
 

AIMS Mathematics,8(5): 10177–10195. 

DOI: 10.3934/math.2023515  

Received: 08 October 2022 

Revised: 27 November 2022 

Accepted: 07 December 2022 

Published: 24 February 2023 

http://www.aimspress.com/journal/Math 

 

Research article 

Some fixed point results for fuzzy generalizations of Nadler’s 

contraction in b-metric spaces 

Shazia Kanwal1, Abdullah Al Mazrooei2, Gustavo Santos-Garcia3,* and Muhammad Gulzar1 

1 Department of Mathematics, Government College University Faisalabad, Pakistan 
2 Mathematics Department, Faculty of Science, King Abdulaziz University, Jeddah 80203, Saudi Arabia 
3 IME, Universidad de Salamanca, Spain 

* Correspondence: Email: santos@usal.es. 

Abstract: The main purpose of this study is to examine the existence of fuzzy fixed points of fuzzy 
mappings meeting the criteria of some generalized contractions of Nadler’s type in the framework of 
complete b-metric spaces. From the pertinent literature, there are additional previous observations that 
are provided as corollaries. Our study expands and incorporates several implications that are apparent 
in this mode and are addressed in considerable literature. 

Keywords: Nadler’s contraction; fuzzy sets; fuzzy fixed point; fuzzy mapping; Hausdorff metric space 
Mathematics Subject Classification: 46S40, 47H10, 54H25 
 

1. Introduction 

With the introduction of fuzzy set (FS) theory, it actually became much easier to solve problems 
in the real world since it clarified and improved the explanation of fuzziness and faults. The ability to 
understand confusion emerging in various materialistic conditions is now a widely accepted concept. 
Fuzzy logic is a statement that may be right or wrong, or even have a value between them. It is intended 
to deal with the perception of partial truth. The membership function characterized the degree of truth 
in this logic. A membership function for a set W is any map from W to the unit interval. The value 0 
denotes false, the value 1 denotes truth, and the value between 0 and 1 denotes partial truth. FS theory 
is applied to fuzzy control systems as it is a modest and natural addition to the ordinary set theory. 
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In 1922, Banach [1] generated an important result in the metric fixed point (FP) theory. For 
existence and uniqueness theorems in various disciplines of analysis, the Banach contraction principle 
is a key source and is widely regarded as the influential research of modern exploration. It guarantees 
the uniqueness of FP while also ensuring its existence. Banach's contraction theorem was expanded in 
1969 by Nadler [2], who also demonstrated an FP theorem for multivalued contractions. 

The search of FP for multi-valued mapping (MVM) was mainly started by von Neumann [3]. The 
improvement in FP theory for MVM was basically originated with the work of Nadler [2]. He 
connected the idea of MVM and Lipschitz mapping and used the perception of Hausdorff metric (HM) 
to settle the multivalued contraction principal, generally known as Nadler’s contraction mapping 
principle. Many investigations were conducted into the generalizations of the concept of Nadler’s 
contraction mapping principle (see [4–10] and references therein). 

The intensification and exploration of many advanced areas such as robotics, artificial intelligence, 
general system theory and language theory compelled us to participate in the enumeration of ambiguous 
concepts. In 1965, Zadeh [11] was the first to mention the concept of fuzzy logic. The affiliation of an 
element to the set in the theory of fuzzy logic is given as a number from the interval [0,1], unlike in the 
theory of classical logic, where an element either belongs to the set or not. Zadeh has been studying 
the theory of FS to address the issue of indeterminacy because uncertainty is a crucial component of a 
genuine problem. Heilpern [12] introduced the theory of fuzzy mappings (FM) and established a 
theorem on fixed points for FM of contractions in metric linear space, which serves as a fuzzy 
generalization of Banach's contraction principle. This sparked the interest of numerous authors to 
investigate various contraction conditions using FM. FP theory produces valuable results which are 
very useful in solving optimization problems and physics. FP theorems in fuzzy mathematics are 
gaining popularity as a source of hope and vital confidence. Weiss [13] and Butnariu [14] were the 
first who interpret the FP and fuzzy mappings. 

The idea of b-metric space (b-MS) was first presented by Backhtin [15]. Czerwik [16] extracted 
the b-MS results in 1993. Many scholars generalized the Banach contractive principle in b-MS by 
embracing this theory. The existence of FP and common FP of FM satisfying the contractive type 
criterion is deduced and estimated by several authors (see [17–20] and references therein). Many 
authors established wonderful results regarding fixed points and common fixed points for fuzzy and 
non-fuzzy mappings in b-metric spaces and in its various generalizations for example see ([21–26] and 
references therein). 

The structure of paper is as follows: 
In Section 2, some necessary concepts are recalled to facilitate the readers. All these prerequisites 

are collected from previous research articles exist in the literature. Section 3 deals with some 
theoretical results. In this study, we have established fuzzy FP results of set-valued FM satisfying 
generalized contractions of Nadler’s type in the setting of complete b-metric spaces. The obtained 
results are furnished with applications. Previous results are given in the form of corollaries of obtained 
results. 

2. Preliminaries 

The motivation behind this section is to facilitate the readers to have comprehensive knowledge about 
the fundamental definitions, examples and lemmas that are necessary to understand our established results. 
All these essentials are collected from previous research articles exist in the literature. 
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2.1. b-Metric space [15] 

Let Ω be any non-empty set and 𝑠 ≥  1 be any real number. A function 𝑑: Ω ×  Ω →  ℝ ∪

{0} is called a b-MS, if it holds these conditions for all 𝜔, 𝜉, 𝜂, ∈  𝛺: 
(1)𝑑(𝜔, 𝜉) =  0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝜔 = 𝜉; 
(2)𝑑 (𝜔, 𝜉)  =  𝑑 (𝜉, 𝜔); 
(3)𝑑 (𝜔, 𝜂) ≤  𝑠[𝑑 (𝜔, 𝜉) + 𝑑(𝜉, 𝜂)].  

Then, (𝛺, 𝑑, 𝑠) is called as a b-MS. 
Example 1. The 𝑙 (𝛺) with 0 <  𝑝 < 1, where 𝑙 (𝛺)  =  {{𝜇 }  ⊆  ℝ ∶  ∑ |𝜇 | < ∞ }, together 
with the function 𝑑: 𝑙 (𝛺)  ×  𝑙 (𝛺) → [0, ∞) defined as: 

𝑑 (𝜇, 𝜔)  =  (∑ |𝜇 − 𝜔 | ) , 

where 𝜇 =  {𝜇 }, 𝜔 = {𝜔 } ∈ 𝑙 (𝛺) is a b-MS with 𝑠 = 2 > 1. Notice that the above-mentioned 
results hold with 0 < 𝑝 < 1, where Ω is a b-MS. 
Example 2. Let 𝛺 = {𝑔, ℎ, κ} and 𝑑(𝑔, ℎ) = 𝑑 (ℎ, 𝑔) = 𝑑(ℎ, 𝜅) = 𝑑(𝜅, ℎ) = 1 𝑎𝑛𝑑 𝑑 (𝑔, 𝜅)  =

 𝑑 (𝜅, 𝑔) = 𝑚 ≥  2. Then, 

𝑑(𝜇, 𝜔) ≤
𝑚

2
[𝑑 (𝜇, 𝜐) +  𝑑(𝜐, 𝜔)], 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝜇, 𝜐, 𝜔 ∈ Ω . Now 𝑖𝑓 𝑚 > 2,  then ( 𝛺, 𝑑, 𝑠 ) is b-metric space with s=m/2 while ordinary 
triangle inequality is not satisfied for 𝑚 > 2 , for example if m=3, then 𝑑(𝑔, 𝑘) ≰ 𝑑 (𝑔, ℎ) +

 𝑑(ℎ, 𝑘), 𝑖. 𝑒., 3 ≰ 1 + 1. 

2.2. Completeness in b-metric space  

Let (𝛺, 𝑑, 𝑠) be a b-MS and {𝜔 } be a sequence in Ω. Then 
(1) {𝜔 } is called a convergent sequence iff ∃ 𝑧 ∈ 𝛺, such that for all 𝜀 > 0 ∃ 𝑛 (𝜀) ∈ ℕ s.t. for 

all 𝑛 ≥ 𝑛 (𝜀), we have 𝑑(𝜔 , 𝑧) < 𝜀. Then, we can write lim
→

𝜔 = 𝑧. 

(2) {𝜔 }  is said to be a CS iff for all 𝜀 > 0 ∃ 𝑛(𝜀) ∈ ℕ  s.t ∀ 𝑚, 𝑛 ≥  𝑛 (𝜀) , we have 
𝑑(𝜔 , 𝜔) < 𝜀. 

𝛺 is called complete if every CS in 𝛺 is convergent in it. 
Note: 𝐶𝐵(Ω) denotes the family of closed and bounded subsets of metric space Ω. 

2.3. Hausdorff metric space [2] 

Let (𝛺, 𝑑) be a MS. We define the Hausdorff metric on 𝐶𝐵(Ω) induced by 𝑑 as: 

𝐻 (𝛢, 𝛣) = 𝑚𝑎𝑥 { 𝑠𝑢𝑝 𝑑(𝜇, 𝛣) , 𝑠𝑢𝑝 𝑑(𝛢, 𝜈)}, 

for all 𝛢, 𝛣 ∈ 𝐶𝐵(𝛺). Here 𝑑 (𝜇, 𝛣) = 𝑖𝑛𝑓 {𝑑 (𝜇, 𝜂): 𝜂 ∈  𝛣}.  
Lemma 1. Let 𝐺, 𝛫 ∈  𝐶𝐵(Ω) . If 𝜇 ∈ 𝐺 then, 𝑑 (𝜇, 𝛫) ≤ 𝐻 (𝐺, 𝛫), for all 𝜇 ∈ 𝐺. 

Lemma 2. Let 𝑃, 𝑄 ∈  𝐶𝐵(Ω) and 0 < 𝜎 ∈ ℝ. Then, for all 𝑖 ∈ 𝑃, there exists 𝜁 ∈ 𝑄 such that  
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𝑑 (𝑖, 𝜁) ≤ 𝐻 (𝑃, 𝑄) + 𝜎. 
Lemma 3. If 𝑃, 𝑄 ∈ 𝐶𝐵(𝛺) with 𝐻 (𝛲, 𝑄)  < 𝜀, then for all 𝜇 ∈ 𝑃 there exists 𝜐 ∈  𝑄 such that 
𝑑 (𝜇, 𝜐) < 𝜀. 
Lemma 4. [13] If 𝑃 ∈ 𝐶𝐵{Ω} then 𝑑(𝜇, 𝑃) ≤ 𝑑 (𝜇, 𝜈), for all 𝜈 ∈ 𝑃. 
Lemma 5. [5] Let (𝛺, 𝑑, 𝑠) be a b-MS. For any 𝑃, 𝑄, 𝑅 ∈ 𝐶𝐵(𝛺) and any 𝜇, 𝜐 ∈ 𝛺, we have following 
properties: 

(1) 𝑑(𝜇, 𝑄) ≤ 𝐻(𝑃, 𝑄) for all 𝜇 ∈ 𝑃; 
(2) 𝛿(𝑃, 𝑄) ≤ 𝐻(𝑃, 𝑄); where 𝛿(𝑃, 𝑄) = inf{𝑑(𝜇, 𝜈): 𝜇 𝜖 𝑃 𝑎𝑛𝑑 𝜈 𝜖 𝑄} ; 
(3) 𝐻(𝑃, 𝑃) = 0; 
(4) 𝐻(𝛲, 𝑄) = 𝐻(𝑄, 𝛲); 
(5) 𝐻(𝛲, 𝑅) ≤ 𝑠[𝐻(𝛲, 𝑄) + 𝐻(𝑄, 𝑅)]; 
(6) 𝑑(𝜇, 𝛲) ≤ 𝑠[𝑑(𝜇, 𝜐) + 𝑑(𝜐, 𝛲). 

Lemma 6. [5] Let (𝛺, 𝑑, 𝑠) be a b-MS. For 𝛧 ∈ 𝐶𝐵(𝛺) and 𝜇 ∈ 𝛺, we have 𝑑(𝜇, 𝛧) = 0 iff 𝜇 ∈

𝐶𝑙 (𝛧) =  𝛧, where 𝐶𝑙(𝛧) is the closure of the set 𝑍 in Ω. 
Lemma 7. [27] Consider 𝑑 ≤ 𝜆 𝑚𝑎𝑥{𝑑 , 𝑑 } + 𝜉𝑠(𝑑 + 𝑑 ),  where 𝜆, 𝜉, 𝑠, 𝑑 and 𝑑  are non-
negative reals such that 𝜆 + 2𝜉𝑠 < 1. Then we have, 

𝑑 ≤ max {
( )

, }𝑑 . 

2.4. Closed mapping [28] 

Let (𝛺, 𝑑, 𝑠)  be a b-MS. A mapping 𝐺: Ω → 𝐶𝐵(Ω)  is called closed if for all sequences 
{𝜂 } ∈ℕ  and {𝜁 } ∈ℕ  of elements from Ω  and 𝜂, 𝜁 ∈ Ω  such that lim

→
𝜂 = 𝜂 , lim

→
𝜁 = 𝜁  and 

𝜁 ∈ 𝐺(𝜁 ) for all 𝑛 ∈ ℕ, we have 𝜁 ∈  𝐺(𝜁). 

2.5. ∗-Continuity of b-metric [28] 

Let (𝛺, 𝑑, 𝑠) be a b-MS. The b-metric d is called ∗-continuous if for all 𝐴 ∈ 𝐶𝐵(Ω), 𝜂 ∈ Ω and 
each sequence {𝜂 } ∈ℕ  of elements from Ω  such that lim

→
𝜂 = 𝜂 , we have lim

→
𝑑( 𝜂 , 𝐴) =

𝑑(𝜂, 𝐴). 
Lemma 8. [29] Every sequence {𝑣 } of a b-MS (𝛺, 𝑑, 𝑠), having the property that there exists 𝜇 ∈

[0,1) such that 𝑑(𝑣 , 𝑣 ) ≤ 𝜇𝑑(𝑣 , 𝑣 ), for all 𝑛 ∈ ℕ ∪ {0}, is Cauchy. 

2.6. Fuzzy set [11] 

Let Ω be a universal set. A mapping 𝐺: Ω →  [0, 1] is called a fuzzy set in Ω. The value 𝐺(𝑢) 
of 𝐺 at 𝑢 ∈ Ω stands for the degree of membership of 𝑢 in 𝐺. The set of all fuzzy sets in Ω will 
be denoted by 𝐹(Ω). 

𝐺(𝑢) = 1 means full membership, 𝐺(𝑢) = 0 means no membership and intermediate values 
between 0 and 1 mean partial membership.  

Example 3. Let A denotes the old and B denotes the young and 𝛹 = [0, 100]. Then A and B both 

are fuzzy sets that are defined by 
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𝐴(𝑥) = 1 +
𝑥 − 50

5
,      𝑖𝑓 50 < 𝑥 ≤ 100

0            ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 

𝐵(𝑥) =

⎩
⎪
⎨

⎪
⎧

1 +
𝑥 − 25

5
,       𝑖𝑓 25 < 𝑥 ≤ 100

0       ,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

The 𝛼-level set of 𝐺 is denoted by [𝐺]  and defined as 

[𝐺] = {𝑢 ∈ Ω: 𝐺(𝑢) ≥ 𝛼; 𝛼 ∈ (0, 1]}. 

2.7. Fuzzy mapping [30] 

Let Ψ  be any set and Ψ  be a metric space. A function 𝑔: Ψ → 𝐹(Ψ ) is called an FM. An 
FM 𝑔 is an FS on Ψ × Ψ  with membership function 𝑔(𝑥)(𝑦). The image 𝑔(𝑥)(𝑦) is the grade 
of membership of 𝑦 in 𝑔(𝑥). 

2.8. Fuzzy fixed point [17] 

Suppose (Ψ, 𝑑) is a MS and 𝑇: Ψ → 𝐹(Ψ). A point 𝑧 ∈ Ψ is a fuzzy FP of 𝑇 if 𝑧 ∈ [𝑇𝑧]  
for some 𝛼 ∈ (0, 1]. 

2.9. Nadler type contraction for fuzzy mappings 

Let (Ω, 𝑑, 𝑠) be a complete b-MS and 𝐺: Ω → 𝐹(Ω) be an FM. For all 𝑢, 𝑣 ∈ Ω, then, 

𝐻([𝐺(𝑢)] , [𝐺(𝑣)] ) ≤ 𝑁 , , , (𝑢, 𝑣), for all 𝑢, 𝑣 ∈ Ω, 

where, 
𝑁 , , , (𝑢, 𝑣) = 𝑎 max {𝑑(𝑢, 𝑣), 𝑘𝑑(𝑢, [𝐺(𝑢)] ), 𝑘𝑑(𝑣, [𝐺(𝑣)] } + 𝑏𝑑(𝑢, [𝐺(𝑣)] )

+  𝑐𝑑(𝑣, [𝐺(𝑢)] ), 
where 𝑎, 𝑏, 𝑐 ≥ 0, 𝑘 ∈ [0,1], 𝑎 + 2 smin{𝑏, 𝑐} < 1, 𝛼 ∈ (0,1], and [𝐺(𝑢)] , [𝐺(𝑣)] ∈ CB (𝛺). 

3. Fixed points of fuzzy mappings for Nadler’s type contractions in b-metric spaces 

In the framework on b-metric spaces some existence theorems regarding fuzzy fixed points of 
fuzzy mappings satisfying various types of contraction conditions are established and some results for 
multi-valued mappings are incorporated. Moreover, other direct consequences are obtained as well. 
These existence results will provide an appropriate environment to approximate operator equations in 
applied sciences. 

The following theorem guaranties the existence of fixed points of fuzzy contractive mapping 
defined on a complete b-MS which satisfies any one of the conditions: 
𝐺 is closed; 𝑑 is ∗ continuous; 𝑠(𝑎𝑘 + 𝑚𝑖𝑛{𝑏, 𝑐}) < 1. 
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Theorem 1. Let (Ω, 𝑑, 𝑠) be a complete b-MS and 𝐺: Ω →  𝐹(Ω ) be a mapping satisfying 

𝐻([𝐺(𝑢)] , [𝐺(𝑣)] ) ≤ 𝑁 , , , (𝑢, 𝑣), 𝑢, 𝑣 ∈ Ω,      (1) 

where, 

𝑁 , , , (𝑢, 𝑣) = 𝑎 max {𝑑(𝑢, 𝑣), 𝑘𝑑(𝑢, [𝐺(𝑢)] ), 𝑘𝑑(𝑣, [𝐺(𝑣)] } + 𝑏𝑑(𝑢, [𝐺(𝑣)] ) 

+ 𝑐𝑑(𝑣, [𝐺(𝑢)] ),  

for all 𝑎, 𝑏, 𝑐, 𝑘 ≥ 0, such that 𝑘 ∈ [0,1], 𝑎 + 2𝑠 min{𝑏, 𝑐} < 1, 𝛼 ∈

(0,1], and  [𝐺(𝑢)] , [𝐺(𝑣)]  𝑎𝑟𝑒 𝑖𝑛 CB (𝛺). Then, there exists a sequence {𝑢 } ∈ℕ in Ω 
converges to some point 𝑢∗ ∈ Ω such that 𝑢 ∈ [𝐺(𝑢 )] , 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛 ∈ ℕ. Also, 𝑢∗ is an FP 
of 𝐺 if one of the following conditions is satisfied: 

(1) 𝐺 is closed; 
(2) 𝑑 is ∗ continuous;  
(3) 𝑠(𝑎𝑘 + min{𝑏, 𝑐}) <1. 

Proof. Let 𝑢 ∈ Ω. Choose 𝑢 ∈ [𝐺(𝑢 )] . Let 

𝜀 = 𝐻([𝐺(𝑢 )] , [𝐺(𝑢 )] ),  

where 𝑞 = 𝑎 + 2𝑠 min{𝑏, 𝑐}. If, 
𝐻([𝐺(𝑢 )] , [𝐺(𝑢 )] ) = 0 then we obtain [𝐺(𝑢 )] = [𝐺(𝑢 )]  and 𝑢 ∈ [𝐺(𝑢 )] . 
In this case the proof is completed. 
So, we may assume 𝜀 > 0. By Lemma 2, there is a point 𝑢 ∈[𝐺(𝑢 )]  such that 

𝑑(𝑢 , 𝑢 ) ≤ 𝐻([𝐺(𝑢 )] , [𝐺(𝑢 )] ) + 𝜀 =
2

1 + 𝑞
𝐻([𝐺(𝑢 )] , [𝐺(𝑢 )] ). 

Similarly, there is a point 𝑢 ∈[𝐺(𝑢 )]  such that 

𝑑(𝑢 , 𝑢 ) ≤ 𝐻([𝐺(𝑢 )] , [𝐺(𝑢 )] ) + 𝜀, 

where, 

𝜀 =
1 − 𝑞

1 + 𝑞
𝐻([𝐺(𝑢 )] , [𝐺(𝑢 )] ). 

If 𝐻([𝐺(𝑢 )] , [𝐺(𝑢 )] ) = 0. Then we infer that 

[𝐺(𝑢 )] = [𝐺(𝑢 )] . 

In this case the proof is completed. 
So, we may assume that 𝜀 > 0. Hence 

𝑑(𝑢 , 𝑢 ) ≤
2

1 + 𝑞
𝐻([𝐺(𝑢 )] , [𝐺(𝑢 )] ). 

Continuing in this process, we construct a sequence {𝑢 } ∈ℕ of points of Ω such that 

𝑢 ∈ [𝐺(𝑢 )] , ∀𝑛 ∈ ℕ ∪ {0},        (2) 
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𝑑(𝑢 , 𝑢 ) ≤ 𝐻([𝐺(𝑢 )] , [𝐺(𝑢 )] ), ∀𝑛 ∈ ℕ.     (3) 

Case 1. 
Consider that 𝑐 = 𝑚𝑖𝑛{𝑏, 𝑐}. 
Using given contraction in (1) we get 

𝐻([𝐺(𝑢 )] , [𝐺(𝑢 )] ) ≤ 𝑎 𝑚𝑎𝑥
𝑑(𝑢 , 𝑢 ), 𝑘𝑑(𝑢 , [𝐺(𝑢 )] ),

𝑘𝑑(𝑢 , [𝐺(𝑢 )] )
 

+𝑏𝑑(𝑢 , [𝐺(𝑢 )] ) + 𝑐𝑑(𝑢 , [𝐺(𝑢 )] ). 

𝐻([𝐺(𝑢 )] , [𝐺(𝑢 )] ) ≤ 𝑎 𝑚𝑎𝑥{𝑑(𝑢 , 𝑢 ), 𝑘𝑑(𝑢 , 𝑢 ), 𝑘𝑑(𝑢 , 𝑢 )} 

+𝑏𝑑(𝑢 , 𝑢 ) + 𝑐𝑑(𝑢 , 𝑢 ). 

𝐻([𝐺(𝑢 )] , [𝐺(𝑢 )] ) ≤ 𝑎 𝑚𝑎𝑥{𝑑(𝑢 , 𝑢 ), 𝑘𝑑(𝑢 , 𝑢 ), } + 𝑐𝑑(𝑢 , 𝑢 ), 

𝐻([𝐺(𝑢 )] , [𝐺(𝑢 )] ) ≤ 𝑎 𝑚𝑎𝑥{𝑑(𝑢 , 𝑢 ), 𝑘𝑑(𝑢 , 𝑢 ), } 

+𝑐𝑠[𝑑(𝑢 , 𝑢 ) + 𝑑(𝑢 , 𝑢 )]. 

Using (3) we get 

𝑑(𝑢 , 𝑢 ) ≤
2

1 + 𝑞
[𝑎 𝑚𝑎𝑥{𝑑(𝑢 , 𝑢 ), 𝑘𝑑(𝑢 , 𝑢 )} + 𝑐𝑠 𝑑(𝑢 , 𝑢 ) + 𝑑(𝑢 , 𝑢 ) . 

Now, since 

2

1 + 𝑞
(𝑎 + 2𝑐𝑠) =

2𝑞

1 + 𝑞
< 1, 

using Lemma 7, we get 

𝑑(𝑢 , 𝑢 ) ≤ 𝑞 𝑑(𝑢 , 𝑢 ),        (4) 

where 𝑞 = max { , } < 1. 

Case 2. 
Consider that 𝑏 = 𝑚𝑖𝑛{𝑏, 𝑐}. 
Using case 1, we get 

𝐻([𝐺(𝑢 )] , [𝐺(𝑢 )] ) ≤ 𝑎 𝑚𝑎𝑥{𝑑(𝑢 , 𝑢 ), 𝑘𝑑(𝑢 , 𝑢 )} + 𝑏𝑠[𝑑(𝑢 , 𝑢 ) + 𝑑(𝑢 , 𝑢 )]. 

Using (3), we get 

𝑑(𝑢 , 𝑢 ) ≤
2

1 + 𝑞
[𝑎𝑚𝑎𝑥{𝑑(𝑢 , 𝑢 ), 𝑘𝑑(𝑢 , 𝑢 )} + 𝑏𝑠 𝑑(𝑢 , 𝑢 ) + 𝑑(𝑢 , 𝑢 ) . 

We know that  

2

𝑞 + 1
(2𝑏𝑠 + 𝑎) =

2𝑞

𝑞 + 1
< 1, 

using Lemma 7, we get 
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𝑑(𝑢 , 𝑢 ) ≤ 𝑞 𝑑(𝑢 , 𝑢 ),       (5) 

where 𝑞 = max { , } < 1. 

As 𝑞 < 1 𝑎𝑛𝑑 𝑞 < 1, using Lemma 8 together with (4) and (5) we get the sequence {𝑢 } ∈ℕ is a 
CS. Since (Ω, 𝑑, 𝑠) is a complete b-MS, the sequence {𝑢 } ∈ℕ converges to some point 𝑢∗ ∈ Ω. 

(1) Suppose that G is closed. 
Using the definition of a closed mapping and (2) we get 

𝑢∗ ∈ [𝐺(𝑢∗)] . 

(2) Consider that 𝑑 is ∗ continuous. 
Then, we can write  

lim
→

𝑑( 𝑢 , [𝐺(𝑢∗)] ) = 𝑑(𝑢∗, [𝐺(𝑢∗)] ), 𝑤ℎ𝑒𝑟𝑒 [𝐺(𝑢∗)] ∈ 𝐶𝐵(Ω).  (6) 

Using Lemma 5 and (2) we get 

𝑑(𝑢 , [𝐺(𝑢∗)] ) ≤ 𝐻([𝐺(𝑢 )] , [𝐺(𝑢∗)] ) 

≤ 𝑎 𝑚𝑎𝑥{𝑑(𝑢 , 𝑢∗), 𝑘𝑑(𝑢 , [𝐺(𝑢 )] ), 𝑘𝑑(𝑢∗, [𝐺(𝑢∗)] )} 

+𝑏𝑑(𝑢 , [𝐺(𝑢∗)] ) + 𝑐𝑑(𝑢∗, 𝑢 ) 

≤ 𝑎 𝑚𝑎𝑥{𝑑(𝑢 , 𝑢∗), 𝑘𝑑(𝑢 , 𝑢 ), 𝑘𝑑(𝑢∗, [𝐺(𝑢∗)] )} 

+𝑏𝑑(𝑢 , [𝐺(𝑢∗)] ) + 𝑐𝑑(𝑢∗, 𝑢 ), 

and 

𝑑([𝐺(𝑢∗)] , 𝑢 ) ≤ 𝐻([𝐺(𝑢∗)] , [𝐺(𝑢 )] ) 

≤ 𝑎 𝑚𝑎𝑥{𝑑(𝑢∗, 𝑢 ), 𝑘𝑑(𝑢 , [𝐺(𝑢 )] ), 𝑘𝑑(𝑢∗, [𝐺(𝑢∗)] )} 

+𝑐𝑑(𝑢 , [𝐺(𝑢∗)] ) + 𝑏𝑑(𝑢∗, [𝐺(𝑢 )] ) 

≤ 𝑎 𝑚𝑎𝑥{𝑑(𝑢∗, 𝑢 ), 𝑘𝑑(𝑢 , 𝑢 ), 𝑘𝑑(𝑢∗, [𝐺(𝑢∗)] )} 

+𝑐𝑑(𝑢 , [𝐺(𝑢∗)] ) + 𝑏𝑑(𝑢∗, 𝑢 ). 

Using (6) we get 

𝑑(𝑢∗, [𝐺(𝑢∗)] ) ≤ (𝑎𝑘 + 𝑏)𝑑(𝑢∗, [𝐺(𝑢∗)] ),      (7) 

𝑑([𝐺(𝑢∗)], 𝑢∗) ≤ (𝑎𝑘 + 𝑐)𝑑([𝐺(𝑢∗)], 𝑢∗).       (8) 

Since,  

𝑎𝑘 + 𝑏 < 𝑎 + 2𝑠 min{𝑏, 𝑐}, 𝑜𝑟, 𝑎𝑘 + 𝑐 < 𝑎 + 2𝑠 min{𝑏, 𝑐}, 

we conclude that 𝑑(𝑢∗, [𝐺(𝑢∗)] ) = 0 and from Lemma 6, we get 𝑢∗ ∈ [𝐺(𝑢∗)] . 
(3) Suppose 𝑠(𝑎𝑘 + min{𝑏, 𝑐}) <1. 

Case (a) 
Let min{b, c}= b then 𝑠(𝑎𝑘 + 𝑏) < 1. Since, 

𝑑(𝑢 , [𝐺(𝑢∗)] ) ≤ 𝑎 𝑚𝑎𝑥{𝑑(𝑢 , 𝑢∗), 𝑘𝑑(𝑢 , 𝑢 ), 𝑘𝑑(𝑢∗, [𝐺(𝑢∗)] )} 
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+𝑏𝑑(𝑢 , [𝐺(𝑢∗)] ) + 𝑐𝑑(𝑢∗, 𝑢 ),       (9) 

and, 

𝑑(𝑢 , [𝐺(𝑢∗)] ) ≤ 𝑠[𝑑(𝑢 , 𝑢 ) +  𝑑(𝑢 , [𝐺(𝑢∗)] ),    (10) 

so, we have 

(1 − 𝑏𝑠)𝑑(𝑢 , [𝐺(𝑢∗)] ) ≤  𝑎 𝑚𝑎𝑥{𝑑(𝑢 , 𝑢∗), 𝑘𝑑(𝑢 , 𝑢 ), 𝑘𝑑(𝑢∗, [𝐺(𝑢∗)] )} 

 + 𝑏𝑠𝑑(𝑢 , 𝑢 ) + 𝑐𝑑(𝑢∗, 𝑢 ).      (11) 

As, we know that 1 − 𝑏𝑠 > 0, inequalities (9), (10) and using triangular inequality, we get 

𝑑(𝑢∗, [𝐺(𝑢∗)] )

≤ 𝑠𝑑(𝑢∗, 𝑢 )

+
𝑠

1 − 𝑠𝑏
[𝑎 𝑚𝑎𝑥{𝑑(𝑢 , 𝑢∗), 𝑘𝑑(𝑢 , 𝑢 ), 𝑘𝑑(𝑢∗, [𝐺(𝑢∗)] )} + 𝑏𝑠𝑑(𝑢 , 𝑢 )

+ 𝑐𝑑(𝑢∗, 𝑢 )]. 

Taking lim
→

𝑤𝑒 𝑔𝑒𝑡 

𝑑(𝑢∗, [𝐺(𝑢∗)] ) ≤ 𝑑(𝑢∗, [𝐺(𝑢∗)] ).      (12) 

As, we know that < 1 and from (12), we get 

𝑑(𝑢∗, [𝐺(𝑢∗)] ) = 0, 𝑖. 𝑒., 

𝑢∗ ∈ [𝐺(𝑢∗)] . 

Case (b) 
Consider min {b, c} =c, then 𝑠(𝑎𝑘 + 𝑐) < 1. Then proof will be completed similar as in Case (a). 

Hence from all above cases we conclude that there exists a fixed point of G if any one condition from 
(1)–(3) is satisfied. 

Application 

Theorem 2. (Fixed points of multi-valued mappings) 

Let (Ω, 𝑑, 𝑠)  be a complete b-MS and 𝐴: Ω →  𝐶𝐵(Ω)  be a multi-valued-valued mapping 
satisfying 

𝐻(𝐴(𝑢), 𝐴(𝑣)) ≤ 𝑁 , , , (𝑢, 𝑣), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ Ω, 

where, 

𝑁 , , , (𝑢, 𝑣) = 𝑎 max {𝑑(𝑢, 𝑣), 𝑘𝑑(𝑢, 𝐴(𝑢)), 𝑘𝑑(𝑣, 𝐴(𝑣)} + 𝑏𝑑(𝑢, 𝐴(𝑣)) +  𝑐𝑑(𝑣, 𝐴(𝑢)),  

for all 𝑎, 𝑏, 𝑐, 𝑘 ≥ 0, such that 𝑘 ∈ [0,1] 𝑎𝑛𝑑 𝑎 + 2𝑠 min{𝑏, 𝑐} < 1.  
Then there exist a sequence {𝑢 } ∈ℕ in Ω converges to some point 𝑢∗ ∈ Ω such that 
𝑢 ∈ 𝐴(𝑢 ), 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛 ∈ ℕ . Also, 𝑢∗  is an FP of ′𝐴′  if one of the following conditions is 
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satisfied: 
(1) 𝐴 is closed; 
(2) 𝑑 is ∗ continuous; 
(3) 𝑠(𝑎𝑘 + min{𝑏, 𝑐}) < 1. 

Proof. Consider an arbitrary mapping 𝑆: Ω ⟶ (0, 1] and a fuzzy mapping 𝐺: Ω →  𝐹(Ω ) defined 
by 

𝐺(𝑥)(𝑡) =
𝑆𝑥    𝑡 ∈ 𝐴𝑥
0     𝑡 ∉ 𝐴𝑥.

 

Then for 𝑥 ∈  Ω, 

[𝐺𝑥] =  {𝑡: 𝐺(𝑥)(𝑡) ≥ 𝛼} = 𝐴𝑥. 

Therefore, Theorem 1 can be applied to obtain 𝑢∗ ∈  Ω such that 𝑢∗ ∈  [𝐺𝑢∗] =𝐴𝑢∗. 
Corollary 1. Let (Ω, 𝑑) be a complete MS and 𝐺: Ω →  𝐹(Ω ) be a fuzzy mapping satisfying 

𝐻([𝐺(𝑢)] , [𝐺(𝑣)] ) ≤ 𝑁 , , , (𝑢, 𝑣), 𝑢, 𝑣 ∈ Ω, 

where, 

𝑁 , , , (𝑢, 𝑣) = 𝑎 max {𝑑(𝑢, 𝑣), 𝑘𝑑(𝑢, [𝐺(𝑢)] ), 𝑘𝑑(𝑣, [𝐺(𝑣)] } + 𝑏𝑑(𝑢, [𝐺(𝑣)] )

+  𝑐𝑑(𝑣, [𝐺(𝑢)] ),  

for all 𝑎, 𝑏, 𝑐, 𝑘 ≥ 0 , such that 𝑘 ∈ [0,1], 𝑎 + 2 min{𝑏, 𝑐} < 1, 𝛼 ∈ (0,1], and [𝐺(𝑢)] , [𝐺(𝑣)]  𝑖𝑛 
CB(𝛺) . Then, there exists a sequence {𝑢 } ∈ℕ  in Ω  converges to some point 𝑢∗ ∈ Ω  such that 
𝑢 ∈ [𝐺(𝑢 )] , for every 𝑛 ∈ ℕ . Also, 𝑢∗  is an FP of 𝐺  if one of the following conditions is 
satisfied: 

(1) 𝐺 is closed; 
(2) 𝑑 is ∗ continuous; 
(3) 𝑠(𝑎𝑘 + min{𝑏, 𝑐}) < 1. 

Theorem 3. Consider (Ω, 𝑑, 𝑠) be a complete b-MS. Assume that a fuzzy mapping 𝐺: Ω → 𝐹(Ω) 
having the property that there exist 𝑐, 𝑑 ∈ [0,1] and 𝜌 ∈ [0,1) such that:  

(i) 𝜌ds < 1; 
(ii) 𝐻([𝐺(𝑢)] , [𝐺(𝑣)] ) ≤ 𝜌𝑁 , (𝑢, 𝑣)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ Ω, where α ∈

(0,1], [𝐺(𝑢)]  𝑎𝑛𝑑 [𝐺(𝑣)]  are closed and bounded subsets of Ω and 

𝑁 , (𝑢, 𝑣) = max {𝑑(𝑢, 𝑣), 𝑐𝑑(𝑢, [𝐺(𝑢)] ), 𝑐𝑑(𝑣, [𝐺(𝑣)] ), (𝑑(𝑢, [𝐺(𝑣)] ) + 𝑑(𝑣, [𝐺(𝑢)] ))}. 

Then, for every 𝑢 ∈ Ω, there exists 𝛾 ∈ [0,1) and a sequence {𝑢 } of elements from Ω such that  

(a) 𝑢 ∈ [𝐺(𝑢
𝑛

)]
𝛼

 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛 ∈ ℕ ; 

(b) 𝑑(𝑢𝑛+1, 𝑢𝑛) ≤ 𝛾𝑑(𝑢𝑛, 𝑢𝑛−1) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛 ∈  ℕ ; 
(c) {𝑢 } ∈ℕ is Cauchy. 

Proof. Consider 𝛽 ∈ (𝜌, 𝑚𝑖𝑛(1,
 
)), 𝛾 =  𝑚𝑎𝑥{𝛽, }  <  1, 𝑢 ∈ Ω 𝑎𝑛𝑑 𝑢 ∈  [𝐺(𝑢 )] . 

If 𝑢 = 𝑢   then the sequence {𝑢 } ∈ℕ  given by 𝑢 = 𝑢   for every 𝑛 ∈ ℕ  satisfying (a)–(c). 
Since, using (ii), we can write 

𝑑(𝑢1, [𝐺(𝑢 )] ) ≤ 𝐻([𝐺(𝑢 )] , [𝐺(𝑢 )] ≤ 𝜌𝑁 , (𝑢0, 𝑢1) < 𝛽𝑁 , (𝑢0, 𝑢1), 
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there exists 𝑢 ∈ [𝐺(𝑢
1
)]

𝛼
such that 

𝑑(𝑢1, 𝑢2) < 𝛽𝑁 , (𝑢0, 𝑢1). 

If 𝑢 = 𝑢  then the sequence {𝑢 } ∈ℕ given by 𝑢 = 𝑢  for every 𝑛 ∈ ℕ satisfying (a), (b) and (c).  
By continuing this process we get a sequence {𝑢 } ∈ℕ of elements from Ω such that 

𝑢 ∈ [𝐺(𝑢
𝑛

)]
𝛼
and 0 < 𝑑𝑛 < 𝛽𝑁 , (𝑢𝑛−1, 𝑢𝑛), 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛 ∈ ℕ, 𝑛 ≥ 1. 

Because 

 𝑑(𝑢𝑛−1, [𝐺(𝑢 )] ) ≤ 𝑑 , 

 𝑑(𝑢𝑛, [𝐺(𝑢 )] ) ≤ 𝑑 , 

 𝑑(𝑢𝑛−1, [𝐺(𝑢 )] ) ≤ 𝑑(𝑢𝑛−1, 𝑢𝑛+1),  

𝑑(𝑢 , [𝐺(𝑢 )] ) = 0, 

so, we have  

0 < 𝑑 < 𝛽𝑁 , (𝑢 , 𝑢 ), 

𝛽𝑁 , (𝑢 , 𝑢 ) ≤ 𝛽 max 𝑑 , 𝑐𝑑 , 𝑐𝑑 ,
𝑑

2
𝑑(𝑢 , 𝑢 )  

≤ 𝛽 max 𝑑 , 𝑐𝑑 , 𝑐𝑑 ,
𝑑𝑠

2
𝑑(𝑑 + 𝑑 )  

≤ 𝛽 max 𝑑 ,
𝑑𝑠

2
𝑑(𝑑 + 𝑑 ) ,  

for every 𝑛 ∈ ℕ, where the explanation of the last inequality is stated as: 

if by reduction and absurdum, max 𝑑 , 𝑐𝑑 , 𝑐𝑑 , 𝑑(𝑑 + 𝑑 ) = 𝑐𝑑 , then  

we required that  

0 < 𝑑 < 𝛽𝑐𝑑 ≤ 𝛽𝑑 . 

So, we get the contradiction 1 < 𝛽. 
Consequently, 

𝑑 < 𝛽𝑑  or 𝑑 < 𝛽 𝑑(𝑑 + 𝑑 ),  

i.e., 𝑑 < 𝛽𝑑  or 𝑑 < 𝑑 , ∀ 𝑛 ∈ ℕ. 

Hence, the sequence {𝑢 } ∈ℕ satisfied (a) and (b). 
By using Lemma 8, we conclude that it also satisfied (c). 

Application 
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Theorem 4. Consider (Ω, 𝑑, 𝑠) be a complete b-MS. Let a multi-valued mapping 𝐴: Ω → 𝐶𝐵(Ω) 

having the property that there exist 𝑐, 𝑑 ∈ [0,1] and 𝜌 ∈ [0,1) such that:  

(1) 𝜌ds < 1;  
(2) 𝐻(𝐴(𝑢), 𝐴(𝑣)) ≤ 𝜌𝑁 , (𝑢, 𝑣)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ Ω,  

𝑁 , (𝑢, 𝑣) = max {𝑑(𝑢, 𝑣), 𝑐𝑑 𝑢, 𝐴(𝑢) , 𝑐𝑑 𝑣, 𝐴(𝑣) , (𝑑 𝑢, 𝐴(𝑣) + 𝑑 𝑣, 𝐴(𝑢) )}. 

Then, for every 𝑢 ∈ Ω, there exist 𝛾 ∈ [0,1) and a sequence {𝑢 } of elements from Ω such that  

(a) 𝑢 ∈ 𝐴(𝑢
𝑛

) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛 ∈ ℕ ;  

(b) 𝑑(𝑢𝑛+1, 𝑢𝑛) ≤ 𝛾𝑑(𝑢𝑛, 𝑢𝑛−1) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛 ∈  ℕ ; 
(c) {𝑢 } ∈ℕ is Cauchy. 

Proof. Consider an arbitrary mapping 𝑆: Ω ⟶ (0, 1] and a fuzzy mapping 𝐺: Ω →  𝐹(Ω ) defined 
by 

𝐺(𝑥)(𝑡) =
𝑆𝑥    𝑡 ∈ 𝐴𝑥
0     𝑡 ∉ 𝐴𝑥.

 

Then for 𝑥 ∈  Ω, 

[𝐺𝑥] =  {𝑡: 𝐺(𝑥)(𝑡) ≥ 𝛼} = 𝐴𝑥. 

Therefore, Theorem 3 can be applied to obtain the required sequence in Ω and ∈ [0,1) . 
Corollary 2. Consider (Ω, 𝑑, 𝑠) be a complete MS. Let a fuzzy mapping 𝐺: Ω → 𝐹(Ω) having the 
property that there exist 𝑐, 𝑑 ∈ [0,1] and 𝜌 ∈ [0,1) such that:  

(1) 𝜌ds < 1; 
(2) 𝐻([𝐺(𝑢)] , [𝐺(𝑣)] ) ≤ 𝜌𝑁 , (𝑢, 𝑣)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ Ω, where α ∈

(0,1], [𝐺(𝑢)]  𝑎𝑛𝑑 [𝐺(𝑣)]  are closed and bounded subsets of Ω and 

𝑁 , (𝑢, 𝑣) = max {𝑑(𝑢, 𝑣), 𝑐𝑑(𝑢, [𝐺(𝑢)] ), 𝑐𝑑(𝑣, [𝐺(𝑣)] ), (𝑑(𝑢, [𝐺(𝑣)] ) + 𝑑(𝑣, [𝐺(𝑢)] ))}. 

Then, for every 𝑢 ∈ Ω, there exist 𝛾 ∈ [0,1) and a sequence {𝑢 } of elements from Ω such that  
(a) 𝑢 ∈ [𝐺(𝑢 )]  for every 𝑛 ∈ ℕ ; 
(b) 𝑑(𝑢 , 𝑢 ) ≤ 𝛾𝑑(𝑢 , 𝑢 ) for every 𝑛 ∈  ℕ ; 
(c) {𝑢 } ∈ℕ is Cauchy. 

Theorem 5. Consider a complete b-MS (Ω, 𝑑, 𝑠). A fuzzy mapping 𝐺: Ω → 𝐹(Ω) has an FP 
provided that it satisfied the following conditions. 

(1) 𝑑 𝑖𝑠 𝑎 ∗ 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠; 
(2) there exist 𝑐, 𝑑 ∈ [0,1] and 𝜇 ∈ [0,1) such that 

𝐻([𝐺(𝑟 )] ), [𝐺(𝑟 )] ) ≤ 𝜇𝑁 , (𝑟 , 𝑟 ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 , 𝑟 ∈ Ω, where 
𝐺(𝑟 )]  𝑎𝑛𝑑 [𝐺(𝑟 )]  are closed and bounded subsets of Ω and 

𝑁 , (𝑟 , 𝑟 ) = 𝑚𝑎𝑥 𝑑(𝑟 , 𝑟 ), 𝑐𝑑(𝑟 , [𝐺(𝑟 )] ), 𝑐𝑑(𝑟 , [𝐺(𝑟 )] ),
𝑑

2
𝑑(𝑟 , [𝐺(𝑟 )] )

+ 𝑑(𝑟 , [𝐺(𝑟 )] ) ; 



10189 

AIMS Mathematics  Volume 8, Issue 5, 10177–10195. 

(3) 𝜇𝑠𝑑 < 1. 

Proof. By Theorem 3 part (i) and part (ii) there exists a CS {𝑟 } of elements from Ω such that  

𝑟 ∈ [𝐺(𝑟 )] , for all n ∈ ℕ        (13) 

As the b-MS (Ω, 𝑑, 𝑠) is complete, so there exists 𝑤 ∈ Ω such that lim
→

𝑟 = 𝑤. 

Then, from [2] and (13), with notation 𝑑(𝑟 , 𝑤) = 𝛿 , we can write 

𝑑(𝑟 , [𝐺(𝑤)] ) ≤ 𝐻([𝐺(𝑟 )] , [𝐺(𝑤)] ) ≤ 𝜇𝑁 , (𝑟 , 𝑤) 

= 𝜇 max 𝛿 , 𝑐𝑑(𝑟 , [𝐺(𝑟 )] ), 𝑐𝑑(𝑤, [𝐺(𝑤)] ),
𝑑

2
𝑑(𝑟 , [𝐺(𝑤)] ) + 𝑑(𝑤, [𝐺(𝑟 )] )  

≤ 𝜇 max 𝛿 , 𝑐𝑑 , 𝑐𝑑(𝑤, [𝐺(𝑤)] ), 𝑠(𝛿 + 𝑑(𝑤, [𝐺(𝑤)] ) + 𝛿 )) ,    (14) 

for all 𝑛 ∈ ℕ. As 𝑑 𝑖𝑠 ∗ continous and lim
→

𝑟 = 𝑤, so we have 

lim
→

𝛿 = lim
→

𝑑 = 0 and lim
→

𝑑(𝑟 , [𝐺(𝑤)] ) = 𝑑(𝑤, [𝐺(𝑤)] ). 

Now by applying lim
→

𝑖𝑛 (14), we get 

𝑑(𝑤, [𝐺(𝑤)] ) ≤ max 𝜇𝑐, 𝑑(𝑤, [𝐺(𝑤)] ).      (15) 

As max 𝜇𝑐, < 1, by [3] and using (15) we conclude that 

𝑑(𝑤, [𝐺(𝑤)] ) = 0, 𝑖. 𝑒., 𝑤 ∈ [𝐺(𝑤)] . Hence 𝐺 has a FP. 

Application 

Theorem 6. Consider a complete b-MS (Ω, 𝑑, 𝑠). A multi-valued mapping 𝐴: Ω → 𝐶𝐵(Ω) has an 
FP provided that it satisfied the following conditions. 

(1) 𝑑 𝑖𝑠 𝑎 ∗ 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠; 
(2) there exist 𝑐, 𝑑 ∈ [0,1] and 𝜇 ∈ [0,1) such that 

𝐻(𝐴(𝑟 ), 𝐴(𝑟 )) ≤ 𝜇𝑁 , (𝑟 , 𝑟 ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 , 𝑟 ∈ Ω, where 

𝑁 , (𝑟 , 𝑟 ) = 𝑚𝑎𝑥 𝑑(𝑟 , 𝑟 ), 𝑐𝑑(𝑟 , 𝐴(𝑟 )), 𝑐𝑑(𝑟 , 𝐴(𝑟 )),
𝑑

2
𝑑(𝑟 , 𝐴(𝑟 )) + 𝑑(𝑟 , 𝐴(𝑟 )) ; 

(3) 𝜇𝑠𝑑 < 1. 
 

Proof. Consider an arbitrary mapping 𝑆: Ω ⟶ (0, 1] and a fuzzy mapping 𝐺: Ω →  𝐹(Ω ) defined 
by 

𝐺(𝑥)(𝑡) =
𝑆𝑥    𝑡 ∈ 𝐴𝑥
0     𝑡 ∉ 𝐴𝑥.
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Then for 𝑥 ∈  Ω, 

[𝐺𝑥] =  {𝑡: 𝐺(𝑥)(𝑡) ≥ 𝛼} = 𝐴𝑥. 

Therefore, Theorem 5 can be applied to obtain 𝑤 ∈  Ω such that 𝑤 ∈  [𝐺𝑤] = 𝐴𝑤 
Corollary 3. Consider a complete b-MS (Ω, 𝑑, 𝑠) . A fuzzy mapping 𝐺: Ω → 𝐹(Ω)  has an FP 
provided that it satisfied the following conditions. 

(1) 𝑑 𝑖𝑠 𝑎 ∗ 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠; 
(2) there exist 𝑐, 𝑑 ∈ [0,1] and 𝜇 ∈ [0,1) such that 

𝐻([𝐺(𝑟 )] ), [𝐺(𝑟 )] ) ≤ 𝜇𝑁 , (𝑟 , 𝑟 ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 , 𝑟 ∈ Ω, where α ∈ (0,1], 
[𝐺(𝑟 )]  𝑎𝑛𝑑 [𝐺(𝑟 )]  are closed and bounded subsets of Ω and 

𝑁 , (𝑟 , 𝑟 ) = 𝑚𝑎𝑥 𝑑(𝑟 , 𝑟 ), 𝑐𝑑(𝑟 , [𝐺(𝑟 )] ), 𝑐𝑑(𝑟 , [𝐺(𝑟 )] ),
𝑑

2
𝑑(𝑟 , [𝐺(𝑟 )] )

+ 𝑑(𝑟 , [𝐺(𝑟 )] ) ; 

(3) 𝜇𝑠𝑑 < 1. 
Theorem 7. Consider that (Ω, 𝑑, 𝑠) be a complete b-MS. A fuzzy mapping 𝐺: Ω → 𝐹(Ω) has an 
FP provided that it satisfied the following two conditions. 

a) There exist 𝑐, 𝑑 ∈ [0,1] and 𝜇 ∈ [0,1) such that 
𝐻([𝐺(𝑟 )] ), [𝐺(𝑟 )] ) ≤ 𝜇𝑁 , (𝑟 , 𝑟 ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 , 𝑟 ∈ Ω, where α ∈ (0,1], 
[𝐺(𝑟 )]  𝑎𝑛𝑑 [𝐺(𝑟 )]  are closed and bounded subsets of Ω and 

𝑁 , (𝑟 , 𝑟 ) = 𝑚𝑎𝑥 𝑑(𝑟 , 𝑟 ), 𝑐𝑑(𝑟 , [𝐺(𝑟 )] ), 𝑐𝑑(𝑟 , [𝐺(𝑟 )] ),
𝑑

2
𝑑(𝑟 , [𝐺(𝑟 )] )

+ 𝑑(𝑟 , [𝐺(𝑟 )] ) ; 

b) max {𝜇𝑐𝑠, 𝜇𝑑𝑠} < 1. 
Proof. By Theorem 3 part (i) and part (ii) there exists a CS {𝑟 } of elements from Ω such that 𝑟 ∈

[𝐺(𝑟 )] , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ. 
As the b-MS (Ω, 𝑑, 𝑠) is complete. Therefore, there exists 𝑤 ∈ Ω such that  

lim
→

𝑟 = 𝑤.     (16) 

Then, from (a) and equation (16), with notation 𝑑(𝑟 , 𝑤) = 𝛿 , we can write  

𝑑(𝑟 , [𝐺(𝑤)] ) ≤ 𝐻([𝐺(𝑟 )] , [𝐺(𝑤)] ) ≤ 𝜇𝑁 , (𝑟 , 𝑤)  

= 𝜇 max 𝛿 , 𝑐𝑑(𝑟 , [𝐺(𝑟 )] ), 𝑐𝑑(𝑤, [𝐺(𝑤)] ),
𝑑

2
𝑑(𝑟 , [𝐺(𝑤)] ) + 𝑑(𝑤, [𝐺(𝑟 )] ) , 

≤ 𝜇 max 𝛿 , 𝑐𝑑 , 𝑐𝑑(𝑤, [𝐺(𝑤)] ), 𝑠(𝛿 + 𝑑(𝑤, [𝐺(𝑤)] ) + 𝛿 ) ,      (17) 

for all 𝑛 ∈ ℕ. 
We divided the discussion into two cases: 
Case 1: 𝑑(𝑤, [𝐺(𝑤)] ) ≤ lım

→
𝑑 (𝑟 , [𝐺(𝑤)] ). 
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Case 2: 𝑑(𝑤, [𝐺(𝑤)] ) > lım
→

𝑑 (𝑟 , [𝐺(𝑤)] ). 

In this Case 1, there exists a subsequence {𝑟 } ∈ℕ of {𝑟 } ∈ℕ having the property that  

lim
→

𝑑( 𝑟 , [𝐺(𝑤)] ) ≥ 𝑑(𝑤, [𝐺(𝑤)] ), so for every 𝜀 > 0 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑘 ∈ ℕ such that 

𝑑(𝑤, [𝐺(𝑤)] ) − 𝜀 ≤ 𝑑 𝑟 , [𝐺(𝑤)] , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ ℕ and 𝑘 ≥ 𝑘 . 

Thus, using (17) we get 

𝑑(𝑤, [𝐺(𝑤)] ) − 𝜀 ≤ 𝜇 max 𝛿 , 𝑐𝑑 , 𝑐𝑑(𝑤, [𝐺(𝑤)] ), 𝑠(𝛿 + 𝑑(𝑤, [𝐺(𝑤)] ) + 𝛿 )) , 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ ℕ and 𝑘 ≥ 𝑘 .               (18) 

By, applying lim
→

𝑖𝑛 (18) we get  

𝑑(𝑤, [𝐺(𝑤)] ) − 𝜀 ≤  𝜇 max 𝑐𝑑(𝑤, [𝐺(𝑤)] ),
𝑑𝑠

2
𝑑(𝑤, [𝐺(𝑤)] ) , 

= 𝑑(𝑤, [𝐺(𝑤)] ) max  𝜇𝑐, , ∀𝜀 > 0, so 

𝑑(𝑤, [𝐺(𝑤)] ) ≤ 𝑑(𝑤, [𝐺(𝑤)] ) 𝑚𝑎𝑥  𝜇𝑐, .     (19) 

Since, 

𝑚𝑎𝑥  𝜇𝑐, < 1, and using (19) we conclude that 

𝑑(𝑤, [𝐺(𝑤)] ) = 0, 𝑖. 𝑒., 𝑤 ∈ [𝐺(𝑤)] . Hence 𝐺 has a FP. 
In this case 2, there exists 𝑛 ∈ ℕ such that 

𝑑(𝑟 , [𝐺(𝑤)] ) ≤  𝑑(𝑤, [𝐺(𝑤)] ), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ, 𝑛 ≥ 𝑛 .    (20) 

Since,  

𝑑(𝑤, [𝐺(𝑤)] ) ≤ (𝑠(𝛿 + 𝑑 𝑑(𝑟 , [𝐺(𝑤)] ) , i.e., 

( ,[ ( )] )
− 𝛿 ≤ 𝑑(𝑟 , [𝐺(𝑤)] ),  

using (17) and (18), we get 

𝑑(𝑤, [𝐺(𝑤)] )

𝑠
− 𝛿 ≤  𝑑(𝑟𝑛+1, [𝐺(𝑤)] ), 

𝑑(𝑟𝑛+1, [𝐺(𝑤)] ) ≤ 𝜇 max 𝛿 , 𝑐𝑑 , 𝑐𝑑(𝑤, [𝐺(𝑤)] ),
𝑑

2
(𝛿 + 𝑑(𝑟𝑛, [𝐺(𝑤)] ) + 𝛿 ) , 
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≤ 𝜇 max 𝛿 , 𝑐𝑑 , 𝑐𝑑(𝑤, [𝐺(𝑤)] ), (𝛿 + 𝑑(𝑤, [𝐺(𝑤)] ) + 𝛿 ) ,  (21) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ, 𝑛 ≥ 𝑛 . 

By applying lim
→

in (21) we get 

𝑑(𝑤, [𝐺(𝑤)] ) ≤ 𝜇 max 𝑐𝑑(𝑤, [𝐺(𝑤)] ),
𝑑

2
𝑑(𝑤, [𝐺(𝑤)] ) , 

= 𝜇𝑠 𝑚𝑎𝑥 𝑐, 𝑑(𝑤, [𝐺(𝑤)] ).       (22) 

As we know that  

𝜇𝑠 𝑚𝑎𝑥 𝑐,
𝑑

2
< 1, 

using (22) we find that 𝑑(𝑤, [𝐺(𝑤)] ) = 0, i.e., 𝑤 ∈ [𝐺(𝑤)] . Hence 𝐺 has a FP. 

Application 

Theorem 8. Consider that (Ω, 𝑑, 𝑠) be a complete b-MS. A multi-valued mapping 𝐴: Ω → 𝐶𝐵(Ω) 
has an FP provided that it satisfied the following two conditions. 

a) There exist 𝑐, 𝑑 ∈ [0,1] and 𝜇 ∈ [0,1) such that 
𝐻(𝐴(𝑟 ), 𝐴(𝑟 )) ≤ 𝜇𝑁 , (𝑟 , 𝑟 ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 , 𝑟 ∈ Ω, 
where 

𝑁 , (𝑟 , 𝑟 ) = 𝑚𝑎𝑥 𝑑(𝑟 , 𝑟 ), 𝑐𝑑(𝑟 , 𝐴(𝑟 )), 𝑐𝑑(𝑟 , 𝐴(𝑟 )),
𝑑

2
𝑑(𝑟 , 𝐴(𝑟 )) + 𝑑(𝑟 , 𝐴(𝑟 )) , 

b) max{𝜇𝑐𝑠, 𝜇𝑑𝑠} < 1. 
Proof. Consider an arbitrary mapping 𝑆: Ω ⟶ (0, 1] and a fuzzy mapping 𝐺: Ω →  𝐹(Ω ) defined 
by 

𝐺(𝑥)(𝑡) =
𝑆𝑥    𝑡 ∈ 𝐴𝑥
0     𝑡 ∉ 𝐴𝑥.

 

Then for 𝑥 ∈  Ω, 

[𝐺𝑥] =  {𝑡: 𝐺(𝑥)(𝑡) ≥ 𝛼} = 𝐴𝑥. 

Therefore, Theorem 7 can be applied to obtain the required fixed point. 
Corollary 4. Consider that (Ω, 𝑑, 𝑠) be a complete MS. A fuzzy mapping 𝐺: Ω → 𝐹(Ω) has an FP 
provided that it satisfies the following two conditions. 

a) There exist 𝑐, 𝑑 ∈ [0,1] and 𝜇 ∈ [0,1) such that 
𝐻([𝐺(𝑟 )] ), [𝐺(𝑟 )] ) ≤ 𝜇𝑁 , (𝑟 , 𝑟 ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 , 𝑟 ∈ Ω, where α ∈ (0,1], 
[𝐺(𝑟 )]  𝑎𝑛𝑑 [𝐺(𝑟 )]  are closed and bounded subsets of Ω and 
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𝑁 , (𝑟 , 𝑟 ) = 𝑚𝑎𝑥 𝑑(𝑟 , 𝑟 ), 𝑐𝑑(𝑟 , [𝐺(𝑟 )] ), 𝑐𝑑(𝑟 , [𝐺(𝑟 )] ),
𝑑

2
𝑑(𝑟 , [𝐺(𝑟 )] )

+ 𝑑(𝑟 , [𝐺(𝑟 )] ) ; 

b) max {𝜇𝑐𝑠, 𝜇𝑑𝑠} < 1. 

4. Conclusions 

In mathematics and the branches of science, such as engineering, game theory, optimization, 
economic theories, and numerous other disciplines, FP-theory plays a major role. Imprecision has a 
major influence on a human's life. The implementation of FS theory to deal with ambiguity in logistical 
considerations has been remarkably effective and well-liked. Outstanding advancements in science 
and technology have been accomplished by fuzzy techniques, and this has made a huge difference in 
how problems in daily life are solved. In this study, fuzzy fixed points are investigated using 
contemporary fuzzy approaches in the context of a complete b-MS. Various generalized Nadler’s type 
contractions are used for this purpose. We have generalized a lot of helpful and applicable findings 
from the body of literature in this way. 
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