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Abstract: Since the distribution of plankton is always uneven, the nonlocal phytoplankton competition
term indicates the spatial weighted mean of phytoplankton density, which is introduced into the
plankton model with toxic substances effect to study the corresponding dynamic behavior. The stability
of the positive equilibrium point and the existence of Hopf bifurcations are discussed by analysing the
distribution of eigenvalues. The direction and stability of bifurcation periodic solution are researched
based on an extended central manifold method and normal theory. Finally, spatially inhomogeneous
oscillations are observed in the vicinity of the Hopf bifurcations. Through numerical simulation,
we can observe that the system without nonlocal competition term only generates homogeneous
periodic solution, and inhomogeneous periodic solution will produce only when both diffusion and
nonlocal competition exist simultaneously. We can also see that when the toxin-producing rate of each
phytoplankton is in an appropriate range, the system with nonlocal competition generates a stability
switch with inhomogeneous periodic solution, when the value of time delay is in a certain interval,
then Hopf bifurcations will appear, and with the increase of time delay, the quantity of plankton will
eventually become stable.

Keywords: plankton; nonlocal competition; diffusion; delay; Hopf bifurcation
Mathematics Subject Classification: 34K18, 35B32

1. Introduction

Plankton is thought to be the basis of the oceanic food chain. Plankton, which is mainly composed
of phytoplankton and zooplankton [1]. Zooplankton, like phytoplankton, is an indispensable natural
feed for fish. Among them, phytoplankton has a positive impact on the water environment, but some
species of phytoplankton have toxic effects on fish. Moreover, though Plankton is small in volume,
is abundant in quantity and widely distributed, is the most important part of energy flow and material
circulation in marine ecosystem. Its research has had a major impact on fisheries production and the
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basic theory of marine science.
There are many kinds of mathematical models for studying Marine plankton systems. For different

research purposes, they are different in the number of occurrence groups and influencing factors.
Chakraborty et al. showed that when toxic effect occurs, the distribution of nutrients and
phytoplankton became spatially heterogeneous and led to different patterns, with the distribution of
nutrients and phytoplankton exhibiting spatial and temporal oscillations at certain levels of
toxicity [2]. Meng found that imprecise parameters affect not only the internal and biological
equilibrium of the system, but also the critical value of bifurcation and branching range [3]. Zhang
engaged in the research of nontoxic phytoplankton, toxic phytoplankton, and zooplankton model [4].
In addition, the nutrient-phytoplankton-zooplankton model [5, 6]and nutrient-phytoplankton [7, 8] are
also the research direction of many scholars.

Due to the widespread existence of time delays in nature, many scholars have studied population
models with time delays [9–11]. The following plankton model with discrete delay was written out by
Chattopadhyay and Sarkar [12],  dP

dt = rP
(
1 − P

K

)
− αPZ,

dZ
dt = βPZ − µZ − θP(t−τ)Z

γ+P(t−τ) .
(1.1)

All parameters are positive. Where P and Z represent the population density of phytoplankton
and zooplankton, respectively. α is the rate of specific predation and β describes the ratio of biomass
consumed per zooplankton for the production of new zooplankton. µ means zooplankton’s mortality
rate, θ represents the rate of toxin production per phytoplankton species, γ denotes the half saturation
constant and τ is the discrete delay.

In [13], the diffusion term was added to the model(1.1) by Zhao J and Wei J, that is ∂P
∂t = d1∆P + rP

(
1 − P

K

)
− αPZ,

∂Z
∂t = d2∆Z + βPZ − µZ − θP(t−τ)Z

γ+P(t−τ) .
(1.2)

Where d1 and d2 are diffusion coefficients of phytoplankton and zooplankton, respectively. They
mainly studied the dynamical behavior of models (1.2) with diffusion and delay.

Britton [14] and Furter and Greenfeld [15] proposed that the consumption of spatial place
resources depends on two factors: the local population density and the weighted average population
of the neighborhood. Because phytoplankton and zooplankton interact not only in the same location,
but also in different locations, even in the whole space. With limited resources, there must be
competition between phytoplankton and zooplankton. And most of the intraspecific and interspecific
competitions for shared resources among individuals of mobile species are nonlocal. Therefore, it is
necessary to introduce nonlocal competitive term into the dynamic model.

In recent years, nonlocal competition has also become the research object of many researchers. A
diffusive predator-prey system with nonlocal intraspecific competition for prey was discussed by Geng,
and they stated that from a biological perspective, global intraspecific competition promotes prey and
predator coexistence by keeping prey at a critical total population size [16]. Pal et al. explored the 2D
predator-prey model with nonlocal intraspecific competition, they showed that the bifurcation structure
of the system is not as sensitive to the selection of parameterization as the relevant nonspatial case,
which indicates that nonlocality likely reduce the structural sensitiveness of the system [17]. In [18],
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Pal et al. also researched the effect of nonlocal competition on plankton-fish dynamics and showed the
significance of non-locality in aquatic ecosystems and its possible contribution to the phenomena of
spatial patchiness. There are also many other excellent models with nonlocal competition learned by
researchers (see details to [19–21]). In [22], it showed that the most explicit way to introduce nonlocal
effects is to replace u

K with û(x,t)
K , where û(x, t) =

∫
Ω

G(x, y)u(y, t)dy. In this way, system (1.2) can be
transformed into the following model

∂P(x, t)
∂t

= d1∆P(x, t) + rP(x, t)
(
1 −

1
K

∫
Ω

G(x, y)P(y, t)dy
)
− αP(x, t)Z(x, t),

∂Z(x, t)
∂t

= d2∆Z(x, t) + βP(x, t)Z(x, t) − µZ(x, t) −
θP(x, t − τ)Z(x, t)
γ + P(x, t − τ)

, x ∈ Ω, t > 0,

∂P(x, t)
∂ν̄

=
∂Z(x, t)
∂ν̄

= 0, x ∈ ∂Ω, t > 0,

P(x, θ) = P0(x, θ) ≥ 0,Z(x, θ) = Z0(x, θ) ≥ 0, x ∈ Ω̄, θ ∈ [−τ, 0].

(1.3)

Where P̂(x, t) =
∫

Ω
G(x, y)P(y, t)dy signifies the nonlocal phytoplankton competition effect. In order to

make the calculation easier, we choose to study the eigenvalue problem in the one-dimensional space
domain Ω = (0, lπ), and G(x, y) = 1

lπ is the kernel function.
Although many scholars have studied the stability analysis and Hopf bifurcation of various models,

stability analysis and Hopf bifurcation theory have also been widely used. In real life, the phenomenon
of periodic oscillation is very normal, stability analysis of ecosystem behavior can allow us to come
up with different ways to manage resources, and maintain a predictable state. So it is very necessary
to study Hopf bifurcation and stability. In this paper, we also study them, with Hopf bifurcation as the
main research content.

The layout design of this paper is as follows. In Section 2, we analyze the steady state condition of
the positive equilibrium point and the existence of the Hopf bifurcations. In Section 3, we study the
nature of Hopf bifurcation. In Section 4, to display the theoretical conclusions, we select appropriate
parameters for numerical simulation. In Section 5, we come to a brief conclusion.

2. Stability analysis

It goes without saying that system (1.3) has two boundary equilibrium points (0, 0) and (K, 0). Put
forward the following hypothesis

(H0) θ < (βK − µ)(1 +
γ

K
).

Under the sufficient condition (H0), the system (1.3) has an unique coexistence equilibrium point
E∗(P∗,Z∗), where

P∗ =
−(βγ − µ − θ) +

√
(βγ − µ − θ)2 + 4βγµ
2β

, Z∗ =
r
α

(1 −
P∗
K

).

Linearize system (1.3) at E∗(P∗,Z∗)

∂

∂t

(
P(x, t)
Z(x, t)

)
= D

(
∆P(t)
∆Z(t)

)
+ L1

(
P(x, t)
Z(x, t)

)
+ L2

(
P(x, t − τ)
Z(x, t − τ)

)
+ L3

(
P̂(x, t)
Ẑ(x, t)

)
, (2.1)
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where

D =

(
d1 0
0 d2

)
, L1 =

(
0 a1

a2 0

)
, L2 =

(
0 0
b 0

)
, L3 =

(
â 0
0 0

)
,

a1 = −αP∗ < 0, a2 = βZ∗ > 0, b =
−γθZ∗

(P∗ + γ)2 < 0, â = −
rP∗
K

< 0, (2.2)

and P̂(x, t) = 1
lπ

∫ lπ

0
P(y, t)dy. After calculation, we can get the characteristic equations are

λ2 + Anλ + Bn − a1be−λτ = 0, n ∈ N, (2.3)

where

A0 = −â > 0, B0 = −a1a2 > 0,

An = (d1 + d2)
n2

l2 > 0, Bn = d1d2
n4

l4 − a1a2 > 0, n ∈ N∗.
(2.4)

Put forward the following assumption

(H1) − a1a2 − a1b > 0.

Theorem 2.1. In system (1.3), if the assumption conditions τ = 0 and (H0) are contented. When (H1)
is satisfied, then the coexistence equilibrium point E∗(P∗,Z∗) is locally asymptotically stable.

Proof. When τ = 0, the characteristic equation (2.3) of system (1.3) are

λ2 − âλ − a1a2 − a1b = 0, n = 0. (2.5)

and
λ2 + Anλ + Bn − a1b = 0, n ∈ N∗, (2.6)

When the term (H0) and (H1) are satisfied, we can conclude that the real part of the root of the
characteristic equations (2.5) and (2.6) are negative, hence E∗(P∗,Z∗) is locally asymptotically stable.

�

Lemma 2.2. When (H0) and (H1) hold, Eq (2.3) has a pair of pure imaginary roots ±iω±n at τ j,±
n , j ∈

N, n ∈ S, where

ω±n =

√
1
2

[−(A2
n − 2Bn) ±

√
(A2

n − 2Bn)2 − 4(B2
n − a2

1b2)], (2.7)

and

τ j,±
n = 1

ω±n

[
2π − arccos(−ω

2+Bn
a1b )

]
+ 2 jπ.

Z(n)
cos =

−ω2 + Bn

a1b
, Z(n)

sin =
−ωAn

a1b
< 0,

S = {n|A2
n − 2Bn < 0, n ∈ N}.

(2.8)
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Proof. Let iω (ω > 0) be a solution of Eq (2.3), then

−ω2 + iωAn + Bn − a1b(cosωτ − isinωτ) = 0.

cosωτ = −ω2+Bn
a1b , sinωτ = −ωAn

a1b can be calculated easily. It leads to

ω4 + ω2
(
A2

n − 2Bn

)
+ B2

n − a2
1b2 = 0. (2.9)

Making z = ω2, hence the Eq (2.9) becomes

z2 + z
(
A2

n − 2Bn

)
+ B2

n − a2
1b2 = 0, (2.10)

and z± = 1
2 [−(A2

n − 2Bn)±
√

(A2
n − 2Bn)2 − 4(B2

n − a2
1b2)] are the roots of Eq (2.10). There’s no denying

that when (H0) and (H1) are met, then Bn − a1b > 0, Bn + a1b > 0 for n ∈ N. By accurate calculation,
we can get A2

0 − 2B0 = â2 + 2a1a2, A2
n − 2Bn = d2

1
n4

l4 + d2
2

n4

l4 + 2a1a2. Due to limn→∞(A2
n − 2Bn) → +∞,

obviously to see S is a finite set. You can get z+ > 0 and z− > 0 for n ∈ S obviously. Thus, ±iω±n is a
pair of purely imaginary roots of the Eq (2.3) at τ j,±

n , j ∈ N, n ∈ S.
�

Lemma 2.3. When (H0) and (H1) are contended, then Re[ dλ
dτ |τ=τ j,+

n
] > 0, Re[ dλ

dτ |τ=τ j,−
n

] < 0 for n ∈ S,
j ∈ N.

Proof. By Eq (2.3), we can get

(
dλ
dτ

)−1 =
2λ + An

−a1bλe−λτ
−
τ

λ
.

Then

[Re(
dλ
dτ

)−1]τ=τ j,±
n

= Re[
2λ + An

−a1bλe−λτ
−
τ

λ
]τ=τ j,±

n

= [
1

a2
1b2

(A2
n − 2Bn + 2ω2)]τ=τ j,±

n

= ±[
1

a2
1b2

√
(A2

n − 2Bn)2 + 4(B2
n − a2

1b2)]τ=τ j,±
n
.

Therefore, we can get Re[dλ
dτ |τ=τ j,+

n
] > 0, Re[dλ

dτ |τ=τ j,−
n

] < 0 for n ∈ S, j ∈ N.

Denote τ∗ = min{τ0,±
n | n ∈ S}, τmax = max{τ0,±

n | n ∈ S}. According to the above results, we can get
the following theorem.

Theorem 2.4. When (H0) and (H1) are satisfied, then the following expressions are correct for
system (1.3):

(1) E∗(P∗,Z∗) is locally asymptotically stable for τ ∈ [0, τ∗).
(2) E∗(P∗,Z∗) is unstable for τ ∈ (τ∗, τ∗ + ε) with some ε > 0.
(3) At τ = τ j,± or τ j,±

n (n ∈ S, j ∈ N), system (1.3) underdoes Hopf bifurcation.
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3. Property of Hopf bifurcation

The same method as [23, 24] is adopted by us to compute the Hopf bifurcations in detail. For fixed
j ∈ N and n ∈ S, we definite τ̃ = τ

j,±
n . Make P̃(x, t) = P(x, τt) − P∗ and Z̃(x, t) = Z(x, τt) − Z∗. Hence

the system (1.3) can be transformed into(drop the tilde)
∂P
∂t

= τ[d1∆P + r(P + P∗)
(
1 −

1
Klπ

∫ lπ

0
(P(y, t) + P∗)dy

)
− α(P + P∗)(Z + Z∗)],

∂Z
∂t

= τ[d2∆Z + β(P + P∗)(Z + Z∗) − µ(Z + Z∗) −
θ(P(t − 1) + P∗)(Z + Z∗)

γ + P(t − 1) + P∗
].

(3.1)

After simplification, the system (3.1) can be converted into
∂P
∂t

=τ[d1∆P + a1Z + âP̂ + β1P̂P + β2PZ] + h.o.t.,

∂Z
∂t

=τ[d2∆Z + a2P + bP(t − 1) + β3PZ + β4P(t − 1)Z + β5P2(t − 1)

+ β6P3(t − 1) + β7P2(t − 1)Z] + h.o.t.,

(3.2)

where

β1 = −
r
K
, β2 = −α, β3 = β, β4 = −

γθ

(P∗ + γ)2 ,

β5 =
γθZ∗

(P∗ + γ)3 , β6 = −
γθZ∗

(P∗ + γ)4 , β7 =
γθ

(P∗ + γ)3 .

Define a real-valued Sobolev space X :=
{
(P,Z)T : P,Z ∈ H2(0, lπ), (Px,Zx)|x=0,lπ = 0

}
, the

complexification of XC := X ⊕ iX = {x1 + ix2| x1, x2 ∈ X} . And the inner product
< P̃, Z̃ >:=

∫ lπ

0
P1Z1dx +

∫ lπ

0
P2Z2dx for P̃ = (P1, P2)T , Z̃ = (Z1,Z2)T , P̃, Z̃ ∈ XC, P1 and P2 represent

the conjugate of P1 and P2, respectively. The phase space C := C([−1, 0], X) has the sup norm, hence
φt ∈ C , φt(θ) = φ(t + θ) or −1 ≤ θ ≤ 0. Denote β(1)

n (x) = (γn(x), 0)T , β(2)
n (x) = (0, γn(x))T , and

βn = {β(1)
n (x), β(2)

n (x)}, where {β(i)
n (x)} is an orthonormal basis of X. Let’s define

Bn := span{< φ(·), β( j)
n > β

( j)
n |φ ∈ C , j = 1, 2}, n ∈ N0 as a subspace of C . There exists a 2 × 2 matrix

function ηn(σ, τ̃) −1 ≤ σ ≤ 0, make −τ̃Dn2

l2 φ(0) + τ̃L(φ) =
∫ 0

−1
dηn(σ, τ)φ(σ) for φ ∈ C . The bilinear

form on C ∗ × C is defined by

(ψ, φ) = ψ(0)φ(0) −
∫ 0

−1

∫ σ

ξ=0
ψ(ξ − σ)dηn(σ, τ̃)φ(ξ)dξ, (3.3)

for φ ∈ C , ψ ∈ C ∗. Define τ = τ̃ + µ, when µ = 0, then the system has a pair of purely imaginary
roots ±iωn0 at (0, 0) , and undergoes Hopf bifurcation. The infinitesimal generator of a semigroup is
represented as A, and the formal adjoint of A in bilinear form (3.3) is represented as A∗. Define the
following function

δ(n0) =

{
1 n0 = 0,
0 n0 ∈ N.

(3.4)
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Choose ηn0(0, τ̃) = τ̃[(−n2
0/l

2)D + L1 + L3δ(nn0)], ηn0(−1, τ̃) = −τ̃L2, ηn0(σ, τ̃) = 0 for −1 < σ < 0.
Let s(θ) = s(0)eiωn0 τ̃θ (θ ∈ [−1, 0]), q(ϑ) = q(0)e−iωn0 τ̃ϑ (ϑ ∈ [0, 1]) be the eigenfunctions of A(τ̃)
and A∗ corresponds to iωn0 τ̃ respectively. We can make s(0) = (1, s1)T , q(0) = M(1, q2), where
s1 = 1

a1
(iωn0 + d1n2

0/l
2 − âδ(n0)), q2 = a1l2/(d2n2 + iωn0l

2), and M = (1 + s1q2 + τ̃q2be−iωn0 τ̃)−1. Then
we rewrite (3.1) into the following system in an abstract form

dP(t)
dt

= (τ̃ + µ)D∆P(t) + (τ̃ + µ)[L1(Pt) + L2P(t − 1) + L3P̂(t)] + F(Pt, P̂t, µ), (3.5)

where

F(φ, µ) = (τ̃ + µ)
(

β1φ1(0)φ̂1(0) + β2φ1(0)φ2(0)
β3φ1(0)φ2(0) + β4φ1(−1)φ2(0) + β5φ

2
1(−1) + β6φ

3
1(−1) + β7φ

2
1(−1)φ2(0)

)
(3.6)

respectively, for φ = (φ1, φ2)T ∈ C and φ̂1 = 1
lπ

∫ lπ

0
φdx. Then the space C can be decomposed as

C = S ⊕ Q, where S = {zsγn0(x) + z̄s̄γn0(x)|z ∈ C}, Q = {φ ∈ C |(qγn0(x), φ) = 0 and (q̄γn0(x), φ) = 0}.
Then, system (3.6) can be rewritten as Pt = z(t)s(·)γn0(x) + z̄(t)s̄(·)γn0(x) + ω(t, ·) and P̂t = 1

lπ

∫ lπ

0
Ptdx,

where
z(t) = (qγn0(x), Pt), ω(t, θ) = Pt(θ) − 2Re{z(t)s(θ)γn0(x)}. (3.7)

then, we have ż(t) = iω)n0τ̃z(t) + q̄(0) < F(0, Pt), βn0 >. There occurs a center manifold C0, and
near (0, 0), ω can be written as follow.

ω(t, θ) = ω(z(t), z̄(t), θ) = ω20(θ)
z2

2
+ ω11(θ)zz̄ + ω02(θ)

z̄2

2
+ · · · . (3.8)

Then, limiting the system to the central manifold becomes ż(t) = iωn0 τ̃z(t) + g(z, z̄). Denote g(z, z̄) =

g20
z2

2 + g11zz̄ + g02
z̄2

2 + g21
z2 z̄
2 + · · · . And by exact calculation, we get

g20 = 2τ̃M(ς1 + q2ς2)I3, g11 = τ̃M(%1 + q2%2)I, g02 = ḡ20,

g21 = 2τ̃M[(κ11 + q2κ21)I3 + (κ12 + q2κ22)I4],

where I3 =
∫ lπ

0
γ3

n0
(x)dx, I4 =

∫ lπ

0
γ4

n0
(x)dx, ς1 = β1δ(n0) +β2s1, ς2 = e−2iτωn0β5 +β3s1 + e−iτωn0β4s1, %1 =

1
2β1δ(n0) + 1

4β2s1 + 1
4β2s1, %2 = 1

2β5 +β3(1
4 s1 + 1

4 s1) +β4(1
4e−iτωn0 s1 + 1

4e−iτωn0 s1), κ11 = ω(1)
11 (0)(2β1δ(n0) +

2β1+2β2s1)+ω(1)
20 (0)(β1δ(n0)+β1+β2s1)+2ω(2)

11 (0)β2+ω
(2)
20 (0)β2, κ12 = 0, κ21 = ω(1)

20 (0)β3s1+2ω(1)
11 (0)β3s1+

ω(2)
11 (0)(2β3 +2β4e−iτ̃ωn0 )+ω(2)

20 (0)(β3 +eiτ̃ωn0β4)+ω(1)
20 (−1)(2β5eiτ̃ωn0 +β4 s̄1)+ω(1)

11 (−1)(4e−iτ̃ωn0β5 +2β4s1),
κ22 = 3

2e−iτ̃ωn0β6 + 1
2e−2iτ̃ωn0β7s1 + β7s1.

Now, we calculate W20(θ) and W11(θ) when n=0, and get g21. By (3.7), we have

ω̇ = Ṗt − żhγn0(x) − ˙̄zh̄γn0(x) = Aω + H(z, z̄, θ), (3.9)

where

H(z, z, θ) = H20(θ)
z2

2
+ H11(θ)zz + H02(θ)

z2

2
+ · · · . (3.10)

By comparing the coefficients of (3.8) and (3.9), we can obtain

(A − 2iωn0 τ̃I)ω20 = −H20(θ), Aω11(θ) = −H11(θ). (3.11)
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Then, we can get

ω20(θ) =
−g20

iωn0 τ̃
p(0)eiωn0 τ̃θ −

ḡ02

3iωn0 τ̃
p̄(0)e−iωn0 τ̃θ + E1e2iωn0 τ̃θ,

ω11(θ) =
g11

iωn0 τ̃
p(0)eiωn0 τ̃θ −

ḡ11

iωn0 τ̃
p̄(0)e−iωn0 τ̃θ + E2,

(3.12)

where E1 =
∑∞

n=0 E(n)
1 , E2 =

∑∞
n=0 E(n)

2 ,

E(n)
1 = (2iωn0 τ̃I −

∫ 0

−1
e2iωn0 τ̃θdηn0(θ, τ̄))−1 < F̃20, βn >,

E(n)
2 = −(

∫ 0

−1
dηn0(θ, τ̄))−1 < F̃11, βn >, n ∈ N0,

< F̃20, βn >=


1
lπ F̂20, n0 , 0, n = 0,
1

2lπ F̂20, n0 , 0, n = 2n0,
1
lπ F̂20, n0 = 0, n = 0,
0, other,

< F̃11, βn >=


1
lπ F̂11, n0 , 0, n = 0,
1

2lπ F̂11, n0 , 0, n = 2n0,
1
lπ F̂11, n0 = 0, n = 0,
0, other,

and F̂20 = 2(ς1, ς2)T , F̂11 = 2(%1, %2)T .
Therefore, we can get

c1(0) =
i

2ωnτ̃
(g20g11 − 2|g11|

2 −
|g02|

2

3
) +

1
2

g21, µ2 = −
Re(c1(0))
Re(λ′(τ̃))

,

T 2 = −
1

ωn0 τ̃
[Im(c1(0)) + µ2Im(λ′(τ j

n))], β2 = 2Re(c1(0)).
(3.13)

Theorem 3.1. For any critical value τ j,±
n (n ∈ S, j ∈ N), we have the following results:

(1) When µ2 > 0 (resp. < 0), the Hopf bifurcation is forward (resp. backward).
(2) When β2 < 0 (resp. > 0), the bifurcating periodic solutions on the center manifold are orbitally

asymptotically stable (resp. unstable).
(3) When T2 > 0 (resp. < 0), the period increases (resp. decreases).

4. Numerical simulations

For the model (1.3), we select the parameters

r = 0.2, α = 0.8, β = 0.3, µ = 0.02, γ = 0.06, K = 100. d1 = 0.02, d2 = 0.02, l = 3.

After explicit calculation, we can calculate the condition (H0) : θ < 29.998, then the system (1.3) has
a positive equilibrium point. We choose θ and τ as the parameters of bifurcation. Their relationship is
shown in Figure 1.
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Figure 1. Bifurcation graph of system (1.3) with respect to θ and τ.

When θ = 0.1, for system (1.3), we can figure out E∗(P∗,Z∗) ≈ (0.3514, 0.2491) is a unique
coexisting equilibrium, and τ0,+

0 ≈ 20.7813 , τ0,−
0 ≈ 45.8703, τ0,+

1 ≈ 22.3497, τ0,−
1 ≈ 44.2544. We

have τ∗ = τ0,+
0 ≈ 20.7813, τmax = τ0,−

0 ≈ 45.8703. From Theorem 2.4, it is easy to see that when
τ ∈ [0, τ∗), E∗(P∗,Z∗) is locally asymptotically stable (shown in Figure 2). Hopf bifurcation occurs
when τ = τ∗. When τ∗ < τ < τmax, the system (1.3) will produce homogeneous periodic solution
(shown in Figures 3–5). When τ > τmax, We can see that the positive equilibrium point E∗(P∗,Z∗) is
locally asymptotically stable (shown in Figure 6).

Figure 2. For system (1.3), τ = 15, θ = 0.1, E∗(P∗,Z∗) ≈ (0.3514, 0.2491) is stable and
initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).
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(a)

(b)

Figure 3. For system (1.3), τ = 21.5, θ = 0.1, E∗(P∗,Z∗) ≈ (0.3514, 0.2491) is unstable
and there exist spatially homogeneous periodic solution, (b) are the respective long-term
behaviour of P(x, t) and Z(x, t). In (a), initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).
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(c)

(d)

Figure 4. For system (1.3), τ = 30, θ = 0.1, E∗(P∗,Z∗) ≈ (0.3514, 0.2491) is unstable
and there exist spatially homogeneous periodic solution, (d) are the respective long-term
behaviour of P(x, t) and Z(x, t). In (c), initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).
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(e)

(f)

Figure 5. For system (1.3), τ = 45, θ = 0.1, E∗(P∗,Z∗) ≈ (0.3514, 0.2491) is unstable
and there exist spatially homogeneous periodic solution, (f) are the respective long-term
behaviour of P(x, t) and Z(x, t). In (e), initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).
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Figure 6. For system (1.3), τ = 50, θ = 0.1, E∗(P∗,Z∗) ≈ (0.3514, 0.2491) is stable and
initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).

If θ = 1, for system (1.3), we can figure out that E∗(P∗,Z∗) ≈ (3.3412, 0.2417) is the unique
coexisting equilibrium. Through accurate calculation, τ0,+

0 ≈ 9.5497 , τ0,−
0 ≈ 11.9063, τ0,+

1 ≈ 8.5056,
τ0,−

1 ≈ 12.9598. Obviously to see τ∗ = τ0,+
1 ≈ 8.5056 and τmax = τ0,−

1 ≈ 12.9598. According to the
content in the Theorem 2.4, we know that E∗(P∗,Z∗) is locally asymptotically stable when τ ∈ [0, τ∗)
(shown in Figure 7). Hopf bifurcation occurs when τ = τ∗. By Theorem 3.1, we can calculate that

µ2 ≈ 1.9121 > 0, β2 ≈ −0.005 < 0, T2 ≈ 0.0127 > 0.

Hence, if τ∗ < τ < τmax, there is a stably spatially inhomogeneous bifurcation periodic solution
(showed in Figures 8–10). If τ > τmax, we can see that E∗(P∗,Z∗) is locally asymptotically stable for
the system (1.3) (showed in Figure 11).

Figure 7. For system (1.3), τ = 6, θ = 1, E∗(P∗,Z∗) ≈ (3.3412, 0.2417) is stable and initial
condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).
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(g)

(h)

Figure 8. For system (1.3), τ = 8.7, θ = 1, E∗(P∗,Z∗) ≈ (3.3412, 0.2417) is unstable
and there exist spatially inhomogeneous periodic solution, (h) are the respective long-term
behaviour of P(x, t) and Z(x, t). In (g), initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).
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(l)

(m)

Figure 9. For system (1.3), τ = 10, θ = 1, E∗(P∗,Z∗) ≈ (3.3412, 0.2417) is unstable and there
exist spatially inhomogeneous periodic solution, (m) are the respective long-term behaviour
of P(x, t) and Z(x, t) and Z∗. In (l), initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).
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(n)

(o)

Figure 10. For system (1.3), τ = 12.9, θ = 1, E∗(P∗,Z∗) ≈ (3.3412, 0.2417) is unstable
and there exist spatially inhomogeneous periodic solution, (o) are the respective long-term
behaviour of P(x, t) and Z(x, t). In (n), initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).
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Figure 11. For system (1.3), τ = 15, θ = 1, E∗(P∗,Z∗) ≈ (3.3412, 0.2417) is stable and
initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).

As a comparison, for system (1.2) without nonlocal competition, we choose the same parameters
and τ. In this case, the system (1.2) only has homogeneous stable periodic solution, which we can get
τ0,+

0 ≈ 9.5497 , τ0,−
0 ≈ 11.9063. Then τ∗ = τ0,+

0 ≈ 9.5497 and τmax = τ0,−
0 ≈ 11.9063. From

Theorem 2.4, it is clear that if τ ∈ [0, τ∗), E∗(P∗,Z∗) is locally asymptotically stable (shown in
Figures 12 and 13). For the system (1.2) the Hopf bifurcation occurs when τ = τ∗. Thus, there is a
stably spatially homogeneous bifurcation periodic solution when τ∗ < τ < τmax (showed in Figure 14).
If τ > τmax, we can see that E∗(P∗,Z∗) is locally asymptotically stable (showed in Figures 15 and 16).

Figure 12. For system (1.2), τ = 6, θ = 1, E∗(P∗,Z∗) ≈ (3.3412, 0.2417) is stable and initial
condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).
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Figure 13. For system (1.2), τ = 8.7, θ = 1, E∗(P∗,Z∗) ≈ (3.3412, 0.2417) is stable and
initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).

(p)

(q)

Figure 14. For system (1.2), τ = 10, θ = 1, E∗(P∗,Z∗) ≈ (3.3412, 0.2417) is unstable
and there exist spatially homogeneous periodic solution, (q) are the respective long-term
behaviour of P(x, t) and Z(x, t). In (p), initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).
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Figure 15. For system (1.2), τ = 12.9, θ = 1, E∗(P∗,Z∗) ≈ (3.3412, 0.2417) is stable and
initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).

Figure 16. For system (1.2), τ = 15, θ = 1, E∗(P∗,Z∗) ≈ (3.3412, 0.2417) is stable and
initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).

If θ = 1.5, for system (1.3), it can be seen from the Figure 1 that the system (1.3) has inhomogeneous
stable periodic solution. After precise calculation, we can get the unique coexisting equilibrium is
E∗(P∗,Z∗) ≈ (5.0075, 0.2374). We can calculate that τ0,+

1 ≈ 7.3418, τ0,−
1 ≈ 10.3281, we have τ∗ =

τ0,+
1 ≈ 7.3418 and τmax = τ0,−

1 ≈ 10.3281. From Theorem 2.4, it is clear that if τ ∈ [0, τ∗), E∗(P∗,Z∗) is
locally asymptotically stable (shown in Figure 17). Hopf bifurcation occurs when τ = τ∗. There is a
stably spatially inhomogeneous bifurcating periodic solution when τ∗ < τ < τmax(shown in Figure 18).
In addition, for the system (1.3), E∗(P∗,Z∗) is locally asymptotically stable when τ > τmax (shown in
Figure 19).
Remark: In this section, the Figure 1 was drawn using Wolfram Mathematica and the other images
were drawn using Matlab.
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Figure 17. For system (1.3), τ = 5, θ = 1.5, E∗(P∗,Z∗) ≈ (5.0075, 0.2374) is stable and
initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).

(r)

(s)

Figure 18. For system (1.3), τ = 9, θ = 1.5, E∗(P∗,Z∗) ≈ (5.0075, 0.2374) is unstable
and there exist spatially inhomogeneous periodic solution, (s) are the respective long-term
behaviour of P(x, t) and Z(x, t). In (r), initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).
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Figure 19. For system (1.3), τ = 12, θ = 1.5, E∗(P∗,Z∗) ≈ (5.0075, 0.2374) is stable and
initial condition is (P∗ + 0.01cosx, Z∗ − 0.01cosx).

5. Conclusions

In this paper, a delayed diffusive plankton model with nonlocal competition is deeply studied by
us. We mainly study the local stability of coexisting equilibrium and existence of Hopf bifurcations.
Through the normal form method and center manifold theorem, we also analysis the property of
bifurcating periodic solution.

Making the rate of phytoplankton toxin production as an important parameter, it can be seen from
Figure 1 in the numerical simulation, as θ increase, the stability critical value of the system (1.3)
decreases gradually, and when the rate of toxins produced by each kind of phytoplankton is in a
certain range, the system (1.3) changes from homogeneous periodic solution to inhomogeneous
periodic solution. In real life, the distribution of phytoplankton and zooplankton always present the
inhomogeneous state, so in order to better fit the actual situation, we choose to focus on the analysis
of the inhomogeneous parts. The image of the fourth part is also displayed that with the increase of τ,
the system (1.3) exists a stability switch, presents a process from stable to inhomogeneous solution
and then to stable, which also explicates that when the rate of phytoplankton producing toxins is
fixed, the bigger the value of τ, the more conducive to the stability of the plankton population. And
compared with the model (1.3) with the nonlocal competition term, the system (1.2) without the
nonlocal competition also has the same steady state solution, and there is also a stability switch as τ
increases. However, only homogeneous periodic solution can be found, which explains that the stably
spatial inhomogeneous periodic solution exists only when the nonlocal competitive term and the
diffusive term exist simultaneously, the introduction of nonlocal competitive term makes the dynamic
behavior of the model more sophisticated, but also more realistic.

Future research direction: The study of the fractional-order dynamical models is also interesting.
In [25], their results are of great significance to the design of neural networks, and the bifurcation
theory of fractional order delay differential equations are greatly enriched. We will take the Hopf
bifurcation of fractional-order dynamical models as the future research direction.
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