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1. Introduction

With the introduction of fuzzy set (FS) theory, it actually became much easier to solve problems
in the real world since it clarified and improved the explanation of fuzziness and faults. The ability to
understand confusion emerging in various materialistic conditions is now a widely accepted concept.
Fuzzy logic is a statement that may be right or wrong, or even have a value between them. It is intended
to deal with the perception of partial truth. The membership function characterized the degree of truth
in this logic. A membership function for a set W is any map from W to the unit interval. The value 0
denotes false, the value 1 denotes truth, and the value between 0 and 1 denotes partial truth. FS theory
is applied to fuzzy control systems as it is a modest and natural addition to the ordinary set theory.
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In 1922, Banach [1] generated an important result in the metric fixed point (FP) theory. For
existence and uniqueness theorems in various disciplines of analysis, the Banach contraction principle
is a key source and is widely regarded as the influential research of modern exploration. It guarantees
the uniqueness of FP while also ensuring its existence. Banach's contraction theorem was expanded in
1969 by Nadler [2], who also demonstrated an FP theorem for multivalued contractions.

The search of FP for multi-valued mapping (MVM) was mainly started by von Neumann [3]. The
improvement in FP theory for MVM was basically originated with the work of Nadler [2]. He
connected the idea of MVM and Lipschitz mapping and used the perception of Hausdorff metric (HM)
to settle the multivalued contraction principal, generally known as Nadler’s contraction mapping
principle. Many investigations were conducted into the generalizations of the concept of Nadler’s
contraction mapping principle (see [4—10] and references therein).

The intensification and exploration of many advanced areas such as robotics, artificial intelligence,
general system theory and language theory compelled us to participate in the enumeration of ambiguous
concepts. In 1965, Zadeh [11] was the first to mention the concept of fuzzy logic. The affiliation of an
element to the set in the theory of fuzzy logic is given as a number from the interval [0,1], unlike in the
theory of classical logic, where an element either belongs to the set or not. Zadeh has been studying
the theory of FS to address the issue of indeterminacy because uncertainty is a crucial component of a
genuine problem. Heilpern [12] introduced the theory of fuzzy mappings (FM) and established a
theorem on fixed points for FM of contractions in metric linear space, which serves as a fuzzy
generalization of Banach's contraction principle. This sparked the interest of numerous authors to
investigate various contraction conditions using FM. FP theory produces valuable results which are
very useful in solving optimization problems and physics. FP theorems in fuzzy mathematics are
gaining popularity as a source of hope and vital confidence. Weiss [13] and Butnariu [14] were the
first who interpret the FP and fuzzy mappings.

The idea of b-metric space (b-MS) was first presented by Backhtin [15]. Czerwik [16] extracted
the b-MS results in 1993. Many scholars generalized the Banach contractive principle in b-MS by
embracing this theory. The existence of FP and common FP of FM satisfying the contractive type
criterion is deduced and estimated by several authors (see [17-20] and references therein). Many
authors established wonderful results regarding fixed points and common fixed points for fuzzy and
non-fuzzy mappings in b-metric spaces and in its various generalizations for example see ([21-26] and
references therein).

The structure of paper is as follows:

In Section 2, some necessary concepts are recalled to facilitate the readers. All these prerequisites
are collected from previous research articles exist in the literature. Section 3 deals with some
theoretical results. In this study, we have established fuzzy FP results of set-valued FM satisfying
generalized contractions of Nadler’s type in the setting of complete b-metric spaces. The obtained
results are furnished with applications. Previous results are given in the form of corollaries of obtained
results.

2. Preliminaries
The motivation behind this section is to facilitate the readers to have comprehensive knowledge about

the fundamental definitions, examples and lemmas that are necessary to understand our established results.
All these essentials are collected from previous research articles exist in the literature.

AIMS Mathematics Volume 8, Issue 5, 10177-10195.
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2.1. b-Metric space [15]

Let Q be any non-empty set and s = 1 be any real number. A function d: Q X Q@ - Rt U
{0} is called a b-MS, if it holds these conditions for all w,¢,n, € :

(Hd(w, &) = 0if and only if w = §&;

2)d (w,$) = d (§, w);

B)d (w,n) = s[d (@,§) +d(§,m].
Then, (£2,d,s) is called as a b-MS.
Example 1. The 1,(2) with 0 < p <1,where [,(2) = {{up} € R: X7 |unlP < o0}, together
with the function d:1,,(2) X [,(£2) - [0,00) defined as:

d(1,w) = (Nl — wnl?) 7P,

where u = {un}, w = {wy} € ,(N2) is a b-MS with s = 2% > 1. Notice that the above-mentioned
results hold with 0 < p < 1, where Q is a b-MS.

Example 2. Let 2 ={g,h,x} and d(g,h) =d (h,g) =d(h,x) =d(x,h) =1andd (g,x) =

d (k,g) =m = 2. Then,

A, 0) < 2 1d (o) + d@,@)],

forall y,v,w € Q.Now if m > 2, then (£2,d,s) is b-metric space with s=m/2 while ordinary
triangle inequality is not satisfied for m > 2, for example if m=3, then d(g,k) £d (g,h) +
d(h,k),i.e,3£1+1.

2.2. Completeness in b-metric space

Let (2,d,s) be ab-MS and {w,} be a sequence in Q. Then

(1) {w,} is called a convergent sequence iff 3 z € £, such that forall € > 03n(¢) €N s.t. for
all n > n(g), we have d(wy,, z) < €. Then, we can write lim w, = z.

n—-oo

(2) {w,} is said to be a CS iff for all €e>03n(c) EN st Vm,n= n(s), we have
d(wy,, w) < &.

£ is called complete if every CS in {2 is convergent in it.
Note: CB(Q) denotes the family of closed and bounded subsets of metric space (.

2.3. Hausdorff metric space [2]

Let (£,d) be a MS. We define the Hausdorff metric on CB({) induced by d as:

H (A,B) = max { supd(u,B),supd(4,v)},
UeA VeB

forall A,B € CB(2). Here d (u,B) = inf {d (u,n):n € B}.
Lemma l.Let G, K€ CB(Q) .If u € G then, d (u,K) < H (G,K), forall u€aG.
Lemma2.Let P, Q € CB(Q) and 0 < o € R. Then, for all i € P, there exists { € Q such that

AIMS Mathematics Volume 8, Issue 5, 10177-10195.
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d(i,{)<H(PQ)+o.
Lemma 3. If P,Q € CB(2) with H (P,Q) < ¢, then for all u € P there exists v € @ such that
d (u,v) <e.
Lemma 4. [13]If P € CB{Q} then d(u,P) <d (u,v), forall v € P.
Lemma 5. [5] Let (£2,d,s) be ab-MS. Forany P,Q,R € CB(2) and any u,v € 2, we have following
properties:

(1) d(u,Q) < H(P,Q) forallu € P;

(2) §(P,Q) < H(P,Q); where 6(P,Q) = inf{d(u,v): e Pandv e Q};

(3) H(P,P) = 0;

(4) H(P,Q) = H(Q,P);

(5) H(P,R) < s[H(P,Q) + H(Q,R)];

(6) d(u,P) <s[d(u,v) +d(v,P).
Lemma 6. [5] Let (2,d,s) be a b-MS. For Z € CB(f2) and pu € ), we have d(u,Z) =0iff u €
Cl (Z) = Z,where Cl(Z) is the closure of the set Z in Q.
Lemma 7. [27] Consider d, < Amax{d,,d,}+ és(dy +d;), where A,¢,s,djand d, are non-
negative reals such that 1 + 2s < 1. Then we have,

&s A+s

d2 < max {m'l—_fs} 1-

2.4. Closed mapping [28]

Let (2,d,s) be a b-MS. A mapping G:Q — CB(Q) is called closed if for all sequences
{Mutneny and {{p}nen of elements from Q and n,{ € Q such that limn, =7, lim {, ={ and
n—-oo n—-oo

{, € G({,) forall n € N, wehave ¢ € G().
2.5. x-Continuity of b-metric [28]

Let (£2,d,s) beab-MS. The b-metric d is called *-continuous if forall A € CB(Q), n € Q and
each sequence {n,}neny Of elements from () such that lim n, =n, we have limd(n, 4) =
n—oo n—oo

d(n, A).
Lemma 8. [29] Every sequence {v,} ofab-MS ({2,d,s), having the property that there exists u €
[0,1) such that d(v,4q,v,) < ud(vy,, v,_1),foralln € N U {0}, is Cauchy.

2.6. Fuzzy set [11]

Let Q be auniversal set. Amapping G:Q — [0,1] is called a fuzzy setin (). The value G (u)
of G at u € Q) stands for the degree of membership of u in G. The set of all fuzzy sets in 0 will
be denoted by F(Q).

G(u) = 1 means full membership, G(u) = 0 means no membership and intermediate values
between 0 and 1 mean partial membership.

Example 3. Let 4 denotes the old and B denotes the young and ¥ = /0, 100]. Then 4 and B both

are fuzzy sets that are defined by

AIMS Mathematics Volume 8, Issue 5, 10177-10195.
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-1

14 (A= - if 50 < x < 100
Ax) = + ( z ) , if <x<
0 , oOtherwise
x — 25\° - )
1+( ) ,  if25<x<100
B(x) = 5
0 , otherwise.

The a-level set of G is denoted by [G], and defined as
[Gla={ueQGw) =2aac (0,1]}

2.7. Fuzzy mapping [30]

Let W; be any set and W, be a metric space. A function g:¥; —» F(¥,) is called an FM. An
FM g isan FS on ¥W; X ¥, with membership function g(x)(y). The image g(x)(y) is the grade
of membership of y in g(x).

2.8. Fuzzy fixed point [17]

Suppose (¥,d) isaMS and T:¥ - F(¥). A point z €W is a fuzzy FP of T if z € [Tz],
for some a € (0,1].

2.9. Nadler type contraction for fuzzy mappings

Let (Q,d,s) be acomplete b-MS and G:Q — F(Q) be an FM. For all u, v € (Q, then,
H([G(W]a [6(V)]a) < Nggp,c(w,v), forallu,v e Q,

where,
Ng,ep,c(u, v) = a max {d(u, v), kd(w, [G(W)]a), kd (v, [G (V)] o} + bd (u, [G(V)])
+ cd(, [G(W)]a),
where a,b,c > 0,k € [0,1],a + 2smin{b,c} < 1,a € (0,1],and [G ()], [G (V)]s € CB ().

3. Fixed points of fuzzy mappings for Nadler’s type contractions in b-metric spaces

In the framework on b-metric spaces some existence theorems regarding fuzzy fixed points of
fuzzy mappings satisfying various types of contraction conditions are established and some results for
multi-valued mappings are incorporated. Moreover, other direct consequences are obtained as well.
These existence results will provide an appropriate environment to approximate operator equations in
applied sciences.

The following theorem guaranties the existence of fixed points of fuzzy contractive mapping
defined on a complete b-MS which satisfies any one of the conditions:

G is closed; d is * continuous; s(ak + min{b,c}) < 1.

AIMS Mathematics Volume 8, Issue 5, 10177-10195.
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Theorem 1. Let (Q,d,s) be acomplete b-MS and G: Q — F(Q) be a mapping satisfying
H([G(W]w [6(V)]o) < Nojp,e(u,v), u,v € Q, (D
where,
Naiep,c(w,v) = amax {d(u, v), kd(u, [G(W)]a), kd(v, [G(V)]a} + bd(w, [G(V)])

+cd(v, [G(W)]a),

foralla,b,c,k = 0, suchthatk € [0,1],a + 2s min{b,c} < 1,a €
(0,1],and [G(w)],, [G(V)], are in CB (12). Then, there exists a sequence {uy}ney in Q
converges to some point u* € Q such that u, ., € [G(u,)], for everyn € N. Also, u* is an FP
of G if one of the following conditions is satisfied:

(1) G isclosed;

(2) d is * continuous;

(3) s(ak + min{b, c}) <I.
Proof. Let uy € Q. Choose u; € [G(uy)],. Let

1—

£ = — H([G(up)]a [6 (wo)]a),

1+q

where g = a + 2s min{b, c}. If,

H([G(u1)]q [G(up)la) = 0 then we obtain [G(uy)]y = [G(uo)]y and ug € [G(ug)]e-
In this case the proof is completed.

So, we may assume ¢ > 0. By Lemma 2, there is a point u, €[G(u;)], such that

) < HAGCo)]er 16 C)]e) + & = 1= HG e [6 )]

Similarly, there is a point us; € [G(u;)], such that
d(uz uz) < H([G(up)]a [G(u2)]a) + &,
where,

1906 G
S—m (16 (up) e, [G(ug)]e).

If H([G(u;)]q [G(uy)],) = 0. Then we infer that
[G(u2)]e = [G(uy)]a-

In this case the proofis completed.
So, we may assume that € > 0. Hence

At 5) < 1= M6 ()] (6o

Continuing in this process, we construct a sequence {u,},cn of points of Q such that

Un+1 € [G(un)]a, V1 € N U {0}, 2)

AIMS Mathematics Volume 8, Issue 5, 10177-10195.
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A tns1) < 72 H(G ()] [6 (wn)]a), Y € N. 3)

Case 1.
Consider that ¢ = min{b, c}.
Using given contraction in (1) we get

d(un, un—l)i kd(unl [G (un)]a)l}
kd(un—1, [G(un-1)]a)

+bd (uy, [G(un-1)]a) + cd(Un_1, [G(Un)]a).
H([G(un)]a [G(un-1)]a) < a max{d(un, un—1), kd (Un, Up11), kd (Un_1, up)}
+bd (uy, uy) + cd(Up_1, Ups1)-
H([G(un)]a [G(un-1)]a) < a max{d(un, up—1), kd(Un, Up41), } + cd(Un_1, Un41),
H([G(un)]a [G(un-1)]a) < a max{d(un, up-1), kd(Un, Up+1),}
+es[d(un—1, un) + d(Un, Ups1)].

H([G W) [6(un]a) < a max{

Using (3) we get

d(Uy, Upsq) < [a max{d(u,, u,_1), kd(uy, Ups1)} + cs(d(un_l,un) + d(u,, un+1))].

1+gq

Now, since

+2 = 29 <1
1+q(a CS)_1+q ’

using Lemma 7, we get
d(Uns1, Un) < q1d(Up, Up—y), (4)

where q; = max {%,E} <1
Case 2.

Consider that b = min{b, c}.
Using case 1, we get

H([G(un—l)]ar [G(un)]a) <a max{d(un—lrun)r kd(un; un+1)} + bs[d(un—liun) + d(un'un+1)]-

Using (3), we get

2
d(un; un+1) < 1+ q [amax{d(un—l; un); kd(un'un+1)} + bs(d(un—l; un) + d(un; un+1))]-

We know that

2 obsta)=—"L <4
q+1( S a)_q+1 ’

using Lemma 7, we get

AIMS Mathematics Volume 8, Issue 5, 10177-10195.
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d(Unt1, Un) < q2d(Un, Up—1), (5)
where g, = max {%,%} <1
As q; < 1and g, < 1, using Lemma 8 together with (4) and (5) we get the sequence {u,},ey 1S a
CS. Since (,d,s) is acomplete b-MS, the sequence {u,}, ey converges to some point u* € Q.
(1) Suppose that G is closed.

Using the definition of a closed mapping and (2) we get
u* € [G(u")],-

(2) Consider that d is * continuous.
Then, we can write

lim d(up, [6(W)]e) = d@W, [6(W)]o), where [G(w)]q € CB(Q).  (6)

Using Lemma 5 and (2) we get
d(up+1, [G(WN)]e) < HAG(Wn)]a [G(W)]a)
< amax{d(un, u"), kd(un,, [G(un)]a), kd (", [G(u)]o)}
+bd (un, [G(u)]e) + cdW’, Uun4q)
< amax{d(u,, u"), kd(uy, un+1), kd (", [G(u")]o)}
+bd (un, [G(u)]e) + cd(W’, up4q),
and
d([6(W)]a un+1) < HAGW)]a [G(Un)]a)
< amax{d(u’, uy), kd(un,, [G(un)]a), kd (", [G(u)]o)}
+ed(un, [6(W)]e) + bd (W', [G(un)]a)
< amax{d(u’, up), kd(uy, un+1), kd (", [G(u")]o)}
+ed(un, [6(W)]e) + bd (U, Uy 4q).
Using (6) we get
d(u”, [G(uM)]) < (ak + b)d(u", [G(u)]a), ()
d([6¢(w)],u*) < (ak + c)d([G(uM)],u). (8)
Since,
ak + b < a + 2smin{b, c},or,ak + ¢ < a + 2s min{b, c},

we conclude that d(u*, [G(u*)],) = 0 and from Lemma 6, we get u* € [G(u*)],.
(3) Suppose s(ak + min{b, c}) <1.

Case (a)
Let min{b, c}= b then s(ak + b) < 1. Since,

d(un+1, [6(W)]e) < amax{d(un, u"), kd(up, un+1), kd(W", [G(u")]q)}

AIMS Mathematics Volume 8, Issue 5, 10177-10195.
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+bd(up, [6(W)]e) + cd(U”, Uny1), )
and,
d(uy, [G(u)]e) < s[d(up, Un1) + d(Unir, [G(UD]e), (10)
so, we have
(1 = bs)d(un+1, [6(W)]e) = amax{d(uy, u*), kd(up, tun4+1), kd@W’, [G(u)]q)}
+ bsd Uy, Upsq) + cd(U”, Upyq). (11)
As, we know that 1 — bs > 0, inequalities (9), (10) and using triangular inequality, we get

d(u”, [6(u")]a)

= Sd(u*, un+1)

[a max{d(un: u*): kd(unr un+1): kd (u*, [G (u*)]a’)} + bSd(unl un+1)

N S
1—sb
+ Cd(u*r un+1)]-

Taking lim we get
n—->oo

A, [6)]e) < (1) A, [6(u)]a). (12)

1-bs

ksa

As, we know that ( ) < 1 and from (12), we get

—bs
diw*, [G(u)],) =0,i.e.,
u* € [G(u)],-

Case (b)

Consider min {b, ¢} =c, then s(ak + ¢) < 1. Then proof will be completed similar as in Case (a).
Hence from all above cases we conclude that there exists a fixed point of G if any one condition from
(1)—(3) is satisfied.

Application

Theorem 2. (Fixed points of multi-valued mappings)

Let (Q,d,s) be a complete b-MS and A: Q — CB(Q) be a multi-valued-valued mapping
satisfying

H(A(u),A(v)) £ Ngyp(u,v), forallu,v € Q,

where,
Ngipc(w,v) = amax {d(u,v), kd(u,A(w)), kd(v,A(v)} + bd(u, A(v)) + cd(v, A(u)),

foralla,b,c,k = 0, suchthatk € [0,1] and a + 2s min{b, c} < 1.
Then there exist a sequence {u,},eny in  converges to some point u* € {1 such that
Ups1 € A(uy,), for everyn € N. Also, u* is an FP of ‘A" if one of the following conditions is

AIMS Mathematics Volume 8, Issue 5, 10177-10195.
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satisfied:

(1) A is closed;

(2) d is * continuous;

(3) s(ak + min{b, c}) < 1.
Proof. Consider an arbitrary mapping S: Q — (0,1] and a fuzzy mapping G: Q) — F(Q) defined
by

c@0O={" ¢ ax

Then for x € Q,
[Gx], = {t: G(x)(t) = a} = Ax.

Therefore, Theorem 1 can be applied to obtain u* € Q such that u* € [Gu*],=Au".
Corollary 1. Let (Q,d) be acomplete MS and G: Q) — F({) be a fuzzy mapping satisfying

H([G(u)]a' [G(U)]a) < Na,k,b,c(u' U), uveE Qa

where,

Naiep,c(w,v) = amax {d(u, v), kd(u, [G(wW)]a), kd(v, [G(V)]a} + bd(w, [G(V)])
+ cd(v, [6(W]o),

foralla,b,c,k =0 , suchthatk € [0,1],a + 2min{b,c} < 1,a € (0,1],and [G(w)],, [G(V)], in
CB(12). Then, there exists a sequence {u,l}ln,eny in Q converges to some point u* € 0 such that
Up4+q € [G(u,)], foreveryn € N. Also, u* is an FP of G if one of the following conditions is
satisfied:

(1) G 1is closed;

(2) d is * continuous;

(3) s(ak + min{b, c}) < 1.
Theorem 3. Consider (,d,s) be a complete b-MS. Assume that a fuzzy mapping G: Q — F(Q)
having the property that there exist ¢,d € [0,1] and p € [0,1) such that:

(i) pds<1;

(i) H{G(W)]a [G(V)]e) < pN.q(u,v)for all u,v € Q,where a €

(0,1], [G(w)]q and [G(v)], are closed and bounded subsets of Q and

Nea(u,v) = max {d(u, v), cd(w, [G(W)]y), cd (v, [G(V)]a)lg(d(u, [6(W)]) +d(W, [G(W]))}-

Then, for every u, € (, there exists y € [0,1) and a sequence {u,} of elements from Q such that
(@) Upyq € [G(u,)] foreveryne€N;
a
(b) d(ups1,uy) <yd(u, uU,—1) for everyn € N;
(¢) {un}nen is Cauchy.

Proof. Consider S € (p, min(1, Sl—d)),y = max{f, sap

2—sdf
If u; =uy then the sequence {u,},en given by u, =u, for every n € N satisfying (a)—(c).
Since, using (ii), we can write

d(u1, [G(u1)]a) < H([G(u)]a [G(u)]a < pNea(Uo, Ur) < BNe,q(Uo, Ur),

} < 1Luy € Qand u; € [G(ug)]q-

AIMS Mathematics Volume 8, Issue 5, 10177-10195.



10187

there exists u, € [G(u,)] such that
a

d(ulr uZ) < ﬂNc,d(uOr ul)-

If uy = u, thenthe sequence {u,},ey givenby u, = u,; forevery n € N satisfying (a), (b) and (¢).
By continuing this process we get a sequence {u,},ey of elements from Q such that

Ups1 € [G(un)]aand 0<d, <PBN.q(up_1,u,), foreveryn € Nyn > 1.

Because
d(Un-1, [G(Un-1)]a) < dy-s,
d(Uy, [G(un)]a) < dyp,
d(Un—1, [G(un)]e) < dUn—1, Un+1),
d(un, [G(Un-1)]a) = 0,
so, we have

O < dn < ﬁNC'd(un—lrun);

d
BN¢q (Up—1,Up) < B max {dn—li cdy, Cdn—lii d(Un—1, un+1)}

ds
< B max {dn_l, cdy, cdn_1,7d(dn_1 + dn)}

ds
S ﬁ max {dn_l,?d(dn_l + dn)},
for every n € N, where the explanation of the last inequality is stated as:
if by reduction and absurdum, max {dn_l, cdy, cdy_q, % d(d,_, + dn)} = cd,, then
we required that
0<d, <fcd, <pd,.

So, we get the contradiction 1 < .
Consequently,

dy < By or dyy < 5 d(dyy + dn),

. spd
1.€., dn < ﬁdn—l or dn < mdn_l,Vn € N.

Hence, the sequence {u,},en satisfied (a) and (b).
By using Lemma 8, we conclude that it also satisfied (c).

Application

AIMS Mathematics Volume 8, Issue 5, 10177-10195.
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Theorem 4. Consider (Q,d,s) be a complete b-MS. Let a multi-valued mapping A: Q — CB(Q)
having the property that there exist ¢,d € [0,1] and p € [0,1) such that:

(1) pds<T;
(2) HAW),A(v)) < pN;q(u,v)for allu,v € Q,

N.q(u,v) = max {d(u, v), cd(u,A(u)), cd(v,A(v)),g(d(u,A(v)) + d(v,A(u)))}.

Then, for every u, € ), there exist y € [0,1) and a sequence {u,} of elements from Q such that
(@) Upyq € A(u,) foreveryn € N;

(0) d(Unt1,Uy) < Yd(Uy 1) for everyn € N;

(¢) {up}lnen is Cauchy.
Proof. Consider an arbitrary mapping S: Q — (0,1] and a fuzzy mapping G: Q) — F(Q) defined
by

c@O={" ¢ ax

Then for x € Q,
[Gx], = {t: G(x)(t) = a} = Ax.

Therefore, Theorem 3 can be applied to obtain the required sequence in (0 and € [0,1) .
Corollary 2. Consider (Q,d,s) be a complete MS. Let a fuzzy mapping G: Q — F({1) having the
property that there exist ¢,d € [0,1] and p € [0,1) such that:

(1) pds<1;

(2) H{G(W)]a [G(W)]a) < pNg(u,v)for all u,v € Q, where a €

(0,1],[G(w)]4 and [G(v)], are closed and bounded subsets of Q and

Nea(u, v) = max {d(u,v), cd(u, [G(W]e), cd(v, [G(v)]a),g(d(u, [G(W)]) +d(, [G(W]))}-

Then, for every uy € (), there exist y € [0,1) and a sequence {u,} of elements from € such that
(@) Upyq € [G(uy)], foreveryn € N;
(b) d(upy1,un) <yd(uy,u,_q) foreveryn € N;
(¢) {un}nen is Cauchy.
Theorem 5. Consider a complete b-MS (£, d, s). A fuzzy mapping G: Q — F({) has an FP
provided that it satisfied the following conditions.
(1) dis a x continous;
(2) there exist ¢,d € [0,1] and p € [0,1) such that
H([G(r)]a) [G(12)]a) < uNcq(ry,72) for all 1y, 15 € Q, where
G(r1)]q and [G(13)], are closed and bounded subsets of Q and

d
Ncq (ry,12) = max {d(rp 13),¢d(ry, [G(11)]e), cd (1, [G(Tz)]a)’z (d(rp [G(12)]e)

+d(r [60)10)};
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(3) usd < 1.
Proof. By Theorem 3 part (i) and part (ii) there exists a CS {r;,} of elements from () such that
Tne1 € [G(17)]a foralln € N (13)

As the b-MS (Q,d,s) is complete, so there exists w € ) such that lim r, = w.

n—-oo

Then, from [2] and (13), with notation d(r,,, w) = 6,, we can write

d(Tp+1, [GW)]) < H([G(rn)]a' [GW)]a) < ﬂNc,d (1, w)

d
= emax {3y, cd (i, [6 ()], €AW, [600)]a), 5 (A [600)]0) + dw, [6G)])]
< pmax {6, cdy, cd(w, [6W)]a),5 (5 + dw, [GW)]0) + 6na1)) }, (14)

foralln € N. As d is * continous and lim r,,; = w, so we have
n—->0oo

lim §,, = lim d,, =0 and Tlll_g)lo A(Tpe, [GW)]) = d(w, [G(W)],).

n—-oo n—-oo

Now by applying lim in (14), we get
n—-oo

d(w, [6W)]a) < max {uc, 57} d(w, [6(w)]o). (15)

As max {,uc, ”;—d} < 1, by [3] and using (15) we conclude that
dw,[G(W)],) =0,i.e.,, w € [G(W)],. Hence G has a FP.

Application

Theorem 6. Consider a complete b-MS (£, d, s). A multi-valued mapping A: Q — CB(f)) has an
FP provided that it satisfied the following conditions.

(1) dis a * continous;

(2) there exist ¢,d € [0,1] and p € [0,1) such that
H(A(r1),A(13)) < uN¢ (11, 13) for all ry,r, € Q, where

d
Nea(r12) = max {d(ri, 1), cd (1, AG)), e A0)), 5 (A, AG) + A, AG))
(3) pusd < 1.

Proof. Consider an arbitrary mapping S: Q — (0,1] and a fuzzy mapping G: Q) — F(Q) defined
by

c@0O={" ¢ a
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Then for x € Q,
[Gx], = {t: G(x)(t) = a} = Ax.

Therefore, Theorem 5 can be applied to obtain w € Q such that w € [Gw], = Aw
Corollary 3. Consider a complete b-MS (Q,d,s). A fuzzy mapping G: Q — F(Q) has an FP
provided that it satisfied the following conditions.
(1) dis a *x continous;
(2) there exist c¢,d € [0,1] and u € [0,1) such that
H([G(r)]a), [G(2)]a) < uNa(ry,12) for all ry, 15, € Q, where a € (0,1],
[G(11)]q and [G(7,)], are closed and bounded subsets of ) and

d
Nc,d(TDTZ) =max {d(""prz); Cd(Tl, [G(rl)]a)' Cd(rZ' [G(rZ)]a)'E (d(Tl, [G(TZ)]a)
+d0, 1601}

(3) usd < 1.
Theorem 7. Consider that (Q,d,s) be a complete b-MS. A fuzzy mapping G: Q — F({1) has an
FP provided that it satisfied the following two conditions.
a) There exist ¢,d € [0,1] and p € [0,1) such that
H([G(r)]a), [G(2)]a) < uNa(ry,12) for all ry, 15 € Q, where a € (0,1],
[G(11)]q and [G(7,)], are closed and bounded subsets of ) and

d
Nc,d (Tl, TZ) = max {d(Tl, TZ); Cd(Tl, [G (rl)]a')i Cd(rZ' [G(TZ)]a)'E (d(Tl, [G (TZ)]O_’)
+d0, 1601}

b) max {ucs, uds} < 1.
Proof. By Theorem 3 part (i) and part (ii) there existsa CS {r;;} of elements from € suchthat r,,; €
[G(1)]a for alln € N.
As the b-MS (Q,d,s) is complete. Therefore, there exists w € ) such that

lim r, = w. (16)

n—oo

Then, from (a) and equation (16), with notation d(r,, w) = &,, we can write

d(rn+1' (G (W)]a) < H([G(rn)]a' [G(W)]a) < .UNc,d(rnr w)

d
= pmax {8y, ¢ [6 00)]e), cdw, [6)]a). 5 (Al [6W)]) +dw, [6G01))),

< umax {8y, cdy, cd(w, [GW)]0),§ (5B + AW, [6(W)]0)) + Sns)}, (17)

foralln € N.

We divided the discussion into two cases:

Case1: d(w,[G(W)],) < Im d (13, [G(W)] ).
n—0o
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Case2: d(w,[G(W)],) > Tlll_g)lo d (r, [G(W)]L).

In this Case 1, there exists a subsequence {7y, }xen Of {1 }nen having the property that

I}im d( Ty, [GW)]) = d(w, [G(W)]g), so for every € > 0 there exists k, € N such that

dw,[G(W)],) — & < d(rnk+1, [G(W)]a),fOT' allk €N and k > k..
Thus, using (17) we get

dw, [6W)]o) — & < pmax {8y, cdy, cdw, [6W)),5 (58, + AW, [6W)]R)) + 8y ) -
forallk €N and k = k.. (18)

By, applying I}l_{g in (18) we get

d
A, [6W)]) — & < pmax fed(w, 61, 5 dw, 61},

=dw, [G(W)],) max{yc, “Tds},v‘s > 0, so

dw, [GW)]) < dw, [6(W)]a) max { ue, 57}, (19)

Since,
max { Uc, qus} < 1, and using (19) we conclude that

diw,[G(W)],) =0,i.e., w € [G(W)],. Hence G has a FP.
In this case 2, there exists ny € N such that

d(r, [G(W)],) < dw,[G(W)],), for alln € N,n = n,. (20)

Since,

dw, [6(W)]a) < (5(8p41 + d(d(r, [EW]D), ie.,

w6l _ 5 < d(1ar, [6W)]R),

using (17) and (18), we get
d(w,[GW)]a)

S - 6n+1 = d(rn+1: [G(W)]a):

d
A1, 16O < pmax {8, cd, cdW, [600)10), 5 Gn + A 6 + Sns)},
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< umax {6, cdy, cd(w, [6W)]a),5 (6 + AW, [6W)]e) + 8ni1) ), 1)
foralln € N,n = n,.

By applying rlll—{rolo in (21) we get

d
AW, [6W)]) < pmax{edw, [6()]o), 54, [600)]0)},

d
= us max {c, E} d(w, [6(W)],). (22)
As we know that
d
Us max {c, E} <1,
using (22) we find that d(w, [G(w)],) =0, i.e., w € [G(W)],. Hence G has a FP.
Application

Theorem 8. Consider that (,d,s) be a complete b-MS. A multi-valued mapping A: Q@ — CB(Q)
has an FP provided that it satisfied the following two conditions.
a) There exist ¢,d € [0,1] and u € [0,1) such that
H(A(11),A(12)) < uNcq(ry,72) forallm,r, € Q,
where

d
Nea(r12) = max {d(r, 1), cd(ry, AG)), e A()), 5 (A, AG) + A, AG)))}

b) max{ucs, uds} < 1.
Proof. Consider an arbitrary mapping S: Q — (0,1] and a fuzzy mapping G: Q — F(Q) defined
by

c@0O={" ¢ A

Then for x € Q,
[Gx], = {t:G(x)(t) = a} = Ax.

Therefore, Theorem 7 can be applied to obtain the required fixed point.
Corollary 4. Consider that (£, d,s) be a complete MS. A fuzzy mapping G: Q — F({) has an FP
provided that it satisfies the following two conditions.
a) There exist ¢,d € [0,1] and u € [0,1) such that
H([G(r1)]a), [G(r2)]a) < uUN 4(ry, 1) for all vy, 1, € Q,where a € (0,1],
[G(11)]q and [G(7;)], are closed and bounded subsets of ) and
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Nea(rms) = max{d(n, ), cd(r, [6 010D, e [60)]e) 5 (A0, [6 1)
+d(r 6010}
b) max {ucs, uds} < 1.
4. Conclusions

In mathematics and the branches of science, such as engineering, game theory, optimization,
economic theories, and numerous other disciplines, FP-theory plays a major role. Imprecision has a
major influence on a human's life. The implementation of F'S theory to deal with ambiguity in logistical
considerations has been remarkably effective and well-liked. Outstanding advancements in science
and technology have been accomplished by fuzzy techniques, and this has made a huge difference in
how problems in daily life are solved. In this study, fuzzy fixed points are investigated using
contemporary fuzzy approaches in the context of a complete b-MS. Various generalized Nadler’s type
contractions are used for this purpose. We have generalized a lot of helpful and applicable findings
from the body of literature in this way.
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