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Department of Mathematics, Faculty of Science, Bilecik Şeyh Edebali University, Bilecik 11100,
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demonstrate a decision-making application over the soft orders intended for comparing graphs.
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1. Introduction

Soft sets were introduced as a mathematical tool to be used to identify alternatives with desired
attributes. After its foundations were laid in 1999 [1], soft set theory has been integrated into various
branches of mathematics, hybridized with other set theories, and has developed in interaction with
other fields. Some of the recent works that have contributed to this development are [2–14] among
others. On the other hand, there can be situations where the alternatives consist of specific factors and
these factors are requested to have specific attributes. The concept of soft element within a soft set
provides a model that represents the factors determining the alternative with their desired
attributes [15]. There are various works that use the soft elements especially on the topology and
(generalized) metric structures [16–23].

Order is a broad topic of research in mathematics, economics, informatics, and many other
applications. The relationships between order and topology are required to provide a theoretical
underpinning for the related studies. There have been numerous works on the connections between
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order and topology, most of which are relevant to the order theory and the utility theory (see [24–30]
and others).

On the (hybrid) soft sets, there have also been several works on the relations and their properties,
as well as their applications to decision-making, where the decision is made as a single element
among alternatives specifying their attributes and weights [31–37]. By analysing the relationships
between order relations and topology, it is seen that soft topology can be considered as a special case
of ordered soft topology. By this means, the studies of ordered soft topology lead to the construction
of different concepts and classes of soft topologies [38–41]. In addition to the lack of studies about
the order and its associated topology on the soft sets, there has been no discussion of this topic in the
context of soft elements. In this paper, we propose a novel approach to define an order relation and its
associated order topology on the soft sets. While a relation on the soft sets is actually described as
corresponding to a soft set in the mentioned works, a soft relation is recently defined in [42] over a
collection of soft elements. Hence, we describe the orders on the soft sets through these relations and
we construct the order topology on the soft sets from these orders. Furthermore, a utility function has
been interpreted conventionally as a way of quantifying preferences numerically, i.e., in real-valued.
However, it is emphasized that a utility function need not necessarily be real-valued and can be
extended to more general totally ordered sets [26, 30]. Inspired by this, we explain soft preference and
soft utility mapping on the soft sets. Moreover, comparing graphs and interpreting that comparison is
a valuable aspect in the applications of graph theory (see [43]). We illustrate the feasibility of the soft
orders that we offer by presenting a decision-making application in this aspect.

The paper is organized as follows: Section 2 contains the basic background about soft set, soft
element, soft relation, and ε-soft topology. In Section 3, we first provide the definitions and some
properties of soft order relations with the concept of soft relation defined by using the soft elements
on any soft set. Unlike the soft order relation defined and used for the metric structures [15, 16], we
conceive a soft order relation with the totality property for the soft real numbers. Hence, the studies
about metric structures on the soft sets can be extended. Next, we show that an ε-soft topology can be
built from the total preorder relations on any set. After that, we define the ε-soft order topology with
regard to a soft total preorder relation on any soft set, provide some properties of this topology, and
give some illustrative examples. Moreover, we define soft preference and soft utility mapping on a soft
totally preordered set as soft real-valued by using the soft total order defined in the previous section to
discuss the notions of preference and utility in terms of the soft sets. In Section 4, to put into practice
what we introduced, by using the soft set representation of a graph described in [2], we demonstrate a
decision-making application for graph comparison, which has an essential role in the applications of
graph theory. Section 5 outlines the implications of this paper.

2. Preliminaries

The definitions and properties in this section are recalled from [20,21,42] to be utilized in later. For
more detailed discussion, see these papers.

Definition 2.1. [20] Let U be a universal set, P be a parameters set and P(U) be the power set of U.
A pair (G, P) is called a soft set on U, where G: P→ P(U) is a set-valued mapping.

A function ε: P→ U is called a soft element of U and ε is said to be member of (G, P) if ε(α) ∈ G(α)
for each α ∈ P. The class of soft elements of (G, P) are denoted by S E(G, P) and the soft elements
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are denoted by x̃, ỹ, z̃, etc. Also, the belonging of a soft element x̃ to a soft set (G, P) is denoted by
x̃∈̃(G, P) or x̃ ∈ S E(G, P).

Definition 2.2. [20] Let (G, P) and (H, P) be two soft sets on U. The soft set (G, P) is said to be a null
soft set and denoted by Φ (an absolute soft set and denoted by Ũ) if G(α) = ∅ (G(α) = U) for each
α ∈ P.

The soft set (G, P) is said to be a soft subset of (H, P) if G(α) ⊆ H(α) for every α ∈ P and denoted
by (G, P)⊆̃(H, P). Then, (G, P) = (H, P) if and only if

(G, P)⊆̃(H, P),

and
(H, P)⊆̃(G, P).

Throughout the work, the soft sets (G, P) on U such that G(α) , ∅ for every α ∈ P and the null soft
set Φ will be considered. The class of these soft sets is denoted by S (Ũ).

A soft set (G, P) produced by a collection of soft elements B is defined by

(G, P) = S S (B) = {(α,G(α)) : ∀α ∈ P, G(α) =
⋃
x̃∈B

{x̃(α)}}.

Notice that B and S E(S S (B)) are not the same in general, but B ⊆ S E(S S (B)).
The ε-union and ε-intersection of

(G, P), (H, P) ∈ S (Ũ)

are defined by
(G, P) d (H, P) = S S (S E(G, P) ∪ S E(H, P)),

and
(G, P) e (H, P) = S S (S E(G, P) ∩ S E(H, P)),

respectively. The ε-complement of (G, P) is defined

(G, P)C = S S (S E(G, P)c),

where (G, P)c = (Gc, P) is soft complement of (G, P) and Gc: P→ P(U) is a mapping given by

Gc(α) = U\G(α)

for each α ∈ P.

From now on, we will use G instead of (G, P) for simplicity and the parameters set P will be referred
to as a finite set.

Definition 2.3. [42] Let U and U′ be two universal sets and P be a parameters set. A soft relation
R from Ũ to Ũ′ is a subclass of S E(Ũ) × S E(Ũ′) and then a soft relation R on Ũ is a subclass of
S E(Ũ) × S E(Ũ).

Definition 2.4. [42] Let Ũ be an absolute soft set with parameter set P and R be a soft relation on Ũ.
The soft relation R is called
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• reflexive if x̃Rx̃ for each x̃ ∈ S E(Ũ);
• symmetric if x̃Rỹ⇒ ỹRx̃ for each x̃, ỹ ∈ S E(Ũ);
• antisymmetric if x̃Rỹ and ỹRx̃⇒ x̃ = ỹ for each x̃, ỹ ∈ S E(Ũ);
• transitive if x̃Rỹ and ỹRz̃⇒ x̃Rz̃ for each x̃, ỹ, z̃ ∈ S E(Ũ);
• total (complete, connected, comparable or connex) if x̃Rỹ or ỹRx̃ for each x̃, ỹ ∈ S E(Ũ);

where x̃Rỹ to mean that (x̃, ỹ) ∈ R. Also, a soft relation R is called

• pre-order if it is reflexive and transitive;
• total pre-order (weak order, preference) if it is reflexive, total, and transitive;
• strict preorder (strict partial order) if it is irreflexive, asymmetric, and transitive;
• partial order if it is reflexive, antisymmetric, and transitive;
• total (complete, linear) order if it is reflexive, antisymmetric, total, and transitive;
• equivalence relation if it is reflexive, symmetric, and transitive.

Example 2.5. Suppose that a company wants to set up franchises and supply products also between
them.

Let
U = {x, y, z}

be a set of warehouses, where the products will be supplied. Let

P = {α1 := Market proximity, α2 := Prompt delivery}

be a parameters set which corresponds to the attributes of the warehouses that the company wants to
supply. Then, the warehouses from which the company can supply products according to the
parameters are represented by a soft set such as

G = {(α1, {x, y}), (α2, {x, z})}.

The soft elements of Ũ are as follows:

x̃1 = {(α1, x), (α2, x)}, x̃4 = {(α1, y), (α2, x)}, x̃7 = {(α1, z), (α2, x)},
x̃2 = {(α1, x), (α2, y)}, x̃5 = {(α1, y), (α2, y)}, x̃8 = {(α1, z), (α2, y)},
x̃3 = {(α1, x), (α2, z)}, x̃6 = {(α1, y), (α2, z)}, x̃9 = {(α1, z), (α2, z)},

and the soft elements of G,
S E(G) = {x̃1, x̃3, x̃4, x̃6},

present all of the franchising scenarios of the company according to the set of parameters. Naturally,
the company can consider other conditions, e.g. safety or quality control of the products, to determine
its preferences. Next, the connections between the franchises can exist that are represented by a soft
relation such as

R = {(x̃1, x̃3), (x̃1, x̃4), (x̃4, x̃6), (x̃6, x̃3)},

where the pairs of soft elements represent the product supply between the franchises.

Proposition 2.6. [42] Let Ũ be an absolute soft set with parameter set P, R be any soft relation on Ũ
and R = {Rα: α ∈ P} be any parametrized family of classical relations on U.
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(1) R can be considered as R with

R(α) = {(x̃, ỹ)(α) = (x̃(α), ỹ(α)) ∈ Rα : x̃, ỹ ∈ S E(Ũ)}

and vice versa.

(2) If R is family of classical reflexive, irreflexive, symmetric, antisymmetric, asymmetric, and
transitive relations, then it can be considered as a reflexive, irreflexive, symmetric,
antisymmetric, asymmetric, and transitive soft relation, respectively.

(3) If R is reflexive, symmetric, and total soft relation, then it can be considered as a parametrized
family of reflexive, symmetric, and total classical relations, respectively.

Remark 2.7. If R is a family of total classical relations, then it cannot be considered as a total soft
relation. In addition, if the parametrized family of classical relations with various properties cannot
be considered as a soft relation with the same properties.

On the other hand, if R is irreflexive, transitive, asymmetric, and antisymmetric soft relation, then it
cannot be considered as a parametrized family of irreflexive, transitive, antisymmetric, and asymmetric
classical relations, respectively (for details, see [42]).

Definition 2.8. [20] Let T ⊆ S (Ũ) be a family of soft sets over U with parameter set P. Then,
T is called an ε-soft topology and (Ũ,T , P) is called an ε-soft topological space according to the
ε-operations if it satisfies the followings:

(ε1) Ũ,Φ ∈ T .
(ε2) If G,H ∈ T , then G e H ∈ T .
(ε3) If ∀i ∈ I, Gi ∈ T , then d

i∈I
Gi ∈ T .

Also, the members of T is said to be soft open sets and for K ∈ S (Ũ), K is said to be soft closed set
if Kc ∈ S (Ũ) and KC ∈ T .

Definition 2.9. [20, 21] Let B ⊆ S (Ũ). Then, B is called a soft basis for an ε-soft topology on Ũ if
the followings are met:

(B1) For all x̃ ∈ S E(Ũ), there exists at least one soft set B ∈ B such that x̃∈̃B.
(B2) If x̃∈̃Ũ and x̃∈̃B1 e B2 for B1, B2 ∈ B, there is B3 ∈ B such that x̃∈̃B3⊆̃B1 e B2.

Also, the ε-soft topology

TB = {G ∈ S (Ũ) : ∀x̃∈̃G, ∃B ∈ B, x̃∈̃B⊆̃G}

is said to be the ε-soft topology produced by B and (Ũ,T , P) is called second-countable ε-soft space
if there is a countable soft basis for T .

Proposition 2.10. [20] Let (Ũ,T , P) be an ε-soft space and B be a soft basis for T (i.e., T = TB).
Then, every soft open set could be stated as the ε-union of some members of B.

Remark 2.11. The converse of Proposition 2.10 is not true. For example, suppose that U = {x, y, z},
P = {α, β} and T = {Φ, Ũ,G1,G2,G3,G4,G5} is a ε-soft topology on Ũ, where

G1 = {(α, {x}), (β, {x, y})}, G2 = {(α, {z}), (β, {x, y})},
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G3 = {(α, {x, z}), (β, {x, y})}, G4 = {(α, {y, z}), (β, {z})},
G5 = {(α, {y, z}), (β,U)}.

Then, the collection B = {G1,G2,G4} satisfies the condition of Proposition 2.10. However, for the
soft element

x̃ = {(α, y), (β, x)}∈̃G5,

there is not any B ∈ B such that x̃∈̃B⊆̃G5. Thus, the collection B is not a soft basis for T .

Theorem 2.12. [20] Let (Ũ,T , P) be an ε-soft space and B ⊆ T . If the following condition (B∗) is
satisfied, then B is a soft basis for the T .

(B∗) For all G ∈ T and all x̃∈̃G, there exists B ∈ B such that x̃∈̃B⊆̃G.

Definition 2.13. [20] Let (Ũ,T , P) be an ε-soft space and S ⊆ T . S is called soft subbasis for the T ,
if the collection of all finite ε-intersection of members S is a soft basis for T .

Definition 2.14. [21] Let (Ũ,T , P) be an ε-soft space.

• Let x̃ ∈ S E(Ũ). A soft set N ∈ S (Ũ) is called a soft neighbourhood of x̃ if there is a G̃ ∈ T such
that x̃∈̃G⊂̃N. The family of all soft neighbourhoods of x̃ is indicated by N(x̃).
• For any G ∈ S (Ũ), a soft element x̃ ∈ S E(Ũ) is called a soft closure element of G, if G e N , Φ,

for every N ∈ N(x̃). The collection of all soft closure elements of G is indicated by clG and the
soft closure of G is indicated by Ḡ = S S (clG).
• A soft set G ∈ S (Ũ) is called countable if S E(G) is countable. Accordingly, if a collection of soft

elements B ⊆ S E(Ũ) is countable, then the soft set G ∈ S (Ũ) generated by B is countable.
• A soft set G ∈ S (Ũ) is called dense soft set if Ḡ = Ũ.
• (Ũ,T , P) is called separable if there exists a countable dense soft set in G ∈ S (X̃).

3. Soft order and soft topology

Before discussing the relationships between the soft order and the ε-soft topology, we first present
some definitions about the soft order that we will utilize later. Next, we introduce the ε-soft order
topology and provide some properties of this topology.

Definition 3.1. Let R be a soft preorder on Ũ, G ∈ S (Ũ) and x̃∈̃G.
If x̃Rỹ implies x̃ = ỹ for every ỹ∈̃G, x̃ is called a maximal element in G. If ỹRx̃ implies x̃ = ỹ for

every ỹ∈̃G̃, x̃ is called a minimal element in G.
If ỹRx̃ for every ỹ∈̃G, x̃ is called a greatest element in G. If x̃Rỹ for every ỹ∈̃G, x̃ is called a least

element in G. For a soft total preorder, a soft element x̃ to be a maximal (minimal) in G is the same
thing as for x̃ to be a greatest (least) in G.

Now, suppose that the soft preorder R is antisymmetric (i.e., it is a soft partial order). Then, G can
have at most one greatest (or least) element. If x̃ is a greatest (or least) element in G, then it is the
unique maximal (or minimal) element of G. In addition, a soft total order is called a soft well-order
provided every non-empty soft subset of Ũ has a least element.

After that, the usual notation -̃ instead of R is used for any kind of soft order relation and the soft
order notation can be inverted and written ỹ%̃x̃ (ỹ�̃x̃) to mean the same thing as x̃-̃ỹ (x̃≺̃ỹ). The same
setup will apply for the notations of all other kind of order relations.
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Example 3.2. The soft order on the soft real numbers in [15] defined as follows: For any two soft
element x̃, ỹ in R̃(P),

x̃≤̃ỹ⇔ x̃(α) ≤ ỹ(α) for all α ∈ P,

where R̃(P) is denoted the set of all soft real numbers in [15], i.e., S E(R̃) with a parameters set P, and
≤ is usual total order on R. This order is actually the product order on the Cartesian product of the
image sets under P of the soft elements, which are the subsets of R × R. So, it is obvious that this
relation is soft partial order.

In the soft set theory, the parameters set can be any set and weights are determined for the parameters
in many papers, especially involving decision-making applications. As a result of this, it is possible to
order the parameters according to their weights or more different approaches.

Here, we propose to determine the parameters set more specifically as a totally ordered set and
accordingly, we define a new ordering among the soft elements in S E(R̃).

Definition 3.3. Let
P = {α1, α2, . . . , αn}

be a totally ordered parameters set by a relation �, where α1 � α2 � . . . � αn, and 6̃ be a relation on
S E(R̃) with the parameters set P defined as

x̃6̃ỹ⇔ ∃i,∀ j < i, x̃(α j) = ỹ(α j) and x̃(αi) ≤ ỹ(αi),

where ≤ is usual total order on R. The relation 6̃ is actually the lexicographic order on the Cartesian
products of the image sets under P of the soft elements, which are the subsets of R ×R, and hence it is
a total order relation. The relation 6̃ is called soft total order on R̃.

Definition 3.4. Let -̃ be a soft preorder on Ũ with a parameters set P. The triplet (Ũ, -̃, P) is said to
be a soft preordered set. Also, the soft equivalence relation ∼̃ associated with -̃ is denoted by

x̃∼̃ỹ⇔ x̃-̃ỹ and ỹ-̃x̃,

and the soft asymmetric relation ≺̃ associated with -̃ is denoted by

x̃≺̃ỹ⇔ x̃-̃ỹ and ỹ�̃x̃.

Moreover, a soft set G ∈ S (Ũ) is called soft order-dense according to -̃ if, for each x̃, ỹ∈̃Ũ with
x̃≺̃ỹ, there exists z̃ ∈ S E(G) such that x̃-̃z̃-̃ỹ. Then, Ũ is called soft order separable according to -̃ if
there is a countable soft order-dense set in S (Ũ).

Definition 3.5. Let (Ũ, -̃, P) be a soft preordered set. The collections of soft elements of Ũ

L(ã) = {x̃ ∈ S E(Ũ) : x̃-̃ã},

SL(ã) = {x̃ ∈ S E(Ũ) : x̃≺̃ã},

U(ã) = {x̃ ∈ S E(Ũ) : x̃%̃ã},

SU(ã) = {x̃ ∈ S E(Ũ) : x̃�̃ã},

are called lower, strict lower, upper, and strict upper contour set of a soft element ã ∈ S E(Ũ),
respectively.
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Then, the soft subsets S S (L(x̃)), S S (SL(x̃)), S S (U(x̃)) and S S (SU(x̃)) are called soft lower, soft
strict lower, soft upper, and soft strict upper contour set of x̃, respectively.

Also, the soft sets in S (Ũ)

S S (ã, b̃) = S S
(
SU(ã) ∩SL(b̃)

)
,

S S [ã, b̃] = S S
(
U(ã) ∩ L(b̃)

)
,

S S (ã, b̃] = S S
(
SU(ã) ∩ L(b̃)

)
,

S S [ã, b̃) = S S
(
U(ã) ∩SL(b̃)

)
,

are called soft open interval, soft closed interval, and soft half open intervals with the extreme soft
elements ã and b̃, respectively.

In addition, for any ã, b̃ ∈ S E(Ũ), if the soft open interval S S (ã, b̃) does not have any soft elements,
it is called a soft jump, denoted J(ã, b̃).

Now, we begin to determine the relationships between the soft order and the ε-soft topology.

Definition 3.6. Let (Ũ,T , P) be an ε-soft topological space and -̃ be a soft preorder on Ũ. -̃ is
called soft continuous on Ũ according to T if S S (U(x̃)) and S S (L(x̃)) are soft open set in Ũ for each
x̃ ∈ S E(Ũ). Then, an ε-soft topology in which a soft preoerder -̃ is soft continuous is called compatible
with -̃.

The next proposition states that an ε-soft topology can be constructed from any parametrized family
of total preorders on any set.

Proposition 3.7. Let U be a universal set, P be a parameters set and

P = {-α: α ∈ P}

be any parametrized family of total preorders on U. Then, the family of soft sets

TP = {G ∈ S (Ũ) : ∀α ∈ P, G(α) ∈ τ-α}

is an ε-soft topology on Ũ, where τ-α is the order topology on U with respect to -α for each α ∈ P.

Proof. (ε1) Since ∅,U ∈ τ-α for each α ∈ P, we get Φ, Ũ ∈ TP .
(ε2) Suppose that G,H ∈ TP . If G e H = Φ, then it is clear that G e H ∈ TP . If G e H , Φ, then

G(α̃) ∩ H(α) , ∅ and G(α̃) ∩ H(α) ∈ τ-α

for each α ∈ P. Hence, it is obtained that G e H ∈ TP .
(ε3) Suppose that ∀i ∈ I, Gi ∈ TP . Since

⋃
i∈I

Gi(α̃) ∈ τ-α for each α ∈ P, we have d
i∈I

Gi ∈ TP .

Remark 3.8. From Proposition 2.6 and Remark 2.7, one can see that any parametrized family of total
preorders

P = {-α: α ∈ P}

AIMS Mathematics Volume 8, Issue 4, 9761–9781.



9769

on U can be considered as at least a soft preorder on Ũ. Additionally, it can be observed that the
family of all soft sets of the form

B = {(α, (a, b)-α) : α ∈ P},

where (a, b)-α is an open interval in U with respect to -α for each α ∈ P, is a soft basis for TP and
these are also the soft open sets in TP .

Furthermore, the family of all soft sets of the form

{(α,SU(x)-α) : α ∈ P} and {(α,SL(x)-α) : α ∈ P},

where SU(x)-α and SL(x)-α are the strict upper and lower contour sets in U with respect to -α for
each α ∈ P and x ∈ U, respectively, is a soft subbasis for TP .

Note that these soft sets are actually the soft strict upper and lower contour sets of any x̃ ∈ S E(Ũ)
with respect to the soft preorder to which P corresponds. Thus, this soft preorder is soft continuous
on Ũ according to TP .

Example 3.9. Suppose that P is a parameters set and the soft partial order ≤̃ on R̃ is considered from
Example 3.2.

Then, this order can be considered as generated by the usual total order on R, i.e., it can be
considered as a family of parametrized relations P in which each parameter corresponds to the usual
total order on R. Hence, the family of all soft sets of the form

B = {(α, (a, b)) : α ∈ P and a, b ∈ R}

is a soft basis for TP on R̃ and each soft open set G ∈ S (R̃) in TP is obtained as

G = {(α1,V1), (α2,V2), . . . , (αn−1,Vn−1), (αn,Vn)}},

where each Vi is an open set in the usual topology on R for i ∈ {1, 2, . . . , n}.
Moreover, it is clear that ≤̃ is soft continuous since for any ã ∈ S E(R̃), the soft strict upper and

lower contour sets, i.e., the soft open rays, are soft open sets obtained as

{(α, (ã(α),∞)) : α ∈ P} and {(α, (−∞, ã(α))) : α ∈ P}.

Thus, it can be seen that all of the above soft open rays form the soft subbasis for TP .

Theorem 3.10. Let (Ũ, -̃, P) be a soft totally preordered set. A collection B ⊆ S (Ũ) of all of the
following types of soft sets forms a soft basis for an ε-soft topology on Ũ.

• All soft open intervals S S (ã, b̃) in Ũ.
• All soft intervals of the form S S [ã0, b̃), where ã0 is the least element (if any) of Ũ.
• All soft intervals of the form S S (ã, b̃0], where b̃0 is the greatest element (if any) of Ũ.

Proof. (B1) If x̃ = ã0 or x̃ = b̃0, then it can be seen that there exists a soft set B ∈ B containing x̃. On
the other hand, if x̃ , ã0 and x̃ , b̃0, then x̃ ∈ SU(ã)∩SL(b̃) and so x̃∈̃S S (ã, b̃) for some ã, b̃∈̃Ũ.

(B2) Without loss of generality for any kind of contour sets, the intersections of them have the form
(ã, b̃) and hence S S (ã, b̃) ∈ B.
Thus, if x̃∈̃B1 e B2 for any B1, B2 ∈ B, there exists a basis element containing x̃.
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Definition 3.11. Let (Ũ, -̃, P) be a soft totally preordered set. An ε-soft topology on Ũ, the soft basis
of which is the collection of all soft open intervals, is called ε-soft order topology on Ũ and denoted
by T-̃.

Then, each soft open interval is a soft open set in the ε-soft order topology. In addition, each soft
closed interval whose soft complement belongs to S (Ũ) is a soft closed set in the ε-soft order topology.

Example 3.12. Suppose that the soft total order 6̃ on R̃ is given with a totally ordered parameters set
P = {αi : i ∈ {1, 2, . . . , n}}, where α1 � α2 � . . . � αn. Then, the soft open intervals S S (ã, b̃) according
to this order are obtained as following types:

• If ã(α1) < b̃(α1), then
{(α1, [ã(α1), b̃(α1)]), (αi,R) : i ∈ {2, . . . , n}}.

• If ã(α1) = b̃(α1), ã(α2) = b̃(α2), . . . , ã(αi) = b̃(αi) and ã(αi+1) < b̃(αi+1), then

{(α j, {ã(α j)}), (αi+1, [ã(αi+1), b̃(αi+1)]), (αk,R) : j ∈ {1, . . . , i} and k ∈ {i + 2, . . . , n}}.

• If ã(α1) = b̃(α1), ã(α2) = b̃(α2), . . . , ã(αn−1) = b̃(αn−1) and ã(αn) < b̃(αn), then

{(αi, {ã(αi)}), (αn, (ã(αn), b̃(αn))) : i ∈ {1, . . . , n − 1}}.

Hence, each soft open set G ∈ S (R̃) in the ε-soft order topology on R̃, which takes these soft open
intervals as a soft basis, is obtained as

G = {(αi,Vi), (αn,Vn) : i ∈ {1, 2, . . . , n − 1}},

where each Vi is an open set in the discrete topology on R and Vn is an open set in the usual topology
on R.

Also, it is obvious that 6̃ is soft continuous since the soft strict upper and lower contour sets, i.e.,
the soft open rays, are soft open sets obtained as follows:

S S (U(ã)) = S S (ã,∞) = {(α1, [ã(α1),∞)), (αi,R) : i ∈ {2, . . . , n}},
S S (L(ã)) = S S (∞, b̃) = {(α1, (−∞, b̃(α1)]), (αi,R) : i ∈ {2, . . . , n}}.

On the other hand, the finite ε-intersections of the soft sets just above are obtained as follows:

B = {(α1,V), (αi,R) : i ∈ {2, . . . , n}},

where V is an open set in the discrete topology on R.
However, the collection of these soft sets B are not a soft basis for the ε-soft order topology since

this collection is not satisfied the condition (B∗) in Theorem 2.12. For example, assume that G is a soft
open set in T6̃ such that G(αn) is an open interval in R, and x̃∈̃G.

Then, there exists a soft set B ∈ B such that x̃ ∈ B, but G does not contain B, i.e., B*̃G. Therefore,
the collection of soft open rays is not a soft subbasis for T6̃.

Remark 3.13. Similarly to the last part of Example 3.12, one can obtain the soft strict upper and lower
contour sets for a given soft total preorder -̃ over an absolute soft set Ũ with a parameters set P.
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Then, it can be seen that if the collection C of finite ε-intersections of them satisfies the conditions to
be a soft basis for an ε-soft topology TC on Ũ, then TC has fewer soft open sets than T-̃, i.e., TC ⊆ T-̃,
since

S S (ã, b̃)⊆̃S S (SU(ã)) e S S (SL(b̃)),

for any ã, b̃ ∈ S E(Ũ) provided that ã≺̃b̃.
Also, it is clear that the soft strict upper and lower contour sets are again soft open sets in TC and

hence -̃ is soft continuous on Ũ according to TC.

Definition 3.14. An ε-soft space (Ũ,T , P) is called (pre)orderable soft space if there exists a soft
total preorder on Ũ such that the ε-soft order topology induced by that soft order and the given ε-soft
topology on Ũ coincide.

Example 3.15. In [16] and in metric-related studies based on this work, the soft partial order relation
≤̃ on R̃ was used in the soft metric axioms when defining a soft metric space. Accordingly, if it is
assumed that (R̃, d, P) is a soft metric space such that

d(x̃, ỹ)(α) = |x̃(α) − ỹ(α)|,

for each α ∈ P, then by considering Example 3.9, the soft metric topology corresponds to TP on R̃.
On the other hand, it is possible to define a soft metric space by using the soft total order 6̃ on R̃

since the linear extension of a partial order is a total order that is compatible with the partial order.
Then, the soft metric topology corresponds to T6̃ on R̃ and thus (R̃, d, P) is an orderable soft space. In
addition, it is clear that TP ⊂ T6̃ and TP is not comparable with TC on R̃.

Furthermore, if it is assumed that (Ũ, d1, P) and (Ũ, d2, P) are any two soft metric spaces, one can
show that (Ũ, d, P) is a soft metric space with

d(x̃, ỹ) = max{d1(x̃, ỹ), d2(x̃, ỹ)} for all x̃, ỹ ∈ S E(Ũ),

by using the soft total order 6̃ on R̃. But, it is clear that if the soft partial order ≤̃ on R̃ is used, then d
will not be a soft metric.

Theorem 3.16. Let (Ũ, -̃, P) be a soft totally preordered set. A soft set H ∈ S (Ũ) generated by the
collection of the extreme soft elements of every soft jump is soft order-dense if and only if H is a dense
soft set in (Ũ,T-̃, P).

Proof. Let H be soft order-dense according to -̃. Assume that H is not a dense soft set in (Ũ,T-̃, P).
Hence, there exists a soft open set G such that

H eG = Φ.

Then, for x̃∈̃G, there is a soft open interval I such that x̃∈̃I⊂̃G. So, since each soft open interval I is
a soft open set and H is generated by the collection of the extreme soft elements of every soft jump, I
covers a soft open interval with the extreme soft elements not in H.

Hence, H is not soft order dense which is a contradiction. Thus, H is a dense soft set in (Ũ,T-̃, P).
Conversely, let H be a dense soft set in (Ũ,T-̃, P) and ã, b̃ ∈ S E(Ũ) with ã≺̃b̃. Then, there exists a

soft open interval I with the extreme soft elements ã and b̃ such that

H e I , Φ.
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Hence, if I is a soft jump, then ã, b̃∈̃H, and if I is not a soft jump, then there exists x̃∈̃H such that
ã≺̃x̃≺̃b̃. Thus, this implies that H is soft order-dense.

Theorem 3.17. Let (Ũ, -̃, P) be a soft totally preordered set. Then, the followings are equivalent:

(1) Ũ is soft order separable.
(2) There are only countably many soft jumps in Ũ and (Ũ,T-̃, P) is separable.
(3) (Ũ,T-̃, P) is second countable.

Proof.

(1)⇔(2) Suppose that Ũ is soft order separable, G ∈ S (Ũ) is a countable soft order-dense set and
H ∈ S (Ũ) is a soft set generated by the collection of the extreme soft elements of every soft jump. For
a soft jump J(ã, b̃), there exists a soft element x̃ ∈ S E(G) such that ã∼̃x̃ or b̃∼̃x̃ since Ũ is soft order
separable according to -̃.

This allows each soft element x̃ ∈ S E(G) to be associated to a maximum of two soft jumps as -̃ is
total. Hence, H is countable soft set, because G is countable. Thus, there are only countably many soft
jumps in Ũ.

Then,
F = G d H

is also countable and soft order dense. So, from Theorem 3.16, (Ũ,T-̃, P) is separable.
Conversely, suppose that there are only countably many soft jumps in Ũ and (Ũ,T-̃, P) is separable.

Let G ∈ S (Ũ) be a dense soft set, and H ∈ S (Ũ) be a countable soft set generated by the collection of
the extreme soft elements of every soft jump.

Then, F = G d H is countable and also soft order dense from Theorem 3.16. Thus, Ũ is soft order
separable.

(2)⇔(3) Suppose that there are only countably many soft jumps in Ũ and (Ũ,T-̃, P) is separable. From
first part of the proof, Ũ is soft order separable.

Let H ∈ S (Ũ) be a countable soft order dense set and for all ãk, ãl∈̃H, D be a collection of soft
order intervals in the following:

S S (ãk, ãl), where ãk≺̃ãl,

S S (ãk, b̃0], where b̃0 is greatest soft element (if any) of Ũ and ãk≺̃b̃0,

S S [ã0, ãl), where ã0 is least soft element (if any) of Ũ and ã0≺̃ãl.

So, D is countable and each soft set in D is a soft open in T-̃. Now, let G be a soft open set in T-̃
and x̃∈̃G. Then, there exists B ∈ B such that x̃∈̃B⊂̃G. Hence, without losing generality, if

B = S S (ã, b̃),

then there exist ãk, ãl∈̃H such that ã-̃ãk-̃x̃-̃ãl-̃b̃ since H is soft order dense. Thus, D is a countable
soft basis for T-̃ since

x̃∈̃S S (ãk, ãl)⊂̃G,

and so (Ũ,T-̃, P) is second countable.
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On the contrary, suppose that (Ũ,T-̃, P) is second countable and B is a countable soft basis for T-̃.
Then, it is clear that (Ũ,T-̃, P) is separable.

Afterwards, let J be the collection of all soft jumps and Ψ : J → N be a mapping such that

ã∈̃BΨ(J(ã,b̃))⊂̃S S (L(b̃)).

Since S S (L(b̃)) is soft open, we can always make such a choice of Ψ(J(ã, b̃)). For any

J(ã, b̃) , J(c̃, d̃),

either b̃≺̃d̃ or d̃≺̃b̃, it is obtained that

Ψ(J(ã, b̃)) , Ψ(J(c̃, d̃)).

Thus, Ψ is an injection from J into B and so J is countable.

• Soft preference and soft utility

It is a typical approach to model a preference relation as a total preorder relation. Through the
same approach, we describe a soft preference relation as a soft total preorder. Accordingly, from
Definition 3.4, for a soft preference relation -̃ on Ũ with a parameters set P, the associated soft
equivalence relation ∼̃ is called soft indifference relation and the associated soft asymmetric relation ≺̃
is called soft strict preference relation.

Moreover, we define a soft utility mapping on a soft totally preordered set as soft real-valued by
using the soft total order 6̃ on R̃ in the following.

Definition 3.18. Let -̃ be a soft preference relation on Ũ with totally ordered parameters set P. The
mapping u : S E(Ũ)→ S E(R̃) is said to represent -̃ and it is called a soft utility mapping if it satisfies

u(x̃)6̃u(ỹ)⇔ x̃-̃ỹ for all x̃, ỹ ∈ S E(Ũ).

Example 3.19. Suppose that a garden owner wants to grow some crops in the garden. Let

U = {x, y, z}

be a set of crops and
P = {α1 := Marketable, α2 := Resistant}

be a parameters set which corresponds to the attributes of the crops that the garden owner wants to
grow.

Also, assume that the garden owner wants the crops to be marketable more than to be resistant to
insects, i.e., α1 � α2.

Then, the crops that the garden owner can grow according to the parameters are represented by a
soft set such as

F = {(α1, {x, y}), (α2, {y, z})}.

The soft elements of Ũ are as follows:

x̃1 = {(α1, x), (α2, x)}, x̃4 = {(α1, y), (α2, x)}, x̃7 = {(α1, z), (α2, x)},
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x̃2 = {(α1, x), (α2, y)}, x̃5 = {(α1, y), (α2, y)}, x̃8 = {(α1, z), (α2, y)},
x̃3 = {(α1, x), (α2, z)}, x̃6 = {(α1, y), (α2, z)}, x̃9 = {(α1, z), (α2, z)},

and the soft elements of F,
S E(F) = {x̃2, x̃3, x̃5, x̃6},

present all of the crop-growing scenarios of the garden according to the set parameters. Here, if the
parameters correspond to different crops, they will be grown together; if they correspond to the same
crop, that crop will be grown only.

The garden owner can consider other circumstances, for example, perhaps weather conditions or
interactions of the crops with each other, to determine her or his preferences. Hence, the particular
preferences for the soft elements of F can be given as x̃2-̃x̃3-̃x̃5-̃x̃6.

Following that, for example; a soft utility mapping u: S E(F) → S E(R̃) that represents these
preferences can be defined by

u(x̃2) = {(α1, 1), (α2, 3)} 6̃ u(x̃3) = {(α1, 2), (α2, 1)}
6̃ u(x̃5) = {(α1, 2), (α2, 4)}
6̃ u(x̃6) = {(α1, 3), (α2, 5)}.

Remark 3.20. Suppose that U is a universal set, P is a totally ordered parameters set and

U = {uα : U → R : α ∈ P}

is a parametrized family of the utility functions that represent the preference relations -α on U for each
α ∈ P. If the soft mapping u : S E(Ũ)→ S E(R̃) is defined as

u(x̃)(α) = uα(x̃(α)) for each α ∈ P, (3.1)

then from Remark 2.7, u cannot be a soft utility mapping that represents a soft preference relation -̃ on
Ũ, i.e., any parametrized family of the utility functions cannot be considered as a soft utility mapping.

Conversely, suppose that -̃ is a soft preference relation on Ũ and u is a soft utility mapping that
represents -̃. Again from Remark 2.7, u cannot be considered as a parametrized family of the utility
functions uα ∈ U for each α ∈ P.

Example 3.21. In Example 3.19, if we set the preferences on U according to the parameters as x -α1

y -α1 z and y -α2 x -α2 z, then the utility functions uα1 and uα2 on U that represent -α1 and -α2 can be
defined in a way that is appropriate, respectively. As noted in Remark 2.7, the soft relation on the soft
set F generated by these preferences

R = {(x̃2, x̃2), (x̃3, x̃3), (x̃5, x̃5), (x̃6, x̃6), (x̃2, x̃3), (x̃2, x̃5), (x̃2, x̃6), (x̃3, x̃6), (x̃5, x̃6)}

is not a soft preference relation since the soft elements x̃3 and x̃5 of F are not comparable according to
this soft relation. As a similar conclusion, the utility functions uα1 and uα2 cannot generate a soft utility
mapping.

On the other hand, if we consider the soft utility mapping in Example 3.19, then we can decompose
u considering (3.1). But, uα1 and uα2 are not even well defined mappings. Indeed,

u(x̃2)(α1) = uα1(x̃2(α1)) = uα1(x) = 1,
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u(x̃3)(α1) = uα1(x̃3(α1)) = uα1(x) = 2,

and

u(x̃2)(α2) = uα2(x̃2(α2)) = uα2(y) = 1,
u(x̃5)(α2) = uα2(x̃5(α2)) = uα2(y) = 3.

Theorem 3.22. Let Ũ be a finite absolute soft set with a totally ordered parameters set P and ≺̃ be a
soft strict preference relation on Ũ. Then, there exists a soft utility mapping that represents ≺̃.

Proof. Suppose that u: S E(Ũ)→ S E(R̃) is a soft mapping defined by for each x̃ ∈ S E(X̃)

u(x̃) = {(α, |S S (L(x̃))(α)|) : α ∈ P},

where |S S (L(x̃))(α)| denotes the number of elements of

S S (L(x̃))(α) ⊂ U for each α ∈ P.

This mapping is well defined since Ũ being finite depends on U and P being finite.
Let

x̃≺̃ỹ for x̃, ỹ ∈ S E(Ũ).

So, ỹ ∈ L(ỹ) by totality and ỹ < L(x̃) since x̃-̃ỹ and ỹ�̃x̃. If z̃ ∈ L(x̃), then z̃ ∈ L(ỹ) by transitivity.
Hence,

L(x̃) ⊆ L(ỹ)

and so

S S (L(x̃))⊆̃S S (L(ỹ)).

This implies that L(x̃) and {ỹ} are disjoint and both subsets of L(ỹ). Then,

L(x̃) ∪ {ỹ} ⊆ L(ỹ)

and hence

u(x̃) + 1̄6̃u(ỹ).

Therefore, u(x̃)<̃u(ỹ).
The above theorem can be proved similarly in the case of soft preference relation -̃. Hence, we can

state the following corollary.

Corollary 3.23. Let Ũ be a finite absolute soft set with a totally ordered parameters set P and -̃ be a
soft preference relation on Ũ. Then, there exists a soft utility mapping that represents -̃.

AIMS Mathematics Volume 8, Issue 4, 9761–9781.



9776

4. A decision-making application: graph comparison based on the soft order

Graph theory is of substantial interest to researchers due to its diverse applications spanning many
fields. In particular, the comparison of graphs finds applications in fields such as bio-cheminformatics
and network analysis [43].

From this perspective, the weights of the vertices can be expected to be decisive in evaluating the
compatibility or correspondence of the graphs having these vertices. Apart from this, Ali et al. [2]
showed that the adjacency of vertices and soft set theory were used to represent a graph and gave some
features and examples related to this representation.

Here, by using the soft set representation of a graph, we present a decision-making application,
when a graph is given as a particular model or sample, which can be used to obtain the most relevant
graph or to compare it with other available ones.

First of all, the following concepts are recalled from [2] in order to have a framework about the soft
set representation of a graph.

Definition 4.1. Let
U = {u1, u2, . . . , un}

be a finite universal set. A multi-set A of U is characterized by a function

cA : U → {0, 1, 2, . . .},

such that cA(ui) is the number of occurrences of the element ui in the multi-set for each i = 1, 2 . . . , n
and then it is expressed by

A = {ucA(u1)
1 , . . . , ucA(un)

n }.

Here, both U and A will be considered as finite sets. Then, a pair (G, P) or simply G is called a soft
multi-set on U, when P is a parameters set and G : P → PM(U) is a multi-set valued mapping, where
PM(U) denotes the set of all multi-sets of U.

Definition 4.2. Let V and E be sets such that E ⊆ V ×V . Then (V, E) is called a graph, the elements of
V are called vertices of this graph, and the elements of E are called edges of this graph. Also, a graph
is said to be edge (vertex)-weighted if each edge (vertex) is associated with a weight (usually a real
number) in the graph.

So, one can associate a weight to each vertex in a graph based on their relative utility, i.e., it can be
studied on the vertex-weighted graphs, and hence the vertices can be totally ordered.

Definition 4.3. A soft set representation of a graph is a soft multi-set G on the set of vertices V , where
G : V → PM(V) with

G(v) =

{v′ ∈ V : v′ is adjacent to v},

∅, otherwise,

for each v ∈ V .

Notice that, according to the above definitions, the set of all soft elements of ˜PM(V), i.e.,
S E( ˜PM(V))), is considered to be all of the soft set representations of graphs with the set of vertices V .

Now, the following Algorithm is created for a decision-making application that uses the soft
element, the soft order, and the soft set representation of a graph.
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Algorithm Determining the correspondence of graphs.
Step 1. Input a set of vertices as V = {v1, v2, . . . , vn}.
Step 2. Input the preferences on the vertices as totally ordered, i.e., V = {vi : i ∈ {1, . . . , n}}, where

v1 � v2 � . . . � vn and � is a total order on the vertices.
Step 3. Input a graph G∗ ∈ S E( ˜PM(V)) as a sample and input a set of graphs G = {G1, . . . ,Gk} within

S E( ˜PM(V)) to be checked.
Step 4. Construct a soft mapping u : S E( ˜PM(V)) × S E( ˜PM(V)) → S E(R̃) to measure the

correspondence of two graphs.
Step 5. For G∗ and each Gk ∈ G, compute the soft mapping u and order each soft element u(Gk,G∗)

with respect to the soft total order 6̃ on R̃.
Step 6. The decision is a graph Gk∗ ∈ G if u(Gk∗ ,G∗) is the greatest soft element according to 6̃.
Step 7. If k∗ has more than one value then any one of Gk∗ can be chosen.

Suppose that
V = {vi : i ∈ {1, 2, 3, 4}}

is a set of vertices, where v1 � v2 � v3 � v4 and � is a total order on the vertices based on their relative
utility, that is, the vertices are weighted.

By these vertices, let G∗ be a vertex-weighted graph drawn in Figure 1 as a sample, where the size
of the vertices is a representation of the order of the vertex-weights. So, the soft set representation of
G∗ is

G∗ = {(v1, {v2
2, v3, v4}), (v2, {v2

1, v3}), (v3, {v1, v2}), (v4, {v1})}.

v1

v2
v3

v4

Figure 1. Visualisation of G∗.

Let
G = {G1, . . . ,G7}

be a set of graphs relevant to G∗ or desired to be associated with G∗ drawn in Figure 2. The soft set
representations of these graphs are as follows:

G1 = {(v1, {v2, v2
3, v4}), (v2, {v1}), (v3, {v2

1}), (v4, {v1})},
G2 = {(v1, {v2

2, v4}), (v2, {v2
1, v4}), (v3, {v4}), (v4, {v1, v2, v3})},

G3 = {(v1, {v3
2, v3}), (v2, {v3

1, v4}), (v3, {v1, v4}), (v4, {v2, v3})},
G4 = {(v1, {v2

3, v4}), (v2, {v3}), (v3, {v2
1, v2, v4}), (v4, {v1, v3})},

G5 = {(v1, {v2
3, v

2
4}), (v2, {v4}), (v3, {v2

1}), (v4, {v2
1, v2})},

G6 = {(v1, {v2
2, v4}), (v2, {v2

1}), (v3, ∅), (v4, {v1})},

AIMS Mathematics Volume 8, Issue 4, 9761–9781.



9778

G7 = {(v1, {v2, v3
3, v4}), (v2, {v1, v4}), (v3, {v3

1}), (v4, {v1, v2})}.

G1 G2 G3 G4

G5 G6 G7

Figure 2. Graphs relevant to G∗.

Assume that the soft mapping u mentioned in Step 4 is defined by for each G,G′ ∈ S E( ˜PM(V)),

u(G,G′) = {(vi,
∑
v j∈V

min{cG(v j), cG′(v j)}) : i, j ∈ {1, . . . , n}}.

Then, if we compute the soft mapping u for G∗ and each of the graph in G, we have

u(G1,G∗) = {(v1, 3), (v2, 1), (v3, 1), (v4, 1)},
u(G2,G∗) = {(v1, 3), (v2, 2), (v3, 0), (v4, 1)},
u(G3,G∗) = {(v1, 3), (v2, 2), (v3, 1), (v4, 0)},
u(G4,G∗) = {(v1, 2), (v2, 1), (v3, 2), (v4, 1)},
u(G5,G∗) = {(v1, 2), (v2, 0), (v3, 1), (v4, 1)},
u(G6,G∗) = {(v1, 3), (v2, 2), (v3, 0), (v4, 1)},
u(G7,G∗) = {(v1, 3), (v2, 1), (v3, 1), (v4, 1)}.

Hence, the soft order of correspondence of these graphs with G∗ is obtained as

G5≺̃G4≺̃G1∼̃G7≺̃G2∼̃G6≺̃G3.

Therefore, one can choose G3 as the most relevant graph to G∗ and it is observed that there is
indifference between G1 and G7 and between G2 and G6.

5. Conclusions

In this work, we present a novel approach by gathering the concepts of order and topology on the
soft sets via the soft elements. It is shown that a soft topology can be obtained with a parametrized
family of total orders and that a soft (order) topology can always be constructed in a soft ordered set.
Since a soft order cannot be considered as a parametrized family of classical orders, a soft topology on
the soft ordered set is found to have different characteristics.
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The study of soft topology in the ordered set-up leads to the construction of various concepts and
classes of soft topologies. The notions of preference and utility are described over the soft sets via the
soft elements and, contrary to usual practice, a non-real valued utility function is depicted. By using
this approach, further investigations can be carried out to combine the order theory and the utility
theory with the soft set theory and for other topological properties. Also, it will allow to the extension
of soft metric structures and their applications. In addition, the ideas mentioned in the paper can be
integrated with the hybrid soft sets and more affirmative solutions can be provided in the decision-
making applications.
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