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1. Introduction

Many researchers in diverse fields, notably in the field of medical statistics, periodically run into
the issue where continuous random variables are not always evaluated on a continuous scale but are
usually recorded using discrete random variables. In actual testing experiments like radio-sensitivity
and growth kinetics, estimating the lifetime of patients or equipment on a weekly or daily discrete scale
is frequently impossible. Survival analysis typically expresses outcomes in terms of days, such as the
possibility of tumor treatment following fractionated radiotherapy, the duration of vacation time taken
by lung cancer patients while receiving treatment or the interval between remission and relapse.

The geometric and negative binomial distributions are discrete analogues for the exponential and
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gamma distributions inside this situation. These discrete distributions contain monotonic hazard rate
functions, which makes them inappropriate in a number of circumstances.

The research exposes a large number of discrete lifetime distributions; see [1,2]. Roy [3] analyzed
the notion of discrete concentration, considering it a straightforward method that, given a continuous
model, can generate a discrete life distribution model; the discrete normal distribution was developed
using this idea. Utilizing the same methodology as for discretizing continuous probability
distributions. The discrete Burr and Pareto distributions were derived by Krishna and Pundir in [4].
The discrete Gamma distribution was first defined by Chakraborty and Chakravarty [5]. The second
type of generalized exponential discrete was inserted by Alamatsaz et al. [6], and the exponentiated
discrete from the Weibull distribution was pressed in [7]. Alamatsaz et al. [8] introduced a
two-parameter discrete generalized Rayleigh distribution, Hussain et al. [9] presented a two-parameter
discrete Lindley distribution. The discretization of weighted Exponential distribution was emerged
in [10] and Jayakumar and Babu [11] devolped a discrete additive Weibull geometric distribution.

Very recently, El-Morshedy et al. [12] introduced the discrete Bilal distribution, EI-Morshedy [13]
presented the discrete Gompertz distribution, Eldeeb et al. [14] helmed the discrete analog of inverted
Topp-Leone distribution, El-Alosey [15] established the discrete Erlang-truncated Exponential
distribution distribution, Ahsan-ul-Haq et al. [16] proposed discrete type-II half-logistics exponential
distribution and Eledum and El-Alosey, in [17], presented the discrete extended Erlang-truncated
exponential distribution.

In this work, we create a distinctive one-parameter discrete distribution of the DE2 distribution
by adopting the continuous survival technique in Section 2. We realize some of the basic statistical
characteristics of the DE2 distribution in Section 3. Section 4 evaluating the estimation parameter
using the maximum likelihood method. Moreover, we validated the suggested distribution using the
datasets for leukemia and COVID-19 in Section 5. Finally, we provide some concluding remarks in
Section 6.

e Erlang-2 distrebution (E2 distribution)

Erlang created the Erlang distribution to analyze the number of concurrent calls that might be
received by the switching station operators. This research on telephone traffic engineering has been
broadened to take into account queueing systems’ waiting times more generally. The subject of
stochastic processes also makes use of the distribution.

The probability density function (pdf) of the Erlang distribution is

/lkxk‘l —Ax
fE(X;k,/l) = W for x,/lZO. (11)
The parameter A is known as the rate parameter, while the value k is referred as the shape parameter.
The Erlang distribution’s cumulative distribution function (cdf) is

k-1

Fo(xk)=1-Y (M) (12)

=

The Erlang-2 distribution (E2 distribution) is defined by setting k = 2 in Eq (1.1). Moreover, its
probability density function (pdf) and cumulative distribution function (cdf) are respectively given by:

fea(x; ) = 2xe™, for x,4 >0, (1.3)
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Fro(xd)=1— (1 + /lx) e (1.4)
The survival function of E2 distribution is:
S pa(x) = (1 + /lx) et (1.5)
The hazard rate function (failure rate function) of E2 distribution is:
A2 x
h = . 1.6
£2(x) T (1.6)
The reverse hazard rate function of E2 distribution is:
A2x
h, =—— 21#0. 1.7
E2)(X) 5= (110 (1.7)
The Mills ratio function of E2 distribution is:
. . e™ — (1 + Ax)
Mills ratiog,(x) = s A#0. (1.8)
X

2. Discrete Erlang-2 distrebution (DE2 distribution)

The surviving discretization method can be used to create a discrete duplicate of any continuous
random variable, see [3, 18]. A discrete random variable Y can be defined as equal to [X], which is
the floor function of X and is the greatest integer less than or equal to X, given a continuous random
variable X with a survival function S x(x). The probability mass function (pmf) of Y is then provided
by

JFO) =P(Y =y) =Sx(y) - Sx(y+ D).

This idea is used to suggest a one-parameter discrete probability distribution by discretizing the
parameterized version of the given in Eq (1.3). First re-parameterization of Erlang-2 distribution in
Eq (1.3) is done by taking p = A, which lead us to the formula of pmf for discrete Erlang-2 distribution
(DE2 distribution), as follows:

Joe2(y;p) = P(Y =y) = e_”y((l —e ") (py+1)- Pe_p), 2.1)

where p is the rate parameter, p >0 and y=0,1,2,....

Figure 1 shows that the sensitivity of the rate parameter p make a modification in the shape of pmf,
at different values of p which has small difference between them, and also it has been noticed that the
distribution’s mode shifts to the left as the rate parameter rises.

The corresponding cdf of DE2 distribution is

1—e D1 +py+1), y>0,

0, elsewhere. (2.2)

Foes(vip) = PAY < ) =
Figure 2 shows that the sensitivity of the rate parameter p, will change the shape of cdf, at different

values which has small difference between them. On the other hand, it can be observed that the cdf
approaches one quickly as p increases, increasing the likelihood of high numbers.
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Figure 1. The pmf of DE2 for different values of p.
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Figure 2. The cdf of DE2 for different values of p.
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3. Statistical properties of DE2 distribution

Some of the statistical characteristics of the mentioned distribution, DE2, were inferred in this
section.

3.1. Survival, hazard rate, reverse hazard rate and Mills ratio functions of (DE2)

The definitions of the survival and Mills ratio functions, as well as the discrete hazard rate (also
known as the discrete failure rate) and reverse hazard rate functions, are covered in this subsection,
see [19,20].

3.1.1. Survival function

The classical definition of the survival function for the DE?2 distribution is as follows:

Spe2y;p) =p (Y 2y)=p(Y =y)+ p(Y >y)
=p Y =y)+[1-pY <y)]

= foe2(y; p) + [1 = Fpea(y; p)] 3.1)
= e_py((l —e ") (py+1)- pe-P) + [1 —~ (1 —e P 1 +p(y+ 1)))]
=e P (py+1),

where p > 0 and y € N.
From Figure 3, it’s interesting to observe that when p rises, the survival function of DE2 falls off at
various values of the rate parameter p.
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Figure 3. The survival function of DE2 for different values of p.

3.1.2. Hazard rate function
The “hazard rate” (or “failure rate”) function of the DE2 distribution is often defined as follows:

Joe0ip) _ e+ pG+ D)

h ; ) = =
pE2(y: P S pe2(y; p) 1+ py

(3.2)
where p > 0 and y € N.
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From Figure 4, at different values of the rate parameter p, the hazard rate function of DE2 increases

as p increases.
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Figure 4. The hazard function of DE2 for different values of p.

3.1.3. The reverse hazard rate function

It is customary to define the “reverse hazard rate” function of the DE2 distribution as follows:

_ Jop(sp) _ pye” =D +el -2
Fpea(y;p) e’V +ply+1) =1

hy pe2(y; p) p#0, (3.3)

where p > 0and y € N.
From Figure 5, we can see that at various values of the ratee parameter p, the reverse hazard function
of DE2 reduces as p grows.
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Figure 5. The reverse hazard function of DE?2 for different values of p.

3.1.4. The Mills ratio function
Additionally, the Mills ratio function for the DE?2 distribution is properly defined:

1 _ef’(y+1)+p(y+l)—1
h-pe2(y;p)  py(el — 1)+ el —2

Mills ratiopg,(y; p) = , (3.4)
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where p>0andy e N.
Figure 6 demonstrates the Mills ratio function of DE2 for various rate parameter values.
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Figure 6. The Mills ratio function of DE2 for different values of p.

3.2. Moments and moment generating function of DE2 distribution

For a random variable Y with both the DE2 distribution and parameter p, the moments and moments
generating function are generated in this subsection.

Theorem 3.1. Let Y be a random variable having the DE2 distribution, then the moment generating
Junction (mgf) of Y is
e P +p-1)—eP(p+1)+1
e(ep)e(p), (3.5)
(1 — e 02

My (1) =
where p > 0 and p # t.
Proof. We know that

My(t) = E() =" foray:p)

ally

ezy[e—py((l —eP)(py+1)- pe_p)]

DM 1M

(1= oy + 1) - pe?)

Il
(=]

Y

(9]

= (1-e) Z QP (py + 1) — pe” Z D).

y:O yZO

Using “Wolfram Mathematica” we obtain

L [1+eP(p-1) - 1
My(@®) = (1-¢€7) W]_pe p[l—e"f’]
_dPeP+p-D-eP(p+ D) +1
h (1 —e=r)?
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e P e P+p-1)—eP(p+1)+1
(1 — ey .

where p > 0 and p # ¢. So the theorem is proved.

As a result, using Eq (3.5), the DE2 distribution’s first moment, or the mean, can be calculated as

follows:
dMy()| e P(p+1)—e?

dt =0 (1 —er)?
Also, the second moment of the DE?2 distribution is

= E(Y) = , p#0. (3.6)

d>My (1) 3pe +eP(p+1)—eP
= E(Y?) = = , 0. 3.7
po= By == T p# (3.7)
And so the variance of the DE2 distribution using Eqgs (3.6) and (3.7) is
Varpp[Y] = E(Y?) = [E(Y)P
e -p)—e (P> +2)+eP(p+1) (3.8)
= s, P * O

(1 - ey

Consequently, the standard deviation of the DE2 distribution is

e =p)+eP(p+1)—e?P(p?+2)

_ed-prer(p+l)—e
- (1—er)y

(3.9)

, p#0.

The following relation yields the 7 moment of the DE2 distribution:

d" My(1)
dr z:O.

ur=EXY") =

For example, the third moment of the DE2 distribution is

d> My (1)
= E(Y? =
—e ™ e P(p+1)+e(Ip-3)+e2(10p + 3)

(1—er)
and so on.
3.3. Monotonicity of the DE2 distribution

3.3.1. Monotonicity of pmf in the DE2 distribution

In order to determine the critical point for the monotonicity of pmf for the DE2 distribution, we first
set the first derivative of pmf to zero, as shown below:

foe (v p) = pze_py(y(e_p -1+ e_p), p>0 and y € N, (3.10)
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Put f},.,(y; p) = 0 to obtain the pmf critical point as follows:

-p

1—er’

JoE2(0s ) = 0= yo = p#0. (3.11)
Because p > 0, fpe2(y; p) is monotonic dicreasing when y > y, and monotonic increasing when
Yy < Yo-

3.3.2. Monotonicity of hazard rate function in the DE2 distribution

The hazard rate function’s monotonic behavior, as demonstrated in [21], must be investigated. To
do this, apply the same test as before:

el p2

R e

We notice that, the hazard rate function is monotonic increasing for all value of ¥ and p. Since
hyp,(vip) > 0, ¥p > 0 and Yy € N. Figure 4 shows the increasing of the hazard rate function at

different rates of the rate parameter p.

3.4. Mode, skewness, kurtosis and Fano factor of DE2 distribution

The Fano factor, mode, skewness, kurtosis, and other critical measures (central tendency and
dispersion) that are essential for discrete distribution in a wide range of fields, particularly medical
statistics, are inferred in this subsection.

3.4.1. The mode of DE2 distribution

In the first, we take out the critical point of pmf for DE2 distribution by obtaining the first derivative
of pmf, which we introduce in Eq (3.10) and set it to zero using Eq (3.11), yielding the point y, = ep%l
Calculate the second derivative of fpg,(y; p) to determine whether this point is the local maximum or
local minimum:

freOosp) = p2e_”(l+ﬁ)(l —e’), p>0andy=0,1,2,....

Asp>0,s0(1 -e”) <0, f-,(yo; p) <0, and yy is the local maximum point of pmf, this means
that

Modepg, = yo = > , p>0. (3.12)

e’ — 1
3.4.2. The skewness of DE2 distribution (S Kpg»)

In order to quantify the lack of symmetry in a probability distribution, there are several skewness
measures that have been proposed in the literature. Karl Pearson’s measure is the most widely applied
of these and is denoted by the following formula:

Mean — Mode

SKpgy, = .
PE2 ™ Standard Deviation
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Using Eqgs (3.6), (3.9) and (3.12) we get the coeflicient of skewness of DE2 distribution is

2 o-p
S Kpp = P e , p#0. (3.13)

((1 —pe P —eP(pP>+2)+p+ 1)

We notice that, since p > 0 the coefficient of skewness is positive for any value of p, so the DE2
distribution is right skewness.

3.4.3. The kurtosis of DE2 distribution (CKpg»)

Using the classical definition of the coefficient of kurtosis, which is

y— Mean)4 _ i (y - E(y)

4
5D D ) foe2(y; p).

CKpps = E(

Using Eqgs (2.1), (3.6) and (3.9) and “Wolfram Mathematica” we obtained

[6_6”(3 —14p —4p*) — (21 = 31p + 14p* + 6p3)]
CKprr =

2
[e‘3p(p D) —eP(p+ 1)+ e2(p + 2)]

[6‘4”(34 - 36p* —3p") —e P21 +31p + 14p* — 6p3)]
N . (3.14)
[e—3p(p D —e(pt 1) +e(p? 4 2)]

[(1 - p)e‘7” +e 2’3 + 14p - 4p2) +eP(p+ 1)]
+ , p#0.

2
[e‘3p(p D) —eP(p+ 1)+ e (P + 2)]

3.4.4. Fano factor of DE2 distribution (F Fpg»)

The Fano factor (dispersion index), like the coefficient of variation, is a statistical measure of the
dispersion of a probability distribution of a Fano noise. It bears the name Ugo Fano, an Italian
American physicist (see [22]). The variance to mean ratio is known as the “Fano factor” (F' Fpg;), and

it is as follows: _
Variance

Mean

It indicates whether a certain model is suitable for over- or under-dispersed datasets and is widely
used in ecology as a standard measure for measuring clustering (over dispersion) or repulsion (under
dispersion). The distribution is over- or under-dispersed if FFpg, > 1 or FFpg; < 1. The (FFpg,) of
the DE2 distribution, using Egs (3.6) and (3.8), is given by

FFpg, =

1+ =p)e? —eP(P*+2)+p

FFpg =
b2 (1—e??(1—e”+p)

, p#0. (3.15)
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Table 1 provides descriptive statistics of the DE2 distribution at various parameter levels. It is
evident that when the form parameter’s value increases, the skewness and kurtosis decrease. The
proposed distribution is successful for overscattered (underscattered) data when FFpg, > 1 (< 1). The
second observation is that the variance is larger than the mean.

Table 1. Mean, variance, skewness, kurtosis and Fano facto of DE2 for various values of the
parameter p at n = 50.

p Mean Variance SKpe> CKpg» FFpe
p=0.10 17.8527 129.8252 0.7117 2.8184 7.2720
p=0.25 7.4982 31.9934 1.3918 5.8138 4.2668
p=0.50 3.5003 8.0786 1.3950 5.9404 2.3079
p=0.75 2.1678 3.6284 1.3784 5.8745 1.6738
p=1.10 1.3217 1.7148 1.3653 5.7682 1.2974
p=125 1.1050 1.3364 1.3678 5.7273 1.2093
p=1.50 0.8418 0.9353 1.3878 5.6811 1.1111
p=1.75 0.6558 0.6890 1.4313 5.6807 1.0506
p=2.10 0.4735 0.4746 1.5368 5.8006 1.0024
p =225 0.4141 0.4100 1.5987 5.9094 0.9901
p=2.50 0.3330 0.3252 1.7247 6.1874 0.9767
p=2.15 0.2689 0.2607 1.8798 6.6111 0.9696

4. Maximum likelihood fstimation

The purpose of this part is to discover the parameters of the recommended DE2 distribution while
using a maximum likelihood estimate (MLE).

If we construct a random sample of size n with the DE2 distribution, Yy, Y, ..., Y,, the likelihood
function is given by

n

Lppa(yi, p) = 1_[ Joe2(yis p) = l_[ e_py"((l —e ") (pyi+ 1) - Pe_p)-
i=1 i=1
The log-likelihood function is given by

Ipg2(yis p) = In [LDEZ(yia p)]

= Zln [e_py’v((l —e ") (pyi+1D)- pe_p)] (4.1)

- Zl: | = pyit (1 =) Gy 1= pe)|.

Differentiating Eq (4.1) with respect to the parameter p, we have the following equation

Ilpe2(yi, P) Y o _(L+e(p— D)y, + pe’?
=Ny : 4.2
dp ;y +; p(I —eP)yi—e (1 +p)+1 “2
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Now, putting

Olpe>(yi, p) _0
op ’

n

(I+eP(p—1)yi+pe?
Z p(l—eP)y—e?(1+p)+1 = nkE(y), (4.3)

i=1
where E(y) is the mean of y.

The maximum likelihood estimator (MLE) of the parameter p is obtained from the solution of
Eq (4.3). Finding the exact form of the MLE of the parameter p is not achievable owing to the non-
linear functions involved in the equation. It must therefore be solved quantitatively. The R statistical
programming is used to do this.

5. Applications

The proposed distribution DE2 is fitted to three right-skewed and overly dispersed real lifetime
counting datasets in this section. The first two datasets coming from a clinical trial were discussed in
relation to individuals with acute leukemia’s ability to maintain remission [23,24]. Furthermore, the
third dataset is fitting the COVID-19 death cases in some specific consecutive days over a given time
period.

To test the goodness of fit of the proposed distribution, compare it with some related distributions.
Such as the negative binomial distribution (NBD) [27], discrete Erlang-truncated Exponential
distribution (DETE) [15], discrete Burr distribution (DBD) [4], discrete type-II half-logistics
exponential distribution (DHLE,) [16], and Poisson distribution [28].

In order to determine which distribution fits these three datasets accurately, some measures of
goodness of fit are produced. These measurements include the values of the log-likelihood function
-logL, the Kolmogorov-Smirnov (K-S) statistic along with its P-value, and the Akaike information
criterion (AIC). The best distribution is the one that has the smallest -logl, AIC, and K-S with a
P-value greater than 0.05.

Table 2 computes summary results for the three datasets in terms of central tendency and dispersion
measures (minimum, maximum, mean, median (med.), mode, skewness (S Kpg»), kurtosis (CKpg»>),
and Fano factor (FFpg»)). Because (S Kpgy) > 0, all datasets are clearly right-skewed, and FFpg, > 1,
they are overly dispersed.

Table 2. Summary statistics for datasets 1-3.

n Min Max Mean Med. Mode SKpe» CKpg» FFpp

dataset 1 21 1 30 9.5 8 4.5 1.5 4.8 5.6
dataset 2 30 1 35 12.5 9.5 6.03 0.7 29 5.7
dataset 3 32 0 59 74 6 3.5 4.3 22.3 13.5

5.1. Application of DE?2 distribution to the Leukomia dataset

The results of a clinical trial testing 6-mercaptopurine (6-MP) [25], to a placebo in patients with
acute leukemia were reported by two patient groups. The first group, insert the remission times (in
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weeks) of 21 patients who were given the drug (6-MP), as introduced in Table 3. The second group
presents the remission times of 30 patients given the placebo, as shown in Table 4. The data can be
found in [24,26]. We show the results of measures of goodness of fit that are applied to two datasets
in Tables 5 and 6.

Table 3. A group of 21 patients with leukemia (6-MP).

Dataset 1
1 1 2 3 4 5 8 8 8 8 8
8 8 11 11 11 11 13 13 27 30

Table 4. A group of 30 patients with leukemia (Placebo).

Dataset 2
1 1 2 4 4 6 6 6 6 7
8 9 9 9 9 10 12 13 14 15

19 20 20 20 20 20 20 21 30 35

Table 5. Parameters estimates (P-E), -logl, AIC, K-S and P-value of DE2, NBD, DETE,
DBD, DHLE, and Poisson distributions for dataset 1.

Dist. Parameters estimates -logL AIC K-S P-value
DE2 - - p=0.201 66.649 135.298 0.253 0.137
NBD F=2418 - p=10.203 66.729 137.458 0.532 0.004
DETE & = 4.465 - p=0.978 69.295 142.59 0.309 0.036
DBD & = 208.66 - p =0.998 74.501 153.002 0.337 0.017
DHLE, & = 394.95 - p =0.024 96.286 206.572 0.902 2.8¢71
Poisson A =9.476 - - 90.504 183.009 0.5003 0.018

Table 6. Parameters estimates, -logl., AIC, K-S and P-value for DE2, NBD, DETE, DBD,
DHLE, and Poisson distributions of dataset 2.

Dist. Parameters estimates -logL AIC K-S P-value
DE2 - - p=0.154 103.06 208.12 0.144 0.559
NBD P =2.455 - p=0.164 103.02 210.04 0.515 0.0001
DETE & =4313 - p =0.982 107.018 218.036 0.249 0.0482
DBD & =199.6 - p =0.998 119.98 243.95 0.362 0.0008
DHLE, & =5212.3 - p =0.007 150.766 304.532 0.933 0.0000
Poisson A=12.534 - - 145.29 292.58 0.500 0.0002

By comparing the goodness of fit statistics in Tables 5 and 6 among the six distributions, it is clear
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that the proposed distribution is the only one that fits the two datasets due to the lowest -logL, AIC,
and K-S in addition to P-values greater than 0.05.

5.2. Application of DE?2 distribution to the COVID-19 dataset

DE2 distribution is fitted to the more well-known fields of COVID-19 survival times in
Australia [29]. This dataset belongs to Australia of 32 days, that is recorded from 3 September 2020

to 4 October 2020. This data is made up of cases that are added on a daily basis, which are shown in
Table 7.

Table 7. The number of daily deaths in Australia due to the COVID-19.

Dataset 3
6 15 59 11 5 9 8 11 7 9 6
8 5 7 5
2 3 7 4 2 2

Table 8 displays the -logL., AIC, and Kolmogorov-Smirnov (K-S) statistics, as well as the P-value
for each model.

We notice that, in Table 8, the best distribution is DE2 since the smallest of -logl, AIC, and K-S
have a P-value greater than 0.05.

Table 8. Parameters estimates, -logl., AIC, K-S and P-value for DE2, NBD, DETE, DBD,
DHLE, and Poisson distributions of dataset 3.

Dist. Parameters estimates -logL AIC K-S P-value
DE2 - - p=0.254 96.984 195.967 0.154 0.431
NBD 7 =1.606 - p=0.179 96.699 197.398 0.518 0.001
DETE & =4.541 - p=0.972 98.017 200.033 0.255 0.031
DBD & =4.258 - p=0.873 107.148 218.295 0.272 0.018
DHLE, & =2.561 - p =0.568 140.282 284.564 0.684 1.99¢~13
Poisson A=1375 - - 164.917 331.833 0.500 0.002

6. Conclusions

This article uses a survival discretizing method to derive a new one-parameter discrete Erlang-2
distribution (DE2) from a one-parameter continuous Erlang-2 distribution (E2 distribution). We
explore certain statistical characteristics of the postulated distribution, including measures of central
tendency, measures of dispersion, monotonicity, moments, and the moment generating function. The
maximum likelihood method is used to estimate model parameters. Furthermore, the proposed
distribution is unimodal (gets this mode) and has a useful effect on the overly dispersed dataset, as
measured by the Fano factor as the rate parameter is increased. Furthermore, we used DE2 on two
datasets that discussed the results of a clinical trial reporting on the ability to maintain remission in
acute leukemia patients and compared them to a few discrete distributions that are connected.
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Additionally, we applied DE2 to fit the COVID-19 death cases dataset. Finally, the sitting work seeks
to draw broader applications in engineering, medicine, and other areas of research (In the future, we
plan to present a paper in this area).
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