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Abstract: The quadratic Riccati equations are first-order nonlinear differential equations with 

numerous applications in various applied science and engineering areas. Therefore, several numerical 

approaches have been derived to find their numerical solutions. This paper provided the approximate 

solution of the quadratic Riccati equation via the cubic b-spline method. The convergence analysis of 

the method is discussed. The efficiency and applicability of the proposed approach are verified through 

three numerical test problems. The obtained results are in good settlement with the exact solutions. 

Moreover, the numerical results indicate that the proposed cubic b-spline method attains a superior 

performance compared with some existing methods. 
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1. Introduction 

Consider the differential equation 

𝑢′(𝑥) = 𝑝(𝑥) + 𝑞(𝑥)𝑢(𝑥) + 𝑟(𝑥)𝑢2(𝑥), 𝑢(𝑥0) = 𝛼.    (1) 

Equation (1), which was developed by the Italian mathematician Jacopo Riccati and is known as the 

quadratic Riccati differential equation (QRDE) [1], arises in various applications in applied science 

and engineering including stochastic realization theory, random processes, diffusion problems, optimal 
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control, and financial mathematics [2]. Therefore, the QRDE has gained attention and has been 

inspected by many studies. Moreover, finding exact solutions for such nonlinear equations is 

intolerable or impossible. Consequently, various techniques are developed to obtain its solution, for 

instance, Adomian's decomposition method [3–7], a piecewise variational iteration method [8], the 

classical Runge Kutta method of order four (RK4) [9], and the Bezier curves method [10], etc. [11,12]. 

An exciting property of the Riccati equation is that it can be revised as a second-order linear 

equation. To obtain a second-order linear equation, one can first use the transform 𝛿(𝑥) = 𝑟(𝑥)𝑢(𝑥), 

to get 

𝛿 ′(𝑥) = 𝑝(𝑥)𝑟(𝑥) + (𝑞(𝑥) +
𝑟′(𝑥)

𝑟(𝑥)
) 𝛿(𝑥) + 𝛿2(𝑥), 

and then substituting 𝛿(𝑥) = −
𝜙′(𝑥)

𝜙(𝑥)
 leads to 

𝜙″(𝑥) − (𝑞(𝑥) +
𝑟′(𝑥)

𝑟(𝑥)
)𝜙′(𝑥) + 𝑟(𝑥)𝑝(𝑥)𝜙(𝑥) = 0. 

Moreover, if a particular solution up is found for (1), then a general solution can be acquired as 

𝑢 = 𝑢𝑝 +
1

𝜇(𝑥)
, 

where 𝜇(𝑥) is a solution of the associated Bernoulli equation 

𝜇′(𝑥) = (𝑞(𝑥) + 2𝑟(𝑥)𝑢𝑝)𝜇(𝑥) + 𝑟(𝑥)𝜇
2(𝑥). 

In the present work, our main motivation is to treat the QRDE numerically using the cubic B-

spline method and also to establish error estimates of the method. The algorithm is developed, and the 

approximate solutions achieved by this algorithm are compared with some existing methods. 

This article is structured as follows. Section 2 provides the cubic B-spline scheme for the solution 

of the QRDE. Section 3 discusses the convergence analysis of the presented method. Section 4 presents 

a comparison of two existing methods. Finally, Section 5 includes a brief conclusion. 

2. Construction of cubic B-spline method 

Suppose that the solution domain [a, b] is divided up into n equal-length subintervals using the 

knots 𝑥𝑖 = 𝑎 + 𝑖ℎ,  𝑖 = 0 (1) 𝑛, where h = (b-a)/n. Let 𝐵𝑖(𝑥) denotes the cubic B-spline function, 

which is defined as 
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𝐵𝑖(𝑥) =

{
 
 
 
 

 
 
 
 
(𝑥 − 𝑥𝑖)

3

6ℎ
3 ,                                      𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1]

(𝑥 − 𝑥𝑖)
3

6ℎ
3 − 2

(𝑥 − 𝑥𝑖+1)
3

3ℎ
3 ,       𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2]

(𝑥𝑖+4 − 𝑥)
3

6ℎ
3 − 2

(𝑥𝑖+3 − 𝑥)
3

3ℎ
3 ,   𝑥 ∈ [𝑥𝑖+2, 𝑥𝑖+3]

(𝑥𝑖+4 − 𝑥)
3

6ℎ
3 ,                                 𝑥 ∈ [𝑥𝑖+3, 𝑥𝑖+4]

0,                                                     else.

 

Each spline basis function 𝐵𝑖(𝑥) is locally supported and nonnegative on [𝑥𝑖 , 𝑥𝑖+4] [13]. Therefore, 

we introduce six additional points to both sides of the domain as 𝑥𝑘 = 𝑎 + 𝑘ℎ (𝑘 = −3,−2,−1), and 

𝑥𝑘 = 𝑎 + 𝑘ℎ (𝑘 = 1,2,3). In addition, the value of 𝐵𝑖(𝑥𝑗) and 𝐵𝑖
′(𝑥𝑗) are listed in Table 1. 

Table 1. Values of 𝐵𝑖(𝑥) and 𝐵𝑖
′(𝑥) at the Knots. 

 xi+1 xi+2 xi+3 else 

𝐵𝑖(𝑥) 
1

6
 

4

6
 

1

6
 0 

𝐵𝑖
′(𝑥) 

1

2ℎ
 0 −

1

2ℎ
 0 

Our numerical treatment for solving the QRDE (1) utilizing the cubic B-spline method is to 

achieve an approximating solution 𝑠(𝑥) of the form 

𝑠(𝑥) = ∑ 𝑐𝑖
𝑛−1
𝑖=−3 𝐵𝑖(𝑥).         (2) 

By using (2) and Table 1, we get 

𝑢(𝑥𝑗) = 𝑠(𝑥𝑗) =
1

6
(𝑐𝑗−3 + 4𝑐𝑗−2 + 𝑐𝑗−1),      (3) 

𝑢′(𝑥𝑗) = 𝑠
′(𝑥𝑗) =

1

2ℎ
(𝑐𝑗−1 − 𝑐𝑗−3).        (4) 

Substituting (3) and (4) into the QRDE (1) produces 

1

2ℎ
(𝑐𝑗−1 − 𝑐𝑗−3) = 𝑝(𝑥𝑖) +

1

6
𝑞(𝑥𝑖)(𝑐𝑗−1 + 4𝑐𝑗−2 + 𝑐𝑗−3) +

1

36
𝑟(𝑥𝑖)(𝑐𝑗−1 + 4𝑐𝑗−2 + 𝑐𝑗−3)

2. (5) 

Equation (5) provides (n+1) equations with (n+3) unknowns. Hence, two additional conditions 

must be added to solve the above system uniquely. Employing the initial condition gives 

1

6
(𝑐−3 + 4𝑐−2 + 𝑐−1) = 𝛼.        (6) 

One more equation is still required. Differentiating (1) once again yields 

𝑢″(𝑥) = 𝑝′(𝑥) + 𝑞(𝑥)𝑢′(𝑥) + 𝑞′(𝑥)𝑢(𝑥) + 2𝑟(𝑥)𝑢(𝑥)𝑢′(𝑥) + 𝑟′(𝑥)𝑢2(𝑥).   (7) 
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Moreover, in [14], we have 

𝑠″(𝑥0) =
14𝑐−3−33𝑐−2+28𝑐−1−14𝑐0+6𝑐1−𝑐2

12ℎ
2 + 𝑂(ℎ4).      (8) 

On substituting (3), (4), and (8) with ignoring the error term in (8) into (7), we get 

1

12ℎ
2 (14𝑐−3 − 33𝑐−2 + 28𝑐−1 − 14𝑐0 + 6𝑐1 − 𝑐2)         

= 𝑝′(𝑥0) +
1

2ℎ
𝑞(𝑥0)(𝑐−1 − 𝑐−3) +

1

6
𝑞′(𝑥0)(𝑐−3 + 4𝑐−2 + 𝑐−1)       

+
1

6ℎ
𝑟(𝑥0)(𝑐−3 + 4𝑐−2 + 𝑐−1)(𝑐−1 − 𝑐−3)           

+
1

36
𝑟′(𝑥0)(𝑐−3 + 4𝑐−2 + 𝑐−1)

2            (9) 

Once we solve the system (5), (6), and (9) for 𝑐𝑖 ′s, the cubic B-spline is fully determined. 

3. Convergence analysis 

The convergence analysis of the proposed method is going to be demonstrated in this section. 

For this purpose, it is assumed that 𝑢(𝑥) ∈ 𝐶5[𝑎, 𝑏]. 

Using the shifting operator, 𝐸(𝑆(𝑥𝑖)) = 𝑆(𝑥𝑖+1) and (3), (4) can be expressed as [15] 

ℎ

6
(𝐸−1 + 4 + 𝐸)𝑆′(𝑥𝑖) =

1

2
(𝐸 − 𝐸−1)𝑢(𝑥𝑗).      (10) 

As E= ehD and D ≡ d/dx, one can obtain 

𝑒ℎ𝐷 + 𝑒−ℎ𝐷 = 2∑
(ℎ𝐷)2𝑘

(2𝑘)!

∞
𝑘=0 ,        (11) 

𝑒ℎ𝐷 − 𝑒−ℎ𝐷 = 2∑
(ℎ𝐷)2𝑘+1

(2𝑘+1)!

∞
𝑘=0 .        (12) 

As a result, (10) can be expressed as [15] 

[1 +
1

3
∑

(ℎ𝐷)2𝑘

(2𝑘)!

∞
𝑘=1 ] 𝑠′(𝑥𝑗) = [∑

(ℎ𝐷)2𝑘+1

(2𝑘+1)!

∞
𝑘=0 ] 𝑢(𝑥𝑗).      (13) 

Simplifying (13) gives 

𝑠′(𝑥𝑗) = [∑
(ℎ𝐷)2𝑘+1

(2𝑘+1)!

∞
𝑘=0 ] (1 +

1

3
∑

(ℎ𝐷)2𝑘

(2𝑘)!

∞
𝑘=1 )

−1

𝑢(𝑥𝑗)         

 = (𝐷 +
ℎ
2𝐷3

3!
+

ℎ
4𝐷5

5!
+⋯) [1 − (

ℎ
2𝐷2

6
+

ℎ
4𝐷4

72
+⋯)       

+(
ℎ
2𝐷2

6
+

ℎ
4𝐷4

72
+⋯)2 +⋯]𝑢(𝑥𝑗)           

= 𝐷(1 −
ℎ
4𝐷4

180
+

ℎ
6𝐷6

1512
−⋯)𝑢(𝑥𝑗).           

Therefore, 
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𝑠′(𝑥𝑗) = 𝑢
′(𝑥𝑗) −

ℎ
4

180
𝑢(5)(𝑥𝑗) + ⋯.       (14) 

At this point, the error function e(x) is defined as 

𝑒(𝑥) = 𝑠(𝑥) − 𝑢(𝑥).          

On substituting (14) into the Taylor expansion of 𝑒(𝑥𝑗 + 𝑘ℎ),  0 ≤ 𝑘 ≤ 1, we get 

𝑒(𝑥𝑗 + 𝑘ℎ) = −
𝑘ℎ

4

180
𝑢(5)(𝑥𝑗) + 𝑂(ℎ

6).       (15) 

This proves that our approach to solving the QRDE (1) is of order O(h4). 

4. Numerical experiments 

In this section, three problems of the QRDE (1) are given to reveal the scheme’s efficiency and 

support the theoretical discussion. All computations have been performed via MATHEMATICA 9 

software. 

Problem 4.1. Consider the following QRDE: 

𝑢′(𝑥) = 16𝑥2 − 5 + 8𝑥𝑢(𝑥) + 𝑢2(𝑥),  𝑢(0) = 1,  0 ≤ 𝑥 ≤ 1.      

The exact solution is 𝑢(𝑥) = 1 − 4𝑥. 

In Problem 4.1, the numerical results are computed at specific points. The absolute errors are 

presented in Table 2. Figure 1 displays the graph between the exact and numerical solutions at the grid 

points. From Figure 1, our numerical results are in good agreement with the exact solution. In this 

problem, our numerical findings are more accurate than those of the RK4 in [9] and the Bezier curves 

method (BCM) in [10]. 

Table 2. Absolute errors for Problem 4.1. 

x The Presented Method RK4 in [9] BCM in [10] 

0.1 1.1102×10-16 0.0 2.336×10−4 

0.3 1.3878×10-16 2.2204×10-16 4.5422×10−4 

0.5 2.2205×10-16 2.2204×10-16 9.375×10−11 

0.7 6.6613×10-16 2.2204×10-16 4.5422×10−4 

0.9 4.4409×10-16 4.4409×10-16 2.336×10−4 

1 8.8818×10-16 8.8818×10-16 0.0 
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Figure 1. The graph of the numerical and exact solution for Problem 4.1 with n=10. 

Problem 4.2. Consider the following QRDE 

𝑢′(𝑥) = 1 + 2𝑢(𝑥) − 𝑢2(𝑥),  𝑢(0) = 0,  0 ≤ 𝑥 ≤ 1.       

The exact solution is 𝑢(𝑥) = 1 + √2 𝑡𝑎𝑛ℎ( √2𝑥 +
1

2
𝑙𝑛(

√2−1

√2+1
)). 

In Problem 4.2, the numerical results are computed at specific points. The absolute errors are 

presented in Table 3. Figure 2 displays the graph between the exact and numerical solutions at the grid 

points. From Figure 2, our numerical results are in good agreement with the exact solution. In this 

problem, our numerical findings are more accurate than those of the RK4 in [9] and the BCM in [10]. 

Table 3. Absolute errors for Problem 4.2. 

x The Presented Method RK4 in [9] BCM in [10] 

0.1 3.3766×10-6 2.2551×10-6 2.4895 ×10−4 

0.3 1.092×10-5 7.3083×10-6 4.4482 ×10−4 

0.5 8.1363×10-6 1.1301×10-5 2.8944×10−10 

0.7 5.5194×10-6 1.2940×10-5 3.7412×10−4 

0.9 1.1756×10-5 1.3141×10-5 1.785×10−4 

1 9.2686×10-6 1.3245×10-5 3.2516×10−10 
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Figure 2. The graph of numerical and exact solutions for Problem 4.2 with n=10. 

Problem 4.3. Consider the following QRDE 

𝑢′(𝑥) = 𝑒𝑥 − 𝑒3𝑥 + 2𝑒𝑥𝑢(𝑥) − 𝑒𝑥𝑢2(𝑥),  𝑢(0) = 1,  0 ≤ 𝑥 ≤ 1.     

With the exact solution 𝑢(𝑥) = 𝑒𝑥 . 

In Problem 4.3, the numerical results are computed at specific points. The absolute errors are 

presented in Table 4. Figure 3 displays the graph between the exact and numerical solutions at the grid 

points. From Figure 3, our numerical results are in good agreement with the exact solution. In this 

problem, our numerical findings are more accurate than those of the RK4 in [9] and the BCM in [10]. 

Table 4. Absolute errors for Problem 4.3. 

x The Presented Method RK4 in [9] BCM in [10] 

0.1 6.5346×10-8 1.1153×10-7 3.4681 ×10−4 

0.3 2.0112×10-7 4.6838×10-7 6.7437 ×10−4 

0.5 3.6696×10-7 1.1237×10-6 3.8747×10−10 

0.7 5.6951×10-7 2.3239×10-6 6.7437×10−4 

0.9 8.1691×10-7 4.5182×10-6 3.4682×10−4 

1 9.5347×10-7 6.2225×10-6 0.0 
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Figure 3. The graph of numerical and exact solutions for Problem 4.3 with n=10. 

5. Conclusions 

The cubic B-spline technique is developed for solving the QRDEs numerically. The convergence 

analysis of the cubic B-spline technique is analyzed. Three test examples have been considered to 

examine the efficiency of the developed algorithm. The comparisons of the absolute errors with those 

of the RK4 in [9] and the BCM in [10] seem to indicate the superiority of the proposed method over 

some existing methods in terms of error. 
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