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Abstract: In this paper, a reinforcement Q-learning method based on value iteration (VI) is proposed
for a class of model-free stochastic linear quadratic (SLQ) optimal tracking problem with time delay.
Compared with the traditional reinforcement learning method, Q-learning method avoids the need for
accurate system model. Firstly, the delay operator is introduced to construct a novel augmented system
composed of the original system and the command generator. Secondly, the SLQ optimal tracking
problem is transformed into a deterministic one by system transformation and the corresponding Q
function of SLQ optimal tracking control is derived. Based on this, Q-learning algorithm is proposed
and its convergence is proved. Finally, a simulation example shows the effectiveness of the proposed
algorithm.
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1. Introduction

It is well known that the optimal tracking control (OTC) problem plays an important role in the
field of optimal control and develops fast in applications [1–4]. The goal of OTC problem is to design
a controller, which can make the output of the system track the reference trajectory by minimizing
the cost function. Traditional OTC problem is realized by feedback linearization [5] and object
inversion [6], but this usually requires complex mathematical analysis. As for the linear quadratic
tracking (LQT) problem, the traditional method of LQT problem is to solve the algebraic Riccati
equation (ARE) and the noncausal difference equation. However, these methods require accurate
system model [7]. In practical situations, the system parameters are partially unknown or completely

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023519


10250

unknown, so it is impossible to be realized by traditional methods.

The key to the OTC problem is to solve Hamilton-Jacobi-Bellman (HJB) equation. However, HJB
equation involves solving difference or differential equations, so it is difficult to solve it. Although
dynamic programming has always been an effective method to solve the HJB equation, it is not feasible
in the calculation of large dimensions because of “the curse of dimensionality”. To solve the solution
of the HJB equation, adaptive dynamic programming (ADP) algorithms have been widely used and
developed. In [8], a policy iteration (PI) scheme was adopted to approximate the optimal control for
the partly unknown continuous-time systems. In [9], B. Kiumarsi solves the LQT problem online
only by measuring the input, output, and reference trajectory data of the system. In [10], a Q-learning
method was proposed to calculate the optimal control, only relying on system parameters and command
generators.

In recent years, stochastic system control theory has become the focus of optimal control theory
because of its academic difficulty and wide application, especially the model-free SLQ optimal tracking
problem has attracted more and more attention [11–15]. In [14], ADP algorithm based on neural
networks is proposed to solve the model-free SLQ optimal tracking control problem. In addition, the
Q-learning algorithm is used to solve the model-free SLQ optimal tracking control problem in [15].
For all we know, there seem to be many research results on the model-free SLQ optimal tracking
problem based on ADP algorithm, but the SLQ optimal tracking problem with delays has received little
attention. Time delay [16] is an important factor that cannot be ignored. It exists in many practical
systems, such as industrial processes, power grids, chemical reactions, and so on [17–20]. However,
in these methods [11–15], the influence of time delay on the system is neglected. If the time delay is
ignored, it will affect the control effect and even make the system divergence. The method proposed
in [16] takes into account the time delay but ignores the influence of stochastic disturbance disturbances
on the system. As far as we know, there is no research on the optimal tracking problem of stochastic
linear systems with delays. Therefore, how to use ADP algorithm to deal with the model-free SLQ
optimal tracking control problem has important practical significance. This is the motivation we study
in this paper.

The main contributions of this paper include:

(1) For stochastic linear system, this paper proposes Q-learning to model-free solve SLQ optimal
tracking control problem with delays for the first time, which enhances the practicability of ADP
algorithm in tracking problems.

(2) By introducing the delay factor, the influence of delays on the subsequent algorithm can be
effectively eliminated.

(3) In this paper, the Q-learning algorithm is used to solve the model-free SLQ optimal tracking
control problem with delays. Compared with other methods which need accurate system model to
obtain the optimal control, this method makes full use of the online system state information to obtain
the optimal control and avoids solving augmented stochastic algebraic equation (SAE).

The structure of this paper is organized as follows. In section 2, we give the problem formulation and
conversion. In section 3, we derive the Q-learning algorithm and prove its convergence. In section 4,
we give the implementation steps of Q-learning algorithm. In section 5, a simulation example is given
to verify the effectiveness of the algorithm. In section 6, the conclusion is given.
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2. Problem formulation and transformation

2.1. Problem formulation

Consider the following linear stochastic systems with delays

xk+1 = Axk + Ad xk−d + Buk + Bduk−d + (Cxk +Cd xk−d + Duk + Dduk−d)ωk,

yk = Exk + Ed xk−d
(2.1)

where xk ∈ R
n is the system state vector, uk ∈ R

m is the control input vector, yk ∈ R
q is the system

output, while xk−d, uk−d and yk−d are the delay variables with delay index d ∈ N. A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rn×n, D ∈ Rn×m, E ∈ Rq×n are given constant, Ad ∈ R

n×n, Bd ∈ R
n×m, Cd ∈ R

n×n, Dd ∈ R
n×m,

Ed ∈ R
q×n are their corresponding delay dynamics matrices. One-dimensional stochastic disturbance

sequence ωk is defined on the given probability space (Ω,F ,P,Fk), and meets the following condition
E(ωk | Fk) = 0, E(ω2

k | Fk) = 1. The initial state x0 is irrelevant with ωk.
Assume the reference trajectory of SLQ optimal tracking control is generated by a command

generator

rk+1 = Frk (2.2)

where rk ∈ R
q represents the reference system trajectory, and F is the constant matrix.

The tracking error can be expressed as

ek = yk − rk (2.3)

where rk is the reference trajectory.
The goal of the SLQ optimal tracking problem with delays is to design an optimal controller, which

can not only ensure that the output of the target system track the reference trajectory stably, but also
minimize the cost function. The cost function is denoted as

J(xk, rk, uk) = E
∞∑

i=k

Ui(xi, xi−d, ui) (2.4)

where Ui(xi, xi−d, ui) = (yi−ri)T O(yi−ri)+uT
i Rui+uT

i−dRdui−d is the utility function. O = OT ∈ Rq×q ≥ 0,
R = RT ∈ Rm×m ≥ 0, Rd = RT

d ∈ R
m×m ≥ 0 are the constant matrices.

Only when F is Hurwitz can the cost function (2.4) be used, that is, the reference trajectory system
is required to be asymptotically stable. If the reference trajectory does not tend to zero with time
delay, then the cost function (2.4) will be unbounded. In practice, this condition is difficult to achieve.
Therefore, a discount factor γ is introduced into the cost function (2.4) to relax this restriction. Based
on (2.4), the cost function with discount factor is redefined as

J(xk, rk, uk) = E
∞∑

i=k

γi−kUi(xi, xi−d, ui)

= E
∞∑

i=k

γi−k(yi − ri)T O(yi − ri) + uT
i Rui + uT

i−dRdui−d

(2.5)

where 0 < γ ≤ 1 is the discount factor.
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Definition 1 ( [21]). uk is called mean-square stabilizing at e0 if there exists a linear feedback form of
uk for every initial state e0 satisfies lim

k→∞
E(eT

k ek) = 0. The system (2.3) with a mean-square stabilizing
control uk is called mean-square stabilizable.

Definition 2 ( [21]). uk is said to be admissible if uk satisfies the following: (1) uk is a Fk adapted
and measurable stochastic process; (2) uk is mean-square stabilizing; (3) It enables the cost function to
reach the minimum value.

The goal of this paper is to seek an admissible control, which not only minimizes the cost
function (2.5) but also stabilizes the system (2.3) for each initial state e0. We denote the optimal
cost function as follows

V(e0) = min
u

J(e0, u). (2.6)

In order to achieve the above goal, this paper establishes an augmented system composed of
system (2.1) and the reference trajectory system (2.2), and then transforms the optimal tracking
problem into an optimal regulation problem.

The system (2.1) can be rewritten as the following equivalent form:

xk+1 = [A Ad]
[

xk

xk−d

]
+ [B Bd]

[
uk

uk−d

]
+ ([C Cd]

[
xk

xk−d

]
+ [D Dd]

[
uk

uk−d

]
)ωk,

yk = [E Ed]
[

xk

xk−d

]
.

(2.7)

According to [16, 22, 23], we define the delay operator ∇d satisfies ∇d xk = xk−d and (∇d xk)T = xT
k−d.

Then, the system (2.7) can be expressed as

xk+1 = A∇xk + B∇uk + (C∇xk + D∇uk)ωk,

yk = E∇xk
(2.8)

where A∇ = A + Ad∇d, B∇ = B + Bd∇d, C∇ = C +Cd∇d, D∇ = D + Dd∇d, E∇ = E + Ed∇d.
Based on the system (2.1) and the reference trajectory system (2.2), the augmented system can be

defined as

Gk+1 =

[
xk+1

rk+1

]
=

[
A∇ +C∇ωk 0

0 F

] [
xk

rk

]
+

[
B∇ + D∇ωk

0

]
uk

= TGk + B0uk

(2.9)

where Gk =

[
xk

rk

]
∈ Rn+q, T ∈ R(n+q)×(n+q), B0 ∈ R

(n+q)×m.

Based on the augmented system (2.9), the cost function (2.5) can be expressed as

J(Gk, uk) = E
∞∑

i=k

γi−k[GT
i O1Gi + uT

i R∇ui] (2.10)
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where O1 =
[

E −I
]T

O
[

E −I
]
∈ R(n+q)×(n+q), R∇ = R + Rd∇d.

The state feedback linear controller is defined as

uk = KGk, K ∈ Rm×(n+q) (2.11)

where K represents the control gain matrix of the system.
Substituting (2.11) into (2.10), the cost function (2.10) can be transformed into

J(Gk,K) = E
∞∑

i=k

γi−kGT
i [O1 + KT R∇K]Gi. (2.12)

Therefore, the target of SQL optimal tracking problem with delays can be further expressed as

V(G0,K) = min
K

J(G0,K). (2.13)

Definition 3. The SLQ optimal control problem is well posed if

−∞ < V(G0,K) < +∞.

Before solving the SLQ control problem, we need to know whether it is well-posed. Therefore, we
give the following lemma first.

Lemma 1. If there exists an admissible control uk = KGk, then the SLQ optimal tracking control is
well-posed, and the cost function can be expressed as

J(Gk,K) = E(GT
k PGk) (2.14)

where the matrix P ∈ R(n+q)×(n+q) satisfies the following augmented SAE

P = γ(A1 + B1K)T P(A1 + B1K)
+ γ(C1 + D1K)T P(C1 + D1K) + O1 + KT R∇K

(2.15)

where A1 =

[
A∇ 0
0 F

]
∈ R(n+q)×(n+q), B1 =

[
B∇
0

]
∈ R(n+q)×m, C1 =

[
C∇ 0
0 0

]
∈ R(n+q)×(n+q), D1 =[

D∇
0

]
∈ R(n+q)×m.

Proof. Assuming that the control uk is admissible and the matrix P satisfies (2.15), then

E
∞∑

i=k
[γGi+1

T PGi+1 −Gi
T PGi]

= E
∞∑

i=k

{
γ[(A1 + B1K)Gi + (C1ωi + D1Kωi)Gi]T P

[(A1 + B1K)Gi + (C1ωi + D1Kωi)Gi] −Gi
T PGi

}
=E

∞∑
i=k

{
Gi

T [γ(A1 + B1K)T P(A1 + B1K)

+γ(C1 + D1K)T P(C1 + D1K) − P]Gi

}
.
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Based on (2.12) and (2.15), we have

J(Gk,K) = E
∞∑

i=k

γi−kGT
i [O1 + KT R∇K]Gi]

= E
∞∑

i=k

γi−kGT
i [P − γ(A1 + B1K)T P(A1 + B1K)

− γ(C1 + D1K)T P(C1 + D1K)]Gi

= −E
∞∑

i=k

γi−k[γGT
i+1PGi+1 −GT

i PGi]

= E(GT
k PGk) − lim

i→∞
γi−k+1E(GT

i PGi)

= E(GT
k PGk).

□

Since the feedback control uk is admissible, we can obtain J(Gk,K)= E(Gk
T PGk), which satisfies

the well-posedness of SLQ optimal tracking control problem.
To make sure the mean-square stable control, we make the following assumption.

Assumption 1. The system (2.9) is mean-square stabilizable.

2.2. Problem transformation

At present, ADP algorithm has achieved great success in the optimal tracking control of
deterministic systems [24–26], which inspires us to transform stochastic problems into deterministic
problems through system transformation.

Let Mk = E(GkGT
k ), then the system (2.9) can be converted to

Mk+1 = E(Gk+1GT
k+1)

= E((TGk + B0uk)(TGk + B0uk)T )
= (A1 + B1K)Mk(A1 + B1K)T

+ (C1 + D1K)Mk(C1 + D1K)T

(2.16)

where Mk ∈ R
(n+q)×(n+q) is the state of a deterministic system and M0 is the initial state.

Therefore, the cost function (2.10) can be rewritten as

J(Mk,K) = tr{
∞∑

i=k

γi−k[(O1 + KT R∇K)Mk]}. (2.17)

Remark 1. After system transformation, the stochastic system is transformed into deterministic system.
The system (2.17) completely gets rid of stochastic disturbance ωk and will only be dependent on the
initial state M0 and control gain matrix K, which makes preparation for the derivation and application
of Q-learning algorithm.
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3. The Q-learning algorithm and convergence proof

In this paper, Q-learning method is used to solve the SLQ optimal tracking problem, which avoids
the need for accurate system model. Thus we first give the formula of the optimal control and the
corresponding augmented SAE.

Lemma 2. Given the admissible control uk, we can get the following optimal control

u∗k = K∗Gk = −(R∇ + γBT
1 PB1)−1γ(BT

1 PA1 + DT
1 PD1)Gk (3.1)

and the optimal cost function
V(Gk) = E(GT

k PGk) = tr(PMk) (3.2)

where the matrix P satisfies the following augmented SAE
P = O1 + γ(AT

1 PA1 +CT
1 PC1) − γ(AT

1 PB1 +CT
1 PD1)

× (R∇ + γBT
1 PB1 + γDT

1 PD1)−1γ(BT
1 PA1 + DT

1 PC1)
R∇ + γBT

1 PB1 + DT
1 PD1 > 0

. (3.3)

Proof. Suppose uk is an admissible control. According to Lemma 1 and (2.17), the cost function can
be written as

J(Mk,K) = tr{
∞∑

i=k

γi−k[(O1 + KT R∇K)Mi]}

= tr{(O1 + KT R∇K)Mi} + tr{
∞∑

i=k+1

γi−k[(O1 + KT R∇K)Mi]}

= tr{(O1 + KT R∇K)Mi} + J(Mk+1,K).

(3.4)

According to Bellman optimality principle, the optimal cost function satisfies

V(Mk) = min
K
{tr{(O1 + KT R∇K)Mk} + V(Mk+1)}. (3.5)

The optimal control gain matrix can be obtained as follow

K∗(Mk) = arg min
K
{tr{(O1 + KT R∇K)Mk} + V(Mk+1)}. (3.6)

Considering the first-order necessary condition

∂[tr{(O1 + KT R∇K)Mk} + V(Mk+1)]
∂K

= 0, (3.7)

we can obtain
(R∇ + γBT

1 PB1 + γDT
1 PDT )KGk + γ(BT

1 PA1 + DT
1 PC1)Gk = 0 (3.8)

where the matrix P satisfies augmented SAE (2.15).
Supposing R∇ + γBT

1 PB1 + γDT
1 PDT > 0, we have

K∗ = −(R∇ + γBT
1 PB1)−1γ(BT

1 PA1 + DT
1 PD1). (3.9)
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When taking (3.9) into the (2.15), we can obtain

P = O1 + γ(AT
1 PA1 +CT

1 PC1) − γ(AT
1 PB1 +CT

1 PD1)
× (R∇ + γBT

1 PB1 + γDT
1 PDT )−1γ(BT

1 PA1 + DT
1 PC1).

(3.10)

□

From Lemma 2, the SQL optimal tracking problem can be dealt with by the solution of augmented
SAE (3.3). However, solving augmented SAE (3.3) requires accurate system model, so this method is
not feasible when the dynamics are unknown.

3.1. Derivation of Q-learning algorithm

To solve model-free SQL optimal tracking problem with delays, we give the definition of the Q
function and the corresponding matrix H.

Based on (2.10) and Bellman optimality principle, we know that the optimal cost function satisfies
Hamilton Jacobi Bellman (HJB) equation

V(Gk) = min
uk
{E[GT

k O1Gk + uT
k R∇uk] + γV(Gk+1)}. (3.11)

The Q-function is defined as

Q(Gk,uk) =E[Gk
T O1Gk + uT

k R∇uk] + γV(Gk+1). (3.12)

According to Lemma 1, V(Gk+1) can be written as

V(Gk+1)
= E(GT

k+1PGk+1)
=E{(TGk + B0uk)T P(TGk + B0uk)}
= E{[(A1Gk +C1ωkGk) + (B1uk + D1ωkuk)]T

P[(A1Gk +C1ωkGk) + (B1uk + D1ωkuk)]}.

(3.13)

Substitute (3.13) into (3.12), we can get

Q(Gk,uk) = E


[

Gk

uk

]T [
HGG HGu

HuG Huu

] [
Gk

uk

] = E


[

Gk

uk

]T

H
[

Gk

uk

] (3.14)

where H = HT ∈ R(n+q+m)×(n+q+m),

H =
[

HGG HGu

HuG Huu

]
=

[
O1 + γAT

1 PA1 + γCT
1 PC1 γAT

1 PB1 + γCT
1 PD1

γBT
1 PA1 + γDT

1 PC1 γBT
1 PB1 + γDT

1 PD1 + R∇

]
.

(3.15)

Let ∂Q(Gk ,uk)
∂uk

= 0, then the optimal control can be obtained as follow

u∗k = −H−1
uu HuGGk. (3.16)
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From Lemma 1 and (3.15), we can know the relationship between matrix P and matrix H.

P =
[

I KT
]

H
[

I KT
]T
. (3.17)

As can be seen from (3.16), the optimal control only depends on the matrix H, which is completely
get rid of the constraints of the system parameters. Next, we will present the Q-learning iterative
algorithm for estimating the matrix H.

In this section, we propose Q-learning iterative algorithm based on the VI. This method starts with
the initial value Q0(Gk, uk) = 0 and the initial admissible control u0(Gk), Q1(Gk, uk) will be updated by
the initial value and the initial control as follows

Q1(Gk, uk) = E[Gk
T O1Gk + uT

0 (Gk)R∇u0(Gk)] + γQ0(Gk+1, u0(Gk+1)). (3.18)

The control is updated as follows

u1(Gk) = arg min
u(Gk)

Q1(Gk, uk) (3.19)

for i ≥ 1, Q-learning algorithm iterates between

Qi+1(Gk,uk) =E[Gk
T
O1Gk + uT

i (Gk)R∇ui(Gk)] + γQi(Gk+1,ui(Gk+1)) (3.20)

and
ui+1(Gk) = arg min

uk

{E[GT
k O1Gk + uT

k R∇uk] +min
uk+1

Qi(Gk+1, uk+1)} (3.21)

where i is the iteration index and k is time index.
According to (3.14), the Q function can be rewritten as

Qi+1(Gk,uk) =
[

Gk
T

uT
i (Gk)

]
Hi+1

[
Gk

T
uT

i (Gk)
]T

=E
{[

Gk
T

uT
i (Gk)

] [ O1 0
0 R∇

] [
Gk

T
uT

i (Gk)
]T

+ γ
[

Gk+1
T

uT
i (Gk+1)

]
Hi

[
Gk+1

T
uT

i (Gk+1)
]T

} (3.22)

and we can obtain the optimal controller

ui(Gk) = −H−1
uu,iHuG,iGk. (3.23)

According to (3.17), we can get

Pi =
[

I KT
i

]
Hi

[
I KT

i

]T
. (3.24)

3.2. The convergence of Q-learning algorithm

Before proving the convergence of Q-learning algorithm, we first give the following two lemmas.

Lemma 3. Q-learning algorithm (3.22) and (3.23) is equivalent to

Pi+1 = O1 + γ(A
T

1 PiA1 +C
T

1 PiC1) − γ(A
T

1 PiB1 +C
T

1 PiD1)
× (R + γB

T

1 PiB1 + γD
T

1 PiD1)−1γ(B
T

1 PiA1 + D
T

1 PiC1).
(3.25)
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Proof. According to (2.11), the last term of (3.22) can be written as

E
{[

Gk+1
T uT

i (Gk+1)
]

Hi

[
Gk+1

T uT
i (Gk+1)

]T
}

= E
{
Gk+1

T
[

I KT
i

]
Hi

[
I KT

i

]T
Gk+1

}
=E{[(A1Gk +C1ωkGk) + (B1ui(Gk) + D1ωkui(Gk))]T

[
I KT

i

]
Hi[

I KT
i

]T
(A1Gk +C1ωkGk) + (B1ui(Gk) + D1ωkui(Gk))]}

= E
{[

Gk
T ui

T (Gk)
] [

A1 B1

]T [
I Ki

T
]

Hi[
I Ki

T
]T [

A1 B1

] [
Gk

T ui
T (Gk)

]T

+
[

Gk
T ui

T (Gk)
] [

C1 D1

]T [
I Ki

T
]

Hi[
I Ki

T
]T [

C1 D1

] [
Gk

T ui
T (Gk)

]T
}
.

(3.26)

Substitute (3.26) into (3.22), according to (3.24),we can get

Hi+1 =

[
O1 0
0 R∇

]
+

[
γA

T

1 PiA1 γA
T

1 PiB1

γB
T

1 PiA1 γB
T

1 PiB1

]
+

[
γC

T

1 PiC1 γC
T

1 PiD1

γD
T

1 PiC1 γD
T

1 PiD1

]
.

(3.27)

Based on (3.24), we have

Pi+1 =
[

I KT
i+1

]
Hi+1

[
I KT

i+1

]T
. (3.28)

Substitute (3.27) into (3.28), we can get

Pi+1 = O1 + γ(AT
1 PiA1 +CT

1 PiC1) − γ(AT
1 PiB1 +CT

1 PiD1)
× (R + γBT

1 PiB1 + γDT
1 PiD1)−1γ(BT

1 PiA1 + DT
1 PiC1)

(3.29)

where R∇ + γB
T

1 PB1 + D
T

1 PD1 > 0. □

Lemma 4 ( [27]). The value iteration algorithm iterates between

Vi+1(Gk) = E(GT
k(O1 + Ki

T R∇Ki)Gk) + γVi(Gk+1) (3.30)

and
Ki+1= argmin

K
{E(GT

k(O1 + Ki
T R∇Ki)Gk)+γVi(Gk+1)} (3.31)

is the convergence, then

lim
i→∞

Vi(Gk) = V(Gk) = E(Gk
T PGk) = tr{PMk},

lim
i→∞

Ki = K∗ = −(R∇+γBT
1 PB1+γDT

1 PD1)−1γ(BT
1 PA1+DT

1 PC1)

where the matrix P satisfies the augmented SAE (3.3).
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Theorem 3.1. Assuming that system (2.9) is mean-square stabilizable, the matrix sequence {Hi}

calculated by Q-learning algorithm (3.22) converges to matrix H and the matrix sequence {Pi}

calculated by (3.24) converges to the solution P of augmented SAE (3.3).

Proof. According to Lemma 4, (3.30) can be rewritten as

Vi+1(Gk) = E(Gk
T Pi+1Gk)

= E
[
Gk

T (O1 + KiR∇Ki)Gk

]
+ E(GT

k+1PiGk+1)
= E{Gk

T (O1 + KiR∇Ki)Gk + [(A1 + B1K)Gi

+ (C1ωi + D1Kωi)Gi]T P [(A1 + B1K)Gi

+ (C1ωi + D1Kωi)Gi]}
= E(Gi

T [(A1 + B1K)T P(A1 + B1K)
+ (C1 + D1K)T P(C1 + D1K) + O1 + Ki

T R∇Ki]Gi).

(3.32)

We can update the control gain matrix by (3.31) as follows

Ki = −(R∇ + γBT
1 PiB1 + γDT

1 PiD1)−1γ(BT
1 PiA1 + DT

1 PiC1). (3.33)

Substituting (3.33) into (3.32), we can get

Pi+1 = O1 + γ(A
T

1 PiA1 +C
T

1 PiC1) − γ(A
T

1 PiB1 +C
T

1 PiD1)
× (R + γB

T

1 PiB1 + γD
T

1 PiD1)−1γ(B
T

1 PiA1 + D
T

1 PiC1).
(3.34)

According to Lemmas 3 and 4, we can conclude lim
i→∞

Pi = P. when i→ ∞ , the matrix P satisfies

P = O1 + γ(A
T

1 PA1 +C
T

1 PC1) − γ(A
T

1 PB1 +C
T

1 PD1)
× (R + γB

T

1 PB1 + γD
T

1 PD1)−1γ(B
T

1 PA1 + D
T

1 PC1).
(3.35)

Based on (3.27), we can know H satisfies lim
i→∞

Hi = H, where

H =
[
γAT

1 PA1 + γCT
1 PC1 + Q1 γAT

1 PB1 + γCT
1 PD1

BT
1 PA1 + γDT

1 PC1 γBT
1 PB1 + γDT

1 PD1 + R∇

]
. (3.36)

So the Q-learning algorithm converges. □

4. Implementation of the Q-learning algorithm

Due to the existence of stochastic disturbance, the output trajectory of the system is uncertain, and
the cost function has expectations, the online algorithm cannot achieve the function. Therefore, it is
necessary to transform the stochastic Q-learning algorithm into a deterministic Q-learning algorithm.
In this section, we will give the implementation steps of deterministic Q-learning algorithm. The flow
chart of Q learning algorithm is shown in Figure 1.

According to Eq (2.11), the left side of (3.22) can be simplified to

E
{[

Gk
T uT

i (Gk)
]

Hi+1

[
Gk

T uT
i (Gk)

]}
= E

{
Gk

T
[

I KT
i

]
Hi+1

[
I KT

i

]T
Gk

}
= tr

{[
I KT

i

]
Hi+1

[
I KT

i

]T
Mk

}
.

(4.1)
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The right side of (3.22) can be simplified as

E
{

Gk
T [

I KT
i

] [ O1 0
0 R∇

] [
I KT

i

]T
Gk

+Gk+1
T [

I KT
i

]
Hi

[
I KT

i

]T
Gk+1

}
= tr

{[
I KT

i

] [ O1 0
0 R∇

] [
I KT

i

]T
Mk

+
[

I KT
i

]
Hi

[
I KT

i

]T
Mk+1

}
.

(4.2)

For simplicity, let
Li(Hi) =

[
I KT

i

]
Hi

[
I KT

i

]T
, i = 1, 2, 3, · · · . (4.3)

Then (3.22) can be simplified as

tr
{
Li(Hi+1)Mk

}
= tr

{
Li(

[
O1 0
0 R∇

]
)Mk + Li(Hi)Mk+1

}
. (4.4)

The Q-learning iterative algorithm consisting of (4.4) and (3.23) only relies on determining the
state Mk of the system (2.16) and iteratively controlling the gain matrix Ki, avoiding the constraints of
system parameters and stochastic disturbance.
Remark 2. The Q-learning algorithm based on VI is performed online and solves (4.4) using least
squares (LS) without knowing augmented system. In fact, (4.4) is a scalar equation and H is a
symmetric (n+ q+m)× (n+ q+m) matrix with (n+ q+m)× (n+ q+m+ 1)/2 independent elements.
Therefore, at least (n+q+m+1)× (n+q+m+1)/2 data tuples are required before (4.4) can be solved
using LS.
Remark 3. Q-learning algorithm based on VI requires a persistent excitation (PE) condition [28] to
ensure the sufficient exploration of the state space.

Figure 1. Flowchart of Q-learning.
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5. Simulation

In this section, a simulation example is given to illustrate the effectiveness of Q-learning algorithm.
Consider the following stochastic linear system with delays

xk+1 = Axk + Ad xk−d + Buk + Bduk−d

+ (Cxk +Cd xk−d + Duk + Dduk−d)ωk,

yk = Exk + Ed xk−d

in which A =
(

0.2 −0.8
0.5 −0.7

)
, Ad =

(
0.2 −0.2
0.1 0.15

)
, B =

(
0.03
−0.5

)
, Bd =

(
0.3
−0.2

)
, C =

(
−0.04 0.4
−0.3 0.13

)
,

Cd =

(
0.2 −0.1
0.2 0.11

)
, D =

(
0.05
−0.3

)
, Dd =

(
0.1
0.1

)
, E =

(
3 3

)
, Ed =

(
0.1 0.12

)
.

Suppose the reference trajectory is as follows

rk+1 = −rk

where r0 = 1.
The cost function is considered as (2.5) with R = 1, Rd = 1, O = 10 and delay index d = 1. The

initial state for augmented system (2.9) is chosen as G0 =
[

10 −10 1
]T

. The initial control gain

matrix is selected as K =
[

0 0 0
]
. In each iteration of the algorithm, 21 samples are collected to

update the control gain matrix K.
In order to verify the effectiveness of the iterative Q-learning algorithm, we compared K with

optimal solution K∗ solved by SAE (3.1). Figure 2 shows the control gain matrix K converges to the
optimal control gain matrix K∗ as the number of iterations increases. Figure 3 shows the convergence
process of H to its optimal values H∗, which can be calculated by (3.15). The goal of the optimal
tracking problem is to trace the reference signal trajectory. In Figure 4, the expectation of system
output E(y) can track the reference trajectory rk. This further proves the effectiveness of the proposed
Q-learning algorithm.

0 2 4 6 8 10 12 14 16 18

Iteration 

0

0.5

1

1.5

2

2.5

|| 
K

-K
*  ||

Figure 2. Convergence trajectory of control gain matrix K to K∗.
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Figure 3. Convergence trajectory of matrix H to its optimal values H∗.
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Figure 4. Curves of expectation of output E(y) and reference signal rk.

6. Conclusions

For the model-free SLQ optimal tracking problem with delays, Q-learning algorithm based on VI
is proposed in this paper. This method makes full use of the system information to approximate the
optimal control online, and never needs the system parameter information. In the iterative process
of the algorithm, the H matrix sequence and the control gain matrix K sequence are guaranteed to
approximate the optimal value. Finally, the simulation results show that the system output can track
the reference trajectory effectively.
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