
AIMS Mathematics, 8(4): 9832–9839. 

DOI: 10.3934/math.2023496 

Received: 07 November 2022 

Revised: 30 January 2023 

Accepted: 06 February 2023 

Published: 22 February 2023 

http://www.aimspress.com/journal/Math 

 

Research article 

Some conditions for sequences to be minimal completely monotonic 

Xifeng Wang* and Senlin Guo 

College of Science, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China 

* Correspondence: Email: wang-xifeng@hotmail.com. 

Abstract: In this article, we establish some necessary conditions for sequences to be minimal 

completely monotonic. We also present some properties for completely monotonic sequences. 

Keywords: completely monotonic sequence; completely monotonic function; Hausdorff Theorem; 

minimal completely monotonic sequence 

Mathematics Subject Classification: 44A60, 44A10 

 

1. Introduction and main results 

We will first introduce some definitions and some basic results on completely monotonic sequences. 

Recall that [8] a sequence  is called to be completely monotonic if 

       (1) 

where 

          (2) 

and 

        (3) 

Here, in (1) and throughout the paper,  and  is the set of all positive integers. Such a 

sequence is called totally monotonic in [21]. 

In [9] the authors showed that for a completely monotonic sequence  we always have 
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unless , a constant for all . 

Hausdorff [8] proved the following fundamental result, in terms of Stieltjes integrals, for 

completely monotonic sequences (Hausdorff Theorem): a sequence  is completely monotonic 

if and only if there exists a non-decreasing and bounded function  on the interval  such that 

        (4) 

Also recall that [19] a sequence  is called minimal completely monotonic if it is 

completely monotonic and if it will not be completely monotonic when  is replaced by a number 

which is less than . 

In [5] the author proved that for each completely monotonic sequence  there exists one 

and only one number  such that the sequence 

 

is minimal completely monotonic. 

One of the results of [6] is that: suppose that the sequence  is completely monotonic and 

that the series 

 

converges. Let  be such that 

 

Then the sequence  is completely monotonic. 

In [15] the following result, among others, was established. Suppose that the sequence  

is completely monotonic and that the series 

         (5) 

converges. Let 

        (6) 

Then the sequence 

 

is minimal completely monotonic. 
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We also note that in [15] the authors gave a counterexample showing that complete monotonicity 

of the sequence  cannot guarantee the convergence of the series 

          (7) 

A function f is said [1] to be completely monotonic on an interval I, if f is continuous on I, has 

derivatives of all orders on  (the interior of I ) and for all  

        (8) 

In [10] the authors showed that if the function  is completely monotonic on the interval , 

the sequence  is completely monotonic and , then the sequence  is 

completely monotonic. 

The following result was obtained in [5]. Suppose that the sequence  is completely 

monotonic. Then for any , there exists a continuous interpolating function  on the 

interval  such that  and  are both completely monotonic and  

For the operation of pointwise convergence, the author [20] showed that suppose that for , the 

function  is completely monotonic on the interval I, where  or . If the limit function 

 

exists on the interval I, then  is completely monotonic on I. 

Here we would like to point out that in the result above the interval I cannot be  or . For 

example, let 

 

and  or . 

It is easy to verify that 

 

Hence  is completely monotonic on the interval . The limit function 

 

Clearly the function   is not completely monotonic on the interval   because   is not 

continuous on . 

There is rich literature on completely monotonic functions and completely monotonic sequences, 

and their applications. For more recent works, see, for example, [2–7,11–18]. 

In this article, we shall further investigate completely monotonic and minimal completely 

monotonic sequences. By using the Hausdorff Theorem, some necessary conditions for sequences to 
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be completely monotonic are presented and proved. Also some properties of minimal completely 

monotonic sequences are established. The main results of the article are as follows. 

Theorem 1. Suppose that the sequence  is completely monotonic. Then, for any  and 

any , the series 

 

converges and 

       (9) 

Theorem 2. Suppose that the sequence  is completely monotonic. Then, for any , the 

series 

 

converges and 

        (10) 

Theorem 3. Suppose that the sequence  is minimal completely monotonic. Then, for any 

 , the series 

 

converges and 

        (11) 

Theorem 4. Suppose that the sequence  is minimal completely monotonic. Then, for any

 , the series 

 

converges and 

       (12) 
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2. Lemmas 

Lemma 1. If the sequence  is completely monotonic, then for all  

       (13) 

where  is a non-decreasing and bounded function on the interval . 

Proof of Lemma 1. Let . When  by (2) and the Haudorff Theorem, we see that (13) is true. 

Now suppose that (13) is true for  By (3) and (4) we have 

 

which means that (13) is also true for  By induction we see that (13) is true for all  The 

proof of Lemma 1 is completed. 

Lemma 2 ([15]). Suppose that the sequence  is minimal completely monotonic. Then the 

series 

 

is convergent and 

 

3. Proof of the results 

We now prove the main results of the paper. 

Proof of Theorem 1. For  and , by Lemma 1, we have 

 

     (14) 
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Since the function  attains its maximum on the interval  at , we have 

 

By the Hausdorff Theorem we obtain 

 

Since 

 

we have 

. 

Consequently, 

. 

Then from (14) we obtain 

      (15) 

That is, 

       (16) 

Therefore the series 

 

converges and 

       (17) 

The proof of Theorem 1 is completed. 

Proof of Theorem 2. Let  be zero. Then from Theorem 1 we can acquire the conclusion. 

The proof of Theorem 2 is hence completed. 
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Proof of Theorem 3. If  then from Lemma 2 we can obtain the conclusion. If  in view 

that a minimal completely monotonic sequence is also completely monotonic, then from Theorem 2 

we can obtain the conclusion. 

The proof of Theorem 3 is thus completed. 

Proof of Theorem 4. Let  be a fixed non-negative integer. Then from Theorem 3 we see that 

        (18) 

which means that (12) is valid for . 

Suppose that (12) is valid for . Then 

     (19) 

which means that (12) is also valid for . Therefore by induction, (12) is valid for all .  

The proof of Theorem 4 is thus completed. 

4. Conclusions 

In this article, we presented some necessary conditions for a sequence to be a completely 

monotonic sequence. We also established some necessary conditions for a sequence to be minimal 

completely monotonic. The Hausdorff Theorem plays the key role when we prove our results. 
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