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1. Introduction

Consider the equation
My =Awy on J = (a,b), -0 <a<b< o, (1.1)

where M is a symmetric differential expression of order n, and w is a positive weight function.

In 1995, Moller-Zettl [12] first characterized the symmetric realizations of (1.1) for regular
problems. Motivated by the method used by Sun [10] for self-adjoint operators and by the method
of Moller-Zettl [12], Wang-Zettl [3, 4] characterized the domains of the symmetric realizations of
(1.1) for singular problems with any deficiency index.

Based on the self-adjoint GKN theorem and von Neumann’s formula for the adjoint of a symmetric
operator in Hilbert space, for classical expression M, Sun [10] gave a decomposition of the maximal
domain using certain solutions for non-real value of the spectral parameter A, and then characterized
all the self-adjoint realizations. Sun’s work is an important contribution to the study of self-adjoint
domains. Wang et al. [6] established a new representation in terms of certain solutions for real A. This
leads to a classification of solutions as limit-point(LP) or limit-circle(LLC). The LC solutions contribute
to the singular boundary conditions, but the LP solutions do not. In 2012, Hao et al. [18] extended this
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result to the case when both endpoints are singular. This real 4 decomposition of the maximal domain
and the construction of LC and LP solutions also play a critical role in the investigation of the spectrum
of self-adjoint operators, the classification of self-adjoint boundary conditions, and the characterization
of symmetric domains.

In [1, 4, 5], Wang-Zettl characterized the symmetric operators in H = L*(J,w) and proved a
symmetric GKN-Type theorem. The result contains the self-adjoint GKN theorem as a special case.
It is well known that the self-adjoin GKN theorem is widely used to study self-adjoint operators,
difference operators, Hamiltonian systems, multi-interval operators, etc. The symmetric GKN-Type
theorem maybe will have similar extensions for symmetric problems.

For products and powers of differential expressions, in [2, 15, 16], the deficiency indices of
powers of classical expressions and of quasi-differential expressions were discussed. In [20], the self-
adjointness of the product of two second-order differential operators was obtained. Based on [10, 20],
An-Sun [8] characterized the self-adjointness of product of two nth-order real classical differential
expressions with two regular endpoints and extended to problems with one regular endpoint and one
singular endpoint [9]. In recent years, there are some works on the self-adjointness of products of
differential operators, see [7, 11, 13, 14, 17, 19].

In this paper, we study the symmetric domain characterization for product of two quasi-differential
expressions of order n, even or odd, with complex coefficients. We consider the cases when each
endpoint is either regular or LC singular. The self-adjoint characterization for product of two
differential expressions is a special case.

The organization of this paper is as follows. Following this introduction, the quasi-differential
expressions, Lagrange identity, maximal and minimal operators, and powers of differential expressions
are given in Section 2. Section 3 is devoted to the symmetric domain characterization of product of
two differential operators. In subsection 3.1, we consider the case when one endpoint is regular and
the other LC singular. In subsection 3.2, we consider the case when both endpoints are singular. Some
examples are given in Section 4.

2. Preliminaries

We first repeat some definitions and basic properties of quasi-differential expressions. See the
book [1] for more details.

Definition 1. Forn > 1, let
Z,(J) :={Q = (@)1 € Mu(Lioc(J),

qrr+1 # 0a.e. on J,qr_}Jr1 €Ly,(),1<r<n-1, 2.1)
grs=0ae ont,2<r+1<s<mnyqs€Llp(J),s#r+1,1<r<n-1}.

For Q € Z,(J) we define
Vo :i={y:J — C,yis measurable}

and y'°' = y (y € Vy). Inductively, forr = 1, ...,n, we define
V,={ye Vi 1y e (ACw (D)},
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W= {y["”/ -2, qmy“‘”} (vevy, (22)

s=1
where gy, n41 := 1. Finally we set
My = Myy =i"y"  (yeV,). (2.3)

The expression M = M is called the quasi-differential expression generated by Q. For V, we also use
the notations D(Q) and D(M).

Definition 2. Let Q € Z,(J),J = (a,b). The expression M = M, is said to be regular at a or we say a
is a regular endpoint, if for some c,a < ¢ < b, we have

q;}HEL(a,c), r=1,---,n—1,
qrs € L(a,c), 1<rs<n, s#r+1.

Similarly the endpoint b is regular if for some c,a < ¢ < b, we have

g €L(c,b), r=1,---,n—1,
qrs € L(c,b), 1<rs<n, s#r+]1.

Note that from the definition of Q € Z,(J) it follows that if the above hold for some ¢ € J, then they
hold for any ¢ € J. We say that M is regular on J, if M is regular at both endpoints. An endpoint is
singular if it is not regular.

Definition 3. Let N, = {2,3,4,--- ,}. For k € N,, we define the matrix Ey as follows:

Ex = (1) 8rieri=s)y s (2.4)
where ¢, ; is the Kronecker 6. Note that

E; = E'=(-D"E,. (2.5)
Lemma 1 (Lagrange Identity). Let Q € Z,(J),P = —E~'Q*E where E = E, is defined in Definition
3. Then P € Z,(J) and for anyy € D (M), z € D (Mp), we have

ZMgy — yMpz = [y.z]’, (2.6)
where

[y,2] = i Z( 1y = iz EY. 2.7)

Here we call [y, z] or just [-,-] a Lagrange bracket.

Corollary 1. If My = Awy and Mz = Awz, then [y, 7] is constant on J. In particular, if A is real and
My = dwy, Mz = Awz, then [y, z] is constant on J.

The above symplectic matrix E; and the Lagrange Identity play an important role in the study of
general symmetric differential expressions and the characterization of domains of symmetric and self-
adjoint boundary conditions.
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Definition 4. Let Q € Z,(J) and suppose that Q satisfies
Q= _E_lQ*E’ where E = E, = ((_1)r5r,n+l—s)

_ r+s—1~
qrs = (_1) Qn+1—x,n+1—ra 1 < r,s <n.

ie.

n
r,s=1"

Then Q is called a Lagrange symmetric matrix and the expression M = M is called a Lagrange
symmetric, or just a symmetric, differential expression.

Definition 5. Let Q € Z,(J), Q = —E'Q*E, let M = My, H = L*(J,w), and let w be a weight function.
The maximal operator S nux = S max(Q, J) with domain Dp,,x = Dnax(Q, J) is defined by:

Dy ={y € H:y € D(M),w™' My € H},

Smaxy =W My, Y € Dy
Dnax(Q, J) is dense in H. The minimal operator S iy = S min(Q, J) with domain Dy, = Dyin(Q, J) is

defined as S nin = S 1 S min s a closed symmetric operator in H with dense domain and S . = S nax.

The following result is immediate from the Lagrange Identity and integration.

Corollary 2. For any y,z € D(M),J = (a,b), the limits lim,_,,-[y, z](?), lim,_, .+ [y, 2](¢) exist and are
finite. And then we have:

fb{ZMy - yMz} = [y,2](b) - [y.z)(a). (2.8)
Lemma 2. Leta; < --- < a € .a], where a, and ai can also be regular endpoints. Let a;. € C(j =
1,....,k;r=0,...,n—1). Then there is a’y € Dy, such that
Ylap=a;, (=1,...,kr=0,...,n—1).
Lemma 3. Let Q € Z,(J), Q = —E"'Q*E. Then
D(S yin) ={y € Diax : [y, 2l(@) = 0 = [y, z](b), for all z € Dy} . (2.9)

Given a Lagrange symmetric matrix Q € Z,(J) and its associated symmetric expression M = M
the construction and properties of powers M* (s € N,) of quasi-differential expression M was given
in [1, 2].

Lemma 4. Assume that Q € Z,(J) is a Lagrange symmetric matrix. Let M = My and define M* by
M?y = M(My),--- ,M*y = M(M*'y). Let Q" = Q and for s € N, let Q! denote the block diagonal
matrix

0
orl = , (2.10)
o
where there are s matrices Q on the diagonal and all other entries in this sn X sn matrix are zero except
for the entries in positions (n,n + 1),(2n,2n + 1),--- ,((s — Dn, (s — I)n + 1), these are all equal to 1.

Then, for any positive integer s, the matrices QY are in Z,(J), and are Lagrange symmetric and the
symmetric differential expression M® is given by

M* = My, Q2.11)

Lemma 5. Let Q € Z,(J) be Lagrange symmetric and let M = My be the associated symmetric
expression. If all solutions of My = Awy are in L>(J,w) for some A € C, then this is true for all
solutions of M°y = Awy for every A € C and every s € N.
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3. Symmetric domain characterization of product of two differential operators

Wang-Zettl [1] characterized the domains of symmetric realizations S of the equation
My =awy J=(a,b),—c0 <a<b< +co, (3.1

in the Hilbert space H = L*(J,w), where M = M, is Lagrange symmetric, w is a positive weighted
function. Based on the work of [1], we now study the symmetric realizations of product of two quasi-
differential expressions in the case that each endpoint is either regular or limit-circle(LC) singular.

In the following we always let Q € Z,(J),J = (a,b),n € Ny, be a Lagrange symmetric matrix and
M = M, the corresponding symmetric differential expression of order n, even or odd, with real or
complex coefficients.

3.1. The case when a is regular and b is LC singular

In this subsection, we consider the case when one endpoint of J = (a, b) is regular and the other LC
singular. By the Patching Lemma 2 and the decomposition of the maximal domain given by Theorem
4.4.3 in [1], we have the following result.

Lemma 6. Let the endpoint a be regular, b LC singular, and let a < ¢ < b. Then the deficiency index
of M is n and there exist n linearly independent solutions u,(t), ..., u,(t) of My = 0 in L*(J) such that

W May=6, G,j=1,2,...,n). (3.2)
And then we have the decomposition of Dax:
Dmax = Dmin'i' Span {Zl’ 32,0, Zn} + Span {ul’ Uz, un} ) (33)

where z; € Dy, i = 1, - n such that z;(t) = O fort > ¢ andzl[j_l](a) =0;j,i,j=1,---,n, and 6;; is the
Kronecker 6.

By the Lagrange Identity and Corollary 1, we have
[u;, Mj]n(b) = [upujl(@), i,j=12,---,n, (3.4)

where [-, -], denotes the Lagrange bracket of differential expression M.
The following theorem can be found in Chapter 6 of [1].

Theorem 1. Let M = My, Q € Z,(J),J = (a,b),— < a < b < +co be Lagrange symmetric, w a
weight function, and let a be regular and b LC singular. Let the composed matrix U = (A : B) be a
boundary condition matrix with rank(U) = [,0 < | < 2n, where A;,,, B;,, are complex matrices. Define
the operator S (U) in L*(J,w) by

D(S(U)) = {y € Dmax : UYa,h = O} )

S(U)y = Smaxy forye DS U)),
where
v y(a) [y, u11.(b)
Ya,b:( ¢ ) Y, = : s Yy = : , (3.5)

Y a) [y, un]n(b)
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functions uy,--- ,u, are given by (3.2). Let C = AE,A* — BE,,,(b)B" and r = rank(C), where E, =
(=16 ne1-5), - Then we have:

(i) If | < n, then S (U) is not symmetric;

(ii) If | = n, then S (U) is self-adjoint (and hence symmetric) if and only if r = 0.

(iii) Let | =n+ 5,0 < s < n. Then S (U) is symmetric and not self-adjoint if and only if r = 2s.

Proof. This follows directly from Theorem 6.3.3 of [1]. Note that here we choose the solutions
uy(t),...,u,(t) of My = 0. In terms of (3.4) and (3.2), for the case when a is regular and b is LC
singular(then m;, = n), the matrix E,, (b) given by Theorem 6.3.3 [1] can be written as

(w1, u11,(B) -+ [y, u11,(D) (w1, ml(@) -+ [un, ur],(a)
(w1, un1n(B) -+ [, up],(D) (w1, unln(@) -+ [n, Unl,(@)
(3.6)
where i = V—1. This concludes the proof. O
For M?y = M(My), we obviously have D, (M?) C Dy (M) and Dppin(M?) C Dyin(M).
Lemma 7. For any y,z € Dy (M?), we have
[y, zon(0) = [My, z]u(2) + [y, Mz],(2), (3.7)
where [-, ]2, denotes the Lagrange bracket of differential expression M>.
Proof. By the Lagrange Identity (2.6), we have
[y, 2lon = f ZM?ydt - f yM?2zdt,
[y, Mz], = f MzMydt — f yM?2zdr,
[My, 2], = f M2ydt — f MyMzdt = f M2ydt — [y, Mz, — f yM?zdr.
Therefore
[y, zlon = [My, 2]u + [y, Mz],.
O

Now we study the symmetric domain characterizations of product of two nth-order differential
operators L; and L, which are generated by the same symmetric differential expression M (may be
with same or different boundary conditions). Let

Ll(y) = My, Vy € Dia

L) { Dy = {y € Doe(M) : UiYyp =0}, ' = 1% (3-:8)

where U; = (A; : B;) is a composed matrix with rank (U;) = n+ s(0 < s < n), A;,B;are (n+ s) X n
complex matrices, and Y, is given by (3.5).
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Set L(y) = (L2°L1)(y) = Lo(L1(y)), y € D1, My € D,. By (3.8), we have

L(y) = M?y,
L: U\Y., =0, 3.9
Uz(MY)a’b = 0
where
My)Ol(q My, u;],(b
MY), ( y). (@) [My .1]()
(MY)a,b = (MY)b s (MY)a = : ) (MY)b = . 5 (310)
(M) (a) (My, u,],(b)
and the functions u;, u,, - - - , u, are defined in Lemma 6.

Theorem 2. The quasi-derivative (My)™ = iyl 0 <m < n.

Proof. From Lemma 4, we have

When n = 2, we have

M =g,0" = quy),

Y= 0"y = qary — gy,
W=gno™ - gy,
Y =3B — gy — gyl

From My = i*y!?!, it follows that

(M) = g (My) = g11My)
= g5 0 = giy™).

Therefore (My)!! = i2y!3,

When n > 2, we have

YW=gn0" - quy),

W= g {OMY = gary — gy,

/4
-1 -17 h-1
Y=gl by = g™,
h=1

where z = 1,2,---,2n. Since

My = i"y",
y[n+1] — q1—21 {y[n]/ _ q“y[n]}’

(M) = gl (My) = guMy) = g7} " = guy™),
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it follows that (My)!!! = j*y"*11 Assume that for any given m = k — 1(2 < k < n), (My)*=11 = jrylnh=1]
holds. Consider the case when m = k, then we have

n+k
y[n+k] _ qn+k oty [n+k 1y Z Gns khy[h 1]
n+k
= QI;,11<+1 et Z qn +khy
h=n+1
= G Y Zq "
=1
and
k
M) = gp (MY = 3 g My 1)
h=1
k
= "G Y - Z quy" "),
Hence (My)!*! = j"yln*kl holds. This proof is completed by mathematical induction. |
Corollary 3.
(My)°)(r) o) YO
: =" =i"(0:1,) , (3.11)
(My)" () oMH*1() Y1)

where O is the n X n zero matrix, 1, is the n X n identity matrix, and (O : 1,) is a composed matrix.

Proof. This result follows directly from Theorem 2. O

In the following, we will rewrite the operator defined in (3.9) in a clear form. We first give the
maximal domain decomposition of the differential expression M?>.

It is obvious that uy, - - - , u, defined in Lemma 6 are linearly independent solutions of Mz(y) =0.
Let Y1, Y, - - , ¥, be n solutions of M?(y) = 0 which satisfy

Ny =0, " Ny =6, i,j=1,2,-- ,n. (3.12)

Combining the conditions of (3.2), we can obtain that wuy,---,u,, ¥, -+ ,¢¥, are 2n linearly
independent solutions of M?y = 0. Similar to Lemma 6, we have the following decomposition.

Corollary 4. The maximal domain D,.(M?) can has the representation:

DmaX(Mz) = Dmin(Mz)"i' Span {Zl’ tee ,Zn’ Zn+1’ et ’Z2n} + Span {Mla u27 Tt ul’la 17[/17 R l//n} £l (313)
where z; € Dy (M?),i = 1,---2n such that zj(t) = 0 for t > ¢ and zl[.j_l](a) =0ij,i,j=1,---,2n.

Proof. This proof can be completed by using the same method as the proof of Theorem 4.4.3in[1]. O

AIMS Mathematics Volume 8, Issue 4, 9483-9505.



9491

Since ; € Dpya(M?) and Dy (M?) C Dpyar (M), by Lemma 6, each ¢; has a unique representation:

n n
wl :ylo+ZleZJ+Zaljuj7 l: 1925"' , 1,
= =

where Yio € Dmin(M), dij’ aij € C. Set

apy 0 Ay

apl 0 Ap
where the entries a;; (i, j = 1,2,--- ,n) of N are given in (3.14).

Theorem 3. The operator L defined in (3.9) can be rewritten as

L[ Lo =My,
| UYu =0,

where U = (A : B) is a composed matrix of matrices

(A0
(4 5)

B —-i"B{E,NTE, "B,
B B, 0o )

and matrices Ay, A,, By, B, are given in (3.8).

Proof. By (3.14) and Corollary 4, every y € Dy, (M?) can be uniquely written as

2n n n
y :yO+Zd,~zi+Zciui+Zcf(ﬁi
2n

—yo+Zdzl+Zcul+Zc (y,0+Zd,,zj+Za,,u,)

where yg € Dpin(M?), d;, c;, c; € C. It follows from Lemma 6 and Lemma 7 that

[ui, ujlon(a) = [M(u;), ujl,(a) + [u, M(uj)l.(a) =0, i,j=1,2,---,n.
Let

w(a) - up(a) wl(a) e lﬁn(a)

) . I, 0O
V=| i . :(D I )
[2}’! 1](a) . [2}’! 1]( ) w[2n l]( ) o w[Zn 1](a)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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(w1, uils,

[uh un]Zn

W = [t1, 1],

[ul’ wn]2n

From (2.7), we have

[I/tn, ul]Zn

[I/tn, un]Zn

[uﬂ’ wl]Zn

(14, wn]Zn

W(a) = —i*"V*(a)E»,V(a)

— (_1)n+l (

— (_1)n+l (

Moreover

W(a) = (=1)"! (

1, D
0 I,

(-1'D'E, + E,D E,

(Y1, u1],,

["/’17 un]2n
[wl ’ wl]Zn

[wl’ wn]2n

0

(=D)"E,

0

(-1Y'E, 0

')

E,
-D'E, 0 )

[lvbn’ u1]2n

['//n’ un]Zn
[Wm wl]ln

[Wn ’ wn]Zn

(3.21)

(3.22)

(3.23)

Therefore (-1)"D*E,, + E,D = 0. Note that u;,¢;, j = 1,2,---,n are solutions of sz. By the

Lagrange identity, we know W(¥) is constant on J = (a, b). By (2.9), (3.2) and (3.19), we have

[y9 ul]Zn(b)
[y, un]2n(b)
[y’ l/’l]Zn(b)
[y’ lr[/n]Qn(b)
Hence
C [y, u112,(D)
Cn | _ -1 [y’ un]Zn(b)
R L A
C:; [y’ l//n]Zn(b)

From the decomposition (3.19), we have

[ya ul]n(b)

[y, u,],(D)

AIMS Mathematics

= W(b)

— (_1)n+1 (

=( -"E, -I"E,NT )

(6]

0
E—l

n

= W(a)

0

(6]

Cn
|

(—1)”E;1 )

[y, u1124(b)

[ya un]2n(b)
L, ¥1124(D)

[y» wn]Zn(b)

(3.24)

(3.25)

Volume 8, Issue 4, 9483-9505.
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= (_l)n (En EnNT) ( E—] 0

[y, u112,(b)

—(_n\h T -1 1\ [Y,Mnizn(b)
=G (ENE" GO

[, Ynlan()
For any y € Dy (M?), it follows from Lemma 7 and Mu; = 0 that

v, uily, = [My,u], + [y, Mu;],, = [My,u;],, i=1,2,--- ,n.

Namely
[y’ul]2n:[My7ul]n’ i:1,2,""n_

The proof of Theorem 3 is now immediate from the above discussion and (3.9).

Furthermore, we have the following result.
Theorem 4. The relationship NE, + (—1)"E,N” = 0 holds.

Proof. By Lemmas 7 and Lemma 3, we have
(Wi, ¥ j12n(D) = (M, j1,(D) + [Wi, My 1,(D)
= My, > ajnda(B) + 1) i, My 1,(b)
k=1

k=1

= D @My udu®) + 3 aulu, My 1,(b)
k=1 k=1

= > @l tidon(b) + ) aultt, ;1on(b)
k=1 k=1

= Z ajli, urlan(a) + Z ai[ug, ¥ jlon(a)
k=1 k=1
=0.

Let NE, + (=1)"E,NT = (b;j)1<i j<n- Then by (3.23), we have

bij = > (=" @l ulan(@) + D (=" g, ¢ 1n(a) = 0.
k=1 k=1

This completes the proof.

[y, u1124(D)

0 (—D"E;l) [y, tn]2n(b)
[y, ¥1]2n(b)

[y’ wn]Zn(b)

(3.26)

(3.27)

(3.28)

O
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Based on the above lemmas and theorems, we now obtain our main result: the symmetric
characterization of product of two differential operators.

Theorem 5. Let the hypothesis and notations of Theorem 3 hold. Then the product operator L = L,°L,
is symmetric if and only if
rank (A,E,A; — B1E,B;) = 2s, (3.29)

where 0 < s < n.
Proof. Since rank(A; : B)) =n+ s(i=1,2) and

" T n
rank(U) = rank( A 0 I"B\E,N"E, i"B, )

0 A B, 0
k[ A1 B1 O —I'BiENTE,
B 0 0 A B ’

we can obtain rank(U) = 2n + 2s. By computation, we have

AEznA*:( 0 i"AE, A} )

i"AE, AT 0

st = iy TENE 7B

B, 0
0 E, \( (-1"'i"E,NE,B; B;
(-1Y'E, 0 iyB. 0
— (_1)n+l BI(NEn + (_1)nEn]VT)B,1< (—l)nﬂi"BlEnB;
(_1)n+linB2EnB>{ 0 .

Now we will use the basic Theorem 1 to prove our result. Note that here the matrix E,, (b) given in
Theorem 1 is W(b). Then, combining with Theorem 4, we have

C = AE,A* — BW(b)B"

0 i"(A\E, A% — B\E,BY)
i"(AyE,A" — BoE,B") 0 '

Therefore, by Theorem 1, the operator L is symmetric if and only if
rank(C) = 4s

which is equal to
rank(A,E,A; — B,E,B;) = 2s.

Thus the proof is completed. O

Remark 1. For theorem 5, if s = O, then L is self-adjoint if and only if A\E,A = B\E,B;,.

AIMS Mathematics Volume 8, Issue 4, 9483-9505.
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3.2. The case when both endpoints are LC singular

We will consider the symmetric characterization of product of two differential expressions for the
case when both endpoints are LC singular.

In the following we always let Q € Z,(J),J = (a,b),n € N,, be Lagrange symmetric, w a weight
function, the two endpoints a and b LC singular, and let My = Myy = Awy be the corresponding
symmetric differential equation.

By Lemma 5, we have the next lemma.

Lemma 8. If the expression M = My is LC singular at both endpoints of J = (a,b), then M* is LC
singular at both endpoints.

We first reduce the decomposition Theorem 4.4.4 of [1] to the case when both endpoints are LC
singular.

Lemma 9. Let M be Lagrange symmetric, a and b LC singular, and let ¢ € (a,b). Then Q € Z,((a, ¢)),
0 € Z,((c, b)), and the deficiency indices of My = Awy on (a, c), (¢, b) and (a, b) are all n. Then

(1) There exist n linearly independent solutions py,--- , p, of My = 0 on (a, ¢) such that pl[.j _ll(c) = 0;j
(i,j=1,2,...,n). For 1 <i, j <n, we have

[pi, Pjln(@) = [pi, pjln(O). (3.30)
The solutions py,--- , p, can be extended to (a,b) such that the extended functions, also denoted by
D1, 5 P, are in Dy (a, b) and are identically O near b. .
(2) There exist n linearly independent solutions vy,--- ,v, of My = 0 on (c, b) such that vl[.]_l](c) = 0jj
(i,j=1,2,...,n). For 1 < i, j <n, we have

Vi, vi1a(D) = i, v;1a(0). (3.31)
The solutions vy, --- ,v, can be extended to (a,b) such that the extended functions, also denoted by
Vi, ,Vy, are in Dpa(a, b) and are identically 0 near a.

(3) By the extended functions p; and v;, the maximal domain has the following decomposition:
Dmax(a’ b) = Dmin(a’ b)+ Span {pla et ’pn} + Span {vb Y Vn} . (332)

Proof. This lemma can be directly obtained from Theorem 4.4.4 of [1]. Since p; and v; are respectively
the solutions of My = 0 on (a, ¢) and (c, b), together with the Lagrange identity, we can obtain (3.30)

and (3.31) hold. O
Let
R [P, p1)(@) -+ [Pn P1]a(@) R i, vila(B) -+ [Va, vila(b)
E(a) = : : , E®) = : : . (3.33)
[p1, Puln(@) -+ [Pn, Puln(@) Vi vala®) -+ [Vas Vala(D)
By (1) and (2) of Lemma 9, we have E(a) = E(b) = —i"E,,.
- N 7 N [y, P1]a(a) N [y, vil.(D)
Yop = ( ?‘; ) Y, = : , Y= : ) (3.34)
[y, Pula(@) [y, Valn(D)

The following is a minor modification of Theorem 6.3.3 of [1].
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Lemma 10. Let the hypothesis and notations of Lemma 9 hold. Suppose U is a boundary matrix with
rank(U) = [,0 <1 < 2n. Let U = (A : B), where Ax, and By, are complex matrices. Define the
operator S (U) in L*(J,w) by

D(S(U)) = {y € Dypay : UY,,;, = 0},
SU)y = Smay forye DS (U)).

Let rank(AE(a)A* - BE(b)B*) = r, where E(a) and E(b) are given in (3.33). Then we have:
(i) If | < n, then S (U) is not symmetric;
(ii) Let | =n+ 5,0 < s < n. Then S(U) is symmetric if and only if r = 2s.

Let the operators L, and L, be generated by the same LC symmetric differential expression M :

Z‘{AL"(y):My’ eDi. iy, (3.35)

"~ D, = {y € Dpax : Ui/Y\a,b = O}’

where U; = (A; : B;) ,rank (U;) =n+ 5,0 < s <n, A;, B;are (n+ s) X n matrices, and ?a,;, is given in
(3.34).
Let L = L3L,,y € D\, My € D,, then we have:

[ Loy =my,
L: U] Ya,b = O, (336)
Us(MY)up =0,
where
— [My, p1].(a) [My, vi]a.(b)
— (MY), — g [?1 — g N
(MY)a,b = (m) , (MY), = : , (MY), = : . (3.37)
b
[MYy, pnln(a) [My, v,]u(D)
It is obvious that p,,--- , p, are solutions of M*(y) = 0 on (a,c), and vy, --- ,v, are solutions of

M?*(y) = 0 on (c,b). Let 6,65, ,6, be solutions of M*(y) = 0 on (a,c) , and let 8,55, ,3, be
solutions of M?(y) = 0 on (c, b), which satisfy

Ql[j_l](c) = 0, 9[[11_1‘*'].](6_) = 6ij9 la_] = 1$25 LN, (3'38)
B ey =0, BNy =6y ij=1,2,-,n. (3.39)
It is clear that py,--- , pn. 61, ,6, are 2n linearly independent solutions of M*y = 0 on (a,¢) and
Vi, * »Vu,B1, -+ By are 2n linearly independent solutions of M?y = 0 on (c, b). By Naimark Patching
Lemma 2, 6,---,6, can be extended to (a,b) such that the extended functions, also denoted by
01, ,6,, are in Dy, (a,b) and are identically O near b. Similarly, B;,--- ,5, can be extended to

(a, b) such that the extended functions, also denoted by Sy, - - - , B,,, are in D,«(a, b) and are identically
0 near a. Similar to Lemma 9 , we have the following decomposition.

Corollary 5. The maximal domain Dy (M?) = D (M?, (a, b)) has the representation:
Dmax(Mz) = Dmin(MZ)-i_ Span {pl’ Tt ,Pn, 915 Y gn} + Span {vla Vo, vn’ﬁla e 7ﬁn} . (340)

AIMS Mathematics Volume 8, Issue 4, 9483-9505.



9497

Since 6;,8; € Dpa(M?) and Dy (M?) C Dy (M), by (3.32), each 6; and B; has a unique

representation:

Set

Theorem 6. The operatoereﬁned in (3.36) can be rewritten as

Ly) = M,
UY,; =0,

where U = (A : B),

Ny, = (aij)an,
where the entries a;;, d;; are given in (3.41) and (3.42).

|

|
-

Ay

B,

and matrices Ay, A,, By, B, are given in (3.35).

0; Z)’i0+zaijpj+zbijvj, i=12,---
J=1 J=1

Bi :y0i+ZCiij+ZdijVj, i=12,---
=1 =1

where yio, yoi € Dimin(M), a;j, bij, cij, d;j € C.

N, = (dij)nxn’

0

—i"A\E,NTE, i"A, )

—"B\E,NJE, "B )

0

Proof. By Corollary 5, for every y € Dy, (M?), we have

Let
D1 (C)
U(c) =
[2n 1] (C)
vi(c)
Vie) = :
[2n ”(C)
W) =

AIMS Mathematics

pn(c)
[2n 1]( ) 9[2;1 1]( )

vn(C)

[Zn 1]( ) ﬁ[Zn 1]( )

[P1, Pilon

[Pl, pn]Zn
[P1,601]2n

[pl’ 911]211

91(C)

/31(0)

[Pn, pl]Zn

[Pn, pn]2n
[Pn, 91]211

[Pn, 9n]2n

0u(c)
40

/J’n(C)

B ”( )

(61, P1]2n

[01, pn]Zn
[01 ) 01]2n

[01’ 0n]2n

’n’

Y=Yo+ Zn:aipi + ancigi'*' ibivi +Zn:di is
i=1 i=1 i=1 i=1

where Yo € Dmin(Mz)a ai, bia Ci, di e C.

(1, 0
b, 1, )
[Qn,Pl]Zn

[9,,, pn]Zn
[gna 91]211 ’

[9,1, 911]211

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)
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[vi, vilan Vi, Vilan  [B1svilon [Bns vilon

TN [V], Vn]Zn [Vna Vn]2n [ﬂla Vn]Zn [IBn’ Vn]Zn

20 = Vi, Bilon Vs Brl2n  [B1:B1]2n [Bn: Bilon 1)
[vl’ﬁn]Zn [vn’ﬁn]Zn [Blaﬂn]Zn [ﬁn,ﬁn]Zn

From (2.7), we have

W(c) = —i*"U*(¢)E», U(c)

— 1 n+1 In DT 0 En In 0
= (_ ) 0 In (_l)nEn 0 D1 In
— (_l)n+l (_I)HDTEn + EnDl En

- (-1)E, 0/

Z(c) = —i*"V*(¢)E2, V(c)

(5 5 e ) )
0 I, (-D)'E, O D, I,

— (_1\+l (_l)nD*En"'EnDZ En
=D ( (—21)"15” 0 )

By Lemma 7, we have
[pi, pjlon(c) = [Mp;, pjla(c) + [pi»Mpilu(c) =0, i,j=12,---,n,

Vi, vilan(c) = [Mv;, vl (c) + [vi, Mv;],(c) =0, i,j=12,---,n.

Therefore
NI P 0 E,

At the same time, we obtain that (-1)"D’E, + E,D; = 0, i = 1,2. Since p;,0; (j = 1,2,--- ,n) are
solutions of M?y = 0 on (a,¢), v;,8; (j = 1,2,---,n) are solutions of M*y = 0 on (c,b). It follows
from the Lagrange identity that W(t), Z(t) are constant on (a, ¢) and (c, b), respectively. Note that p;, 6;
are identically O near b and v;, B; are identically O near a. Then, for i, j = 1,2--- ,n, we have

[P, vila(D) = [pi, Bjlu(b) = [6;, v;lu(b) = [6;, B;1x(b) = 0, (3.52)
i, pjln(@) = [vi, 0;1n(@) = [Bi. pjtla(a) = [Bi, 6;]1n(a) = 0, (3.53)
[Pis vilon(B) = [pi, Bjlon(D) = [0, v12n(b) = 16;, Bjl2n(b) = 0, (3.54)
i pjlan(@) = [vi, Oj12n(a) = [Bis pjlan(@) = [Bis Oj]2n(a) = 0. (3.55)
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By (2.9), (3.47), (3.54) and (3.55), we have

Hence

aj

(&1

Cn

= (W(e)™!

= (Z(e)!

AIMS Mathematics

[y’ P1 ]Zn(a)

[y’ pn]Zn(a)
[y, 91]2)1 (a)

[y’ 9n]2n ((1)

[y, vil2a(b)

[y’ Vn]Zn(b)
[y’ﬁl]Zn(b)

[y’ﬁn]Zn(b)

[y7 pl]Zn(a)

[y’ pn]ln(a)
[y, 01 ]24(a)

[ys 0n]2n(a)

[y, Vilaa(b)

[y7 Vn]ln(b)
[y, B1]2,(D)

[y’ﬁn]Zn(b)

= W(a)

= Z(b)

— (_1)n+l (

— (_1)n+1 (

a

(6]

Cn

0
E—l

n

0
E—l

= W(c)

= Z(c)

0

(_l)nE’:I

a

(6]

Cn

(—1)"E;1 )

|

[y’ P1 ]Zn(a)

[y’ pn]Zn(a)
[y, 91]2)1 (a)

[y’ 9n]2n (a)

[y, vilon(b)

[)’, Vn]Zn(b)
D}’ﬁlhn(b)

[y’:Bn]2n(b)

(3.56)

(3.57)

(3.58)

(3.59)
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By (3.41), (3.42), (3.47), (3.52) and (3.53), we have

[y’pl]n(a) :
: =(-"E, —I"E.N[ )|
. pal(a) 1

[y, pilan(a)
N 0 (_l)nE;1 [ya pnj n(a)
= (-i) (En EnN1T )( E;! 0 ) [y,91]22n(a)
[y»gn]Zn(a)
[y, p1loa(a)
= iy (ENTE -irn)| i
[y’ gn]Zn(a)
and
b,
. vi1u(b) ,
: =(~I"E, ~"E.N] )| )
7. vala(®) .
d,
[y, vilan(D)
Ny 0 UE | byl
=" ( E EN] )(E,;l 0 ) D1 1an(b)
[y’ﬁn]Zn(b)
[y, vilan(b)
= iy (ENE )| e
[y’:Bn]2n(b)
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For any y € Dy (M 2), it follows from Lemma 7, together with Mp; = 0, Mv; = 0, that

. pilo, = My, pil, + [y, Mpi], = [My, pil,, i=1,2,---,n;

W, vilo, = [My,vi], + [y, Mvi],, = [My,vi],, i=1,2,--- ,n.

Thus, in terms of above discussion, the proof for Theorem 6 is completed.

Theorem 7. The relationships N\E, + (=1)"E,NT = 0, N,E, + (~=1)"E,N} = 0 hold.

Proof. Similar to the proof of Theorem 4, we have
[0, 0,]on(a) = [M6;,0;],(a) + [6;, MO;],(a)
= > @l pdan(@) + D @il pio 0iln(@) = 0
=1 k=1
and

[Bi» B12n(D) = [MB;, B1a(D) + [Bis MB;1,(b)
= > dilBividon(b) + Y dilvis Bilon(b) = 0.
k=1 k=1

Then we can easily obtain N,E,, + (=1)"E,NT = 0 and N,E, + (-1)"E,N} = 0.

Based on above discussion, we present the main result:

(3.60)

(3.61)

Theorem 8. Let the hypothesis and notations of Theorem 6 hold. Then the product operatorz =1L,°L,

is symmetric if and only if
rank(AE,A; — BE,B) = 2s,

where 0 < 5 < n.

Proof. Since

-i"A\E,NTE, i"A, -i"B,E,N'E, i"B

A, 0 B, 0
and rank(A; : B;) = n + s(i = 1,2), we have rank(U) = 2n + 2s.

By computation, we get

AW(@)A" = (—1)"”( ~I'"AE,NTE, I"A, )

Ay 0
0 (_l)nEn—l (_1)n+1 inEnNI EnAT A;
E;l 0 (=i)'A} 0
— (_1)n+l Al(ﬁlEn + (—l)nEanT)AT (—l)n"'ll'”AlEnA;
(_1)n+1l-nA2EnA>; 0

(3.62)
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and

BB = (_DM( ~i"Bi(N2E, + (=1)'E,N])B} (=1)""'i"B|E,B; )

(-1)""B,E, B 0

To prove the furthermore part we note that here the matrices E (a), E (b) given in Lemma 10 are W(a),
Z(b), respectively. Thus, by Lemma 10 and Theorem 7, we have

AW(a)A* — BZ(b)B"*

— (_1)n+1 ( 0 (_1)n+1in(A1EnA§ - BlEnBZ) )

i"(A1E,A5 — B E,B})" 0
It follows from Lemma 10 that L is symmetric if and only if
rank(AW(a)A* — BZ(b)B") = 4s

which is equal to
rank(A,E,A; — B\E,B) = 2s.

The next corollary is the self-adjoint special case of Theorem 8.

Corollary 6. Let the hypothesis and notations of Theorem 6 hold. Then the product operatorf = L,°L,
is self-adjoint if and only if
AlEnAz - BlEnB; = O

Proof. This is the special case s = 0 of Theorem 8. O

Remark 2. Recall that the Lagrange brackets [y,z] are well defined at each singular endpoint.
These brackets can be used to replace the quasi-derivatives. Our symmetric domain characterization
Theorem 8 can be adapted to the maximal deficiency case which occurs when each endpoint is either

regular or LC singular. Namely, our result can be used for the four cases for the endpoints: R/R,
R/LC, LC/R, LC/LC.

4. Examples

Example 1. Consider My = —(py’) + qy on J = (a,b),—c0 < a < b < +oo, where p~',q € L;,.(J,R).
Let a and b be LC singular. Set

10 00 01 00
A]Z Ol ,B]Z 0 1 ,A2: i 0 ,Bzz 0 -1
00 1 0 00 I 1

The operator Ly = My is determined by the boundary conditions:
D’, pl](a) = Oa l[ya pZ](a) + [y’ v2](b) = 09 [ya vl](b) = O
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The operator L,y = My is determined by the boundary conditions:

[y, p21(a) = 0, ily, pil(@) = [y, v21(b), [y, v11(D) + [y,v2](b) = 0.

Since here s = 1 and rank(A | E,A5 — B\ E,B}) = 2s = 2, by Theorem 8, the product operator L = L,°L,
is symmetric.

Example 2. Consider My = —(py’) + qy on J = (a,b),—c0 < a < b < +oo, where p™',q € L;,.(J,R).
Let a and b be LC singular. Set

1 0 01 00 00
A]Z 0 1 ,A2: 1 O ,Blz 00 ,BZZ 00 .
00 00 1 0 0 1

The operator L1y = My is determined by the boundary conditions:

. pil(@) =0, [y, p21a) =0, [y,v](d) =0.

The operator L,y = My is determined by the boundary conditions:

v, pil(@) =0, [y, p21(a) =0, [y,v,](b) =0.

Since here s = 1 and rank(AE,A5 — B\E,B3) = 3, by Theorem 8, the product operator L = L,°L; is
not symmetric.

Remark 3. For the above examples, when the endpoint a is regular for this M, we can simply replace
[y, p11(a), [y, p21(a) with y(a), y'*'(a), respectively. Similarly for a regular endpoint b, we can replace
[y, vi1(b), [y, v21(b) with y(b), y(b), respectively.

Example 3. Let Q € Z,(J),n € Ny, J = (a,b),—00 < a < b < +00, M = My be the symmetric
expression, and let Ny, (0 < s < n) be of full row rank, I, the n X n identity matrix. Assume that a and
b are LC singular. Choose

_ Ns><n _ Osxn _ 0s><n _ Nsxn
Al _( Onxn )’ Bl _( In )’ AZ_( In ), BZ_( Onxn )
Let

U1:(A1331):(](\)] IO), U2:(A2332):(10 ](\),)

We define the operators Ly, L, as (3.35). By computation, we have

« . 0 NE,

Obviously, rank(U;) = rank(U,) = n + s, rank(A, E,A; — B, E,B}) = 2s. Then, by Theorem 8, we know
L = [,°L, is a symmetric operator.
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