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Abstract: It is well known that sublinear operators and superlinear operators are two classes of
important nonlinear operators in nonlinear analysis and dynamical systems. Since sublinear operators
have only weak nonlinearity, this advantage makes it easy to deal with them. However, superlinear
operators have strong nonlinearity, and there are only a few results about them. In this paper, the
convergence of Picard iteration for the superlinear operator A is obtained based on the conditions that
the fixed point equation Ax = x has a strong upper solution and a lower solution (or alternatively, an
upper solution and a strong lower solution). Besides, the uniqueness of the fixed point of strongly
increasing operators as well as the global attractivity of strongly monotone dynamical systems are also
discussed. In addition, the main results are applied to monotone dynamics of superlinear operators and
nonlinear integral equations. The method used in our work develops the traditional method of upper
and lower solutions. Since a strong upper (upper) solution and a lower (strong lower) solution are
easily checked, the obtained results are effective and practicable in the study of nonlinear equations and
dynamical systems. The main novelty is that this paper provides new fixed point results for increasing
superlinear operators and the obtained results are applied to strongly monotone systems to investigate
their global attractivity.
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1. Introduction

Fixed point theory plays an important role in our life. In the real world, we are faced with a lot of
nonlinear phenomenon. Naturally, all kinds of nonlinear problems arise around us. In a wide range
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of mathematical, computational, economic, modelling, and engineering problems, the existence of a
solution to a theoretical or real-world problem is equivalent to the existence of a fixed point for a
suitable map or operator. Fixed points are thus crucial in many areas of mathematics, science and
engineering. In terms of the theory itself, topology, geometry, and pure and applied analysis are all
beautifully incorporated. Fixed point results have been revealed as a very powerful and significant
tool in the research of nonlinear phenomena over the last sixty years or so. Fixed point techniques, in
particular, have been widely used in fields of biology, chemistry, physics, engineering, game theory and
economics [1–6]. Recently, fixed point method is well used in solving nonlinear equations, including
Volterra integral equations [1], nonlinear Telegraph equation [2], fractional integral equations [4,5] and
Urysohn integral equations [6].

As is mentioned above, when dealing with such nonlinear problems, we need to find the solutions
to nonlinear operator equations. In order to solve the fixed point equations involving the nonlinear
operator in practical applications, we have to explore a number of nonlinear operators, which include
two classes of significant ones, namely, superlinear operators and sublinear operators [7]. Many results
involving sublinear operators, especially in the aspect of sublinear dynamics, can he found in rich
literature such as Dafermos and Slemrod [8], Krawse and Nussbaum [9], Smith [10], Takáč [11, 12],
Zhao [13] and Hirsch and Smith [14].

However, as for superlinear operators, few results can be found in the existing literature
(see [7], p.63). The reason for this is that sublinear operators have strong weak nonlinearity. Recently,
Xu and Han [15] studied a class of superlinear operators and obtained the existence and uniqueness
of fixed point for such operators. In this paper, we further investigate superlinear operators. By virtue
of the strong upper or strong lower solution of the fixed point equation, we get some new fixed point
results about the superlinear operators. Besides, we also discuss the strongly monotone operator, and
obtain the fixed point’s existence and uniqueness, the iteration convergence and the error estimation
of the Picard approximation. In addition, we also discuss strongly monotone dynamical systems and
obtain some new global attractivity results of superlinear dynamics, making an addition in the field of
monotone dynamical systems.

In what follows, Section 2 presents a review of basic definitions and results as preliminaries.
Section 3 deals with superlinear operators with the strong upper or strong lower solution. Section 4
copes with strongly monotone dynamical systems involving superlinear operators. In the last section,
an example involving superlinear operators is presented to show that the results obtained are powerful
to solve the nonlinear integral equations.

2. Preliminaries

Suppose E is a real Banach space and P is a cone of E with intP , ∅. The notation θ expresses the
null element of E and ≤ represents the partial order in terms of P. Cone and partial order are the basic
concepts in ordered Banach spaces, which own the standard definitions. For more details, the readers
may refer to [7].

Let D be a subset of E and the operator A : D→ E. If there is an element x ∈ D satisfying Ax = x,
then x is said to be a fixed point of A in D. Let x0, y0 ∈ D, x0 is said to be a lower solution of the fixed
point equation Ax = x if x0 ≤ Ax0, while y0 is called an upper solution if Ay0 ≤ y0. Similarly, x0 is
called a strong lower solution of the fixed point equation Ax = x if x0 ≪ Ax0 when intP , ∅, while y0
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is called a strong upper solution if Ay0 ≪ y0.
For any u0, v0 ∈ E with u0 ≤ v0, then,

[u0, v0] = {x ∈ E|u0 ≤ x ≤ v0}

is named an ordering interval. The operator A : D → E is named increasing, if for any x, y ∈ D, x ≤ y
implies Ax ≤ Ay; A is said to be strongly increasing (or alternatively, strongly monotone) if for any
x, y ∈ D, x ≤ y implies Ax ≪ Ay (see [13,14,16].

Suppose (X, d) is a metric space and A : X → X is a continuous operator. The omega limit set of
x ∈ X is defined by

ω(x) = {y ∈ X : Ank x→ y (nk → ∞)}.

Let z be a fixed point of A (i.e. Az = z), then z is called globally attractive for A in X if ω(x) = {z}
for all x ∈ X (see [13], p.42).

Let z be a fixed point of A, then the basin of attraction of z is defined as (see [14], p.95)

K = {x ∈ E : Anx→ z (n→ ∞)}.

Definition 2.1. [12] For any set D ⊂ E. D is named a star-type subset of E, if for any x ∈ D and 0 <
t < 1, we have tx ∈ D.

It is clear that a convex subset D ⊂ E with the null element θ ∈ D is a star-type subset of E.
Especially, each cone P in E is a star-type subset of E.
Definition 2.2. [7] Assume D is a star-type subset of E and A : D→ D is an operator, then,
(1) A is said to be sublinear, if for any x ∈ D and 0 < t < 1, A(tx) ≥ tAx;
(2) A is said to be superlinear, if for any x ∈ D and 0 < t < 1, tAx ≥ A(tx).
Definition 2.3. [7] Assume e > θ. A : P→ P is named an e-convex operator, if
(i) A is e-positive, that is, A(P − {θ}) ⊂ Pe, where

Pe = {x ∈ E| there exist λ, µ > 0, such that λe ≤ x ≤ µe};

(ii) for any x ∈ Pe and 0 < t < 1, there is a function η = η(t, x) > 0 such that

A(tx) ≤ (1 − η)tAx,

where η = η(t, x) is named the characteristic function of A.
Definition 2.4. [17] Assume e > θ. A : P→ P is called a generalized e-convex operator, if
(i) Ae ∈ Pe, where

Pe = {x ∈ E|there exist λ, µ > 0, such that λe ≤ x ≤ µe};

(ii) for all x ∈ Pe and 0 < t < 1, there is a function η = η(t, x) > 0 such that

A(tx) ≤ ((1 + η)t)−1Ax,

where η = η(t, x) is named the characteristic function of A.
Definition 2.5. [8] Assume the operator A : P → P and α > 0. A is named an α-convex operator, if
for each x ∈ P and 0 < t < 1, A(tx) ≤ tαAx.
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The relationships among these operators have been given in our previous paper, see [15]. Now, we
need the following results.
Proposition 2.1. Assume P is a cone in the real Banach space E and a, b ∈ E. Then,
(i) If a ≤ b, then b < a is not true;
(ii) If b < a, then a ≤ b is not true.
Proof. (i) Suppose a ≤ b, i.e., b − a ∈ P, we can assert that b < a does not hold. Otherwise, assume
that b < a, then b ≤ a, i.e., a − b ∈ P or b − a ∈ −P. So we have b − a ∈ P ∩ (−P) = {θ}, i.e., b = a, in
contradiction to b < a. Hence, b < a is not true.

(ii) Similar to (i).
Proposition 2.2. [18,19] Assume P, E are the same as above and a, b, c, d ∈ E. Then,
(i) If a ≤ b and b < c, then a < c;
(ii) If a < b and b ≤ c, then a < c;
(iii) If a ≤ b and λ ≥ 0, then λa ≤ λb;
(iv) If a < b and λ > 0, then λa < λb;
(v) If a ≤ b and c ≤ d, then a + c ≤ b + d;
(vi) If a ≤ b and c < d, then a + c < b + d.
Proposition 2.3. [20] Assume P is a cone with intP , ∅ in E. Then,
(i) θ < intP;
(ii) intP ⊂ P;
(iii) P + intP ⊂ P;
(iv) λintP ⊂ P(λ > 0).
Proposition 2.4. [18,19] Assume P, E are the same as above and a, b, c, d ∈ E. Then,
(i) If a ≪ b and b ≪ c, then a ≪ c;
(ii) If a ≪ b and b ≤ c, then a ≪ c;
(iii) If a ≪ b and λ > 0, then λa ≪ λb;
(iv) If a ≪ b and b ≪ c, then a ≪ c;
(v) If a ≪ b, then a + c ≪ b + c.

3. Superlinear operators

In this section, we would like to discuss the fixed point results as well as the error estimations for
the Picard iteration of superlinear operators under the condition that there exist a strong upper solution
and a lower solution (or alternatively, a strong lower solution and an upper solution).

Let us begin with a useful lemma.
Lemma 3.1. Let P be a cone with intP , ∅ in E and a, b ∈ E. If a ≪ b (b , θ), then there exists
0 < ε < 1 such that a ≤ εb.
Proof. Since a ≪ b, b − a ∈ intP. By the definition of interior point, there exists 0 < r < ∥b∥ such that

Nr(b − a) = {x ∈ E : ∥x − (b − a)∥ < r} ⊂ P. (3.1)

Taking ε ∈ (1 − r
∥b∥ , 1), we see εb − a ∈ Nr(b − a). In fact,

∥εb − a − (b − a)∥ = ∥(ε − 1)b∥ = (1 − ε)∥b∥ < r,
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i.e., εb − a ∈ Nr(b − a), which implies by (3.1) that εb − a ∈ P. Hence, a ≤ εb.
Using Lemma 3.1 we immediately obtain the following result.

Corollary 3.1. [16,19] If a ≪ b, then a < b.
Based on Theorems 10 and 11 in [15], we further investigate the error estimations of the iterative

approximations for superlinear operators. In the following Lemmas 3.2–3.5 and Theorems 3.1–3.3, we
always suppose P is a normal cone in E with intP , ∅ and A : P → P is an increasing superlinear
operator, while M denotes the normal constant of the cone P.
Lemma 3.2. [15] If there exist a ∈ (0, 1) and u0, v0 ∈ P with u0 < v0 such that u0 ≤ Au0, Av0 ≤ av0,
then the operator A has a unique fixed point x̂ ∈ [u0, v0]. For any x0 ∈ [u0, v0] and iterated sequence
xn = Axn−1(n = 1, 2, · · · ), we have ∥xn − x̂∥ → 0 (n→ ∞).
Lemma 3.3. Assume all conditions of Lemma 3.2 hold. Then, the error estimation is such that

∥xn − x̂∥ ≤ 2M2∥u0 − v0∥an. (3.2)

Proof. The proof of the existence and uniqueness of the fixed point x̂ can be seen in [9]. Now we prove
the error estimation. Set un = Aun−1, vn = Avn−1. Let xn = Axn−1 (n = 1, 2, · · · ) for any x0 ∈ [u0, v0].
Then by the arguments from (18), (19) and (21) in [9] we find the unique fixed point x̂ ∈ [u0, v0]
and have

θ ≤ un − vn ≤ an(v0 − u0) (n = 1, 2, · · · ), (3.3)

θ ≤ un+p − un ≤ vn − un (n, p = 1, 2, · · · ), (3.4)

un ≤ xn ≤ vn (n = 1, 2, · · · ), (3.5)

and
un → x̂, vn → x̂, xn → x̂ (n→ ∞). (3.6)

By (3.3) and the normality of P, we see

∥un − vn∥ ≤ M∥v0 − u0∥an, (3.7)

where M is the normal constant of P. By (3.5) we have

θ ≤ xn − un ≤ (vn − un) (n = 1, 2, · · · ),

which implies
∥xn − un∥ ≤ M∥vn − un∥ (n = 1, 2, · · · ). (3.8)

Letting p→ ∞ in (3.4), by (3.6) we have

θ ≤ x̂ − un ≤ vn − un,

which implies that
∥x̂ − un∥ ≤ M∥vn − un∥. (3.9)

Hence, by (3.7)–(3.9), we get

∥xn − x̂∥ ≤ ∥xn − un∥ + ∥un − x̂∥ ≤ M∥vn − un∥ + M∥vn − un∥ ≤ 2M2∥v0 − u0∥an,
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as desired. So, the error estimation (3.2) holds.
Similar to Lemma 3.2 and Theorem 11 in [15], we have the following lemma.

Lemma 3.4. If there exist a > 1 and u0, v0 ∈ P with u0 < v0 such that au0 ≤ Au0, Av0 ≤ v0, then the
equation Ax = ax has a unique fixed point x̂ ∈ [u0, v0]. For any x0 ∈ [u0, v0] and the iterated sequence
xn =

1
a Axn−1(n = 1, 2, · · · ), we have ∥xn − x̂∥ → 0 (n→ ∞). Moreover, the error estimation is such that

∥xn − x̂∥ ≤ 2M2∥v0 − u0∥

(
1
a

)n

. (3.10)

Proof. Set B = a−1A, then
Bu0 = a−1Au0 ≥ a−1au0 = u0,

and
Bv0 = a−1Av0 ≤ a−1v0.

For any x ∈ P and t ∈ (0, 1), we get

B(tx) = a−1A(tx) ≤ a−1tAx = tBx.

By Lemma 3.2, B has a unique fixed point x̂ ∈ [u0, v0]. So the equation Ax = ax has a unique fixed
point x̂ ∈ [u0, v0]. For any x0 ∈ [u0, v0], set xn = a−1Axn−1 = Bxn−1, then by (3.2) we gain

∥xn − x̂∥ ≤ 2M2∥v0 − u0∥

(
1
a

)n

,

as desired. Hence (3.10) is true.
Remark 3.1. Compared to Theorem 11 in [15], Lemma 3.4 not only presents the error estimation of
the iterative approximation, but also corrects the typos “a ∈ (0, 1)” and “xn = Axn−1” in [15] by “a > 1”
and “xn =

1
a Axn−1” respectively.

Remark 3.2. Similarly, the typo “xn = Axn−1” appearing in Corollaries 16, 18, 20, 22 and 24 in [15]
should be replaced by “xn =

1
a Axn−1”.

Now by virtue of the condition that the fixed point equation has a strong lower or strong upper
solution and the lemmas above, we give the convergence of the iterated sequence as well as the error
estimation of the successive approximation for superlinear operators.
Theorem 3.1. If there exist u0, v0 ∈ P, u0 < v0 such that u0 ≤ Au0, Av0 ≪ v0, then the operator A has a
unique fixed point x̂ ∈ [u0, v0]. For any x0 ∈ [u0, v0] and the iterated sequence xn = Axn−1(n = 1, 2, · · · ),
we have ∥xn − x̂∥ → 0 (n→ ∞). Moreover, the error estimation is such that

∥xn − x̂∥ ≤ 2M2∥v0 − u0∥ε
n,

where ε ∈ (0, 1) is a constant only dependent on A and v0.
Proof. Since Av0 ≪ v0, by Lemma 3.1, there exists ε ∈ (0, 1) such that Av0 ≤ εv0. All the conditions
of Lemma 3.2 are satisfied, so the result follows from Lemmas 3.2 and 3.3.
Theorem 3.2. If there exist u0, v0 ∈ P, u0 < v0 such that u0 ≪ Au0, Av0 ≤ v0, then there exists λ > 1
such that the operator equation Ax = λx has a unique fixed point x̂ in [u0, v0]. For any x0 ∈ [u0, v0] and
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the iterated sequence xn =
1
λ
Axn−1(n = 1, 2, · · · ), we have ∥xn − x̂∥ → 0 (n → ∞). Moreover, the error

estimation is such that

∥xn − x̂∥ ≤ 2M2∥v0 − u0∥

(
1
λ

)n

.

Proof. Since u0 ≪ Au0, by Lemma 3.1, there exists ε ∈ (0, 1) such that u0 ≤ εAu0. Set λ = 1
ε
,

then λ > 1, and λu0 ≤ Au0. All the conditions of Lemma 3.4 are satisfied, so the result follows from
Lemma 3.4.

Similar to Lemmas 3.2, 3.3 and Theorem 3.1, we immediately get the following two results. We
omit the proofs.
Lemma 3.5. If there exist ε ∈ (0, 1) such that Aθ > θ, A3θ ≤ εA2θ, then the operator A has a unique
fixed point x̂ ∈ [Aθ, A2θ]. For any x0 ∈ [Aθ, A2θ] and the iterated sequence xn = Axn−1 (n = 1, 2, · · · ),
we have ∥xn − x̂∥ → 0 (n→ ∞). Moreover, the error estimation is such that

∥xn − x̂∥ ≤ 2M2∥A2θ − Aθ∥εn.

Theorem 3.3. Suppose that Aθ > θ, A3θ ≪ A2θ, then the operator A has a unique fixed point x̂ ∈
[Aθ, A2θ]. For any x0 ∈ [Aθ, A2θ] and the iterated sequence xn = Axn−1 (n = 1, 2, · · · ), we have
∥xn − x̂∥ → 0 (n→ ∞). Moreover, the error estimation is such that

∥xn − x̂∥ ≤ 2M2∥A2θ − Aθ∥εn,

where ε ∈ (0, 1) is a constant only dependent on A.
Now we discuss the strongly monotone and superlinear operators. Suppose P is a normal cone in E

with intP , ∅ and A : P→ P is strongly monotone and superlinear.
Theorem 3.4. If there exist u0, v0 ∈ P, u0 < v0 such that u0 ≤ Au0, Av0 < v0, then the operator A
has a unique fixed point x̂ in [u0, v0]. For any x0 ∈ [u0, v0] and the iterated sequence xn = Axn−1 (n =
1, 2, · · · ), we have ∥xn − x̂∥ → 0 (n→ ∞). Moreover, the error estimation is such that

∥xn − x̂∥ ≤ 2M2∥v0 − u0∥ε
n,

where ε ∈ (0, 1) is a constant only dependent on A and v0.
Proof. We use Theorem 3.1 to prove the existence of the fixed point of A. Let v1 = Av0. Since
Av0 < v0, v1 < v0. Then by the fact that A is strongly monotone, we get Av1 ≪ Av0 = v1. By
Theorem 3.1, A has a unique fixed point x̂ ∈ [u0, v1].

Next, we prove A has a unique fixed point in [u0, v0]. Suppose x̄ is any fixed point in [u0, v0], then
u0 ≤ x̄ < v0, so u0 ≤ Au0 ≤ x̄ ≪ Av0 = v1. Hence by Corollary 3.1, we get u0 ≤ x̄ < v1, which implies
that x̄ = x̂. Therefore, the operator A has a unique fixed point x̂ ∈ [u0, v0]. For x1 ∈ [u0, v1] and the
iterated sequence xn+1 = Axn (n = 1, 2, · · · ), we gain ∥xn − x̂∥ → 0 (n→ ∞).

At last, we prove the convergence of the Picard iteration. In fact, for any x0 ∈ [u0, v0], by the Picard
iteration xn = Axn−1 (n = 1, 2, · · · ), we obtain u0 ≤ Au0 ≤ Ax0 ≤ Av0 = v1, so x1 = Ax0 ∈ [u0, v1].
Hence, by the arguments above, we also get ∥xn − x̂∥ → 0 (n→ ∞) for any x0 ∈ [u0, v0]. Therefore, all
the conclusions of Theorem 3.4 are true.

Similar to Theorem 3.4, we have the next result, omitting the proof.
Theorem 3.5. If there exist u0, v0 ∈ P, u0 < v0 such that u0 < Au0, Av0 ≤ v0, then there exists λ > 1
such that the operator equation Ax = λx has a unique fixed point x̂ ∈ [u0, v0]. For any x0 ∈ [u0, v0] and
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the iterated sequence xn =
1
λ
Axn−1 (n = 1, 2, · · · ), we have ∥xn − x̂∥ → 0 (n→ ∞). Moreover, the error

estimation is such that

∥xn − x̂∥ ≤ 2M2 ∥v0 − u0∥

(
1
λ

)n

.

4. Monotone dynamics of superlinear operators

In this section, we will discuss the monotone dynamics of superlinear operators by using the main
results obtained in above sections, while P is a normal cone in E with intP , ∅.

Lemma 4.1. Let A : P→ P be superlinear. If A is continuous at x = θ, then Aθ = θ.

Proof. Because the operator A is superlinear, we have

θ ≤ A(tx) ≤ tAx (x ∈ P, 0 < t < 1),

so it follows that

θ ≤ A
(
1
n

x
)
≤

1
n

Ax (x ∈ P, n = 1, 2, · · · ). (4.1)

Letting n→ ∞ in (4.1), we gain θ ≤ Aθ ≤ θ, so Aθ = θ since P ∩ (−P) = θ.

Theorem 4.1. Let A : P → P be superlinear. Suppose that A is monotone and continuous and there
exist 0 < ε < 1 and v0 ∈ P − {θ} such that Av0 ≤ εv0. Then, A has a unique fixed point x̂ ∈ [θ, v0]
satisfying ω(x) = {x̂} for any x ∈ [θ, v0]. So x̂ is globally attractive for A in [θ, v0]. Moreover, for any
x ∈ [θ, v0], we have

∥Anx − x̂∥ ≤ 2M2∥v0∥ε
n,

where M is the normal constant of the cone P, and the basin of the attraction of x̂

Kx̂ = {x ∈ E : Anx→ x̂(n→ ∞)}

satisfies Kx̂ ⊃ [θ, v0].

Proof. Let u0 = θ. Then by Lemma 4.1, we get Au0 = u0. It is easy to check that all the conditions of
Theorem 3.1 are satisfied. Thus, the conclusions of Theorem 4.1 are true.

Similar to Theorem 4.1, the following result about strongly monotone dynamics of superlinear
operators can be easily proven, so we omit its proof.

Theorem 4.2. Let A : P→ P be strongly monotone, continuous and superlinear. Suppose there exists
v0 ∈ P − {θ} such that Av0 < v0. Then, A has a unique fixed point x̂ ∈ [θ, v0] satisfying ω(x) = {x̂} for
any x ∈ [θ, v0]. So x̂ is globally attractive for A in [θ, v0]. Moreover, the basin of the attraction of x̂:

Kx̂ = {x ∈ E : Anx→ x̂(n→ ∞)}

satisfies Kx̂ ⊃ [θ, v0].

Remark 4.1. Theorems 4.1 and 4.2 present new results about global attractivity for monotone or
strongly monotone dynamical systems of superlinear operators, which is a valuable addition to the
existing literature in this field.
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5. Applications

In this section, we give an example to show that the main results obtained may be powerful to
solve the nonlinear integral equations.
Example 5.1. Consider Hammerstein nonlinear integral equation on Rn

x(w) = (Ax)(w) =
∫
Rn

H(w, z) f (z, x(z))dz, (5.1)

where H(w, z) is nonnegative measurable on Rn × Rn and

lim
w→w0

∫
Rn
|H(w, z) − H(w0, z)|dz = 0,

and there exist constants L and l with L > l > 0 such that

l ≤
∫
Rn

H(w, z)dz ≤ L, ∀w ∈ Rn.

For each x ≥ 0, f (·, x) is measurable on Rn; for each w ∈ Rn, f (w, ·) is continuous on (0,+∞).
Moreover, suppose that there exist constants r and R with 0 < r < R such that for any w ∈ Rn, f (w, ·) :
[r,R]→ R1 is increasing and superlinear, namely, f (w, λx) ≤ λ f (w, x) (0 < λ < 1) satisfying

f (w, r) ≥
1
l
r

and

f (w,R) ≤
(

1
L
− ε

)
R,

where ε > 0 is a constant.
Then integral equation (5.1) has a unique continuous solution x̂(w) satisfying r ≤ x̂(w) ≤ R (∀w ∈

Rn). Moreover, for any initial continuous function x0(w) ∈ [r,R], the iterated sequence

xn(w) =
∫
Rn

H(w, z) f (z, xn−1(z))dz (w ∈ Rn, n = 1, 2, · · · )

uniformly converges to x̂(w), and

sup
w∈Rn
|xn(w) − x̂(w)| ≤ M0τ

n → 0 (n→ ∞),

where M0 > 0, 0 < τ < 1 are constants which are independent on x0(w).
Proof. Suppose

E = CB(Rn) = {x ∈ C(Rn) : sup
w∈Rn
|x(w)| < ∞}

is a bounded continuous function space in Rn. Put ∥ x ∥= supw∈Rn |x(w)|, then E is a Banach space. Set
P = {x ∈ CB(Rn) : x(w) ≥ 0,w ∈ Rn} denote all nonnegative continuous functions in E, then P is a
normal solid cone in E and intP = {x ∈ CB(Rn) : in fw∈Rn x(w) ≥ 0}. Consider the operator A defined as

(Ax)(w) =
∫

w∈Rn
H(w, z) f (z, xn−1(z))dz.
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Let u0(w) ≡ r(w ∈ Rn), v0(w) ≡ R(w ∈ Rn). It is easy to check that A : [u0, v0] → E is a superlinear
increasing operator and satisfies u0 ≤ Au0, Av0 ≪ v0. In fact, for x = x(w), y = y(w) ∈ CB(Rn), if
x ≤ y, i.e., x(w) ≤ y(w) (w ∈ Rn), since f (z, ·) is increasing, for any w ∈ Rn, we have

Ay − Ax = (Ay)(w) − (Ax)(w) =
∫
Rn

H(w, z)( f (z, y(z)) − f (z, x(z)))dz ≥ 0.

So, A is increasing. For any 0 < λ < 1, x(w) ∈ CB(Rn), since f (z, λw) ≤ λ f (z,w), we get

A(λx) =
∫
Rn

H(w, z) f (z, λx(z))dz

≤ λ

∫
Rn

H(w, z) f (z, x(z))dz

= λAx(w) = λAx.

Thus, A is superlinear.
For u0 = u0(w) ≡ r,w ∈ Rn,

Au0 =

∫
Rn

H(w, z) f (z, r)dz ≥
r
m

∫
Rn

H(w, z)dz ≥ m ·
r
m
= r ≡ u0,

i.e., Au0 ≥ u0.

For v0 = v0(w) ≡ R,w ∈ Rn, we see

Av0 =

∫
Rn

H(w, z) f (z,R)dz ≤
∫
Rn

(
1
M
− ε

)
Rdz ≤

(
1
M
− ε

)
RM,

so

v0 − Av0 ≥ R −
(

1
M
− ε

)
RM = RεM > 0.

Thus, infw∈Rn(v0 − Av0) ≥ RεM > 0, i.e., v0 − Av0 ∈ intP, so Av0 ≪ v0. That is, all conditions of
Theorem 3.1 are satisfied. So, the result follows from Theorem 3.1.

6. Conclusions

In this article, by virtue of the theory of cone and partial order, we investigate the fixed point
equation Ax = x involving the superlinear operator A in the setting of the ordered real Banach space.
Under the crucial condition that the fixed point equation Ax = x has a strong upper solution and a lower
solution (or alternatively, an upper solution and a strong lower solution), we obtain the convergence
and the error estimation of the Picard iteration for the superlinear operator A via the monotone iterative
technique. This method develops the classical method of upper and lower solutions. Since in the
context of a real Banach space with a normal and solid cone, a strong upper (upper) solution and
a lower (strong lower) solution are easily checked, we provide some practicable examples involving
nonlinear integral equations as well as dynamical systems that elaborated on the usability of our main
results. Nevertheless, once the positive cone in the real Banach space is not either normal or solid, this
method is invalid and of useless. The main contribution is that we obtain the new results on the fixed
point equations involving superlinear increasing operators with a strong upper (upper) solution and a
lower (strong lower) solution as well as the new ones about global attractivity of strongly monotone
dynamical systems.
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