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1. Introduction

Consider the equation

My = λwy on J = (a, b), −∞ ≤ a < b ≤ ∞, (1.1)

where M is a symmetric differential expression of order n, and w is a positive weight function.
In 1995, Möller-Zettl [12] first characterized the symmetric realizations of (1.1) for regular

problems. Motivated by the method used by Sun [10] for self-adjoint operators and by the method
of Möller-Zettl [12], Wang-Zettl [3, 4] characterized the domains of the symmetric realizations of
(1.1) for singular problems with any deficiency index.

Based on the self-adjoint GKN theorem and von Neumann’s formula for the adjoint of a symmetric
operator in Hilbert space, for classical expression M, Sun [10] gave a decomposition of the maximal
domain using certain solutions for non-real value of the spectral parameter λ, and then characterized
all the self-adjoint realizations. Sun’s work is an important contribution to the study of self-adjoint
domains. Wang et al. [6] established a new representation in terms of certain solutions for real λ. This
leads to a classification of solutions as limit-point(LP) or limit-circle(LC). The LC solutions contribute
to the singular boundary conditions, but the LP solutions do not. In 2012, Hao et al. [18] extended this
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result to the case when both endpoints are singular. This real λ decomposition of the maximal domain
and the construction of LC and LP solutions also play a critical role in the investigation of the spectrum
of self-adjoint operators, the classification of self-adjoint boundary conditions, and the characterization
of symmetric domains.

In [1, 4, 5], Wang-Zettl characterized the symmetric operators in H = L2(J,w) and proved a
symmetric GKN-Type theorem. The result contains the self-adjoint GKN theorem as a special case.
It is well known that the self-adjoin GKN theorem is widely used to study self-adjoint operators,
difference operators, Hamiltonian systems, multi-interval operators, etc. The symmetric GKN-Type
theorem maybe will have similar extensions for symmetric problems.

For products and powers of differential expressions, in [2, 15, 16], the deficiency indices of
powers of classical expressions and of quasi-differential expressions were discussed. In [20], the self-
adjointness of the product of two second-order differential operators was obtained. Based on [10, 20],
An-Sun [8] characterized the self-adjointness of product of two nth-order real classical differential
expressions with two regular endpoints and extended to problems with one regular endpoint and one
singular endpoint [9]. In recent years, there are some works on the self-adjointness of products of
differential operators, see [7, 11, 13, 14, 17, 19].

In this paper, we study the symmetric domain characterization for product of two quasi-differential
expressions of order n, even or odd, with complex coefficients. We consider the cases when each
endpoint is either regular or LC singular. The self-adjoint characterization for product of two
differential expressions is a special case.

The organization of this paper is as follows. Following this introduction, the quasi-differential
expressions, Lagrange identity, maximal and minimal operators, and powers of differential expressions
are given in Section 2. Section 3 is devoted to the symmetric domain characterization of product of
two differential operators. In subsection 3.1, we consider the case when one endpoint is regular and
the other LC singular. In subsection 3.2, we consider the case when both endpoints are singular. Some
examples are given in Section 4.

2. Preliminaries

We first repeat some definitions and basic properties of quasi-differential expressions. See the
book [1] for more details.

Definition 1. For n > 1, let

Zn(J) :=
{
Q = (qrs)n

r,s=1 ∈ Mn(Lloc(J)),

qr,r+1 , 0 a.e. on J, q−1
r,r+1 ∈ Lloc(J), 1 ≤ r ≤ n − 1,

qrs = 0 a.e. on J, 2 ≤ r + 1 < s ≤ n; qrs ∈ Lloc(J), s , r + 1, 1 ≤ r ≤ n − 1} .

(2.1)

For Q ∈ Zn(J) we define
V0 := {y : J → C, y is measurable}

and y[0] = y (y ∈ V0). Inductively, for r = 1, . . . , n, we define

Vr =
{
y ∈ Vr−1 : y[r−1] ∈ (ACloc(J))

}
,
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y[r] = q−1
r,r+1

y[r−1]′ −

r∑
s=1

qrsy[s−1]

 (y ∈ Vr) , (2.2)

where qn,n+1 := 1. Finally we set

My = MQy = iny[n] (y ∈ Vn) . (2.3)

The expression M = MQ is called the quasi-differential expression generated by Q. For Vn we also use
the notations D(Q) and D(M).

Definition 2. Let Q ∈ Zn(J), J = (a, b). The expression M = MQ is said to be regular at a or we say a
is a regular endpoint, if for some c, a < c < b, we have

q−1
r,r+1 ∈ L(a, c), r = 1, · · · , n − 1,
qrs ∈ L(a, c), 1 ≤ r, s ≤ n, s , r + 1.

Similarly the endpoint b is regular if for some c, a < c < b, we have

q−1
r,r+1 ∈ L(c, b), r = 1, · · · , n − 1,
qrs ∈ L(c, b), 1 ≤ r, s ≤ n, s , r + 1.

Note that from the definition of Q ∈ Zn(J) it follows that if the above hold for some c ∈ J, then they
hold for any c ∈ J. We say that M is regular on J, if M is regular at both endpoints. An endpoint is
singular if it is not regular.

Definition 3. Let N2 = {2, 3, 4, · · · , }. For k ∈ N2, we define the matrix Ek as follows:

Ek =
(
(−1)rδr,k+1−s

)k
r,s=1 , (2.4)

where δi, j is the Kronecker δ. Note that

E∗k = E−1
k = (−1)k+1Ek. (2.5)

Lemma 1 (Lagrange Identity). Let Q ∈ Zn(J), P = −E−1Q∗E where E = En is defined in Definition
3. Then P ∈ Zn(J) and for any y ∈ D

(
MQ

)
, z ∈ D (MP), we have

z̄MQy − yMPz = [y, z]′, (2.6)

where

[y, z] = in
n∑

r=0

(−1)n+1−rz̄[n−r−1]
P y[r]

Q = −inZ∗EY. (2.7)

Here we call [y, z] or just [·, ·] a Lagrange bracket.

Corollary 1. If My = λwy and Mz = λ̄wz, then [y, z] is constant on J. In particular, if λ is real and
My = λwy, Mz = λwz, then [y, z] is constant on J.

The above symplectic matrix Ek and the Lagrange Identity play an important role in the study of
general symmetric differential expressions and the characterization of domains of symmetric and self-
adjoint boundary conditions.
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Definition 4. Let Q ∈ Zn(J) and suppose that Q satisfies

Q = −E−1Q∗E, where E = En =
(
(−1)rδr,n+1−s

)n
r,s=1 , i.e.

qrs = (−1)r+s−1q̄n+1−s,n+1−r, 1 ≤ r, s ≤ n.

Then Q is called a Lagrange symmetric matrix and the expression M = MQ is called a Lagrange
symmetric, or just a symmetric, differential expression.

Definition 5. Let Q ∈ Zn(J), Q = −E−1Q∗E, let M = MQ, H = L2(J,w), and let w be a weight function.
The maximal operator S max = S max(Q, J) with domain Dmax = Dmax(Q, J) is defined by:

Dmax =
{
y ∈ H : y ∈ D(M),w−1My ∈ H

}
,

S maxy = w−1My, y ∈ Dmax.

Dmax(Q, J) is dense in H. The minimal operator S min = S min(Q, J) with domain Dmin = Dmin(Q, J) is
defined as S min = S ∗max. S min is a closed symmetric operator in H with dense domain and S ∗min = S max.

The following result is immediate from the Lagrange Identity and integration.

Corollary 2. For any y, z ∈ D(M), J = (a, b), the limits limt→b−[y, z](t), limt→a+[y, z](t) exist and are
finite. And then we have: ∫ b

a
{z̄My − yMz} = [y, z](b) − [y, z](a). (2.8)

Lemma 2. Let a1 < · · · < ak ∈ J, where a1 and ak can also be regular endpoints. Let α jr ∈ C( j =

1, . . . , k; r = 0, . . . , n − 1). Then there is a y ∈ Dmax such that

y[r](a j) = α jr ( j = 1, . . . , k; r = 0, . . . , n − 1).

Lemma 3. Let Q ∈ Zn(J), Q = −E−1Q∗E. Then

D(S min) = {y ∈ Dmax : [y, z](a) = 0 = [y, z](b), for all z ∈ Dmax} . (2.9)

Given a Lagrange symmetric matrix Q ∈ Zn(J) and its associated symmetric expression M = MQ

the construction and properties of powers Ms (s ∈ N2) of quasi-differential expression M was given
in [1, 2].

Lemma 4. Assume that Q ∈ Zn(J) is a Lagrange symmetric matrix. Let M = MQ and define M2 by
M2y = M(My), · · · ,Msy = M(Ms−1y). Let Q[1] = Q and for s ∈ N2, let Q[s] denote the block diagonal
matrix

Q[s] =


Q

. . .

Q

 , (2.10)

where there are s matrices Q on the diagonal and all other entries in this sn× sn matrix are zero except
for the entries in positions (n, n + 1), (2n, 2n + 1), · · · , ((s − 1)n, (s − 1)n + 1), these are all equal to 1.
Then, for any positive integer s, the matrices Q[s] are in Zsn(J), and are Lagrange symmetric and the
symmetric differential expression MS is given by

Ms = MQ[s] . (2.11)

Lemma 5. Let Q ∈ Zn(J) be Lagrange symmetric and let M = MQ be the associated symmetric
expression. If all solutions of My = λwy are in L2(J,w) for some λ ∈ C, then this is true for all
solutions of Msy = λwy for every λ ∈ C and every s ∈ N.
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3. Symmetric domain characterization of product of two differential operators

Wang-Zettl [1] characterized the domains of symmetric realizations S of the equation

My = λwy J = (a, b),−∞ ≤ a < b ≤ +∞, (3.1)

in the Hilbert space H = L2(J,w), where M = MQ is Lagrange symmetric, w is a positive weighted
function. Based on the work of [1], we now study the symmetric realizations of product of two quasi-
differential expressions in the case that each endpoint is either regular or limit-circle(LC) singular.

In the following we always let Q ∈ Zn(J), J = (a, b), n ∈ N2, be a Lagrange symmetric matrix and
M = MQ the corresponding symmetric differential expression of order n, even or odd, with real or
complex coefficients.

3.1. The case when a is regular and b is LC singular

In this subsection, we consider the case when one endpoint of J = (a, b) is regular and the other LC
singular. By the Patching Lemma 2 and the decomposition of the maximal domain given by Theorem
4.4.3 in [1], we have the following result.

Lemma 6. Let the endpoint a be regular, b LC singular, and let a < c < b. Then the deficiency index
of M is n and there exist n linearly independent solutions u1(t), . . . , un(t) of My = 0 in L2(J) such that

u[ j−1]
i (a) = δi j (i, j = 1, 2, . . . , n). (3.2)

And then we have the decomposition of Dmax:

Dmax = Dmin+̇ span {z1, z2, · · · , zn} +̇ span {u1, u2, · · · un} , (3.3)

where zi ∈ Dmax, i = 1, · · · n such that zi(t) = 0 for t ≥ c and z[ j−1]
i (a) = δi j, i, j = 1, · · · , n, and δi j is the

Kronecker δ.

By the Lagrange Identity and Corollary 1, we have

[ui, u j]n(b) = [ui, u j]n(a), i, j = 1, 2, · · · , n, (3.4)

where [·, ·]n denotes the Lagrange bracket of differential expression M.
The following theorem can be found in Chapter 6 of [1].

Theorem 1. Let M = MQ,Q ∈ Zn(J), J = (a, b),−∞ ≤ a < b ≤ +∞ be Lagrange symmetric, w a
weight function, and let a be regular and b LC singular. Let the composed matrix U = (A : B) be a
boundary condition matrix with rank(U) = l, 0 ≤ l ≤ 2n, where Al,n, Bl,n are complex matrices. Define
the operator S (U) in L2(J,w) by

D(S (U)) =
{
y ∈ Dmax : UYa,b = 0

}
,

S (U)y = S maxy for y ∈ D(S (U)),

where

Ya,b =

(
Ya

Yb

)
, Ya =


y[0](a)
...

y[n−1](a)

 , Yb =


[y, u1]n(b)

...

[y, un]n(b)

 , (3.5)
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functions u1, · · · , un are given by (3.2). Let C = AEnA∗ − BEmb(b)B∗ and r = rank(C), where En =(
(−1)rδr,n+1−s

)n
r,s=1. Then we have:

(i) If l < n, then S (U) is not symmetric;
(ii) If l = n, then S (U) is self-adjoint (and hence symmetric) if and only if r = 0.
(iii) Let l = n + s, 0 < s ≤ n. Then S (U) is symmetric and not self-adjoint if and only if r = 2s.

Proof. This follows directly from Theorem 6.3.3 of [1]. Note that here we choose the solutions
u1(t), . . . , un(t) of My = 0. In terms of (3.4) and (3.2), for the case when a is regular and b is LC
singular(then mb = n), the matrix Emb(b) given by Theorem 6.3.3 [1] can be written as

Emb(b) = En(b) =


[u1, u1]n(b) · · · [un, u1]n(b)

...
. . .

...

[u1, un]n(b) · · · [un, un]n(b)

 =


[u1, u1]n(a) · · · [un, u1]n(a)

...
. . .

...

[u1, un]n(a) · · · [un, un]n(a)

 = −inEn,

(3.6)
where i =

√
−1. This concludes the proof. �

For M2y = M(My), we obviously have Dmax(M2) ⊂ Dmax(M) and Dmin(M2) ⊂ Dmin(M).

Lemma 7. For any y, z ∈ Dmax(M2), we have

[y, z]2n(t) = [My, z]n(t) + [y,Mz]n(t), (3.7)

where [·, ·]2n denotes the Lagrange bracket of differential expression M2.

Proof. By the Lagrange Identity (2.6), we have

[y, z]2n =

∫
zM2ydt −

∫
yM2zdt,

[y,Mz]n =

∫
MzMydt −

∫
yM2zdt,

[My, z]n =

∫
zM2ydt −

∫
MyMzdt =

∫
zM2ydt − [y,Mz]n −

∫
yM2zdt.

Therefore
[y, z]2n = [My, z]n + [y,Mz]n.

�

Now we study the symmetric domain characterizations of product of two nth-order differential
operators L1 and L2 which are generated by the same symmetric differential expression M (may be
with same or different boundary conditions). Let

Li(y) :
{

Li(y) = My, ∀y ∈ Di,

Di =
{
y ∈ Dmax(M) : UiYa,b = 0

}
,

i = 1, 2, (3.8)

where Ui = (Ai : Bi) is a composed matrix with rank (Ui) = n + s (0 ≤ s ≤ n), Ai, Bi are (n + s) × n
complex matrices, and Ya,b is given by (3.5).
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Set L(y) = (L2
◦L1)(y) = L2(L1(y)), y ∈ D1,My ∈ D2. By (3.8), we have

L :


L(y) = M2y,
U1Ya,b = 0,

U2(MY)a,b = 0.
(3.9)

where

(MY)a,b =

(
(MY)a

(MY)b

)
, (MY)a =


(My)[0](a)

...

(My)[n−1](a)

 , (MY)b =


[My, u1]n(b)

...

[My, un]n(b)

 , (3.10)

and the functions u1, u2, · · · , un are defined in Lemma 6.

Theorem 2. The quasi-derivative (My)[m] = iny[n+m], 0 ≤ m ≤ n.

Proof. From Lemma 4, we have

Q[2] =

[
Q F
0 Q

]
, where F =


0 · · · 0
...

. . .
...

1 · · · 0

 .
When n = 2, we have

y[1] = q−1
12 (y′ − q11y),

y[2] = (y[1])′ − q21y − q22y[1],

y[3] = q−1
12 (y[2]′ − q11y[2]),

y[4] = y[3]′ − q21y[2] − q22y[3].

From My = i2y[2], it follows that

(My)[1] = q−1
12 ((My)′ − q11My)

= i2q−1
12 (y[2]′ − q11y[2]).

Therefore (My)[1] = i2y[3].
When n > 2, we have

y[1] = q−1
12 (y′ − q11y),

y[2] = q−1
23 {(y

[1])′ − q21y − q22y[1]},

· · · · · ·

y[z] = q−1
z,z+1{y

[z−1]′ −

z∑
h=1

qzhy[h−1]},

where z = 1, 2, · · · , 2n. Since

My = iny[n],

y[n+1] = q−1
12 {y

[n]′ − q11y[n]},

(My)[1] = q−1
12 ((My)′ − q11My) = inq−1

12 (y[n]′ − q11y[n]),
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it follows that (My)[1] = iny[n+1]. Assume that for any given m = k − 1(2 ≤ k < n), (My)[k−1] = iny[n+k−1]

holds. Consider the case when m = k, then we have

y[n+k] = q−1
n+k,n+k+1{y

[n+k−1]′ −

n+k∑
h=1

qn+k,hy[h−1]}

= q−1
k,k+1{y

[n+k−1]′ −

n+k∑
h=n+1

qn+k,hy[h−1]}

= q−1
k,k+1{y

[n+k−1]′ −

k∑
h=1

qkhy[n+h−1]}

and

(My)[k] = q−1
k,k+1{My[k−1]′ −

k∑
h=1

qkhMy[h−1]}

= inq−1
k,k+1{y

[n+k−1]′ −

k∑
h=1

qkhy[n+h−1]}.

Hence (My)[k] = iny[n+k] holds. This proof is completed by mathematical induction. �

Corollary 3. 
(My)[0](t)

...

(My)[n−1](t)

 = in


(y[n])[0](t)

...

(y[n])[n−1](t)

 = in (O : In)


y[0](t)
...

y[2n−1](t)

 , (3.11)

where O is the n × n zero matrix, In is the n × n identity matrix, and (O : In) is a composed matrix.

Proof. This result follows directly from Theorem 2. �

In the following, we will rewrite the operator defined in (3.9) in a clear form. We first give the
maximal domain decomposition of the differential expression M2.

It is obvious that u1, · · · , un defined in Lemma 6 are linearly independent solutions of M2(y) = 0.
Let ψ1, ψ2, · · · , ψn be n solutions of M2(y) = 0 which satisfy

ψ
[ j−1]
i (a) = 0, ψ[n+ j−1]

i (a) = δi j, i, j = 1, 2, · · · , n. (3.12)

Combining the conditions of (3.2), we can obtain that u1, · · · , un, ψ1, · · · , ψn are 2n linearly
independent solutions of M2y = 0. Similar to Lemma 6, we have the following decomposition.

Corollary 4. The maximal domain Dmax(M2) can has the representation:

Dmax(M2) = Dmin(M2)+̇ span {z1, · · · , zn, zn+1, · · · , z2n} +̇ span {u1, u2, · · · un, ψ1, · · · , ψn} , (3.13)

where zi ∈ Dmax(M2), i = 1, · · · 2n such that zi(t) = 0 for t ≥ c and z[ j−1]
i (a) = δi j, i, j = 1, · · · , 2n.

Proof. This proof can be completed by using the same method as the proof of Theorem 4.4.3 in [1]. �
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Since ψi ∈ Dmax(M2) and Dmax(M2) ⊂ Dmax(M), by Lemma 6, each ψi has a unique representation:

ψi = yi0 +

n∑
j=1

di jz j +

n∑
j=1

ai ju j, i = 1, 2, · · · , n, (3.14)

where yi0 ∈ Dmin(M), di j, ai j ∈ C. Set

N =


a11 · · · a1n
...

. . .
...

an1 · · · ann

 , (3.15)

where the entries ai j (i, j = 1, 2, · · · , n) of N are given in (3.14).

Theorem 3. The operator L defined in (3.9) can be rewritten as

L :
{

L(y) = M2y,
UYa,b = 0,

(3.16)

where U = (A : B) is a composed matrix of matrices

A =

(
A1 0
0 inA2

)
, (3.17)

B =

(
−inB1EnNT En inB1

B2 0

)
, (3.18)

and matrices A1, A2, B1, B2 are given in (3.8).

Proof. By (3.14) and Corollary 4, every y ∈ Dmax(M2) can be uniquely written as

y = y0 +

2n∑
i=1

dizi +

n∑
i=1

ciui +

n∑
i=1

c∗iψi

= y0 +

2n∑
i=1

dizi +

n∑
i=1

ciui +

n∑
i=1

c∗i (yi0 +

n∑
j=1

di jz j +

n∑
j=1

ai ju j),

(3.19)

where y0 ∈ Dmin(M2), di, ci, c∗i ∈ C. It follows from Lemma 6 and Lemma 7 that

[ui, u j]2n(a) = [M(ui), u j]n(a) + [ui,M(u j)]n(a) = 0, i, j = 1, 2, · · · , n.

Let

V(a) =


u1(a) · · · un(a) ψ1(a) · · · ψn(a)
...

. . .
...

...
. . .

...

u[2n−1]
1 (a) · · · u[2n−1]

n (a) ψ[2n−1]
1 (a) · · · ψ[2n−1]

n (a)

 =

(
In 0
D In

)
, (3.20)
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W(t) =



[u1, u1]2n · · · [un, u1]2n
[
ψ1, u1

]
2n · · ·

[
ψn, u1

]
2n

...
. . .

...
...

. . .
...

[u1, un]2n · · · [un, un]2n
[
ψ1, un

]
2n · · ·

[
ψn, un

]
2n[

u1, ψ1
]
2n · · ·

[
un, ψ1

]
2n

[
ψ1, ψ1

]
2n · · ·

[
ψn, ψ1

]
2n

...
. . .

...
...

. . .
...[

u1, ψn
]
2n · · ·

[
un, ψn

]
2n

[
ψ1, ψn

]
2n · · ·

[
ψn, ψn

]
2n


. (3.21)

From (2.7), we have

W(a) = −i2nV∗(a)E2nV(a)

= (−1)n+1
(

In D∗

0 In

) (
0 En

(−1)nEn 0

) (
In 0
D In

)
= (−1)n+1

(
(−1)nD∗En + EnD En

(−1)nEn 0

)
.

(3.22)

Moreover

W(a) = (−1)n+1
(

0 En

(−1)nEn 0

)
. (3.23)

Therefore (−1)nD∗En + EnD = 0. Note that u j, ψ j, j = 1, 2, · · · , n are solutions of M2y. By the
Lagrange identity, we know W(t) is constant on J = (a, b). By (2.9), (3.2) and (3.19), we have

[y, u1]2n(b)
...

[y, un]2n(b)
[y, ψ1]2n(b)

...

[y, ψn]2n(b)


= W(b)



c1
...

cn

c∗1
...

c∗n


= W(a)



c1
...

cn

c∗1
...

c∗n


. (3.24)

Hence 

c1
...

cn

c∗1
...

c∗n


= (W(a))−1



[y, u1]2n(b)
...

[y, un]2n(b)
[y, ψ1]2n(b)

...

[y, ψn]2n(b)


= (−1)n+1

(
0 (−1)nE−1

n

E−1
n 0

)


[y, u1]2n(b)
...

[y, un]2n(b)
[y, ψ1]2n(b)

...

[y, ψn]2n(b)


. (3.25)

From the decomposition (3.19), we have


[y, u1]n(b)

...

[y, un]n(b)

 =
(
−inEn −inEnNT

)


c1
...

cn

c∗1
...

c∗n
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= (−i)n
(
En EnNT

) ( 0 (−1)nE−1
n

E−1
n 0

)


[y, u1]2n(b)
...

[y, un]2n(b)
[y, ψ1]2n(b)

...

[y, ψn]2n(b)



= (−i)n
(
EnNT E−1

n (−1)nIn

)


[y, u1]2n(b)
...

[y, un]2n(b)
[y, ψ1]2n(b)

...

[y, ψn]2n(b)


. (3.26)

For any y ∈ Dmax(M2), it follows from Lemma 7 and Mui = 0 that[
y, ui

]
2n =

[
My, ui

]
n +

[
y,Mui

]
n =

[
My, ui

]
n , i = 1, 2, · · · , n. (3.27)

Namely [
y, ui

]
2n =

[
My, ui

]
n , i = 1, 2, · · · , n. (3.28)

The proof of Theorem 3 is now immediate from the above discussion and (3.9). �

Furthermore, we have the following result.

Theorem 4. The relationship NEn + (−1)nEnNT = 0 holds.

Proof. By Lemmas 7 and Lemma 3, we have

[ψi, ψ j]2n(b) = [Mψi, ψ j]n(b) + [ψi,Mψ j]n(b)

= [Mψi,

n∑
k=1

a jkuk]n(b) + [
n∑

k=1

aikuk,Mψ j]n(b)

=

n∑
k=1

a jk[Mψi, uk]n(b) +

n∑
k=1

aik[uk,Mψ j]n(b)

=

n∑
k=1

a jk[ψi, uk]2n(b) +

n∑
k=1

aik[uk, ψ j]2n(b)

=

n∑
k=1

a jk[ψi, uk]2n(a) +

n∑
k=1

aik[uk, ψ j]2n(a)

= 0.

Let NEn + (−1)nEnNT = (bi j)1≤i, j≤n. Then by (3.23), we have

bi j =

n∑
k=1

(−1)n+1a jk[ψi, uk]2n(a) +

n∑
k=1

(−1)n+1aik[uk, ψ j]2n(a) = 0.

This completes the proof. �
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Based on the above lemmas and theorems, we now obtain our main result: the symmetric
characterization of product of two differential operators.

Theorem 5. Let the hypothesis and notations of Theorem 3 hold. Then the product operator L = L2
◦L1

is symmetric if and only if
rank

(
A1EnA∗2 − B1EnB∗2

)
= 2s, (3.29)

where 0 ≤ s ≤ n.

Proof. Since rank(Ai : Bi) = n + s (i = 1, 2) and

rank(U) = rank
(

A1 0 −inB1EnNT En inB1

0 inA2 B2 0

)
= rank

(
A1 inB1 0 −inB1EnNT En

0 0 inA2 B2

)
,

we can obtain rank(U) = 2n + 2s. By computation, we have

AE2nA∗ =

(
0 inA1EnA∗2

inA2EnA∗1 0

)
,

BW(b)B∗ = (−1)n+1
(
−inB1EnNT En inB1

B2 0

)
(

0 En

(−1)nEn 0

) (
(−1)n+1inEnNEnB∗1 B∗2

(−i)nB∗1 0

)
= (−1)n+1

(
B1(NEn + (−1)nEnNT )B∗1 (−1)n+1inB1EnB∗2

(−1)n+1inB2EnB∗1 0

)
.

Now we will use the basic Theorem 1 to prove our result. Note that here the matrix Emb(b) given in
Theorem 1 is W(b). Then, combining with Theorem 4, we have

C = AEnA∗ − BW(b)B∗

=

(
0 in(A1EnA∗2 − B1EnB∗2)

in(A2EnA∗1 − B2EnB∗1) 0

)
.

Therefore, by Theorem 1, the operator L is symmetric if and only if

rank(C) = 4s

which is equal to
rank(A1EnA∗2 − B1EnB∗2) = 2s.

Thus the proof is completed. �

Remark 1. For theorem 5, if s = 0, then L is self-adjoint if and only if A1EnA∗2 = B1EnB∗2.
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3.2. The case when both endpoints are LC singular

We will consider the symmetric characterization of product of two differential expressions for the
case when both endpoints are LC singular.

In the following we always let Q ∈ Zn(J), J = (a, b), n ∈ N2, be Lagrange symmetric, w a weight
function, the two endpoints a and b LC singular, and let My = MQy = λwy be the corresponding
symmetric differential equation.

By Lemma 5, we have the next lemma.

Lemma 8. If the expression M = MQ is LC singular at both endpoints of J = (a, b), then M2 is LC
singular at both endpoints.

We first reduce the decomposition Theorem 4.4.4 of [1] to the case when both endpoints are LC
singular.

Lemma 9. Let M be Lagrange symmetric, a and b LC singular, and let c ∈ (a, b). Then Q ∈ Zn((a, c)),
Q ∈ Zn((c, b)), and the deficiency indices of My = λwy on (a, c), (c, b) and (a, b) are all n. Then
(1) There exist n linearly independent solutions p1, · · · , pn of My = 0 on (a, c) such that p[ j−1]

i (c) = δi j

(i, j = 1, 2, . . . , n). For 1 ≤ i, j ≤ n, we have

[pi, p j]n(a) = [pi, p j]n(c). (3.30)

The solutions p1, · · · , pn can be extended to (a, b) such that the extended functions, also denoted by
p1, · · · , pn, are in Dmax(a, b) and are identically 0 near b.
(2) There exist n linearly independent solutions v1, · · · , vn of My = 0 on (c, b) such that v[ j−1]

i (c) = δi j

(i, j = 1, 2, . . . , n). For 1 ≤ i, j ≤ n, we have

[vi, v j]n(b) = [vi, v j]n(c). (3.31)

The solutions v1, · · · , vn can be extended to (a, b) such that the extended functions, also denoted by
v1, · · · , vn, are in Dmax(a, b) and are identically 0 near a.
(3) By the extended functions pi and vi, the maximal domain has the following decomposition:

Dmax(a, b) = Dmin(a, b)+̇ span {p1, · · · , pn} +̇ span {v1, · · · , vn} . (3.32)

Proof. This lemma can be directly obtained from Theorem 4.4.4 of [1]. Since pi and vi are respectively
the solutions of My = 0 on (a, c) and (c, b), together with the Lagrange identity, we can obtain (3.30)
and (3.31) hold. �

Let

Ê(a) =


[p1, p1]n(a) · · · [pn, p1]n(a)

...
. . .

...

[p1, pn]n(a) · · · [pn, pn]n(a)

 , Ê(b) =


[v1, v1]n(b) · · · [vn, v1]n(b)

...
. . .

...

[v1, vn]n(b) · · · [vn, vn]n(b)

 . (3.33)

By (1) and (2) of Lemma 9, we have Ê(a) = Ê(b) = −inEn.
Let

Ŷa,b =

(
Ŷa

Ŷb

)
, Ŷa =


[y, p1]n(a)

...

[y, pn]n(a)

 , Ŷb =


[y, v1]n(b)

...

[y, vn]n(b)

 . (3.34)

The following is a minor modification of Theorem 6.3.3 of [1].
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Lemma 10. Let the hypothesis and notations of Lemma 9 hold. Suppose U is a boundary matrix with
rank(U) = l, 0 ≤ l ≤ 2n. Let U = (A : B), where Al×n and Bl×n are complex matrices. Define the
operator S (U) in L2(J,w) by

D(S (U)) = {y ∈ Dmax : UŶa,b = 0},
S (U)y = S maxy for y ∈ D(S (U)).

Let rank(AÊ(a)A∗ − BÊ(b)B∗) = r, where Ê(a) and Ê(b) are given in (3.33). Then we have:
(i) If l < n, then S (U) is not symmetric;
(ii) Let l = n + s, 0 ≤ s ≤ n. Then S (U) is symmetric if and only if r = 2s.

Let the operators L̂1 and L̂2 be generated by the same LC symmetric differential expression M :

L̂i :
{

L̂i(y) = My, ∀y ∈ D̂i,

D̂i = {y ∈ Dmax : UiŶa,b = 0},
i = 1, 2, (3.35)

where Ui = (Ai : Bi) , rank (Ui) = n + s, 0 ≤ s ≤ n, Ai, Bi are (n + s) × n matrices, and Ŷa,b is given in
(3.34).

Let L̂ = L̂◦2L̂1, y ∈ D̂1, My ∈ D̂2, then we have:

L̂ :


L̂(y) = M2y,
U1Ŷa,b = 0,

U2(M̂Y)a,b = 0,
(3.36)

where

(M̂Y)a,b =

(
(M̂Y)a

(M̂Y)b

)
, (M̂Y)a =


[My, p1]n(a)

...

[My, pn]n(a)

 , (M̂Y)b =


[My, v1]n(b)

...

[My, vn]n(b)

 . (3.37)

It is obvious that p1, · · · , pn are solutions of M2(y) = 0 on (a, c), and v1, · · · , vn are solutions of
M2(y) = 0 on (c, b). Let θ1, θ2, · · · , θn be solutions of M2(y) = 0 on (a, c) , and let β1, β2, · · · , βn be
solutions of M2(y) = 0 on (c, b), which satisfy

θ
[ j−1]
i (c) = 0, θ[n−1+ j]

i (c) = δi j, i, j = 1, 2, · · · , n, (3.38)

β
[ j−1]
i (c) = 0, β[n−1+ j]

i (c) = δi j, i, j = 1, 2, · · · , n. (3.39)

It is clear that p1, · · · , pn, θ1, · · · , θn are 2n linearly independent solutions of M2y = 0 on (a, c) and
v1, · · · , vn, β1, · · · , βn are 2n linearly independent solutions of M2y = 0 on (c, b). By Naimark Patching
Lemma 2, θ1, · · · , θn can be extended to (a, b) such that the extended functions, also denoted by
θ1, · · · , θn, are in Dmax(a, b) and are identically 0 near b. Similarly, β1, · · · , βn can be extended to
(a, b) such that the extended functions, also denoted by β1, · · · , βn, are in Dmax(a, b) and are identically
0 near a. Similar to Lemma 9 , we have the following decomposition.

Corollary 5. The maximal domain Dmax(M2) = Dmax(M2, (a, b)) has the representation:

Dmax(M2) = Dmin(M2)+̇ span {p1, · · · , pn, θ1, · · · , θn} +̇ span {v1, v2, · · · vn, β1, · · · , βn} . (3.40)
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Since θi, βi ∈ Dmax(M2) and Dmax(M2) ⊂ Dmax(M), by (3.32), each θi and βi has a unique
representation:

θi = yi0 +

n∑
j=1

ai j p j +

n∑
j=1

bi jv j, i = 1, 2, · · · , n, (3.41)

βi = y0i +

n∑
j=1

ci j p j +

n∑
j=1

di jv j, i = 1, 2, · · · , n, (3.42)

where yi0, y0i ∈ Dmin(M), ai j, bi j, ci j, di j ∈ C.
Set

N1 = (ai j)n×n, N2 = (di j)n×n, (3.43)

where the entries ai j, di j are given in (3.41) and (3.42).

Theorem 6. The operator L̂ defined in (3.36) can be rewritten as

L̂ :
{

L̂(y) = M2y,
UŶa,b = 0,

(3.44)

where U = (A : B),

A =

(
−inA1EnNT

1 En inA1

A2 0

)
, (3.45)

B =

(
−inB1EnNT

2 En inB1

B2 0

)
. (3.46)

and matrices A1, A2, B1, B2 are given in (3.35).

Proof. By Corollary 5, for every y ∈ Dmax(M2), we have

y = y0 +

n∑
i=1

ai pi +

n∑
i=1

ciθi +

n∑
i=1

bivi +

n∑
i=1

diβi, (3.47)

where y0 ∈ Dmin(M2), ai, bi, ci, di ∈ C.
Let

Û(c) =


p1(c) · · · pn(c) θ1(c) · · · θn(c)
...

. . .
...

...
. . .

...

p[2n−1]
1 (c) · · · p[2n−1]

n (c) θ[2n−1]
1 (c) · · · θ[2n−1]

n (c)

 =

(
In 0
D1 In

)
, (3.48)

V̂(c) =


v1(c) · · · vn(c) β1(c) · · · βn(c)
...

. . .
...

...
. . .

...

v[2n−1]
1 (c) · · · v[2n−1]

n (c) β[2n−1]
1 (c) · · · β[2n−1]

n (c)

 =

(
In 0
D2 In

)
, (3.49)

Ŵ(t) =



[p1, p1]2n · · · [pn, p1]2n [θ1, p1]2n · · · [θn, p1]2n
...

. . .
...

...
. . .

...

[p1, pn]2n · · · [pn, pn]2n [θ1, pn]2n · · · [θn, pn]2n

[p1, θ1]2n · · · [pn, θ1]2n [θ1, θ1]2n · · · [θn, θ1]2n
...

. . .
...

...
. . .

...

[p1, θn]2n · · · [pn, θn]2n [θ1, θn]2n · · · [θn, θn]2n


, (3.50)
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Ẑ(t) =



[v1, v1]2n · · · [vn, v1]2n [β1, v1]2n · · · [βn, v1]2n
...

. . .
...

...
. . .

...

[v1, vn]2n · · · [vn, vn]2n [β1, vn]2n · · · [βn, vn]2n

[v1, β1]2n · · · [vn, β1]2n [β1, β1]2n · · · [βn, β1]2n
...

. . .
...

...
. . .

...

[v1, βn]2n · · · [vn, βn]2n [β1, βn]2n · · · [βn, βn]2n


. (3.51)

From (2.7), we have

Ŵ(c) = −i2nÛ∗(c)E2nÛ(c)

= (−1)n+1
(

In D∗1
0 In

) (
0 En

(−1)nEn 0

) (
In 0
D1 In

)
= (−1)n+1

(
(−1)nD∗1En + EnD1 En

(−1)nEn 0

)
,

Ẑ(c) = −i2nV̂∗(c)E2nV̂(c)

= (−1)n+1
(

In D∗2
0 In

) (
0 En

(−1)nEn 0

) (
In 0
D2 In

)
= (−1)n+1

(
(−1)nD∗2En + EnD2 En

(−1)nEn 0

)
.

By Lemma 7, we have

[pi, p j]2n(c) = [Mpi, p j]n(c) + [pi,Mp j]n(c) = 0, i, j = 1, 2, · · · , n,

[vi, v j]2n(c) = [Mvi, v j]n(c) + [vi,Mv j]n(c) = 0, i, j = 1, 2, · · · , n.

Therefore

Ŵ(c) = Ẑ(c) = (−1)n+1
(

0 En

(−1)nEn 0

)
.

At the same time, we obtain that (−1)nD∗i En + EnDi = 0, i = 1, 2. Since p j, θ j ( j = 1, 2, · · · , n) are
solutions of M2y = 0 on (a, c), v j, β j ( j = 1, 2, · · · , n) are solutions of M2y = 0 on (c, b). It follows
from the Lagrange identity that Ŵ(t), Ẑ(t) are constant on (a, c) and (c, b), respectively. Note that pi, θi

are identically 0 near b and vi, βi are identically 0 near a. Then, for i, j = 1, 2 · · · , n, we have

[pi, v j]n(b) = [pi, β j]n(b) = [θi, v j]n(b) = [θi, β j]n(b) = 0, (3.52)

[vi, p j]n(a) = [vi, θ j]n(a) = [βi, p jt]n(a) = [βi, θ j]n(a) = 0, (3.53)

[pi, v j]2n(b) = [pi, β j]2n(b) = [θi, v j]2n(b) = [θi, β j]2n(b) = 0, (3.54)

[vi, p j]2n(a) = [vi, θ j]2n(a) = [βi, p j]2n(a) = [βi, θ j]2n(a) = 0. (3.55)

AIMS Mathematics Volume 8, Issue 4, 9483–9505.



9499

By (2.9), (3.47), (3.54) and (3.55), we have



[y, p1]2n(a)
...

[y, pn]2n(a)
[y, θ1]2n(a)

...

[y, θn]2n(a)


= Ŵ(a)



a1
...

an

c1
...

cn


= Ŵ(c)



a1
...

an

c1
...

cn


, (3.56)



[y, v1]2n(b)
...

[y, vn]2n(b)
[y, β1]2n(b)

...

[y, βn]2n(b)


= Ẑ(b)



b1
...

bn

d1
...

dn


= Ẑ(c)



b1
...

bn

d1
...

dn


. (3.57)

Hence



a1
...

an

c1
...

cn


= (Ŵ(c))−1



[y, p1]2n(a)
...

[y, pn]2n(a)
[y, θ1]2n(a)

...

[y, θn]2n(a)


= (−1)n+1

(
0 (−1)nE−1

n

E−1
n 0

)


[y, p1]2n(a)
...

[y, pn]2n(a)
[y, θ1]2n(a)

...

[y, θn]2n(a)


, (3.58)



b1
...

bn

d1
...

dn


= (Ẑ(c))−1



[y, v1]2n(b)
...

[y, vn]2n(b)
[y, β1]2n(b)

...

[y, βn]2n(b)


= (−1)n+1

(
0 (−1)nE−1

n

E−1
n 0

)


[y, v1]2n(b)
...

[y, vn]2n(b)
[y, β1]2n(b)

...

[y, βn]2n(b)


. (3.59)
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By (3.41), (3.42), (3.47), (3.52) and (3.53), we have


[y, p1]n(a)

...

[y, pn]n(a)

 =
(
−inEn −inEnNT

1

)


a1
...

an

c1
...

cn



= (−i)n
(

En EnNT
1

) ( 0 (−1)nE−1
n

E−1
n 0

)


[y, p1]2n(a)
...

[y, pn]2n(a)
[y, θ1]2n(a)

...

[y, θn]2n(a)



= (−i)n
(
EnNT

1 E−1
n (−1)nIn

)


[y, p1]2n(a)
...

[y, pn]2n(a)
[y, θ1]2n(a)

...

[y, θn]2n(a)


,

and


[y, v1]n(b)

...

[y, vn]n(b)

 =
(
−inEn −inEnNT

2

)


b1
...

bn

d1
...

dn



= (−i)n
(

En EnNT
2

) ( 0 (−1)nE−1
n

E−1
n 0

)


[y, v1]2n(b)
...

[y, vn]2n(b)
[y, β1]2n(b)

...

[y, βn]2n(b)



= (−i)n
(
EnNT

2 E−1
n (−1)nIn

)


[y, v1]2n(b)
...

[y, vn]2n(b)
[y, β1]2n(b)

...

[y, βn]2n(b)


.
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For any y ∈ Dmax(M2), it follows from Lemma 7, together with Mpi = 0,Mvi = 0, that[
y, pi

]
2n =

[
My, pi

]
n +

[
y,Mpi

]
n =

[
My, pi

]
n , i = 1, 2, · · · , n; (3.60)[

y, vi
]
2n =

[
My, vi

]
n +

[
y,Mvi

]
n =

[
My, vi

]
n , i = 1, 2, · · · , n. (3.61)

Thus, in terms of above discussion, the proof for Theorem 6 is completed. �

Theorem 7. The relationships N1En + (−1)nEnNT
1 = 0, N2En + (−1)nEnNT

2 = 0 hold.

Proof. Similar to the proof of Theorem 4, we have

[θi, θ j]2n(a) = [Mθi, θ j]n(a) + [θi,Mθ j]n(a)

=

n∑
k=1

a jk[θi, pk]2n(a) +

n∑
k=1

aik[pk, θ j]2n(a) = 0

and

[βi, β j]2n(b) = [Mβi, β j]n(b) + [βi,Mβ j]n(b)

=

n∑
k=1

d jk[βi, vk]2n(b) +

n∑
k=1

dik[vk, β j]2n(b) = 0.

Then we can easily obtain N1En + (−1)nEnNT
1 = 0 and N2En + (−1)nEnNT

2 = 0. �

Based on above discussion, we present the main result:

Theorem 8. Let the hypothesis and notations of Theorem 6 hold. Then the product operator L̂ = L̂2
◦L̂1

is symmetric if and only if
rank(A1EnA∗2 − B1EnB∗2) = 2s, (3.62)

where 0 ≤ s ≤ n.

Proof. Since

rank(U) = rank
(
−inA1EnNT

1 En inA1 −inB1EnNT
2 En inB1

A2 0 B2 0

)
and rank(Ai : Bi) = n + s(i = 1, 2), we have rank(U) = 2n + 2s.

By computation, we get

AŴ(a)A∗ = (−1)n+1
(
−inA1EnNT

1 En inA1

A2 0

)
(

0 (−1)nE−1
n

E−1
n 0

) (
(−1)n+1inEnN1EnA∗1 A∗2

(−i)nA∗1 0

)
= (−1)n+1

(
A1(N1En + (−1)nEnNT

1 )A∗1 (−1)n+1inA1EnA∗2
(−1)n+1inA2EnA∗1 0

)
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and

BẐ(b)B∗ = (−1)n+1
(
−inB1(N2En + (−1)nEnNT

2 )B∗1 (−1)n+1inB1EnB∗2
(−1)n+1inB2EnB∗1 0

)
.

To prove the furthermore part we note that here the matrices Ê(a), Ê(b) given in Lemma 10 are Ŵ(a),
Ẑ(b), respectively. Thus, by Lemma 10 and Theorem 7, we have

AŴ(a)A∗ − BẐ(b)B∗

= (−1)n+1
(

0 (−1)n+1in(A1EnA∗2 − B1EnB∗2)
in(A1EnA∗2 − B1EnB∗2)∗ 0

)
.

It follows from Lemma 10 that L is symmetric if and only if

rank(AŴ(a)A∗ − BẐ(b)B∗) = 4s

which is equal to
rank(A1EnA∗2 − B1EnB∗2) = 2s.

�

The next corollary is the self-adjoint special case of Theorem 8.

Corollary 6. Let the hypothesis and notations of Theorem 6 hold. Then the product operator L̂ = L̂2
◦L̂1

is self-adjoint if and only if
A1EnA∗2 − B1EnB∗2 = 0.

Proof. This is the special case s = 0 of Theorem 8. �

Remark 2. Recall that the Lagrange brackets [y, z] are well defined at each singular endpoint.
These brackets can be used to replace the quasi-derivatives. Our symmetric domain characterization
Theorem 8 can be adapted to the maximal deficiency case which occurs when each endpoint is either
regular or LC singular. Namely, our result can be used for the four cases for the endpoints: R/R,
R/LC, LC/R, LC/LC.

4. Examples

Example 1. Consider My = −(py′)′ + qy on J = (a, b),−∞ ≤ a < b ≤ +∞, where p−1, q ∈ Lloc(J,R).
Let a and b be LC singular. Set

A1 =


1 0
0 i
0 0

 , B1 =


0 0
0 1
1 0

 , A2 =


0 1
i 0
0 0

 , B2 =


0 0
0 −1
1 1

 .
The operator L1y = My is determined by the boundary conditions:

[y, p1](a) = 0, i[y, p2](a) + [y, v2](b) = 0, [y, v1](b) = 0.
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The operator L2y = My is determined by the boundary conditions:

[y, p2](a) = 0, i[y, p1](a) = [y, v2](b), [y, v1](b) + [y, v2](b) = 0.

Since here s = 1 and rank(A1E2A∗2 − B1E2B∗2) = 2s = 2, by Theorem 8, the product operator L = L2
◦L1

is symmetric.

Example 2. Consider My = −(py′)′ + qy on J = (a, b),−∞ ≤ a < b ≤ +∞, where p−1, q ∈ Lloc(J,R).
Let a and b be LC singular. Set

A1 =


1 0
0 1
0 0

 , A2 =


0 1
1 0
0 0

 , B1 =


0 0
0 0
1 0

 , B2 =


0 0
0 0
0 1

 .
The operator L1y = My is determined by the boundary conditions:

[y, p1](a) = 0, [y, p2](a) = 0, [y, v1](b) = 0.

The operator L2y = My is determined by the boundary conditions:

[y, p1](a) = 0, [y, p2](a) = 0, [y, v2](b) = 0.

Since here s = 1 and rank(A1E2A∗2 − B1E2B∗2) = 3, by Theorem 8, the product operator L = L2
◦L1 is

not symmetric.

Remark 3. For the above examples, when the endpoint a is regular for this M, we can simply replace
[y, p1](a), [y, p2](a) with y(a), y[1](a), respectively. Similarly for a regular endpoint b, we can replace
[y, v1](b), [y, v2](b) with y(b), y[1](b), respectively.

Example 3. Let Q ∈ Zn(J), n ∈ N2, J = (a, b),−∞ ≤ a < b ≤ +∞, M = MQ be the symmetric
expression, and let Ns×n (0 ≤ s ≤ n) be of full row rank, In the n × n identity matrix. Assume that a and
b are LC singular. Choose

A1 =

(
Ns×n

0n×n

)
, B1 =

(
0s×n

In

)
, A2 =

(
0s×n

In

)
, B2 =

(
Ns×n

0n×n

)
.

Let

U1 = (A1 : B1) =

(
N 0
0 In

)
, U2 = (A2 : B2) =

(
0 N
In 0

)
.

We define the operators L1, L2 as (3.35). By computation, we have

A1EnA∗2 − B1EnB∗2 =

(
0 NEn

−EnN∗ 0

)
.

Obviously, rank(U1) = rank(U2) = n + s, rank(A1EnA∗2 − B1EnB∗2) = 2s. Then, by Theorem 8, we know
L = L2

◦L1 is a symmetric operator.
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12. M. Möller, A. Zettl, Symmetrical differential operators and their friedrichs extension, J. Differ.
Equations, 115 (1995), 50–69. https://doi.org/10.1006/jdeq.1995.1003

13. Q, Lin, Self-adjointness of class 4th-order and 6th-order differential operator products, Journal of
Inner Mongolia Normal University (Natural Science Edition) (in Chinese), 32 (2019), 74–79.

14. Q. Qing, G. Wang, H. Kong, Self-adjointness of the products of high-order differential operators,
Journal of Inner Mongolia Normal University(Natural Science Edition)(in Chinese), 41 (2012),
227–230.

15. R. M. Kauffman, T. T. Read, A. Zettl, The Deficiency Index Problem for Powers of Ordinary
Differential Expressions, Lecture Notes in Mathematics, 1977.

16. W. D. Evans, A. Zettl, On the deficiency indices of powers of real 2nth-order symmetric differential
expressions, J. Lond. Math. Soc., 13 (1976), 543–556. https://doi.org/10.1112/jlms/s2-13.3.543

AIMS Mathematics Volume 8, Issue 4, 9483–9505.

http://dx.doi.org/https://doi.org/10.1080/16073606.1976.9632515
http://dx.doi.org/https://doi.org/10.1016/j.jde.2018.06.028
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2017.03.004
http://dx.doi.org/https://doi.org/10.1016/j.jde.2008.11.001
http://dx.doi.org/https://doi.org/10.1007/s10114-004-0386-3
http://dx.doi.org/https://doi.org/10.1007/s10114-004-0386-3
http://dx.doi.org/https://doi.org/10.1007/BF02564877
http://dx.doi.org/https://doi.org/10.1006/jdeq.1995.1003
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1112/jlms/s2-13.3.543


9505

17. X. Guo, The self-adjointness ofproduct of four second-orderdifferential operators, Inner Mongolia
University, 2012.

18. X. Hao, J. Sun, A.Wang, A. Zettl, Characterization of domains of self-adjoint ordinary differential
operators II, Results Math., 61 (2012), 255–281. https://doi.org/10.1007/s00025-011-0096-y

19. X. Zhang, W. Wang, Q. Yang, On self-adjointness of the product of three second-order differential
operators, Journal of Inner Mongolia Normal University (Natural Science Edition) (in Chinese),
36 (2007), 35–42.

20. Z, Cao, J. Sun, D. E. Edmunds, On self-adjointness of the product of two second-
order differential operators, Acta Math. Sin. (English Series), 15 (1999), 375–386.
https://doi.org/10.1007/BF02650732

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 4, 9483–9505.

http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1007/s00025-011-0096-y
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1007/BF02650732
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Symmetric domain characterization of product of two differential operators
	The case when a is regular and b is LC singular
	The case when both endpoints are LC singular 

	Examples

