significant MAGDM fundamental approaches.

The innovation of this research can be summarized as follows:

(1) The 2TLT -SF generalized Heronian mean (2TLT -SFGHM) operator, the 2TLT -SFGWHM
operator, the 2TLT -SF geometric Heronian mean (2TLT -SFJHM) operator, and the
2TLT -SFWJHM operator are proposed by the integration of 2TLT -SFS and HM operator to
deal with group decision-making problems in which the attributes have interrelationships.

(2) Some fundamental properties of the proposed 2TLT -SF aggregation operators are obtained.

(3) The 2TLT -SF-MABAC method is proposed based on the 2TLT -SFGWHM and the
2TLT -SFWJHM operators to rank the alternative fuels. A novel MAGDM model is used to fuse
the evaluation preferences of DMs.

(4) An assessment framework for the selection of alternative fuel to control the impact of greenhouse
gas emissions is presented to show the usefulness and effectiveness of the proposed study.

1.2. Organization of the proposed study

The structure of this paper is organized as follows: Section 2 briefly recalls some fundamental
concepts relevant to the 2TL representation model, the T -SFS, HM AOs, and the notion of
2TLT -SFS. In Section 3, the 2TLT -SF weighted averaging (2TLT -SFWA) operator, the 2TLT -SF
weighted geometric (2TLT -SFWJ) operator and four different 2TLT -SFHM AOs are presented along
with their basic properties. An extended MABAC approach based on the 2TLT -SFGWHM and the
2TLT -SFWJHM operators is developed for MAGDM in Section 4. By virtue of the proposed
2TLT -SF-MABAC method, we address a practical decision-making problem regarding the selection
of the best alternative fuel in Section 5. The influence of parameters on the ranking results,
comparative analysis with existing approaches and advantages of our method are discussed as well.
Finally, Section 6 summarizes this research study and points out some future directions.

2. Preliminaries

In this section, certain related fundamental ideas of the T -SFS, HM, generalized HM, geometric
HM, and the 2TLT -SFS are summarized in order to ease the following sections.

Definition 1. [39] For any universal set L, a T-SFS in L is of the form

T = {([, φ([), ψ([), γ([)) | [ ∈ L},

where φ([), ψ([), γ([) ∈ [0, 1] denote the MD, AD, and NMD of [ ∈ L, respectively. It is required that
0 ≤ φq([) + ψq([) + γq([) ≤ 1 for q ≥ 1. We refer to r([) =

q
√

1 − (φq([) + ψq([) + γq([)) as the refusal
degree of [ in T. For simplicity, the triplet (φ([), ψ([), γ([)) is also known as a T-SFN.
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Definition 2. [2] Let L be a universal set. A 2TLT-SFS N in L is:

N = {〈[, ((sφ([),Φ([)), (sψ([),Ψ([)), (sγ([),Υ([)))〉 | [ ∈ L}, (2.1)

where (sφ([),Φ([)), (sψ([),Ψ([)) and (sγ([),Υ([)) represent the positive, neutral, and negative
membership degrees, respectively. It is required that −0.5 ≤ Φ([),Ψ([),Υ([) < 0.5,
0 ≤ ∆−1(sφ([),Φ([)) ≤ Γ, 0 ≤ ∆−1(sψ([),Ψ([)) ≤ Γ, 0 ≤ ∆−1(sγ([),Υ([)) ≤ Γ and

0 ≤ (∆−1(sφ([),Φ([)))q + (∆−1(sψ([),Ψ([)))q + (∆−1(sγ([),Υ([)))q ≤ Γq.

Regarding ease of use, N = ((sφ,Φ), (sψ,Ψ), (sγ,Υ)) is called the 2TLT -SFN, where

0 ≤ ∆−1(sφ,Φ), ∆−1(sψ,Ψ), ∆−1(sγ,Υ) ≤ Γ,

and
0 ≤ (∆−1(sφ,Φ))q + (∆−1(sψ,Ψ))q + (∆−1(sγ,Υ))q ≤ Γq.

For comparing two 2TLT -SFNs, the score and accuracy values can be computed as described in the
following:

Definition 3. [2] LetN = ((sφ,Φ), (sψ,Ψ), (sγ,Υ)) be a 2TLT-SFN. Then the score function S is given
by:

S(N) = ∆

(
Γ

2

(
1 +

(
∆−1(sφ,Φ)

Γ

)q

−

(
∆−1(sγ,Υ)

Γ

)q))
, (2.2)

and the Ac accuracy value is constructed as described in the following:

Ac(N) = ∆

(
Γ

((
∆−1(sφ,Φ)

Γ

)q

+

(
∆−1(sγ,Υ)

Γ

)q))
. (2.3)

Definition 4. [2] LetN1 = ((sφ1 ,Φ1), (sψ1 ,Ψ1), (sγ1 ,Υ1)) andN2 = ((sφ2 ,Φ2), (sψ2 ,Ψ2), (sγ2 ,Υ2)) be two
2TLT-SFNs. The two 2TLT-SFNs can then be evaluated employing their score and accuracy values
as follows:

• If S(N1) < S(N2), then N1 ≺ N2;

• If S(N1) > S(N2), then N1 � N2;

• If S(N1) = S(N2), then

(a) If Ac(N1) < Ac(N2), then N1 ≺ N2;

(b) If Ac(N1) > Ac(N2), then N1 � N2;

(c) If Ac(N1) = Ac(N2), then N1 ∼ N2.

Example 1. Let N1 = ((s5, 0.3), (s3, 0.4), (s2,−0.1)), and N2 = ((s7,−0.2), (s2, 0.1), (s1,−0.5)) be two
2TLT-SFNs and S = {s0, s1, s2, . . . , s8} be an LTS. Taking q = 4, by Eq (2.2) we can get the score
function values of N1 and N2 as follows:

S(N1) = ∆

(
8
2

(
1 +

(
∆−1(s5,0.3)

8

)4
−

(
∆−1(s2,−0.1)

8

)4))
= (s5,−0.2422),
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S(N2) = ∆

(
8
2

(
1 +

(
∆−1(s7,−0.2)

8

)4
−

(
∆−1(s1,−0.5)

8

)4))
= (s6, 0.0880).

Moreover, according to Eq (2.3) the accuracy function values ofN1 andN2 are two 2TLT-SFNs as
follows:

Ac(N1) = ∆

(
8
((

∆−1(s5,0.3)
8

)4
+

(
∆−1(s2,−0.1)

8

)4))
= (s2,−0.4336),

Ac(N2) = ∆

(
8
((

∆−1(s7,−0.2)
8

)4
+

(
∆−1(s1,−0.5)

8

)4))
= (s4, 0.1762).

According to Definition 4, we have N1 ≺ N2 since S(N1) < S(N2).

Definition 5. [3] Let N1 = ((sφ1 ,Φ1), (sψ1 ,Ψ1), (sγ1 ,Υ1)) and N2 = ((sφ2 ,Φ2), (sψ2 ,Ψ2), (sγ2 ,Υ2)) be
two 2TLT-SFNs. The 2TLT-SF normalized Hamming distance is defined as:

d(N1,N2) = ∆

Γ

3


∣∣∣∣∣(∆−1(sφ1 ,Φ1)

Γ

)q
−

(
∆−1(sφ2 ,Φ2)

Γ

)q∣∣∣∣∣ +

∣∣∣∣∣(∆−1(sψ1 ,Ψ1)
Γ

)q
−

(
∆−1(sψ2 ,Ψ2)

Γ

)q∣∣∣∣∣
+

∣∣∣∣∣(∆−1(sγ1 ,Υ1)
Γ

)q
−

(
∆−1(sγ2 ,Υ2)

Γ

)q∣∣∣∣∣

 . (2.4)

Definition 6. [2] Let N = ((sφ,Φ), (sψ,Ψ), (sγ,Υ)), N1 = ((sφ1 ,Φ1), (sψ1 ,Ψ1), (sγ1 ,Υ1))
N2 = ((sφ2 ,Φ2), (sψ2 ,Ψ2), (sγ2 ,Υ2)) be three 2TLT-SFNs, q ≥ 1 and λ > 0. Then

(1) N1 ⊕ N2 =


∆

Γ q

√
1 −

(
1 −

(
∆−1(sφ1 ,Φ1)

Γ

)q) (
1 −

(
∆−1(sφ2 ,Φ2)

Γ

)q) ,
∆

(
Γ

(
∆−1(sψ1 ,Ψ1)

Γ

) (
∆−1(sψ2 ,Ψ2)

Γ

))
,∆

(
Γ

(
∆−1(sγ1 ,Υ1)

Γ

) (
∆−1(sγ2 ,Υ2)

Γ

))
;

(2) N1 ⊗ N2 =



∆

(
Γ

(
∆−1(sφ1 ,Φ1)

Γ

) (
∆−1(sφ2 ,Φ2)

Γ

))
,

∆

Γ q

√
1 −

(
1 −

(
∆−1(sψ1 ,Ψ1)

Γ

)q) (
1 −

(
∆−1(sψ2 ,Ψ2)

Γ

)q) ,
∆

Γ q

√
1 −

(
1 −

(
∆−1(sγ1 ,Υ1)

Γ

)q) (
1 −

(
∆−1(sγ2 ,Υ2)

Γ

)q)


;

(3) λN =

 ∆

Γ q

√
1 −

(
1 −

(
∆−1(sφ,Φ)

Γ

)q)λ ,∆ (
Γ

(
∆−1(sψ,Ψ)

Γ

)λ)
,∆

(
Γ

(
∆−1(sγ,Υ)

Γ

)λ) ;
(4) Nλ =

 ∆

(
Γ

(
∆−1(sφ,Φ)

Γ

)λ)
,∆

Γ q

√
1 −

(
1 −

(
∆−1(sψ,Ψ)

Γ

)q)λ ,∆ Γ q

√
1 −

(
1 −

(
∆−1(sγ,Υ)

Γ

)q)λ
.

Definition 7. [14] Let aθ(θ = 1, 2, . . . ,N) be a group with positive numbers. Then

HM(a1, a2, . . . , aN) =
2

N(N + 1)

N∑
θ=1

N∑
ϑ=θ

√
aθaϑ, (2.5)

is known as HM operator.
Based on Definition 7, the generalized HM operator was introduced by Yu [58] as follows:
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Definition 8. [58] Let κ, ε > 0 and aθ(θ = 1, 2, . . . ,N) be a group with positive numbers. Then

GHMκ,ε(a1, a2, . . . , aN) =

 2
N(N + 1)

N∑
θ=1

N∑
ϑ=θ

aκθa
ε
ϑ


1
κ+ε

, (2.6)

is known as the generalized HM operator. It is worth noting that the generalized HM operator
converted into the HM operator when κ = ε = 1

2 .
Subsequently, Yu [58] proposed the geometric HM operator as follows:

Definition 9. [58] Let κ, ε > 0 and aθ(θ = 1, 2, . . . ,N) be a group with positive numbers. Then

JHMκ,ε(a1, a2, . . . , aN) =
1

κ + ε

 N∏
θ=1,ϑ=θ

(κaθ + εaϑ)


2

N(N+1)

, (2.7)

is called the geometric HM operator.

Nomenclature

The terminologies and notations used in this paper are listed in Table 1.

Table 1. Terminologies and notations.

Notation Description
HM Heronian mean
2TLT -SFS 2-Tuple linguistic T -spherical fuzzy set
2TLT -SFGHM 2TLT -SF generalized Heronian mean
2TLT -SFGWHM 2TLT -SF generalized weighted Heronian mean
2TLT -SFJHM 2TLT -SF geometric Heronian mean
2TLT -SFWJHM 2TLT -SF weighted geometric Heronian mean
2TLT -SF-MABAC 2TLT -SF multi-attributive border approximation area comparison
Nϑ = ((sφϑ ,Φϑ), (sψϑ ,Ψϑ), (sγϑ ,Υϑ)) 2TLT -SF number
S = {sϑ|ϑ = 0, 1, . . . ,Γ} 2-Tuple linguistic term
(sφϑ ,Φϑ) Membership degree of 2TLT -SFN
(sψϑ ,Ψϑ) Abstinence degree of 2TLT -SFN
(sγϑ ,Υϑ) Non-membership degree of 2TLT -SFN
κ, ε Parameters of HM operators
z Alternatives
ℵ Attributes
z(N) 2TLT -SFN scoring function
Ac(N) 2TLT -SFN accuracy function
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3. The 2TLT -SF aggregation operators

3.1. The 2TLT-SFWA and 2TLT-SFWJ operators

In this subsection, we introduce two types of weighted information AOs such as 2TLT -SFWA and
2TLT -SFWJ operators.

Definition 10. Let Nϑ = ((sφϑ ,Φϑ), (sψϑ ,Ψϑ), (sγϑ,Υϑ))(ϑ = 1, 2, . . . ,N) be 2TLT-SFNs. The 2TLT-
SFWA operator is a mapping TN → T such that

2TLT-SFWA(N1,N2, . . . ,NN) = ⊕Nϑ=1ξϑNϑ, (3.1)

in which T is the set of 2TLT-SFNs, ξ = (ξ1, ξ2, . . . , ξN)T is the vector of weights ofNϑ(ϑ = 1, 2, . . . ,N),

such that ξϑ ∈ [0, 1] and
N∑
ϑ=1

ξϑ = 1.

Theorem 1. Let Nϑ = ((sφϑ ,Φϑ), (sψϑ ,Ψϑ), (sγϑ,Υϑ))(ϑ = 1, 2, . . . ,N) be 2TLT-SFNs with vector of

weights ξ = (ξ1, ξ2, . . . , ξN)T , such that ξϑ ∈ [0, 1] and
N∑
ϑ=1

ξϑ = 1, then

2TLT-SFWA(N1,N2, . . . ,NN) =


∆

Γ (
1 −

N∏
ϑ=1

(
1 −

(
∆−1(sφϑ ,Φϑ)

Γ

)q)ξϑ) 1
q
 ,

∆

(
Γ
N∏
ϑ=1

(
∆−1(sψϑ ,Ψϑ)

Γ

)ξϑ)
,∆

(
Γ
N∏
ϑ=1

(
∆−1(sγϑ ,Υϑ)

Γ

)ξϑ)
 . (3.2)

Proof. We prove that the Eq (3.2) holds by using the mathematical induction method for positive
integer N.

(a) When N = 1, we have

ξ1N1 =

 ∆

Γ(
1 −

(
1 −

(
∆−1(sφ1 ,Φ1)

Γ

)q)ξ1
) 1

q
 ,∆ (

Γ

(
∆−1(sψ1 ,Ψ1)

Γ

)ξ1
)
,∆

(
Γ

(
∆−1(sγ1 ,Υ1)

Γ

)ξ1
)  .

Thus, Eq (3.2) holds for N = 1.

(b) Suppose that Eq (3.2) holds for N = M,

2TLT -SFWA(N1,N2, . . . ,NN)

=


∆

Γ(
1 −

M∏
ϑ=1

(
1 −

(
∆−1(sφϑ ,Φϑ)

Γ

)q)ξϑ) 1
q
 ,∆ (

Γ
M∏
ϑ=1

(
∆−1(sψϑ ,Ψϑ)

Γ

)ξϑ)
,

∆

(
Γ
M∏
ϑ=1

(
∆−1(sγϑ ,Υϑ)

Γ

)ξϑ)
 .

Then, when N = M + 1, by inductive assumption, we have

2TLT -SFWA(N1,N2, . . . ,NM,NM+1) = 2TLT -SFWA(N1,N2, . . . ,NM) ⊕ ξM+1NM+1

=


∆

Γ(
1 −

M∏
ϑ=1

(
1 −

(
∆−1(sφϑ ,Φϑ)

Γ

)q)ξϑ) 1
q
 ,∆ (

Γ
M∏
ϑ=1

(
∆−1(sψϑ ,Ψϑ)

Γ

)ξϑ)
,

∆

(
Γ
M∏
ϑ=1

(
∆−1(sγϑ ,Υϑ)

Γ

)ξϑ)
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⊕


∆

Γ(
1 −

(
1 −

(
∆−1(sφM+1 ,ΦM+1)

Γ

)q)ξM+1
) 1

q
,∆ (

Γ

(
∆−1(sψM+1 ,ΨM+1)

Γ

)ξM+1
)
,

∆

(
Γ

(
∆−1(sγM+1 ,ΥM+1)

Γ

)ξM+1
)



=


∆

Γ(
1 −

M+1∏
ϑ=1

(
1 −

(
∆−1(sφϑ ,Φϑ)

Γ

)q)ξϑ) 1
q
 ,∆ (

Γ
M+1∏
ϑ=1

(
∆−1(sψϑ ,Ψϑ)

Γ

)ξϑ)
,

∆

(
Γ
M+1∏
ϑ=1

(
∆−1(sγϑ ,Υϑ)

Γ

)ξϑ)
 .

Therefore, we can deduce that Eq (3.2) holds for positive integerN = M+1. Thus, by the mathematical
induction method, we know that Eq (3.2) holds for any N ≥ 1. �

Theorem 2. Let Nϑ = ((sφϑ ,Φϑ), (sψϑ ,Ψϑ), (sγϑ,Υϑ)) and
N ′ϑ = ((s′φϑ ,Φ

′
ϑ), (s′ψϑ ,Ψ

′
ϑ), (s′γϑ,Υ

′
ϑ))(ϑ = 1, 2, . . . ,N) be two sets of 2TLT-SFNs; then the 2TLT-SFWA

operator possesses the essential properties:

(1) (Idempotency) If all Nϑ = ((sφϑ ,Φϑ), (sψϑ ,Ψϑ), (sγϑ,Υϑ))(ϑ = 1, 2, . . . ,N) are equal, for all ϑ, then

2TLT-SFWA(N1,N2, . . . ,NN) = N .

(2) (Monotonicity) If Nϑ ≤ N
′
ϑ, for all ϑ, then

2TLT-SFWA(N1,N2, . . . ,NN) ≤ 2TLT-SFWA(N ′1,N
′
2, . . . ,N

′
N).

(3) (Boundedness) Let Nϑ = ((sφϑ ,Φϑ), (sψϑ ,Ψϑ), (sγϑ,Υϑ))(ϑ = 1, 2, . . . ,N) be 2TLT-SFNs, and let
N− = (minϑ(sφϑ ,Φϑ),maxϑ(sψϑ ,Ψϑ),maxϑ(sγϑ,Υϑ)) and
N+ = (maxϑ(sφϑ ,Φϑ),minϑ(sψϑ ,Ψϑ),minϑ(sγϑ,Υϑ)), then

N− ≤ 2TLT-SFWA(N1,N2, . . . ,NN) ≤ N+.

Definition 11. Let Nϑ = ((sφϑ ,Φϑ), (sψϑ ,Ψϑ), (sγϑ,Υϑ))(ϑ = 1, 2, . . . ,N) be 2TLT-SFNs. The 2TLT-
SFWJ operator is a mapping TN → T such that

2TLT-SFWJ(N1,N2, . . . ,NN) = ⊗Nϑ=1N
ξϑ
ϑ , (3.3)

in which T is the set of 2TLT-SFNs, ξ = (ξ1, ξ2, . . . , ξN)T is the vector of weights ofNϑ(ϑ = 1, 2, . . . ,N),

such that ξϑ ∈ [0, 1] and
N∑
ϑ=1

ξϑ = 1.

Theorem 3. Let Nϑ = ((sφϑ ,Φϑ), (sψϑ ,Ψϑ), (sγϑ,Υϑ))(ϑ = 1, 2, . . . ,N) be 2TLT-SFNs with vector of

weights ξ = (ξ1, ξ2, . . . , ξN)T , such that ξϑ ∈ [0, 1] and
N∑
ϑ=1

ξϑ = 1. Then their aggregation value by the

2TLT-SFWJ operator is still a 2TLT-SFN, and

2TLT-SFWJ(N1,N2, . . . ,NN)
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=


∆

(
Γ
N∏
ϑ=1

(
∆−1(sφϑ ,Φϑ)

Γ

)ξϑ)
,∆

Γ (
1 −

N∏
ϑ=1

(
1 −

(
∆−1(sψϑ ,Ψϑ)

Γ

)q)ξϑ) 1
q
 ,

∆

Γ (
1 −

N∏
ϑ=1

(
1 −

(
∆−1(sγϑ ,Υϑ)

Γ

)q)ξϑ) 1
q


 . (3.4)

Proof. The proof is analogous to that of Theorem 1. �

The 2TLT -SFWJ operator has the same properties, idempotency, monotonicity, and boundedness
as of the 2TLT -SFWA operator.

3.2. The 2TLT-SF Heronian mean aggregation operators

In this subsection, we extend the generalized HM to the 2TLT -SFSs environment and propose
the 2TLT -SFGHM, the 2TLT -SFGWHM, the 2TLT -SFJHM and the 2TLT -SFWJHM operators for
aggregating the 2TLT -SFNs since 2TLT -SFS is an effective tool for communicating uncertain data in
real decision-making framework.

Definition 12. Let Nϑ = ((sφϑ ,Φϑ), (sψϑ ,Ψϑ), (sγϑ ,Υϑ))(ϑ = 1, 2, . . . ,N) be 2TLT-SFNs. The 2TLT-
SFGHM is a mapping PN → P such that

2TLT-SFGHMκ,ε(N1,N2, . . . ,NN) =

(
2

N(N + 1)
⊕Nθ=1 ⊕

N
ϑ=θ(N

κ
θ ⊗ N

ε
ϑ)

) 1
κ+ε

, (3.5)

where κ, ε ≥ 0.

It can be shown that the aggregated value by using 2TLT -SFGHM operator is actually a 2TLT -SFN.
By Definition 6, we can deduce the following outcome:

Theorem 4. Let Nϑ = ((sφϑ ,Φϑ), (sψϑ ,Ψϑ), (sγϑ ,Υϑ))(ϑ = 1, 2, . . . ,N) be 2TLT-SFNs. Then

2TLT-SFGHMκ,ε(N1,N2, . . . ,NN)

=



∆

Γ
 q

√
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
∆−1(sφθ ,Φθ)

Γ

)qκ (
∆−1(sφϑ ,Φϑ)

Γ

)qε) 2
N(N+1)


1
κ+ε

 ,
∆

Γ q

√√
1 −

1 − N∏
θ=1,ϑ=θ

(
1 −

(
1 −

(
∆−1(sψθ ,Ψθ)

Γ

)q)κ (
1 −

(
∆−1(sψϑ ,Ψϑ)

Γ

)q)ε) 2
N(N+1)

 1
κ+ε

 ,
∆

Γ q

√√
1 −

1 − N∏
θ=1,ϑ=θ

(
1 −

(
1 −

(
∆−1(sγθ ,Υθ)

Γ

)q)κ (
1 −

(
∆−1(sγϑ ,Υϑ)

Γ

)q)ε) 2
N(N+1)

 1
κ+ε




, (3.6)

where κ, ε ≥ 0.

Proof. According to Definition 6, we can derive

N κ
θ =

∆
(
Γ

(
∆−1(sφθ ,Φθ)

Γ

)κ)
,∆

Γ q

√
1 −

(
1 −

(
∆−1(sψθ ,Ψθ)

Γ

)q)κ ,∆
Γ q

√
1 −

(
1 −

(
∆−1(sγθ ,Υθ)

Γ

)q)κ
 ,
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Nε
ϑ =

∆
(
Γ

(
∆−1(sφϑ ,Φϑ)

Γ

)ε)
,∆

Γ q

√
1 −

(
1 −

(
∆−1(sψϑ ,Ψϑ)

Γ

)q)ε ,∆
Γ q

√
1 −

(
1 −

(
∆−1(sγϑ ,Υϑ)

Γ

)q)ε
 .

Thus

(N κ
θ ) ⊗ (Nε

ϑ) =



∆

(
Γ

(
∆−1(sφθ ,Φθ)

Γ

)κ (
∆−1(sφϑ ,Φϑ)

Γ

)ε)
,

∆

Γ q

√
1 −

(
1 −

(
∆−1(sψθ ,Ψθ)

Γ

)q)κ (
1 −

(
∆−1(sψϑ ,Ψϑ)

Γ

)q)ε ,
∆

Γ q

√
1 −

(
1 −

(
∆−1(sγθ ,Υθ)

Γ

)q)κ (
1 −

(
∆−1(sγϑ ,Υϑ)

Γ

)q)ε


.

Therefore,

⊕Nθ=1 ⊕
N
ϑ=θ (N κ

θ ⊗ N
ε
ϑ) =



∆

Γ q

√
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
∆−1(sφθ ,Φθ)

Γ

)qκ (
∆−1(sφϑ ,Φϑ)

Γ

)qε) ,
∆

Γ q

√
1 −

(
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
1 −

(
∆−1(sψθ ,Ψθ)

Γ

)q)κ (
1 −

(
∆−1(sψϑ ,Ψϑ)

Γ

)q)ε)) ,
∆

Γ q

√
1 −

(
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
1 −

(
∆−1(sγθ ,Υθ)

Γ

)q)κ (
1 −

(
∆−1(sγϑ ,Υϑ)

Γ

)q)ε))


.

Furthermore,
2

N(N + 1)
⊕Nθ=1 ⊕

N
ϑ=θ(N

κ
θ ⊗ N

ε
ϑ)

=



∆

Γ q

√
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
∆−1(sφθ ,Φθ)

Γ

)qκ (
∆−1(sφϑ ,Φϑ)

Γ

)qε) 2
N(N+1)

 ,
∆

Γ q

√
1 −

1 − N∏
θ=1,ϑ=θ

(
1 −

(
1 −

(
∆−1(sψθ ,Ψθ)

Γ

)q)κ (
1 −

(
∆−1(sψϑ ,Ψϑ)

Γ

)q)ε) 2
N(N+1)


 ,

∆

Γ q

√
1 −

1 − N∏
θ=1,ϑ=θ

(
1 −

(
1 −

(
∆−1(sγθ ,Υθ)

Γ

)q)κ (
1 −

(
∆−1(sγϑ ,Υϑ)

Γ

)q)ε) 2
N(N+1)





.

Therefore,
2TLT -SFGHMκ,ε(N1,N2, . . . ,NN)

=



∆

Γ
 q

√
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
∆−1(sφθ ,Φθ)

Γ

)qκ (
∆−1(sφϑ ,Φϑ)

Γ

)qε) 2
N(N+1)


1
κ+ε

 ,
∆

Γ q

√√
1 −

1 − N∏
θ=1,ϑ=θ

(
1 −

(
1 −

(
∆−1(sψθ ,Ψθ)

Γ

)q)κ (
1 −

(
∆−1(sψϑ ,Ψϑ)

Γ

)q)ε) 2
N(N+1)

 1
κ+ε

 ,
∆

Γ q

√√
1 −

1 − N∏
θ=1,ϑ=θ

(
1 −

(
1 −

(
∆−1(sγθ ,Υθ)

Γ

)q)κ (
1 −

(
∆−1(sγϑ ,Υϑ)

Γ

)q)ε) 2
N(N+1)

 1
κ+ε




.
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The 2TLT -SFGHM operator possesses the same properties as Theorem 2.
It can be seen in Definition 12 that the 2TLT -SFGHM aggregation operator doesn’t show the

weighting values of attributes. Attribute weights, expert weights, and attribute evaluation values are
all crucial components in solving MAGDM problems. We utilize the proposed operators to solve
MAGDM problems in which attribute weights are known, and the evaluation values are represented
by 2TLT -SFSs. To get around the restriction of 2TLT -SFGHM, we propose the 2TLT -SFGWHM
operator.

Definition 13. Let κ, ε > 0,Nϑ = ((sφϑ ,Φϑ), (sψϑ ,Ψϑ), (sγϑ ,Υϑ))(ϑ = 1, 2, . . . ,N) be 2TLT-SFNs, ξ =

(ξ1, ξ2, . . . , ξN)T is the vector of weights of Nϑ(ϑ = 1, 2, . . . ,N), where ξϑ indicates the importance

degree of Nϑ, satisfying ξϑ > 0(ϑ = 1, 2, . . . ,N) and
N∑
ϑ=1

ξϑ = 1. If

2TLT-SFGWHMκ,ε
ξ (N1,N2, . . . ,NN) =

(
⊕Nθ=1 ⊕

N
ϑ=θ (ξθξϑ(Nθ)κ ⊗ (Nϑ)ε)

) 1
κ+ε
. (3.7)

Similar to Theorem 4, Theorem 5 can be derived easily.

Theorem 5. Let κ, ε > 0,Nϑ = ((sφϑ ,Φϑ), (sψϑ ,Ψϑ), (sγϑ ,Υϑ))(ϑ = 1, 2, . . . ,N) be 2TLT-SFNs, ξ =

(ξ1, ξ2, . . . , ξN)T is the vector of weights of Nϑ(ϑ = 1, 2, . . . ,N), where ξϑ indicates the importance

degree of Nϑ, satisfying ξϑ > 0(ϑ = 1, 2, . . . ,N) and
N∑
ϑ=1

ξϑ = 1. Then the aggregated value by using

the 2TLT-SFGWHM is actually a 2TLT-SFN, and we have

2TLT-SFGWHMκ,ε
ξ (N1,N2, . . . ,NN)

=



∆

Γ
 q

√
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
∆−1(sφθ ,Φθ)

Γ

)qκ (
∆−1(sφϑ ,Φϑ)

Γ

)qε)ξθξϑ
1
κ+ε

 ,
∆

Γ q

√
1 −

(
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
1 −

(
∆−1(sψθ ,Ψθ)

Γ

)q)κ (
1 −

(
∆−1(sψϑ ,Ψϑ)

Γ

)q)ε)ξθξϑ) 1
κ+ε

 ,
∆

Γ q

√
1 −

(
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
1 −

(
∆−1(sγθ ,Υθ)

Γ

)q)κ (
1 −

(
∆−1(sγϑ ,Υϑ)

Γ

)q)ε)ξθξϑ) 1
κ+ε




, (3.8)

where κ, ε ≥ 0.
The 2TLT -SFGWHM operator possesses the same properties as Theorem 2.
Subsequently, Yu [58] devised the geometric HM operator, which took into account both the HM

and geometric mean operators. In contrast, the 2TLT -SFSs are effective tool for expressing concepts
in realistic group decision-making situations, we generalize the geometric HM to the 2TLT -SFSs
environment and propose the 2TLT -SFJHM operator for addressing the 2TLT -SFNs.

Definition 14. Let Nϑ = ((sφϑ ,Φϑ), (sψϑ ,Ψϑ), (sγϑ ,Υϑ))(ϑ = 1, 2, . . . ,N) be 2TLT-SFNs. The 2TLT-
SFJHM is a mapping PN → P such that

2TLT-SFJHMκ,ε(N1,N2, . . . ,NN) =
1

κ + ε

(
⊗Nθ=1 ⊗

N
ϑ=θ (κNθ ⊕ εNϑ)

) 2
N(N+1)

, (3.9)

where κ, ε ≥ 0.
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Utilizing the Definition 6, we can deduce the following theorem:

Theorem 6. The aggregated value by using 2TLT-SFJHM operator is also 2TLT-SFN, and we have

2TLT-SFJHMκ,ε(N1,N2, . . . ,NN)

=



∆

Γ q

√√
1 −

1 − N∏
θ=1,ϑ=θ

(
1 −

(
1 −

(
∆−1(sφθ ,Φθ)

Γ

)q)κ (
1 −

(
∆−1(sφϑ ,Φϑ)

Γ

)q)ε) 2
N(N+1)

 1
κ+ε

 ,
∆

Γ
 q

√
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
∆−1(sψθ ,Ψθ)

Γ

)qκ (
∆−1(sψϑ ,Ψϑ)

Γ

)qε) 2
N(N+1)


1
κ+ε

 ,
∆

Γ
 q

√
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
∆−1(sγθ ,Υθ)

Γ

)qκ (
∆−1(sγϑ ,Υϑ)

Γ

)qε) 2
N(N+1)


1
κ+ε




, (3.10)

where κ, ε ≥ 0.

Proof. According to Definition 6, we can derive

κNθ =

∆
Γ q

√
1 −

(
1 −

(
∆−1(sφθ ,Φθ)

Γ

)q)κ ,∆
(
Γ

(
∆−1(sψθ ,Ψθ)

Γ

)κ)
,∆

(
Γ

(
∆−1(sγθ ,Υθ)

Γ

)κ) ,
εNϑ =

∆
Γ q

√
1 −

(
1 −

(
∆−1(sφϑ ,Φϑ)

Γ

)q)ε ,∆
(
Γ

(
∆−1(sψϑ ,Ψϑ)

Γ

)ε)
,∆

(
Γ

(
∆−1(sγϑ ,Υϑ)

Γ

)ε) .
Thus

(κNθ) ⊕ (εNϑ) =


∆

Γ q

√
1 −

(
1 −

(
∆−1(sφθ ,Φθ)

Γ

)q)κ (
1 −

(
∆−1(sφϑ ,Φϑ)

Γ

)q)ε ,
∆

(
Γ

(
∆−1(sψθ ,Ψθ)

Γ

)κ (
∆−1(sψϑ ,Ψϑ)

Γ

)ε)
,∆

(
Γ

(
∆−1(sγθ ,Υθ)

Γ

)κ (
∆−1(sγϑ ,Υϑ)

Γ

)ε)
 .

Therefore,

⊗Nθ=1 ⊗
N
ϑ=θ ((κNθ) ⊕ (εNϑ))

=



∆

Γ q

√(
N∏

θ=1,ϑ=θ

(
1 −

(
1 −

(
∆−1(sφθ ,Φθ)

Γ

)q)κ (
1 −

(
∆−1(sφϑ ,Φϑ)

Γ

)q)ε)) ,
∆

Γ q

√
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
∆−1(sψθ ,Ψθ)

Γ

)qκ (
∆−1(sψϑ ,Ψϑ)

Γ

)qε) ,
∆

Γ q

√
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
∆−1(sγθ ,Υθ)

Γ

)qκ (
∆−1(sγϑ ,Υϑ)

Γ

)qε)


.

Furthermore, (
⊗Nθ=1 ⊗

N
ϑ=θ ((κNθ) ⊕ (εNϑ))

) 2
N(N+1)
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=



∆

Γ
 q

√
N∏

θ=1,ϑ=θ

(
1 −

(
1 −

(
∆−1(sφθ ,Φθ)

Γ

)q)κ (
1 −

(
∆−1(sφϑ ,Φϑ)

Γ

)q)ε)
2

N(N+1)
 ,

∆

Γ q

√
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
∆−1(sψθ ,Ψθ)

Γ

)qκ (
∆−1(sψϑ ,Ψϑ)

Γ

)qε) 2
N(N+1)

 ,
∆

Γ q

√
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
∆−1(sγθ ,Υθ)

Γ

)qκ (
∆−1(sγϑ ,Υϑ)

Γ

)qε) 2
N(N+1)




.

Therefore,

2TLT -SFJHMκ,ε(N1,N2, . . . ,NN)

=



∆

Γ q

√√
1 −

1 − N∏
θ=1,ϑ=θ

(
1 −

(
1 −

(
∆−1(sφθ ,Φθ)

Γ

)q)κ (
1 −

(
∆−1(sφϑ ,Φϑ)

Γ

)q)ε) 2
N(N+1)

 1
κ+ε

 ,
∆

Γ
 q

√
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
∆−1(sψθ ,Ψθ)

Γ

)qκ (
∆−1(sψϑ ,Ψϑ)

Γ

)qε) 2
N(N+1)


1
κ+ε

 ,
∆

Γ
 q

√
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
∆−1(sγθ ,Υθ)

Γ

)qκ (
∆−1(sγϑ ,Υϑ)

Γ

)qε) 2
N(N+1)


1
κ+ε




.

�

The 2TLT -SFJHM operator possesses the same properties as Theorem 2.
It can be seen in Definition 14 that the 2TLT -SFJHM aggregation operator doesn’t show the

weighting values of attributes. Attribute weights, expert weights, and attribute evaluation values are
all crucial components in solving MAGDM problems. We utilize the proposed AOs to solve
MAGDM problems in which attribute weights are known, and the evaluation values are represented
by 2TLT -SFSs. To get around the restriction of 2TLT -SFJHM, we propose the 2TLT -SFWJHM, in
this subsection.

Definition 15. Let κ, ε > 0,Nϑ = ((sφϑ ,Φϑ), (sψϑ ,Ψϑ), (sγϑ ,Υϑ))(ϑ = 1, 2, . . . ,N) be 2TLT-SFNs, ξ =

(ξ1, ξ2, . . . , ξN)T is the vector of weights of Nϑ(ϑ = 1, 2, . . . ,N), where ξϑ indicates the importance

degree of Nϑ, satisfying ξϑ > 0(ϑ = 1, 2, . . . ,N) and
N∑
ϑ=1

ξϑ = 1. If

2TLT-SFWJHMκ,ε
ξ (N1,N2, . . . ,NN) =

1
κ + ε

(
⊗Nθ=1 ⊗

N
ϑ=θ (κNθ ⊕ εNϑ)ξθξϑ

)
, (3.11)

where κ, ε ≥ 0.

Theorem 7. Let κ, ε > 0,Nϑ = ((sφϑ ,Φϑ), (sψϑ ,Ψϑ), (sγϑ ,Υϑ))(ϑ = 1, 2, . . . ,N) be 2TLT-SFNs, ξ =

(ξ1, ξ2, . . . , ξN)T is the vector of weights of Nϑ(ϑ = 1, 2, . . . ,N), where ξϑ indicates the importance

degree of Nϑ, satisfying ξϑ > 0(ϑ = 1, 2, . . . ,N) and
N∑
ϑ=1

ξϑ = 1. Then the aggregated value by the

2TLT-SFWJHM is actually a 2TLT-SFN, and we have

2TLT-SFWJHMκ,ε
ξ (N1,N2, . . . ,NN)
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=



∆

Γ q

√
1 −

(
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
1 −

(
∆−1(sφθ ,Φθ)

Γ

)q)κ (
1 −

(
∆−1(sφϑ ,Φϑ)

Γ

)q)ε)ξθξϑ) 1
κ+ε

 ,
∆

Γ
 q

√
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
∆−1(sψθ ,Ψθ)

Γ

)qκ (
∆−1(sψϑ ,Ψϑ)

Γ

)qε)ξθξϑ
1
κ+ε

 ,
∆

Γ
 q

√
1 −

N∏
θ=1,ϑ=θ

(
1 −

(
∆−1(sγθ ,Υθ)

Γ

)qκ (
∆−1(sγϑ ,Υϑ)

Γ

)qε)ξθξϑ
1
κ+ε




, (3.12)

where κ, ε ≥ 0.
The 2TLT -SFWJHM operator possesses the same properties as Theorem 2.

4. The 2TLT -SF-MABAC method for MAGDM

To cope with group decision-making problems a novel MABAC proves to be an effective tool. So, it
is crucial to develop a new 2TLT -SF-MABAC method by extending the MABAC method into 2TLT -
SFNs in order to deal with the linguistic assessment information. Therefore, this section develops the
2TLT -SF-MABAC model based on 2TLT -SFGWHM and 2TLT -SFWJHM operators by considering
the flexibility of 2TLT -SFNs.

Specifically, suppose that there are M alternatives z = {z1, z2, . . . , zM}, N attributes
ℵ = {ℵ1,ℵ2, . . . ,ℵN}, and λ experts D = {D1,D2, . . . ,Dλ}, and let ξ = (ξ1, ξ2, . . . , ξN)T and
ω = (ω1, ω2, . . . , ωλ)T be the vector of weights of the ℵϑ and vector of weights of the DMs fulfilling

ξϑ ∈ [0, 1], ω[ ∈ [0, 1],
N∑
ϑ=1

ξϑ = 1, and
λ∑
[=1
ω[ = 1.

The next phases outline the strategy for constructing the 2TLT -SF-MABAC methodology.

Step 1. Establish the 2TLT -SF evaluation matrix R = [zλθϑ]M×N = ((sφθϑ ,Φ)λ, (sψθϑ ,Ψ)λ, (sγθϑ ,Υ)λ) as:

R = [zλθϑ]M×N (4.1)

=


((sφ11 ,Φ)λ, (sψ11 ,Ψ)λ, (sγ11 ,Υ)λ) ((sφ12 ,Φ)λ, (sψ12 ,Ψ)λ, (sγ12 ,Υ)λ) . . . ((sφ1N ,Φ)λ, (sψ1N ,Ψ)λ, (sγ1N ,Υ)λ)
((sφ21 ,Φ)λ, (sψ21 ,Ψ)λ, (sγ21 ,Υ)λ) ((sφ22 ,Φ)λ, (sψ22 ,Ψ)λ, (sγ22 ,Υ)λ) . . . ((sφ2N ,Φ)λ, (sψ2N ,Ψ)λ, (sγ2N ,Υ)λ)

...
...

. . .
...

((sφM1 ,Φ)λ, (sψM1 ,Ψ)λ, (sγM1 ,Υ)λ) ((sφM2 ,Φ)λ, (sψM2 ,Ψ)λ, (sγM2 ,Υ)λ) . . . ((sφMN ,Φ)λ, (sψMN ,Ψ)λ, (sγMN ,Υ)λ)


where zλθϑ = ((sφθϑ ,Φ)λ, (sψθϑ ,Ψ)λ, (sγθϑ ,Υ)λ)(θ = 1, 2, . . . ,M, ϑ = 1, 2, . . . ,N, and λ = 1, 2, . . . , [)

describes the 2TLT -SF information of alternatives zθ on attributes ℵϑ by decision expertsDλ.

Step 2. According to the 2TLT -SFGWHM or 2TLT -SFWJHM operators, we utilize overall zλθϑ to
zθϑ, the fused 2TLT -SFNs matrix r = [zθϑ]M×N constructed as:

r = [zθϑ]M×N (4.2)

=


((sφ11 ,Φ), (sψ11 ,Ψ), (sγ11 ,Υ)) ((sφ12 ,Φ), (sψ12 ,Ψ), (sγ12 ,Υ)) . . . ((sφ1N ,Φ), (sψ1N ,Ψ), (sγ1N ,Υ))
((sφ21 ,Φ), (sψ21 ,Ψ), (sγ21 ,Υ)) ((sφ22 ,Φ), (sψ22 ,Ψ), (sγ22 ,Υ)) . . . ((sφ2N ,Φ), (sψ2N ,Ψ), (sγ2N ,Υ))

...
...

. . .
...

((sφM1 ,Φ), (sψM1 ,Ψ), (sγM1 ,Υ)) ((sφM2 ,Φ), (sψM2 ,Ψ), (sγM2 ,Υ)) . . . ((sφMN ,Φ), (sψMN ,Ψ), (sγMN ,Υ))
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Step 3. Normalize the aggregated matrix r = [zθϑ]M×N utilizing a computation based on each attribute:
For benefit attributes:

Nθϑ = zθϑ = ((sφθϑ ,Φθϑ), (sψθϑ ,Ψθϑ), (sγθϑ ,Υθϑ)), θ = 1, 2, . . . ,M, ϑ = 1, 2, . . . ,N (4.3)

For cost attributes:

Nθϑ = zc
θϑ = ((sγθϑ ,Υθϑ), (sψθϑ ,Ψθϑ), (sφθϑ ,Φθϑ)), θ = 1, 2, . . . ,M, ϑ = 1, 2, . . . ,N (4.4)

Step 4. By utilizing the normalized matrix
Nθϑ = ((sφθϑ ,Φθϑ), (sψθϑ ,Ψθϑ), (sγθϑ ,Υθϑ))(θ = 1, 2, . . . ,M, ϑ = 1, 2, . . . ,N) and attribute’s weights
ξϑ(ϑ = 1, 2, . . . ,N), the 2TLT -SF weighted normalized matrix
WNθϑ = ((s′φθϑ ,Φ

′
θϑ), (s′ψθϑ ,Ψ

′
θϑ), (s′γθϑ ,Υ

′
θϑ))(θ = 1, 2, . . . ,M, ϑ = 1, 2, . . . ,N) utilizing the

2TLT -SFGWHM operator can be constructed as:

WNθϑ = ξϑ ⊗ Nθϑ =

 ∆

Γ q

√
1 −

(
1 −

(
∆−1(sφ,Φ)

Γ

)q)ξϑ,∆ (
Γ

(
∆−1(sψ,Ψ)

Γ

)ξϑ)
, ∆

(
Γ

(
∆−1(sγ,Υ)

Γ

)ξϑ) .(4.5)

By utilizing the normalized matrix Nθϑ = ((sφθϑ ,Φθϑ), (sψθϑ ,Ψθϑ), (sγθϑ ,Υθϑ))(θ = 1, 2, . . . ,M, ϑ =

1, 2, . . . ,N) and attribute’s weights ξϑ(ϑ = 1, 2, . . . ,N), the 2TLT -SF weighted normalized matrix
WNθϑ = ((s′φθϑ ,Φ

′
θϑ), (s′ψθϑ ,Ψ

′
θϑ), (s′γθϑ ,Υ

′
θϑ))(θ = 1, 2, . . . ,M, ϑ = 1, 2, . . . ,N) utilizing the 2TLT -

SFWJHM operator can be constructed as:

WNθϑ = ξϑ ⊗ Nθϑ =

 ∆

(
Γ

(
∆−1(sφ,Φ)

Γ

)ξϑ)
,∆

Γ q

√
1 −

(
1 −

(
∆−1(sψ,Ψ)

Γ

)q)ξϑ,∆ Γ q

√
1 −

(
1 −

(
∆−1(sγ,Υ)

Γ

)q)ξϑ
.(4.6)

Step 5. Determine the BAA matrix G = [gϑ]1×N. The element gϑ utilizing the 2TLT -SFGWHM
operator can be computed as:

gϑ =

 M∏
θ=1

WNθϑ

1/M

=


∆

Γ (
M∏
θ=1

∆−1(s′φ,Φ
′)

Γ

) 1
M

 ,∆
Γ q

√
1 −

M∏
θ=1

(
1 −

(
∆−1(s′ψ,Ψ′)

Γ

)q) 1
M

 ,
∆

Γ q

√
1 −

M∏
θ=1

(
1 −

(
∆−1(s′γ,Υ′)

Γ

)q) 1
M




. (4.7)

Determine the BAA matrix G = [gϑ]1×N. The element gϑ utilizing the 2TLT -SFWJHM operator
can be computed as:

gϑ =

 M∏
θ=1

WNθϑ

1/M

=


∆

Γ q

√
1 −

M∏
θ=1

(
1 −

(
∆−1(s′φ,Φ′)

Γ

)q) 1
M

 ,∆
Γ (

M∏
θ=1

∆−1(s′ψ,Ψ
′)

Γ

) 1
M

 ,
∆

Γ (
M∏
θ=1

∆−1(s′γ,Υ′)
Γ

) 1
M




. (4.8)
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Step 6. The distance matrix D = [dθϑ]M×N can be computed as follows:

dθϑ =


d(WNθϑ, gϑ), i f WNθϑ > gϑ
0, i f WNθϑ = gϑ
−d(WNθϑ, gϑ), i f WNθϑ < gϑ

(4.9)

where dθϑ denotes the distance between alternatives zθ(θ = 1, 2, . . . ,M) and BAA, and
d(WNθϑ, gϑ) represents the distance between WNθϑ and gϑ.

Step 7. Add the values of each alternatives’s dθϑ as:

Sθ =

N∑
ϑ=1

dθϑ (4.10)

The order of all alternatives can be determined based on the comprehensive assessment result Sθ;
obviously, the larger the comprehensive assessment result Sθ, the better the decision.

The flowchart of proposed approach is geometrically represented in Figure 1.

Figure 1. The geometrical representation of constructed approach.
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5. Numerical example and discussion

5.1. An application to alternative fuel selection

In this subsection, we demonstrate an actual decision-making application to select the best
alternative fuel for diminishing the impact of greenhouse gas emission by using the
2TLT -SF-MABAC model.

As we know that major sources of fuel, such as diesel and petroleum are diminishing. Since these
are non-renewable, the demand for them is increasing. Many oil wells are drying up. We are forced to
look for alternative fuels to deal with such a situation. The use of alternative fuels reduces the number
of harmful emissions such as carbon dioxide, carbon monoxide, and sulfur dioxide that affect the Earth
protective ozone layer [43]. The costs of alternative fuels, moreover, are less. Therefore, to select
the best alternative fuels, the data is collected from four DMs D = {D1,D2,D3,D4}(professors and
scholars with many years of experience in control the impact of greenhouse gas emission project and
FS theory), with vector of weights ω = (0.2, 0.4, 0.3, 0.1)T . To determine the criteria, five different
fuels are chosen in this alternative fuel selection as follows:

(1) Bio-diesel (z1);

(2) Ethanol (z2);

(3) Propane (z3);

(4) Natural gas (z4);

(5) Hydrogen (z5).

The evaluation of five alternative fuels include the four attributes as:

(1) CO2 emission level (ℵ1);

(2) Fuel cost (ℵ2);

(3) Environmental safety (ℵ3);

(4) Technical cost (ℵ4).

Figure 2 is the geometrical structure of selected case study.

Figure 2. Hierarchical structure of selected case study.
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All attributes are of benefit type. The decision experts subjectively assign the essential weights to
the attributes as ξ = (0.17, 0.31, 0.27, 0.25)T . The 2TLT -SFNs to assess the ability of each fuel to
control greenhouse gas emission for each attribute are given in Table 2.

Table 2. Linguistic variables and their 2TLT -SFNs.

Linguistic variables 2TLT -SFNs

Extremely High Importance (EHI) ((s8, 0), (s0, 0), (s0, 0))
Absolutely High Importance (AHI) ((s7, 0), (s1, 0), (s1, 0))
More Importance (MI) ((s6, 0), (s2, 0), (s2, 0))
Medium High Importance (MHI) ((s5, 0), (s3, 0), (s3, 0))
Uniformly Importance (UI) ((s4, 0), (s4, 0), (s4, 0))
Medium Less Importance (MLI) ((s3, 0), (s3, 0), (s5, 0))
Less Importance (LI) ((s2, 0), (s2, 0), (s6, 0))
Absolutely Less Importance (ALI) ((s1, 0), (s1, 0), (s7, 0))
Extremely Less Importance (ELI) ((s0, 0), (s0, 0), (s8, 0))

The 2TLT -SF evaluation matrix describing the assessments of four decision experts

R = [zλθϑ]M×N = ((sφθϑ ,Φθϑ)λ, (sψθϑ ,Ψθϑ)λ, (sγθϑ ,Υθϑ))λ(θ = 1, 2, . . . ,M, ϑ = 1, 2, . . . ,N)

is established in Table 3 in accordance with the linguistic values indicated in Table 2.

Table 3. Linguistic assessing matrix.
Decision makers Alternatives ℵ1 ℵ2 ℵ3 ℵ4

z1 LI MLI MHI UI
z2 UI AHI MI MHI

D1 z3 AHI UI AHI MI
z4 MI LI ALI AHI
z5 AHI MLI LI ALI
z1 ALI LI MLI UI
z2 MHI UI LI MLI

D2 z3 MLI UI ALI LI
z4 LI MLI UI ALI
z5 MHI AHI LI AHI
z1 MHI LI MHI ALI
z2 MHI ALI LI UI

D3 z3 AHI MHI UI LI
z4 LI UI MHI ALI
z5 UI AHI MHI AHI
z1 MI ALI MI ALI
z2 MI ALI MHI MHI

D4 z3 MHI MI ALI MI
z4 AHI ALI MI MHI
z5 ALI MI LI MHI

Conversion of the linguistic evaluation matrix given in Table 3 into 2TLT -SF decision matrix shown
in Table 4.
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Table 4. The evaluation matrix with 2TLT -SFNs.
Decision makers Alternatives ℵ1 ℵ2 ℵ3 ℵ4

z1 ((s2, 0), (s2, 0), (s6, 0)) ((s3, 0), (s3, 0), (s5, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s4, 0), (s4, 0), (s4, 0))
z2 ((s4, 0), (s4, 0), (s4, 0)) ((s7, 0), (s1, 0), (s1, 0)) ((s6, 0), (s2, 0), (s2, 0)) ((s5, 0), (s3, 0), (s3, 0))

D1 z3 ((s7, 0), (s1, 0), (s1, 0)) ((s4, 0), (s4, 0), (s4, 0)) ((s7, 0), (s1, 0), (s1, 0)) ((s6, 0), (s2, 0), (s2, 0))
z4 ((s6, 0), (s2, 0), (s2, 0)) ((s2, 0), (s2, 0), (s6, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s7, 0), (s1, 0), (s1, 0))
z5 ((s7, 0), (s1, 0), (s1, 0)) ((s3, 0), (s3, 0), (s5, 0)) ((s2, 0), (s2, 0), (s6, 0)) ((s1, 0), (s1, 0), (s7, 0))
z1 ((s1, 0), (s1, 0), (s7, 0)) ((s2, 0), (s2, 0), (s6, 0)) ((s3, 0), (s3, 0), (s5, 0)) ((s4, 0), (s4, 0), (s4, 0))
z2 ((s5, 0), (s3, 0), (s3, 0)) ((s4, 0), (s4, 0), (s4, 0)) ((s2, 0), (s2, 0), (s6, 0)) ((s3, 0), (s3, 0), (s5, 0))

D2 z3 ((s3, 0), (s3, 0), (s5, 0)) ((s4, 0), (s4, 0), (s4, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s2, 0), (s2, 0), (s6, 0))
z4 ((s2, 0), (s2, 0), (s6, 0)) ((s3, 0), (s3, 0), (s5, 0)) ((s4, 0), (s4, 0), (s4, 0)) ((s1, 0), (s1, 0), (s7, 0))
z5 ((s5, 0), (s3, 0), (s3, 0)) ((s7, 0), (s1, 0), (s1, 0)) ((s2, 0), (s2, 0), (s6, 0)) ((s7, 0), (s1, 0), (s1, 0))
z1 ((s5, 0), (s3, 0), (s3, 0)) ((s2, 0), (s2, 0), (s6, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s1, 0), (s1, 0), (s7, 0))
z2 ((s5, 0), (s3, 0), (s3, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s2, 0), (s2, 0), (s6, 0)) ((s4, 0), (s4, 0), (s4, 0))

D3 z3 ((s7, 0), (s1, 0), (s1, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s4, 0), (s4, 0), (s4, 0)) ((s2, 0), (s2, 0), (s6, 0))
z4 ((s2, 0), (s2, 0), (s6, 0)) ((s4, 0), (s4, 0), (s4, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s1, 0), (s1, 0), (s7, 0))
z5 ((s4, 0), (s4, 0), (s4, 0)) ((s7, 0), (s1, 0), (s1, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s7, 0), (s1, 0), (s1, 0))
z1 ((s6, 0), (s2, 0), (s2, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s6, 0), (s2, 0), (s2, 0)) ((s1, 0), (s1, 0), (s7, 0))
z2 ((s6, 0), (s2, 0), (s2, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s5, 0), (s3, 0), (s3, 0))

D4 z3 ((s5, 0), (s3, 0), (s3, 0)) ((s6, 0), (s2, 0), (s2, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s6, 0), (s2, 0), (s2, 0))
z4 ((s7, 0), (s1, 0), (s1, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s6, 0), (s2, 0), (s2, 0)) ((s5, 0), (s3, 0), (s3, 0))
z5 ((s1, 0), (s1, 0), (s7, 0)) ((s6, 0), (s2, 0), (s2, 0)) ((s2, 0), (s2, 0), (s6, 0)) ((s5, 0), (s3, 0), (s3, 0))

5.2. Decision-making criteria utilizing the 2TLT-SFGWHM operator

In this subsection, the evaluation procedure for the selection of the best alternative is described by
using the 2TLT -SF-MABAC method based on the 2TLT -SFGWHM operator.

Step 1. We constructed the 2TLT -SF evaluation matrix
R = [zλθϑ]5×4((sφθϑ ,Φ)λ, (sψθϑ ,Ψ)λ, (sγθϑ ,Υ)λ)5×4(θ = 1, 2, 3, 4, 5, ϑ = 1, 2, 3, 4, and λ = 1, 2, 3, 4),
which is describing the assessments of four DMs as computed in Tables 2–4.

Step 2. According to the 2TLT -SFGWHM aggregation operator, we utilize overall zλθϑ to zθϑ, the
fused 2TLT -SFNs matrix r = [zθϑ]M×N shown in Table 5. (Suppose q = 4, Γ = 8, κ = 2, ε = 3,
and ω = (0.2, 0.4, 0.3, 0.1)T )

Step 3. According to the normalized matrix Nθϑ = ((sφθϑ ,Φθϑ), (sψθϑ ,Ψθϑ)(sγθϑ ,Υθϑ))(θ = 1, 2, . . . 5, ϑ =

1, 2, 3, 4) and attribute weights ξ = (0.17, 0.31, 0.27, 0.25)T , the results of 2TLT -SF weighted
normalized matrix WNθϑ = ((s′φθϑ ,Φ

′
θϑ), (s′ψθϑ ,Ψ

′
θϑ), (s′γθϑ ,Υ

′
θϑ))(θ = 1, 2, . . . 5, ϑ = 1, 2, 3, 4) are

recorded in Table 6.

Step 4. Determine the scores of 2TLT -SF elements of weighted normalized matrix WNθϑ (see
Table 7).

Step 5. Compute the BAA matrix G = [gϑ]1×N. The results of BAA matrix G = [gϑ]1×N are shown in
Table 8.

Step 6. Compute the normalized Hamming distance D = [dθϑ]M×N utilizing Eq (2.4), between
alternatives and BAA (see Table 9).
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Step 7. Sum the values of each alternatives dθϑ.

S1 =

N∑
ϑ=1

d1ϑ = d11 + d12 + d13 + d14 = −0.0527 + (−0.0854) + 0.0444 + (−0.0593) = −0.1529

S2 =

N∑
ϑ=1

d2ϑ = d21 + d22 + d23 + d24 = 0.0504 + 0.0389 + (−0.0305) + (−0.0567) = 0.0022

S3 =

N∑
ϑ=1

d3ϑ = d31 + d32 + d33 + d34 = 0.0597 + 0.0744 + 0.0466 + (−0.0240) = 0.1566

S4 =

N∑
ϑ=1

d4ϑ = d41 + d42 + d43 + d44 = −0.0426 + (−0.0509) + 0.0424 + (−0.0777) = −0.1287

S5 =

N∑
ϑ=1

d5ϑ = d51 + d52 + d53 + d54 = 0.0353 + 0.1924 + (−0.0285) + 0.1630 = 0.3622.

So, by utilizing the result of Sθ, the alternatives zθ(θ = 1, 2, . . . , 5) can be ranked, easily. The best
alternative has the highest value of Sθ. The ranking of alternatives is as follows:

z5 > z3 > z2 > z4 > z1.

Therefore, z5 is the best alternative fuel.

Table 5. Collective 2TLT -SF matrix according to the 2TLT -SFGWHM operator.

ℵ1 ℵ2

z1 ((s5,−0.0741), (s3,−0.2659), (s5, 0.2839)) ((s3,−0.4422), (s3,−0.0642), (s6, 0.1556))
z2 ((s5, 0.0906), (s4,−0.1869), (s4,−0.1869)) ((s6,−0.0297), (s3,−0.0044), (s5,−0.0985))
z3 ((s6, 0.4532), (s3,−0.1301), (s3, 0.4688)) ((s5,−0.0362), (s4, 0.1751), (s4, 0.1751))
z4 ((s6,−0.2726), (s3,−0.2323), (s5, 0.1826)) ((s4,−0.4301), (s4,−0.2450), (s5, 0.3820))
z5 ((s6,−0.0185), (s4,−0.4067), (s4, 0.0018)) ((s7,−0.3221), (s2, 0.2739), (s3,−0.4955))

ℵ3 ℵ4

z1 ((s5, 0.0069), (s4,−0.3367), (s4, 0.3754)) ((s4,−0.2467), (s4,−0.4693), (s5, 0.3930))
z2 ((s5, 0.1239), (s3,−0.0651), (s5, 0.3664)) ((s4, 0.4101), (s4, 0.0152), (s5,−0.2794))
z3 ((s6,−0.0299), (s3,−0.3536), (s5, 0.1030)) ((s5, 0.2534), (s3,−0.1589), (s5, 0.2737))
z4 ((s5,−0.0484), (s4,−0.2365), (s5,−0.4636)) ((s6,−0.0278), (s2,−0.0126), (s5, 0.3974))
z5 ((s4, 0.4331), (s3, 0.1454), (s5, 0.3792)) ((s7,−0.3309), (s2,−0.0126), (s3,−0.2815))
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Table 6. The weighted normalized matrix WNθϑ(θ = 1, 2, . . . 5, ϑ = 1, 2, 3, 4) with 2TLT -
SFNs.

ℵ1 ℵ2

z1 ((s3, 0.2136), (s7,−0.3344), (s7, 0.4552)) ((s2,−0.0896), (s6,−0.1368), (s7, 0.3752))
z2 ((s3, 0.3288), (s7, 0.0528), (s7, 0.0528)) ((s5,−0.4056), (s6,−0.1000), (s7,−0.1272))
z3 ((s4, 0.3736), (s7,−0.2800), (s7,−0.0592)) ((s4,−0.2456), (s7,−0.4608), (s7,−0.4608))
z4 ((s4,−0.2080), (s7,−0.3208), (s7, 0.4304)) ((s3,−0.3272), (s6, 0.3280), (s7, 0.0752))
z5 ((s4,−0.0128), (s7,−0.0176), (s7, 0.1112)) ((s5, 0.2544), (s5, 0.4168), (s6,−0.4184))

ℵ3 ℵ4

z1 ((s4,−0.3360), (s6, 0.4792), (s7,−0.2032)) ((s3,−0.3336), (s7,−0.4800), (s7, 0.2488))
z2 ((s4,−0.2448), (s6, 0.1024), (s7, 0.1824)) ((s3, 0.1472), (s7,−0.2664), (s7, 0.0120))
z3 ((s4, 0.4464), (s6,−0.0656), (s7, 0.0856)) ((s4,−0.2144), (s6, 0.1752), (s7, 0.2088))
z4 ((s4,−0.3792), (s7,−0.4736), (s7,−0.1360)) ((s4, 0.3664), (s6,−0.3520), (s7, 0.2504))
z5 ((s3, 0.2240), (s6, 0.2176), (s7, 0.1872)) ((s5,−0.0048), (s6,−0.3520), (s6, 0.1080))

Table 7. Score functions of weighted normalized matrix.

ℵ1 ℵ2 ℵ3 ℵ4

z1 0.1359 0.1404 0.2614 0.1691
z2 0.2129 0.2820 0.1994 0.2169
z3 0.2614 0.3010 0.2400 0.1955
z4 0.1531 0.2004 0.2500 0.2070
z5 0.2187 0.4746 0.1875 0.4061

Table 8. The G matrix with 2TLT -SFNs.

g′s The 2TLT -SFNs for g′s Score
g1 ((s4,−0.2852), (s7,−0.1645), (s7, 0.2317)) 0.1894
g2 ((s3, 0.4125), (s6, 0.0713), (s7,−0.1439)) 0.2468
g3 ((s4,−0.2783), (s6, 0.2735), (s7, 0.0395)) 0.2237
g4 ((s4,−0.3006), (s6, 0.2280), (s7, 0.0517)) 0.2210

Table 9. The distance matrix with 2TLT -SFNs.

ℵ1 ℵ2 ℵ3 ℵ4

z1 d11 = −0.0527 d12 = −0.0854 d13 = 0.0444 d14 = −0.0593
z2 d21 = 0.0504 d22 = 0.0389 d23 = −0.0305 d24 = −0.0567
z3 d31 = 0.0597 d32 = 0.0744 d33 = 0.0466 d34 = −0.0240
z4 d41 = −0.0426 d42 = −0.0509 d43 = 0.0424 d44 = −0.0777
z5 d51 = 0.0353 d52 = 0.1924 d53 = −0.0285 d54 = 0.1630
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5.3. Decision-making criteria utilizing the 2TLT-SFWJHM operator

In this subsection, the evaluation procedure for the selection of the best alternative is described by
using the 2TLT -SF-MABAC method based on the 2TLT -SFWJHM operator.

Step 1. We constructed the 2TLT -SF evaluation matrix
R = [zλθϑ]5×4((sφθϑ ,Φ)λ, (sψθϑ ,Ψ)λ, (sγθϑ ,Υ)λ)5×4(θ = 1, 2, 3, 4, 5, ϑ = 1, 2, 3, 4, and λ = 1, 2, 3, 4),
which is describing the assessments of four DMs as computed in Tables 2–4.

Step 2. According to the 2TLT -SFWJHM aggregation operator, we utilize overall zλθϑ to zθϑ, the
fused 2TLT -SFNs matrix r = [zθϑ]M×N shown in Table 10. (Suppose q = 4, Γ = 8, κ = 2, ε = 3,
and ω = (0.2, 0.4, 0.3, 0.1)T )

Step 3. According to the normalized matrix Nθϑ = ((sφθϑ ,Φθϑ), (sψθϑ ,Ψθϑ)(sγθϑ ,Υθϑ))(θ = 1, 2, . . . 5, ϑ =

1, 2, 3, 4) and attribute weights ξ = (0.17, 0.31, 0.27, 0.25)T , the results of 2TLT -SF weighted
normalized matrix WNθϑ = ((s′φθϑ ,Φ

′
θϑ), (s′ψθϑ ,Ψ

′
θϑ), (s′γθϑ ,Υ

′
θϑ))(θ = 1, 2, . . . 5, ϑ = 1, 2, 3, 4) are

recorded in Table 11.

Step 4. Determine the scores of 2TLT -SF elements of weighted normalized matrix WNθϑ (see
Table 12).

Step 5. Compute the the BAA matrix G = [gϑ]1×N. The results of BAA matrix G = [gϑ]1×N are shown
in Table 13.

Step 6. Compute the normalized Hamming distance D = [dθϑ]M×N utilizing Eq (2.4), between
alternatives and BAA (see Table 14).

Step 7. Sum the values of each alternatives dθϑ.

S1 =

N∑
ϑ=1

dθϑ = d11 + d12 + d13 + d14 = −0.0635 + (−0.0904) + 0.0462 + (−0.0406) = −0.1483

S2 =

N∑
ϑ=1

d2ϑ = d21 + d22 + d23 + d24 = 0.0321 + (−0.0632) + (−0.0196) + 0.0332 = −0.0175

S3 =

N∑
ϑ=1

d3ϑ = d31 + d32 + d33 + d34 = 0.0233 + 0.0360 + (−0.0493) + (−0.0218) = −0.0118

S4 =

N∑
ϑ=1

d4ϑ = d41 + d42 + d43 + d44 = −0.0402 + (−0.0495) + 0.0311 + (−0.0788) = −0.1374

S5 =

N∑
ϑ=1

d5ϑ = d51 + d52 + d53 + d54 = 0.0218 + 0.0870 + (−0.0191) + 0.0623 = 0.1520.

So, by utilizing the result of Sθ, the alternatives zθ(θ = 1, 2, . . . , 5) can be ranked, easily. The best
alternative has the highest value of Sθ. The ranking of alternatives is as follows:

z5 > z3 > z2 > z4 > z1.

Therefore, z5 is the best alternative fuel.
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Table 10. Collective 2TLT -SF matrix according to the 2TLT -SFWJHM operator.

ℵ1 ℵ2

z1 ((s3, 0.4127), (s3,−0.3365), (s6, 0.4421)) ((s3,−0.0642), (s3,−0.4422), (s6, 0.0308))
z2 ((s5, 0.3485), (s3, 0.4278), (s3, 0.4278)) ((s4,−0.1710), (s4,−0.3502), (s6, 0.3352))
z3 ((s5, 0.2422), (s3,−0.2252), (s5,−0.4376)) ((s5,−0.0087), (s4,−0.2427), (s4,−0.2427))
z4 ((s4,−0.2916), (s2,−0.0589), (s6,−0.2907)) ((s4,−0.2450), (s4,−0.4301), (s6,−0.2193))
z5 ((s5, 0.1032), (s4,−0.4306), (s6,−0.4196)) ((s6, 0.1617), (s3,−0.4455), (s4, 0.2567))

ℵ3 ℵ4

z1 ((s5,−0.2295), (s3,−0.0882), (s5,−0.4355)) ((s4,−0.4693), (s4,−0.2467), (s6, 0.3373))
z2 ((s4,−0.3635), (s2, 0.4206), (s6,−0.2907)) ((s4, 0.4566), (s4,−0.4178), (s5,−0.4229))
z3 ((s3, 0.4495), (s4,−0.4537), (s6, 0.4844)) ((s4,−0.3176), (s2,−0.0426), (s6,−0.2907))
z4 ((s5,−0.4307), (s4,−0.3456), (s6,−0.0297)) ((s3,−0.1729), (s2, 0.3831), (s7,−0.3320))
z5 ((s4,−0.3695), (s3,−0.3298), (s6,−0.3064)) ((s6,−0.4591), (s2, 0.3831), (s6,−0.0304))

Table 11. The weighted normalized matrix WNθϑ(θ = 1, 2, . . . 5, ϑ = 1, 2, 3, 4) with 2TLT -
SFNs.

ℵ1 ℵ2

z1 ((s7,−0.0786), (s2,−0.2877), (s4, 0.3646)) ((s6,−0.1368), (s2,−0.0899), (s5,−0.3530))
z2 ((s7, 0.4708), (s2, 0.2090), (s2, 0.2090)) ((s6, 0.3662), (s3,−0.2664), (s5,−0.0762))
z3 ((s7, 0.4453), (s2,−0.2153), (s3,−0.0366)) ((s7,−0.0884), (s3,−0.1841), (s3,−0.1841))
z4 ((s7, 0.0200), (s1, 0.2467), (s4,−0.2212)) ((s6, 0.3280), (s3,−0.3272), (s4, 0.4293))
z5 ((s7, 0.4114), (s2, 0.3017), (s4,−0.3179)) ((s7, 0.3780), (s2,−0.0923), (s3, 0.1991))

ℵ3 ℵ4

z1 ((s7,−0.0423), (s2, 0.1025), (s3, 0.3239)) ((s7,−0.4796), (s3,−0.3335), (s5,−0.3147))
z2 ((s6, 0.4662), (s2,−0.2536), (s4, 0.2264)) ((s7,−0.0885), (s3,−0.4571), (s3, 0.2704))
z3 ((s6, 0.3746), (s3,−0.4344), (s5,−0.0939)) ((s7,−0.4105), (s1, 0.3847), (s4, 0.1489))
z4 ((s7,−0.1226), (s3 − 0.3551), (s4, 0.4461)) ((s6, 0.1682), (s2,−0.3136), (s5,−0.0057))
z5 ((s6, 0.4631), (s2,−0.0729), (s4, 0.2132)) ((s7, 0.2981), (s2,−0.3136), (s4, 0.3647))

Table 12. Score functions of weighted normalized matrix.

ℵ1 ℵ2 ℵ3 ℵ4

z1 0.7358 0.5873 0.7712 0.6618
z2 0.8774 0.6288 0.6745 0.7646
z3 0.8657 0.7709 0.6308 0.6940
z4 0.7716 0.6488 0.7254 0.6008
z5 0.8459 0.8489 0.6745 0.8020
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Table 13. The G matrix with 2TLT -SFNs.

g′s The 2TLT -SFNs for g′s Score
g1 ((s7, 0.2937), (s2,−0.1911), (s3, 0.3104)) 0.8308
g2 ((s7,−0.2784), (s2, 0.3713), (s4,−0.0908)) 0.7207
g3 ((s7,−0.3422), (s2, 0.1691), (s4, 0.1898)) 0.7022
g4 ((s7,−0.2195), (s2,−0.0711), (s4, 0.2495)) 0.7182

Table 14. The distance matrix with 2TLT -SFNs.

ℵ1 ℵ2 ℵ3 ℵ4

z1 d11 = −0.0635 d12 = −0.0904 d13 = 0.0462 d14 = −0.0406
z2 d21 = 0.0321 d22 = −0.0632 d23 = −0.0196 d24 = 0.0332
z3 d31 = 0.0233 d32 = 0.0360 d33 = −0.0493 d34 = −0.0218
z4 d41 = −0.0402 d42 = −0.0495 d43 = 0.0311 d44 = −0.0788
z5 d51 = 0.0218 d52 = 0.0870 d53 = −0.0191 d54 = 0.0623

5.4. The effects of parameters on the outcomes

The influence of parameters on the score functions and ranking outcomes is detailed in the following
subsection. The parameters κ, ε, and q play a significant role in the evaluation of alternatives, and the
variation of these parameters also affects the ranking of outcomes. The variation of parameters κ, ε, and
q enable DMs to extend their decision assessment space based on the 2TLT -SFGWHM and the 2TLT -
SFWJHM operators as well as the influence of parameters on the ranking of outcomes is analyzed to
check the validity and effectiveness of the proposed approach. We deal with the variation of these three
parameters to determine how they affect the outcomes: (1) Let κ=3, ε ∈ [1, 10], and q=4 the influence
of ε on the ranking outcomes is investigated. (2) Let κ ∈ [1, 10], ε=3, and q=4 the influence of κ on
the ranking results is studied. (3) We measure the overall evaluation scores by assigning κ and ε fixed
values such as κ=ε=3, where q ∈ [1, 10]. We also calculate the alternative ranking scores. Hence, we
solve the concerned problem for a variety of parameter values and ranked the outcomes in Tables 15
and 16. Further, details can be found in Figures 3–8. The ranking results show that z5 is the best
alternative fuel for controlling the impact of greenhouse gas emissions.
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Table 15. Parameter analysis according to the 2TLT -SFGWHM operator (q = 4).

Parameters Score Function S(dθ)(θ = 1, 2, 3, 4, 5) Ranking Results
κ = ε = 1 S(z1) = −0.1389 S(z2) = 0.1108 S(z3) = 0.0707 S(z4) = −0.1281 S(z5) = 0.3727 z5 > z2 > z3 > z4 > z1

κ = ε = 2 S(z1) = −0.1505 S(z2) = −0.0001 S(z3) = 0.1558 S(z4) = −0.1283 S(z5) = 0.3658 z5 > z3 > z2 > z4 > z1

κ = ε = 3 S(z1) = −0.1569 S(z2) = 0.0105 S(z3) = 0.1542 S(z4) = −0.1306 S(z5) = 0.3593 z5 > z3 > z2 > z4 > z1

κ = 1, ε = 2 S(z1) = −0.1434 S(z2) = 0.1150 S(z3) = 0.0706 S(z4) = −0.1256 S(z5) = 0.3690 z5 > z2 > z3 > z4 > z1

κ = 2, ε = 1 S(z1) = −0.1485 S(z2) = 0.1104 S(z3) = 0.1539 S(z4) = −0.1299 S(z5) = 0.3681 z5 > z3 > z2 > z4 > z1

κ = 2, ε = 3 S(z1) = −0.1529 S(z2) = 0.0022 S(z3) = 0.1566 S(z4) = −0.1287 S(z5) = 0.3622 z5 > z3 > z2 > z4 > z1

κ = 3, ε = 2 S(z1) = −0.1550 S(z2) = 0.0088 S(z3) = 0.1534 S(z4) = −0.1303 S(z5) = 0.3622 z5 > z3 > z2 > z4 > z1

κ = ε = 3/2 S(z1) = −0.1462 S(z2) = 0.1135 S(z3) = 0.1569 S(z4) = −0.1280 S(z5) = 0.3692 z5 > z3 > z2 > z4 > z1

Table 16. Parameter analysis according to the 2TLT -SFWJHM operator (q = 4).

Parameters Score Function S(dθ)(θ = 1, 2, 3, 4, 5) Ranking Results
κ = ε = 1 S(z1) = −0.1545 S(z2) = −0.0287 S(z3) = −0.0152 S(z4) = −0.1473 S(z5) = 0.1559 z5 > z3 > z2 > z4 > z1

κ = ε = 2 S(z1) = −0.1472 S(z2) = −0.0198 S(z3) = −0.0128 S(z4) = −0.1420 S(z5) = 0.1503 z5 > z3 > z2 > z4 > z1

κ = ε = 3 S(z1) = −0.1417 S(z2) = −0.0118 S(z3) = −0.0121 S(z4) = −0.1345 S(z5) = 0.1514 z5 > z2 > z3 > z4 > z1

κ = 1, ε = 2 S(z1) = −0.1583 S(z2) = −0.0293 S(z3) = −0.0125 S(z4) = −0.1462 S(z5) = 0.1544 z5 > z3 > z2 > z4 > z1

κ = 2, ε = 1 S(z1) = −0.1431 S(z2) = −0.0178 S(z3) = −0.0126 S(z4) = −0.1463 S(z5) = 0.1497 z5 > z3 > z2 > z1 > z4

κ = 2, ε = 3 S(z1) = −0.1482 S(z2) = −0.0175 S(z3) = −0.0119 S(z4) = −0.1374 S(z5) = 0.1520 z5 > z3 > z2 > z4 > z1

κ = 3, ε = 2 S(z1) = −0.1402 S(z2) = −0.0132 S(z3) = −0.0128 S(z4) = −0.1383 S(z5) = 0.1503 z5 > z3 > z2 > z4 > z1

κ = ε = 3/2 S(z1) = −0.1507 S(z2) = −0.0242 S(z3) = 0.1569 S(z4) = −0.1466 S(z5) = 0.1522 z3 > z5 > z2 > z4 > z1

Figure 3. Scores of five alternatives
when κ = 3, ε ∈ [1, 10] based on
2TLT -SFGWHM operator (q = 4).

Figure 4. Scores of five alternatives
when ε = 3, κ ∈ [1, 10] based on
2TLT -SFGWHM operator (q = 4).
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Figure 5. Scores of five alternatives
when κ = ε = 3, q ∈ [1, 10] based on
2TLT -SFGWHM operator.

Figure 6. Scores of five alternatives
when κ = 3, ε ∈ [1, 10] based on
2TLT -SFWJHM operator (q = 4).

Figure 7. Scores of five alternatives
when ε = 3, κ ∈ [1, 10] based on
2TLT -SFWJHM operator (q = 4).

Figure 8. Scores of five alternatives
when κ = ε = 3, q ∈ [1, 10] based on
2TLT -SFWJHM operator.

5.5. Comparative analysis with existing MAGDM methods

In this subsection, we use certain validated approaches to cope with the proposed MAGDM
problem and analyze the outcomes with our framework to check its feasibility and effectiveness. We
carefully compute the evaluation outcomes for the selection of an optimal alternative fuel by using
these strategies. Tables 17 and 18 summarizes the output of the comparisons among the developed
MABAC method and existing EDAS and CODAS methods.

Table 17. Comparative analysis according to the 2TLT -SFGWHM operator.
Alternatives MABAC Ranking EDAS [28] Ranking CODAS [29] Ranking

z1 -0.1529 V 0.0224 V -2.6522 V
z2 0.0022 III 0.3901 III -0.4684 III
z3 0.1566 II 0.5628 II 0.6624 II
z4 -0.1287 IV 0.2824 IV -0.5218 IV
z5 0.3622 I 0.9172 I 2.9800 I
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Table 18. Comparative analysis according to the 2TLT -SFWJHM operator.
Alternatives MABAC Ranking EDAS [28] Ranking CODAS [29] Ranking

z1 -0.1483 V 0.1769 V -1.6316 V
z2 -0.0175 III 0.5603 III 0.3430 II
z3 -0.0118 II 0.6007 II 0.2473 III
z4 -0.1374 IV 0.1067 I -1.5629 IV
z5 0.1520 I 1.0000 IV 2.6043 I

Due to the fundamental behavior of the multiple aggregation methods, there are some variations in
the ranking order of alternatives. But, the most acceptable alternative as shown in Tables 17 and 18 is
the same in both the existing methodologies and the proposed methodology. Hence, from the
comparison outcomes with EDAS and CODAS methods, we can conclude that z5 is the best
alternative fuel for control of impact of greenhouse gas emissions.

The proposed MABAC method is more applicable because it does not only determine the
relationships between the given arguments but it also enables the DMs to show their fuzzy evaluation
information more effectively. Moreover, the presented technique allows DMs to select their risk
preferences based on the variation of parameters. The 2TLT -SF-MABAC method can also provide
robust and flexible information integration, enabling risk MAGDM problems more feasible. The
existing operators and methods cannot control the certainty degrees. Our proposed model can
effectively redistribute the MD, AD, and NMD in 2TLT -SFNs by different rules, allowing us to
extract more detailed and objective data from the original 2TLT -SFS. In a summary, the strategy we
propose is broad and applicable to solve MAGDM problems with 2TLT -SFNs. Further detail about
the comparison outcomes plotted in Figures 9 and 10.

Figure 9. Comparative outcomes with 2TLT -SFGWHM operator.
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Figure 10. Comparative outcomes with 2TLT -SFWJHM operator.

6. Conclusions

The T -SFS increases the range for assigning MD, AD and NMD, and the 2TL terms can best
describe the information given by DMs in natural language. In this manuscript, to evaluate linguistic
problems the combining concept of T -SFS and 2TL terms called the 2TLT -SFS has been utilized.
The 2TLT -SFNs can be converted into 2TL spherical fuzzy numbers and 2TL picture fuzzy numbers
when q = 2 and q = 1, respectively. Therefore, the 2TLT -SFS has a good ability to other fuzzy
numbers which represent linguistic information. The generalized HM operator can solve real world
MAGDM problems by taking into account the correlation of attribute values which are obvious in the
modern environment. So, we have proposed a family of 2TLT -SF generalized and geometric HM
AOs, such as the 2TLT -SFGHM, the 2TLT -SFGWHM, the 2TLT -SFJHM, and the 2TLT -SFWJHM
operators for aggregating 2TLT -SFNs. In this article, by considering the stability, feasibility, and
simplicity of the MABAC method in the calculation process, a new tool called the 2TLT -SF-MABAC
method based on the 2TLT -SFGWHM and the 2TLT -SFWJHM has been proposed, which is useful,
powerful, and flexible to express DMs’ complicated and uncertain decision information in the
MAGDM environment. The proposed method can flexibly assign different weights to the attributes
according to specific problems to obtain results that are consistent with actual conditions. Numerical
illustration has demonstrated that our proposed method is more flexible than other existing methods.
However, our proposed approach is still more crucial to deal with realistic MAGDM problems than
some others owing to its advantages and superiorities. In the future, our work will be extended w.r.t
two aspects in fuzzy circumstances. First, we will try to expand our proposed method to solve
different classical MAGDM problems; supplier selection, medical diagnosis, etc. Second, we will
investigate more AOs for 2TLT -SFS and study their applications in an MAGDM environment.
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