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1. Introduction

Convex optimization, a branch of mathematical optimization, examines the problem of minimizing
convex functions over convex sets, which has several applications in a variety of fields, including image
processing, automatic control systems, data analysis, and finance. The idea of convex minimization is
to determine x* in closed convex subset K in a real Hilbert space H. Then

min A(x"), (1.1)

where a convex function 4 : K — R. arg minycx h(y) represents the minimization set of 4 on H. Note
that if 4 is a differentiable function on K, then x* is a solution of (1.1) is also a solution of the variational
inequality problems (see in [1]), that is,to find x* € K such that (h'(x*),x — x*) > 0, Vx € K. In 1970
and 1976, Martinet [2] and Rockafellar [3] presented a tool for finding the solution of (1.1). That is the
proximal point algorithm (PPA), which is given by

x1 €H
Xpe1 = arg minye [A(y) + 5511, — yIP,

where 0 < 4, for every 1 < n. They also demonstrated that this algorithm yields a sequence x, that
weakly converges to a 4 minimizer. Later, a growing number of researchers have been investigating
solutions to the convex minimization problem (see in [4-9]).

Another interesting problem is the variational inclusion problem (VIP). That is to find x € H,

0e€e Fx+Gux, (1.2)

where operator F is single-valued on H and G is multi-valued mappings on 2. We denote that
(F + G)7'(0) is the set of solutions of (1.2). When setting F = 0, (1.2) becomes the monotone
inclusion problem (in [3]) which is a generalization of the variational inequality problem (formore
information, see [10]). It is well-known that the problem (1.2) provides a general and convenient
framework for the unified study of optimal solutions in many optimization related areas such as
mathematical programming, variational inequalities, optimal control and many others. There are a lot
of methods to solve VIP (see in [11-14]). The forward-backward splitting method is one of the most
well-known (see in [12, 13]), as demonstrated by the following:

Xn+l = (I + ﬂnG)_l(I - /L,F)Xn, (13)

where A, > 0, D(G) Cc D(F), F is inverse strongly monotone and G is monotone Lipschitz
continuous. Furthermore, the methodology (1.3) refers to {x,} that converges to a VIP solution only
weakly. After that, researchers focus on adapting monotone operators to handle zero points of
monotone operators (for more detail see in [4,6,12,15-17]). In 2016, Boikanyo [18] introduced the
viscosity approximation forward-backward splitting technique, a development on the proximal point
methodology for estimating a zero point for a coercive operator F and maximum monotone
operator G.

Recently, Sow [19] focused on establishing an algorithm based on the methods of [3] and [18]
for determining a point in the common solution of a convex optimization problem and VIP, that is,
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arg min,ex h(u) N (F + G)"1(0), where F : K — H is a-inverse strongly monotone, G is maximal
monotone operator on H, h : K — (—o00,+00] is convex lower semi-continuous and 7 : K — K is a
b-contraction mappings. The method is given by

xo € K
Uy = arg min,ex[A(u) + 55-llu — x|,
Xne1 = @ T (%) + (1 = an)Jg (uy — 0, Fuy),

where JGG" = (I-6,G)"'. Additionally, the x, sequence created by this method, converges to a common
solution.

In 2014, the modified variational inclusion problem (MVIP) was first proposed by Khuangsatung
and Kangtunyakarn [20]. The problem is determining x in H, thus

N
0e€ ZaiFix+Gx, (1.4)

i=1

where i = 1,2,...,N,a; € (0,1) with the condition Zfil a; =1, F; : H — H is a;-inverse strongly
monotone and G : H — 2 maximal monotone mappings. Reduce from the problem (1.4) to the
problem (1.2) if F; = F for all i = 1,2, ..., N. Moreover, they proved a strong convergence theorem
for finding a common element of the set of fixed points of a «-strictly pseudononspreading mapping
and the set of solutions of a finite family of variational inclusion problems and the set of solutions of a
finite family of equilibrium problems in Hilbert space. Afterwards, Khuangsatung and Kangtunyakarn
[21] introduced the iterative method for solving a finite family of nonexpansive mappings of fixed
point 7" and a finite family of variational inclusion problems in Hilbert spaces under the condition
Yy ai = 2y 6; = 1. Their method is given by the following:

{ 7 =byx, + (1 = b,)Tix,,¥n > 1
Xn+1 = anf(xn) +:Bn7nJM,/l(I -A Zf\il 5iFi)xn + Yn Zfil aizil-

Furthermore, they only demonstrated that the generated x,, strongly converges to a common element
of the common problems.

Motivated by the idea of [19-21], we establish a modified proximal point algorithm to solve a
common problem between the convex constrained optimization problem and the modified variational
inclusion problem by combining the algorithm of [19,21] and using the condition Y~ a; = 1. Under
appropriate conditions, the strong convergence theorem is presented in Hilbert spaces. Eventually,
the proposed algorithm is applied to image restoration problems. Image restoration is an important
problem in high-level image processing. During data collection, images usually suffer degradation.
Blurring, information loss due to sampling, quantization effects, and different noise sources can all be
a part of the degradation. The goal of image restoration is to estimate the original image from degraded
data. So, the proposed algorithm could be used to solve image restoration problems where the images
have suffered a variety of blurring operations. We also compare the image quality by using the signal-
to-noise ratio (SNR). In numerical experiments, it was shown that the proposed algorithm is better than
Khuangsatung and Kangtunyakarn’s method when applied to image restoration.

The following is a summary of the work’s content: basic lemmas and definitions are compiled in
Section 2. Our algorithm is presented in detail in Section 3. In Section 4, there is a discussion of the
numerical experiments. In the last section, this work’s conclusion is given.
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2. Preliminaries

We provide certain introductions, definitions, and lemmas in this part that are used in the main
result section. Suppose that F' is nonlinear with a single-valued of K into H. If F' is a-inverse strongly
monotone, then there exists & > 0, (Fx — Fy, x — y) > a||Fx — Fyl||* for every x,y € K. Obviously, F
is a monotone Lipschitz continuous if a-inverse strongly monotonous. In this paper, we assume that
G:H—-?2" h:K— (—co,+0]and T : K — K.

Lemma 1. [22] Assume that F is an a-inverse strongly monotone mapping on H. Then I — 6F is
nonexpansive for every x,y € H and 6 € [0, 2a].

Lemma 2. [23] Let T be a proper lower semicontinuous. The inequality
1 1 1
TO) 2 FIx = yIF = Sl =y + <l = Tl + (), Vox,y € H, (2.1)

and A1 > 0 holds.

J¢ is a resolvent operator that is determined by: Jx = (I + AG)™'(x), for every x in H when A > 0
and G is the maximal monotone. The operator J¢ has 1-inverse strongly monotone and single-valued
nonexpansive properties. Obviously, a VIP solution is an operator J§(I — AF) fixed point, every A > 0
(see [24)).

The definition of the Moreau-Yosida resolvent f is

: 1
S : 2
Jyx = argmin f(u)+—2/l||x ull*{,

for every x € H,A > 0. The set of minimizers of f corresponds with the collection of the resolvent’s
fixed points that are associated to F, as seen in [4]. Subsequently, the resolvent J{ 1S nonexpansive.

Lemma 3. [25] Suppose that T is a proper lower semicontinuous. For every 4 > 0 and r > 0, thus
Tx=0"Ex+ 1 -5Hin
r r

holds.

When discussing fixed point iterative algorithm convergence, the demiclosedness of a nonlinear
operator I is often discussed correctly.

Lemma 4. [26] Suppose that I" is nonexpansive and Fix(I") # 0. Then I — I is demiclosed. Therefore
{x,} converges to x and (I — I')x, converges to y. Thus (I — I')x = y.

Lemma 5. [11] Suppose that F is a monotone Lipschitz continuous and G is a maximal monotone
mapping on H. Then, the mapping G + F is maximal monotone.

Lemma 6. [27] The following statements are hold:
i) VYuveH |ulP—IVIPF—2u—v,v)=llu-vl
(i) VYuveH |u+v|<|ulP+2v,u+v);
(i) Va,Bel0,1]witha+B=1,
llau + BvII* = allull* + BIVI — aBllu — vIP.
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Lemma 7. [28] Suppose that {8,} > 0and 8, + 1 < (1 — €,)B, + ¥, for every n > 0, {y,} € (—o0, c0)
and {¢,} € (0, 1) such that

i D &=oo,

n=0
(o)
(ii) limsupZ <0 or Z [yl < o0.
n—o00 n n=0

Then, lim 8, = 0.
3. Results

In order to find a common element between convex minimization and the solutions of MVIP, we
will analyze and collect information on a proposed proximal iterative technique hiring inverse
strongly monotone and maximal monotone mapping. For the purposes of this investigation, assume
that the following assumptions are acceptable.

Assumption
(A1) T is a b-contraction mapping on K and h : K — (—o0, +00] is convex and
proper lower semicontinuous function.
(A2) F; : K — H is an q;-inverse strongly monotone for every i and
G : K — 2 is a maximal monotone operator.

N
(A3) Q := argmin,ex h(w) 0 () 6:F; + G)™(0) # 0.

n=1

Algorithm 1. Choose x; € K and {a,},{1,},{6,} € (0,1)and 1, > 4 > 0.
Step 1. Put u, as

: 1 )
u, = arg rl{éllp [h(u) + 2/1,,”u — Xl ] .
Step 2. Compute
N
Xuet = T () + (1= @)Jg = 0, Y 6iF i), (3.1)

n=1
Setn =n + 1, and go back to Step 1.
Lemma 8. Algorithm 1 generates a bounded sequence {x,}.

Proof. In €, only exists one solution to the variational inequality because (I — 7)) and € have the
property of being closed convex. z refers the one and only solution to the variational inequality
problem. For every u € K, h(z) < h(u) according to the equality (3.9) and the properties of A, so

llz = 2P < hu) + 5w — 2.

h
@+ 30 21,

From the Moreau-Yosida resolvent definition, we obtain that J' j{nz = z. This implies that

h h h
lup = 2ll = (173, %0 = 2ll < 3, %0 = T3, 2l < Ml = 2.
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N
By (3.9), Lemma 1 and z = JHGn(I -0, Z 0;F;)z, we see that

n=1

N
176, = 6, Z 0iFun — 2|l < Nl = zll < [l — zl, (3.2)

n=1

for every n > 0. It can conclude

N
Boner = 2ll = Nl T o) + (1= @) I (1 = 6, > 6:F uy — 2|

n=1

N
= llaaT (%) + aT(2) = @ T(@) + (1 = )G I = 6, > SiF ity — 2+ @z — a2

n=1

N
= llan(T(x,) = T(2) + (1 = a)(Jg (I = 6, Z 0iF)uy — 2) + an(T(2) + 2|

n=1

N
< alIT(x) = T+ (1 = @)y =6, Z 0iFun = zll + allT(2) + 2]

n=1
< apbllx, — 2l + (1 — a)llu, — zll + @,llT(2) + 2|
= a,bl|lx, =zl + (1 = a)llx, — zll + @, l|T(z) + z|
1T (z) -zl

1-b )

< (I = ay(1 = b)llx, = 2ll + ulIT (2) — zll < max{llx, -z,

Using the induction on #, it can deduce that

IT(z) -zl

> 1.
5 "=

llx, — zll < max(lxo — zll,

Hence {x,} is bounded.

Theorem 1. Assume that

(1) lma, = OandZan = 00,

n—oo
n=0

(1) 8, € [a,b] C (0, min{l1, 2a}), and
N

(iii) Z i = 1.
n=1

Then Algorithm 1 generates a sequence {x,} that converges to z € Q. That is,
(2= f(@,z2—q) <0, Vg e Q. (3.3)

Proof. We shall take into consideration two cases for the proof.
Case 1. Assume that there is ny € N. Then {||x,, —x*||} is decreasing, every n > n,. Denote that {||x, —x*||}
is monotone and bounded, it can imply that {||x,, — x*||} is convergent. Thus

lim ([, = 2l = b1 = 2IF) = 0. (3:4)
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By Lemma 2 and A(z) < h(u,),
12, = 2l = Nl — 2> > [lx — wall* (3.5)

By inequality (3.9), (3.5) and the propoty of ||.||?, it obtains

N
e = 2l = Nl T o) + (1= @)J§ U =6, )" 6:F - 2|

n=1

N
= Nl T () = @z + anz + (1 = @)J§ (=6, > 6iFuy - 2P

n=1

N
< (= aDlg =6, > 6iFu, =2l + I T(x) — 2l

n=1
< (1 = alluy — 2P + aulIT(x,) = 2l

< (1 - a'n)(”xn - Z”z - ”Xn - un”z) + a’n”T(Xn) - Z”2~
That is,

2 2 2 2
(I = a)llx, = uall” < (1 = @)llon = 2lI” =[x = 2lI° + @l T (x,) — 2l

2 2 2 2
= |1y = 2l = @nllx, = 2lI” = [lxer = 21" + @l T (x) — 21"

Thus, (1 — @)llx, — ull* < llx, — 2> = IX1 — 2> + @ullT(x,) — z|*. From (3.4) and @, — 0, so
lim ||x, — u,||> = 0. Using (3.9) and Lemma 1,

N
Power = 2P = llen(T(x) = 2) + (1= @)U = 6, ) iFuy = 2)IP

n=1

N
< @lIT(x) = 2P + (1 = an)liJg (I -6, Z SiFu, = 7I°

n=1

N N
= lIT(x) = 2P + (1 = @) =6, Y 6:Fuy = I = 6, ) 5iFall

n=1 n=1

N N
= lIT(x) = 2P + (1 = a)IJ§ @y = 6, Y 6iFiuey) = J§ (2= 6, ) 6:F DI

n=1 n=1

N N
< @ lITCe) = 2P + (1= ally = 6, ) 5iFuy =2+ 6, > SiFialP

n=1 n=1

N N
< @lIT(x) = 2P + (1 = @l = 2l = (L= @)bll Y 6:Fuy =2+ Y 6,F izl
n=1 n=1

< @llT () = 2P + (1 = a)lluy — 2l

N N
= (1= a)Qa = bl Y §iFu, —z+ Y 6FalP.
n=1 n=1
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Therefore,

N N
(1= a)Qa =)l Y 6iFuy —z+ > GiFilP
n=1 n=1

2 2 2
< @nllT (xa) = 217 + (1 = @)y = 2II” = [y = 2l

2 2 2
< llT(x,) = 2lI” + (1 = a)llx, = 2ll” = llxper =2l

2 2 2 2
< (1T (xp) = 217 = lxn = 217 + 11 = 217 = X1 = 217

According to {a,} converges to 0, (3.4), and {x,} is bounded, it obtains that
N N
lim | Y 6;Fiut, —z+ ) 6:Fizll* = 0. (3.6)
n=1 n=1

Since (3.9) and ng is 1-inverse strongly monotone , we get

N
G =6, > 6iFu, 2P

n=1
N N
= G =6, D SiFuy = I =6, > 6:F )P
n=1 n=1
N N N
< (U= 00 ) 6iFuy = (=6, ) 5iFz, Jg (I =0, ) 6:F ity = 2)
n=1 n=1 n=1
1 N N N
_ _ _ . _ _ T AS12 Gy _ . o2
=3[ -a. Zl SiF i, — (I = 6, Z} SiFP + I ~ 6, Z} SiF i, — 2|
N N N
T =00 Y Sy = (I = 0, Y SF)z = (IS0 = 0, " 6:Fun = DI |
n=1 n=1 n=1
1 N
< 3|l = 2P+ WG = 0, 6.Fu - 2P
n=1
N N N
it = 00 )" 6Fita + 6, ) 6,F iz = IS =6, ) SiFualF |
n=1 n=1 n=1
1 N
= 5|l =P + 15T = 00 Y i, = 2P
n=1
N N N
~ = IS = 00 Y ) = Y iFitn = )" GiF DI |
n=1 n=1 n=1
1 N
= 3|1 = 2P+ WG = 6, 6:Fun — 2P
n=1

N N N
— VG =6, ) 6iFuy =l = 6,21 Y 6:Fuy = > 6:F )|
n=1 n=1 n=1
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N N N
+20, ~ ST = 0, ) SF it Y 6iF ity — )" 6,F )|
n=1 n=1 n=1

1 N
< 3|l = 2P+ WG = 0, 6.Fu - 2P

n=1

N N N
—IVGU =0, ) 6iFuy = P = 6,2 > 6iF ity = > SiF2)|
n=1 n=1 n=1

N N N
#2050 =60, )" 8.Fun = wll Y. 6:Fn = Y G|,
n=1 n=1 n=1

It implies
N 1 N
G 2 G 2
1S - 6, Z; SiFu, = 2P = ST =6, Z; SiF ), — 7|

1 N N N
< E[Hun — 2l = WG =6, > 6iF = wll = 0,211 Y 8iFaw, = D SiF)I
n=1 n=1

n=1

N N N
+ 20,051 = 6, D GiFuy = willl Y 6:Fiaty = > 6iF,-z)||].
n=1 n=1 n=1
Therefore

N N
G =6, > 6iFuy = 2P < llty = 2l = WG = 6, > 6:F ity — w P

n=1 n=1
N N N
+ 20,5 =0, > 6iF Dy =l >~ 6:Fuy = > 6:F izl
n=1 n=1 n=1

By the definition of x,,

N
Poner = 2l = llan T Go) + (1= @)JG (= 6, > GiFuy — 2l

n=1

N
= llaaT () = a2 + a2 + (1 = @) JG (1 = 0, > 6:Fuy — 2P

n=1

N
= llaa(TCen) = 2) + (1 = @) (TS =6, Y 6:F g = DI

n=1

N
< @lIT(x) = 2P + (1 = an)llJg (I - 6, Z SiFu, — 2l

n=1

N
< a’n”T(-xn) - Z”z + (1 - an)[”un - Z”z - ||JQGVL(I - Gn Z 61'Fi)un - un”2

n=1
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N N N
+ 20,050 = 6, Y Fuy = wlll Y. 6:F e — " 6|
n=1 n=1 n=1

N
= @,lIT(x,) = 2P + (1 = @l — 2P = (1= @S = 6, Y SiFu, — )P

n=1

N N N
+ (1= )26, = 6, > 6:F ity — wlll Y 8iFiuwy = >~ 6:F 2l
n=1 n=1 n=1
Consider

N
||xn+1 - Z||2 < an”T(xn) - Z||2 + (1 - a’n)”un - ZHZ - (1 - a’n)”*]gl(l - Qn Z 5iFi)un - un”2

n=1

N N N
+ (1= @20, =0, )" 6:F Dy = willl Y- 6:Fuy = > iF el
n=1 n=1 n=1

N
< alIT(x,) = 2P + 1, = 2l = IIJG (I = 6, Z SiF )y — uy|l*

n=1

N
+ a’n”Jg”(I - Hn Z 5,‘F,‘)I/£n - un”2

n=1
N N N
+ (1= a)20,l05 (T =6, > 6:Futy = wllll Y 6iFwy = >~ 6:F 2l
n=1 n=1 n=1
Hence

N
(T =6, > 6iFu, —

n=1

N
2 2 2 G 2
< alIT(x,) = 2l + 1 = 2P = s = 2P + ullJg (T = 6, )" 6:F ey — 1y

n=1

N N N
+ (1= 20,05 =0, ) 6:F ity = wplll Y 6:F i = > 6:F izl
n=1 n=1 n=1
Since @, — 0 as n — oo, inequality (3.4) and (3.6), we have

N
lim [ (I = 6, Y 6iFuy = w,ll* = 0. (3.7)
n—oo n:1
We demonstrate lim sup{z — 7'(z), z — x,) < 0. Because {x,} is bounded, a subsequence {x,, } exists
n—+oo
that weakly converges to x* € K. Thus lim sup{z—T7(z), z— x,,) = klim (z—=T(2),z2—xp,). From Lemma 3
—+00

n—+00

and (3.9), we see that

h h
”xn - J/lxn” = ”xn —Up + U, — J/{xﬂ”
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h }
< et = Xall + 1173, %0 = Sl

A A
< Nty = %l + 11 (1 -+ /l—x,,) _ gl

A A
< ”un - xn” + ” (1 - /l_n) Jfllxn - (1 - /1_") xn”

A
= ”un - xn” + (1 - /1_) ”ngn - xn”

n

A
= ”un - -xn” + (1 - /l_n) ”un - -xn“

A
= ”un - xn” + ”un - xn” - /l_”un - xn”

A
= (2 - /l_) ||un - xn”

Hence,

lim ||x, — J%x,|| = 0. (3.8)

By using (3.8), Lemma 4 and J’j 1s nonexpansive, we have x* € F ix(Jﬁ’) = arg min,g h(u). Now,
we will show x* € (ZnN=1 0;F; + G)™'(0). By Lemma 5, G + F; is maximal monotone. Let (v,u) €
M(G + YL, 6:F). That is, u — 32, 6;Fiv € G(v). We set z, := J§ (uy — 6, X, 6:Fu). Since z,,, =
TG Q=0 X2y SiF iy, ), We have ity Oty € (I+0,,G)a,» 1.€.. 5 (=2, ~On, Yooy 6iF ittn,) € G(2,).
By maximal monotonicity of G + F;, we obtain

N
an’ Z 5 F iV — (unk - an - an Z 5iFiunk)> = O

n=1

Then
N
<V — s M) = Zngs Z 6 F iV — (unk — T, — an Z 6iFiunk)> > 0.
n=1
Hence

N N
1
V= 2 ) Z (V=G ) iFW = o=t = 2, = O, ) 610
n=1

n=1 "

N N N N
1
= (V=G ) OFw = ) SiF iz + ) SiF it + oy = 2) = ) SiF )
n=1 n=1 n=1 " n=1
N N N N
=V = Zy, Z o;Fv— Z OiFizp) + vV — 2y Z 0iFzp, — Z 0iFiuy, )
n=1 n=1 n=1 n=1

1
+ <V - an, G_(Mnk - an)>

g
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N N
1
> <V - an’ Z 6iFian - Z 51'Fiunk> + (V - an’ H_(Mnk - an»-
n=1 n=1 103

From ||z, — u,|| = O, || ZnNzl 0iFz, — ZnN=1 6;Fiu,|| — 0 and z,, — x*, we obtain

0<(w—-x"u)= I}im(v — Zny» U)

and x* € (XN, 6,;F; + G)_I(O). Therefore, x* € (3N, 6,F; + G)_I(O) N arg min u,ch(u). The fact that z
solves (3.10), we get

limsup(z — 7(2),z — x,) = klilp (z2=T(2),z— x)

n—+oo

=(z-T(),z—x")<0.

Eventually, we will show that x,, — z. By using Lemma 6 and (3.9),

N
||xn+l - Z”2 = ”a/nT(xn) + (1 - a’n)J(Si(I -6, Z é‘iFi)Mn - ZHZ

n=1

N
= ||CY,1T(X") - a’nT(Z) + anT(Z) + (1 - an)-]g,([ - Qn Z 6iFi)un —Z+au2— anZ”z

n=1

N
= llan(T(x2) = T(2)) + (1 = @,)Jg (I = 6, Z SiF )y = (1 = @)z = a(z = TQ)IP

n=1

N
= o) = T@) + (1 = a)|J§ U =6, )" 8:F s = 2| + an(T@) = DI

n=1

N
<l () = T@) + (1 = an| IS = 6, )" 6:F iy 2|

n=1

+2a,(T(2) — 2, Xps1 — 2)-

Consider

N
st = 2IF = (T o) = T@) + (1 = )| IS = 6, )" 6.Fuy = 2|1

n=1
+ 20,z — T(2), 7 — Xps1)
< bllx, — 2P + (1 = @)lluy — 2P + 2,z = T(2), 2 = Xpa1)
< apbllx, — 2P + (1 = allx, — 2l + 2,z = T(2), 2 = Xns1)
= a,bllx, — 2P + lIx, — 2 = aullx, — 2P + 2,z = T(2), 2 = Xus1)
< (1= a,(1 =b)llx, — 2 + 20,(z = T (@), 2 = Xpi1)-

Therefore x,, — z.
Case 2. There is no eventual decrease in the sequence {||x, — z||}. Put

2
T = |lxn = 2II".
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Assume that £ is a mapping on N for every n > ny. We denote that
{(m)=max{k e N:k <n,T; <V}
So {(n) — oo and Y,y < V41 for n > ny. Case 1 can demonstrate that

lim sup(z — T(2), 2 — Xz < 0

{(n)—+oc0

and {X;(n }»>1 18 bounded. For every n > ny,

2 2
0 < llxzoy+1 = 2llI” = llxzy — 2l
2
< gy —(1 = D)|lxsy — 2ll” + 2z = T(2), 2 = Xz(ny+1)]
2
= =1 = D)Ixsiy — 2l + 2a0m€z — T(2), 2 = Xgmy+1)-

Thus 2C¥§(n)<Z - T(Z), Z— Xg(n)+1> > a{(n)(l - b)”x“n) - Z||2. Therefore

2
1%y — 2lI” < (2= T(2),2 = Xzmy+1)-

1-b

It obtains that lim [|x;, — zl* = 0. Hence lim Yy = lim Yy = 0. For n > ny, it obtains
n—oo : n—00 ) n—00 )

Trwy £ Yeope1- For {m) +1 < j < n, Y; > Ty Then n > {(n). In particular, for every n > ny,
max{Csm, Lo} = Lo = L, =2 0. Thus 0 < lim Y, < lim Ty = 0. Hence, Iim Y, =

n—oo n—oo

lim ||x, — z|[* = 0. Thus {x,} strongly converges to z.

When setting F; = F in Algorithm 1, it can obtain the following corollary.

Corollary 1. [19] Let K be a nonempty closed convex subset of a real Hilbert space H. Leth : K —
(=00, +00] be a proper, lower semi-continuous and convex function and F' be an a-inverse strongly
monotone operator of K into H. Let T : K — K be a b-contraction mapping and G be a maximal
monotone operator on H such that I' := argmin,cxh(u) N (F + G)~'(0) is non-empty and the domain of
G is included in K. Let {x,} be a sequence defined as follows:

Xo € K,
, = argmingeg |h(u) + 5w — x| (3.9)
Xn+l = a’nT(-xn) + (1 - a/n)Jan(un - HnFun),

where {a,}, {4,} and {6,} be sequences in (0, 1) and 4, > A > O for all » > 1 and some A satisfying the
following conditions:

n—oo

(i) lim @, = 0 and Zan = o0,
n=0
(1) 6, € [a,b] C (0, min{1,2a}).

Then, the sequence {x,} generated by (3.9) converges strongly to p € I', which is the unique solution
of the variational inequality problem:

(p=fP)p-q)<0,Yqel. (3.10)
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4. Numerical experiments

Image restoration is to repair or eliminate noise or damaged images that degrade an image. There
are numerous types of deterioration, such as torn, blurred, noisy, out of focus, dirty, scratched, etc.
Neither the occasional falling of liquids such as water nor the desire to preserve our ancient images or
something similar. By utilizing the actual blurring function, we are able to estimate motion blur. And
remove the blur to create an original and realistic image.

Therefore, the researcher is interested in denoising and deblurring images for this section. It is well
known that by inverting the following observation model, the general problem of image restoration can
be described by

w=Hx+b, 4.1

where H € R™" is the blurring operation, b is additive noise, w € R” is the observed image and
x € R" is an original image. This problem basically relates to the various formulations for optimization
methods that are available. The goal in image restoration is to deblur an image without knowing which
one is the blurring operator. Thus, we focus on the following problem:

1 2 1 2 1 2
min =|lw; — Hyx||” + «{[x[[;, min =|lwy = Hax[|” + «l|x]l1, . . ., min =[jwy — Hyx||” + «][x]]; 4.2)
xeR” 2 x€R” 2 xeR” 2
where ||x||; = >, |xi|, k is a parameter that is relate to noise b, w; is the blurred image as determined

by the blurred matrix H; for every i = 1,2,..., N and x is the original image. Suppose that fi(x) =
%Hwi — H;x||*> and g = «]||x||;, the Lipschitz gradient of f; is Vfi(x) = Hl.T(Hl-x — w;). For solving the
problem (4.2), we designed the following flowchart (Figure 1). Where X is the deblurred image or
the common solutions of the problem (4.2) and as seen in Figure 1. We can apply the algorithm in
Theorem 1 to solve the problem (4.2) by setting F; = Vf; and G = 0g.

— H, ]
—| H,
x - — R} i
- — .
Restoration
— HN -

Degradation
Figure 1. The image restoration process flowchart.

For the purpose of this experiment, we will apply our suggested algorithm to resolve the
problem (4.2), which entails recovering an original image x € R”". In terms of the image’s

AIMS Mathematics Volume 8, Issue 4, 9557-9575.
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signal-to-noise ratio (SNR),

Il
lx = el
we compare our proposed algorithm to one developed by Khuangsatung and Kangtunyakarn [20],
which also holds strong convergence. A higher SNR indicates a higher recovery quality. Let N =
4. Consider a simple linearized image recovery model H;x = p; = x, where a motion orientation
11° (6 = 11), p; is a motion blur with a 21-pixel motion length (len = 21), p, is a filter size 9 x 9
Gaussian blur with a o = 2 standard deviation, ps is a circular averaging filter with radius r = 4,
and p4 is an averaging blur of filter size 9 X 9. The following values are set for all of the parameters:
a, = Tlﬂ,e,, =0.1,4, = 0.5,« = 0.01, 6, = 0.25, and f(x) = Wfo. The numerical results from the
experiment are shown in the following: Figure 2 depicts the original grayscale images. Figures 3 and 4
illustrate greyscale images degraded by matrix blurs p; through p4. Figures 5 and 6 show the grayscale
images result by Arunchai and by Khuangsatung. Figures 7 and 8 depict the SNR result of Arunchai
is higher than Khuangsatung.

SNR = 201log

Figure 4. Blurred lighthouse images with filtering H, x, H, x, H3x, and Hyx.
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Figure 6. (a) Restored by Algorithm 1.

(b) Restored by Theorem 3.1 in [21].

o e E— —
e = —
—

Kiel recovered by Arunchai
Kiel recovered by Khuangsatung

G L |
50 100

150 200 250 300 350 400 450 500
lteration number (n)

Figure 7. The SNR values of Figures 5 (a),(b).
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SNR

Lighthouse recovered by Arunchai
— — — Lighthouse recovered by Khuangsatung

D 1 i 1 1 L 1
50 100 150 200 250 300 3s0 400 450 500

Iteration number (n)
Figure 8. The SNR values of Figures 6 (a),(b).

Remark 1. Experimentally, It was determined that the problem (4.2) could be resolved using our
algorithm, and that they are preferable to algorithms developed previously. Our algorithm appears to
be more effective at solving these types of problems. This is supported by the SNR values.

5. Conclusions
The problems of modified variational inclusion and variational inclusion are solved using a modified

proximal point algorithm. Additionally, we have used the suggested algorithm to solve the many
degradations in image restoration.
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