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was established, thereby the synchronization of stochastic coupled systems was obtained. Then the
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1. Introduction

Caraballo and Kloeden [1] considered the following two stochastic differential equations (SDEs) in
R2d  dXt = f (Xt)dt + αdW1

t ,

dYt = g(Yt)dt + βdW2
t ,

where α, β ∈ Rd are constant vectors with no components equal to zero, W1
t ,W

2
t are independent two-

sided scalar Wiener processes and the continuously differentiable functions f , g satisfy the one-sided
dissipative Lipschitz conditions. And then the corresponding coupled system is dXν

t = f (Xν
t )dt + ν(Yν

t − Xν
t )dt + αdW1

t ,

dYν
t = g(Yν

t )dt + ν(Xν
t − Yν

t )dt + βdW2
t ,
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with a coupling coefficient ν > 0. They proved that the coupled system has a unique stationary solution
(Xν

t ,Y
ν
t ), which is pathwise globally asymptotically stable. Moreover,

(Xν
t ,Y

ν
t )→ (Zt,Zt) as ν→ ∞,

where Zt is the unique stationary solution of the averaged system

dZt =
1
2

[ f (Zt) + g(Zt)]dt +
1
2
αdW1

t +
1
2
βdW2

t .

This phenomenon is that the unique asymptotically stationary solution of the coupled system
converges to the unique asymptotically stationary solution of the averaged system, which also called
synchronization.

Synchronization is motivated by a wide range of applications in physics, control and biology, see
e.g., [2–4]. The synchronization of deterministic coupled dynamical systems has been presented in
both autonomous systems [5, 6] and nonautonomous systems [7]. Caraballo and Kloeden [1] and
Al-Azzawi et al. [8] investigated the effect of additive noise on the synchronization of coupled
dissipative systems through the theory of stochastic dynamical systems. Besides, a almost everywhere
convergence rate of convergence is established in [8]. Liu and Zhao did research on synchronization
of coupled systems with additive fractional Brownian motion [9] and normal deviation of
synchronization of stochastic coupled systems [10]. It is worth mentioning that all the above
problems are studied from the perspective of dynamic systems.

To be more precise, in this paper we consider the following system. dXt = f (Xt)dt + αdWt, X0 = x0,

dYt = g(Yt)dt + βdWt,Y0 = y0,

where α, β ∈ Rd×n are constant matrices, Wt is a two-sided Rn valued Wiener process and the
continuously differentiable functions f , g satisfy some assumption. And then the corresponding
coupled system is  dXν

t = f (Xν
t )dt + ν(Yν

t − Xν
t )dt + αdWt, X0 = x0,

dYν
t = g(Yν

t )dt + ν(Xν
t − Yν

t )dt + βdWt,Y0 = y0,
(1.1)

with a coupling coefficient ν > 0. We will proved that

E|Xν
t − Zt|

4 + E|Yν
t − Zt|

4 6
C
ν
,

where Zt is the unique solution of the averaged system

dZt =
1
2

[ f (Zt) + g(Zt)]dt +
1
2

(α + β)dWt,Z0 =
1
2

(x0 + y0). (1.2)

This result can be viewed as a version of the law of large numbers. The central limit theorem
corresponds to the law of large numbers, so that the following problem is to prove the central limit
theorem for the coupled system.
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From the above, to the best knowledge of the authors, the existing literature about synchronization
only shows the results of synchronization and the corresponding convergence rate, leaving the central
limit theorem of synchronization unsolved. Therefore, this paper mainly introduces the central limit
theorem of synchronized system. We show the normalized difference ν

1
4 (Xν

t − Zt) converges weakly to
Z∞t as ν tends to infinity, where Z∞(t) is the unique solution of the SDE

dZ∞t =
1
2

[Dx f (Zt) + Dxg(Zt)]Z∞t dt,Z∞0 = 0.

Comparing with the synchronization conclusions in previous articles, these results provide a better
approximation of the limit behavior of the synchronized system.

In order to solve these problems, we mainly transforms the coupled system (1.1) to a multi-scale
system and then discusses the synchronization under the framework of the averaging principle of the
multi-scale system. We can construct some equivalence relations and convert the synchronized
system (1.1) into the multi-scale system, as shown below.

Substituting X̂ν
t = Xν

t and Ŷν
t = Xν

t − Yν
t into the SDEs (1.1), and then dX̂ν

t = f (X̂ν
t )dt − νŶν

t + αdWt, X̂ν
0 = x0,

dŶν
t =

(
f (X̂ν

t ) − g
(
X̂ν

t − Ŷν
t

))
dt − 2νŶν

t dt + (α − β)dWt, Ŷν
0 = x0 − y0.

Let 1
ν

= ε, X̃ε
t = X̂ν

t and Ỹε
t =
√
νŶν

t , dX̃ε
t = f (X̃ε

t )dt − 1
√
ε
Ỹε

t dt + αdWt, X̃ε
0 = x0,

dỸε
t = 1

√
ε
[ f (X̃ε

t ) − g(X̃ε
t −
√
εỸε

t )]dt − 2
ε
Ỹε

t dt + 1
√
ε
(α − β)dWt, Ỹε

0 = 1
√
ε
(x0 − y0).

(1.3)

Thus, to achieve the synchronization and fluctuation of the coupled system (1.1), one needs to
verify when ε tends to zero, Xε

t converges in four square sense to Zt, and to verify when ε tends to zero,
1

ε
1
4
(X̃ε

t − Zt) converge weakly to a SDE

dZ0
t =

1
2

[Dx f (Zt) + Dxg(Zt)]Z0
t dt,Z0

0 = 0. (1.4)

Similarly, the synchronization and fluctuation result of Yν
t is obtained only by 1

ν
= ε, Ỹε

t = Ŷν
t and

X̃ε
t =
√
νX̂ν

t .
The theory of averaging principle which can be regarded as the law of large numbers has been

intensively studied in both the deterministic α = β = 0, see e.g., [11,12] and the references therein. For
the fluctuation of multi-scale system with singular coefficients, refer to [9, 13, 14]. Note that we can
not directly apply the arguments about the averaging principle that have been presented in the previous
literature. The key reason is that the relation between singular parameters of fast slow system is not
satisfied in the above literature. When αε =

√
ε and γε =

√
ε, the limε→0

αε
γε

= 1 , 0. So that we cannot
solve such problems by constructing proper Poisson’s equation.

We will make some assumptions.

Assumption 1.1. (Lipschitz condition) For all x, y, there exists a constant L > 0 such that

| f (x) − f (y)|2 + |g(x) − g(y)|2 6 L|x − y|2.
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Assumption 1.2. (Linear growth condition) For all x, there exists a constant K > 0 such that

| f (x)|2 + |g(x)|2 6 K(1 + |x|2).

Throughout this paper, the capital letter C denotes a constant (independent of ε) whose value may
change from line to line.

A brief outline of the paper is as follows. Section 2 contains proofs of results related to
synchronization of coupled system (1.1) as the coupled coefficient ν tends to infinity, including
supporting lemma. Section 3 introduces the central limit theorem of synchronized system. Moreover,
we give an example to illustrate the utility of our results in Section 4 and a conclusion of this paper in
Section 5.

2. Synchronization of stochastic coupled system

In this section, we will prove that the unique solution to coupled system (1.1) converges in an L4

to the unique solution of averaged system (1.2). Moreover, the convergence rate of synchronization is
obtained respectively.

Theorem 2.1. Let X̃ε
t and Zt be the unique solutions of (1.3) and (1.2) respectively. If Assumptions 1.1

and 1.2 are satisfied, then

E|X̃ε
t − Zt|

4 6 Cε.

Lemma 2.2. Let (Xν
t ,Y

ν
t ) and Zt be the unique solutions of (1.1) and (1.2) respectively. If

Assumptions 1.1 and 1.2 are satisfied, then

E|Xν
t − Zt|

4 + E|Yν
t − Zt|

4 6
C
ν
.

Before discussing the synchronization of the stochastic coupled system in detail, we give some
conclusions which are used in the next proof.

Lemma 2.3. Let Ỹε
t be the unique solutions of (1.3). Assume that Assumptions 1.1 and 1.2 hold, there

exists a constant C > 0, such that for any t ∈ [0,T ],

E|Ỹε
t |

4 6
C
ε
, E|X̃ε

t |
4 6 C.

Proof. By (1.3), a simple computation shows that

Ỹε
t =

1
√
ε

e−
2
ε t(x0 − y0) +

1
√
ε

∫ t

0
e−

2
ε (t−s)

(
f (X̃ε

s) − g(X̃ε
s −
√
εỸε

s )
)

ds

+
1
√
ε

∫ t

0
e−

2
ε (t−s)(α − β)dWs.

One gets
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X̃ε
t = x0 +

∫ t

0
f (X̃ε

s)ds −
1
√
ε

∫ t

0
Ỹε

s ds +

∫ t

0
αdWt

= x0 +

∫ t

0
f (X̃ε

s)ds −
1
ε

∫ t

0
e−

2
ε s(x0 − y0)ds +

∫ t

0
αdWt −

1
ε

∫ t

0
ds

∫ s

0
e−

2
ε (s−r)(α − β)dWr

−
1
ε

∫ t

0
ds

∫ s

0
e−

2
ε (s−r)

(
f (X̃ε

r ) − g(X̃ε
r −
√
εỸε

r )
)

dr

= x0 +

∫ t

0
f (X̃ε

s)ds −
1
ε

(x0 − y0)
(
ε

2
−
ε

2
e−

2
ε t
)

+ αWt

−
1
ε

∫ t

0
dr

∫ t

r
e−

2
ε (s−r)

(
f (X̃ε

r ) − g(X̃ε
r −
√
εỸε

r )
)

ds −
1
ε

∫ t

0
dWr

∫ t

r
e−

2
ε (s−r)(α − β)ds

= x0 −
x0 − y0

2
+

√
ε

2
Ỹε

t +

∫ t

0
f (X̃ε

s))ds −
1
2

∫ t

0

(
f (X̃ε

s) − g(X̃ε
s −
√
εỸε

s )
)

ds

+
1
2

∫ t

0
(α + β)dWs

=
x0 + y0

2
+

√
ε

2
Ỹε

t +
1
2

∫ t

0

(
f (X̃ε

s) + g(X̃ε
s −
√
εỸε

s )
)

ds +
1
2

∫ t

0
(α + β)dWs. (2.1)

And then,

E|X̃ε
t |

4 + E|Ỹε
t |

4 6 C
(x0 + y0)4

16
+ Cε2E|Ỹε

t |
4 + CE

∣∣∣∣∣∣
∫ t

0

(
f (X̃ε

s) + g(X̃ε
s −
√
εỸε

s )
)

ds

∣∣∣∣∣∣4
+C

1
ε2 e−

16
ε t(x0 − y0)4 + C

1
ε2 E

∣∣∣∣∣∣
∫ t

0
e−

2
ε (t−s)

(
f (X̃ε

s) − g(X̃ε
s −
√
εỸε

s )
)

ds

∣∣∣∣∣∣4
+

1
ε2

∫ t

0
e−

16
ε (t−s)(α − β)4ds + Ct

∫ t

0
(α + β)2ds

6 C +
C
ε

+ Ct2E

∣∣∣∣∣∣
∫ t

0

(
f (X̃ε

s) + g(X̃ε
s −
√
εỸε

s )
)2

ds

∣∣∣∣∣∣2
+C

1
ε2

∣∣∣∣∣∣
∫ t

0
e−

4
ε (t−s)ds

∣∣∣∣∣∣2 E

∣∣∣∣∣∣
∫ t

0

(
f (X̃ε

s) − g(X̃ε
s −
√
εỸε

s )
)2

ds

∣∣∣∣∣∣2
6

C
ε

+ Ct
∫ t

0

(
E|X̃ε

t |
4 + ε2E|Ỹε

t |
4
)

ds

6
C
ε

+ Ct
∫ t

0

(
E|X̃ε

t |
4 + E|Ỹε

t |
4
)

ds.

The Grownall lemma yields that

E|X̃ε
t |

4 + E|Ỹε
t |

4 6

(
x0 +

1
√
ε

(x0 − y0)
)

ect −
C
ε

(1 − ect).

It then follows that

E|Ỹε
t |

4 6 E|X̃ε
t |

4 + E|Ỹε
t |

4 6
C
ε
.
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Since the estimate of E|Xε
t |

4 is quite similar to that of E|Yε
t |

4. Substitute the above inequality obtain

E|Xε
t |

4 6 C.

The proof is completed. �

With the help of the preceding lemma, Theorem 2.1 is proved.

Proof of Theorem 2.1. Note from (2.1) that

E
∣∣∣X̃ε

t − Zt

∣∣∣4 = E

∣∣∣∣∣∣
√
ε

2
Ỹε

t +
1
2

∫ t

0

(
f (X̃ε

s) + g(X̃ε
s −
√
εỸε

s )
)

ds −
1
2

∫ t

0
( f (Zs) + g(Zs)) ds

∣∣∣∣∣∣4
6 Cε2E|Ỹε

t |
4 + CE

∣∣∣∣∣∣
∫ t

0

(
f (X̃ε

s) − f (Zs)
)

ds

∣∣∣∣∣∣4 + CE

∣∣∣∣∣∣
∫ t

0

(
g(X̃ε

s −
√
εỸε

s ) − g(Zs)
)

ds

∣∣∣∣∣∣4
6 Cε + ct

4
3

∫ t

0
E

∣∣∣X̃ε
s − Zs

∣∣∣4 ds + C
∫ t

0
E

∣∣∣X̃ε
s − Zs

∣∣∣4 + ε2E|Ỹε
s |

4ds

6 Cε + C
∫ t

0
E

∣∣∣X̃ε
s − Zs

∣∣∣4 ds.

Thus

E
∣∣∣X̃ε

t − Zt

∣∣∣4 6 Cε.

The proof is completed. �

Theorem 2.1 implies in particular that synchronization of the stochastic coupled system. In addition,
through a simple example in Section 4 will explicitly illustrate that synchronization for SDE is valid.

3. Fluctuation of stochastic coupled system

In this section, we will establish a limit in distribution of the fluctuation of Xν
t about its typical

behavior Zt. Before discussing the synchronization of stochastic coupled system in detail, we give
some conclusions which are used in the next proof.

Lemma 3.1. The family of process {Zε
t , 0 6 t 6 T, 0 < ε 6 1} is weakly compact in C([0,T ];Rd).

Proof. There exists a convenient criterion for tightness: Kolmogorov’s criterion of Remark A.5 in [15].
What we only need to verify is that there exist α, β, C > 0 such that E|Zε

t+h − Zε
t |
β 6 Ch1+α for all

t ∈ [0,T ].
By (1.3), a simple computation shows that

Ỹε
t+h − Ỹε

t =
1
√
ε

e−
2
ε (t+h)(x0 − y0) +

1
√
ε

∫ t+h

0
e−

2
ε (t+h−s)

(
f (X̃ε

s) − g(X̃ε
s −
√
εỸε

s )
)

ds

+
1
√
ε

∫ t+h

0
e−

2
ε (t+h−s)(α − β)dWs −

1
√
ε

∫ t

0
e−

2
ε (t−s)

(
f (X̃ε

s) − g(X̃ε
s −
√
εỸε

s )
)

ds

−
1
√
ε

∫ t

0
e−

2
ε (t−s)(α − β)dWs −

1
√
ε

e−
2
ε t(x0 − y0).
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Using Hölder’s inequality, Jensen’s inequality, some elementary inequalities and the linear growth
conditions of f and g, one gets

1
ε

E
∣∣∣√εỸε

t+h −
√
εỸε

t

∣∣∣4 6 C
ε

∣∣∣∣e− 2
ε (t+h)(x0 − y0) − e−

2
ε t(x0 − y0)

∣∣∣∣4
+

C
ε

E

∣∣∣∣∣∣
∫ t+h

0
e−

2
ε (t+h−s)(α − β)dWs −

∫ t

0
e−

2
ε (t−s)(α − β)dWs

∣∣∣∣∣∣4
+

C
ε

E
∣∣∣∣ ∫ t+h

0
e−

2
ε (t+h−s)

(
f (X̃ε

s) − g(X̃ε
s −
√
εỸε

s )
)

ds

−

∫ t

0
e−

2
ε (t−s)

(
f (X̃ε

s) − g(X̃ε
s −
√
εỸε

s )
)

ds
∣∣∣∣4

6 Ch4 +
C
ε

E

∣∣∣∣∣∣
∫ t+h

0

(
e−

2
ε (t+h−s) − e−

2
ε (t−s)

)
(α − β)dWs

∣∣∣∣∣∣4
+

C
ε

E

∣∣∣∣∣∣
∫ t+h

t
e−

2
ε (t−s)(α − β)dWs

∣∣∣∣∣∣4
+

C
ε

E

∣∣∣∣∣∣
∫ t+h

0

(
e−

2
ε (t+h−s) − e−

2
ε (t−s)

) (
f (X̃ε

s) − g(X̃ε
s −
√
εỸε

s )
)

ds

∣∣∣∣∣∣4
+

C
ε

E

∣∣∣∣∣∣
∫ t+h

t
e−

2
ε (t−s)

(
f (X̃ε

s) − g(X̃ε
s −
√
εỸε

s )
)

ds

∣∣∣∣∣∣4
6 Ch4 +

C(t + h)
ε

E
∫ t+h

0

∣∣∣∣(e− 2
ε (t+h−s) − e−

2
ε (t−s)

)
(α − β)

∣∣∣∣4 ds

+
Ch
ε

∫ t+h

t
E

∣∣∣∣e− 2
ε (t−s)(α − β)

∣∣∣∣4 ds

+
C(t + h)3

ε
E

∫ t+h

0

∣∣∣∣(e− 2
ε (t+h−s) − e−

2
ε (t−s)

) (
f (X̃ε

s) − g(X̃ε
s −
√
εỸε

s )
)∣∣∣∣4 ds

+
Ch3

ε
E

∫ t+h

t
e−

8
ε (t−s)

∣∣∣∣( f (X̃ε
s) − g(X̃ε

s −
√
εỸε

s )
)∣∣∣∣4 ds.

Taking Lemma 2.3 into consideration, then

1
ε

E
∣∣∣√εỸε

t+h −
√
εỸε

t

∣∣∣4 6 Ch2.

Using Hölder’s inequality, Jensen’s inequality, some elementary inequalities and the Lipschitz
conditions of f and g, then

E|Zε
t+h − Zε

t |
4

=
1
ε

E

∣∣∣∣∣∣
√
ε

2
Ỹε

t+h −

√
ε

2
Ỹε

t +
1
2

∫ t+h

t

(
f (X̃ε

s) + g(X̃ε
s −
√
εỸε

s )
)

ds −
1
2

∫ t+h

t
( f (Zs) + g(Zs)) ds

∣∣∣∣∣∣4
6

C
ε

E

∣∣∣∣∣∣
√
ε

2
Ỹε

t+h −

√
ε

2
Ỹε

t

∣∣∣∣∣∣4 +
Ch
ε

E

∣∣∣∣∣∣
∫ t+h

t

(
f (X̃ε

s) − f (Zs)
)2

ds

∣∣∣∣∣∣2
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+
Ch
ε

E

∣∣∣∣∣∣
∫ t+h

t

(
g(X̃ε

s −
√
εỸε

s ) − g(Zs)
)2

ds

∣∣∣∣∣∣2
6 Ch2 +

Ch2

ε
E

∣∣∣∣∣∣
∫ t+h

t

∣∣∣X̃ε
s − Zs

∣∣∣2 ds

∣∣∣∣∣∣2 +
Ch2

ε
E

∣∣∣∣∣∣
∫ t+h

t

∣∣∣X̃ε
s − Zs

∣∣∣2 + ε
∣∣∣Ỹε

s

∣∣∣2 ds

∣∣∣∣∣∣2
6 Ch2 +

Ch3

ε

∫ t+h

t
E

∣∣∣X̃ε
s − Zs

∣∣∣4 ds +
Ch3

ε

∫ t+h

t

(
E

∣∣∣X̃ε
s − Zs

∣∣∣4 + ε2E
∣∣∣Ỹε

s

∣∣∣4) ds.

Taking Theorem 2.1 and Lemma 2.3 into consideration, then

E|Zε
t+h − Zε

t |
4 6 Ch2.

This estimate guarantees the weak compactness of the family of the processes {Zε
t , 0 6 t 6 T, 0 <

ε 6 1}. �

Denote λεt = 1
2

(
f (X̃ε

t ) + g(X̃ε
t )
)

and λt = 1
2 ( f (Zt) + g(Zt)). By Taylor’s theorem for λt, one can then

derive that

λεt = λt + Dλt

(
X̃ε

t − Zt

)
+ o(X̃ε

t − Zt).

We then have the following decomposition

Zε
t = Iεt + IIεt + IIIεt ,

where, for 0 6 t 6 T ,

Iεt =
1

ε
1
4

∫ t

0

(
λεs − λs

)
ds =

∫ t

0
DxλsZε

sds +
1

ε
1
4

∫ t

0
o(X̃ε

s − Zs)ds,

Iεt =
1

2ε
1
4

∫ t

0

(
g(X̃ε

s −
√
εỸε

s ) − g(X̃ε
s)
)

ds,

IIIεt =
ε

1
4

2
Ỹε

t

=
1

2ε
1
4

e−
2
ε t(x0 − y0) +

1

2ε
1
4

∫ t

0
e−

2
ε (t−s)

(
f (X̃ε

s) − g(X̃ε
s −
√
εỸε

s )
)

ds

+
1

2ε
1
4

∫ t

0
e−

2
ε (t−s)(α − β)dWs.

Theorem 3.2. Let X̃ε
t and Zt be the unique solutions of (1.3) and (1.2) respectively. If Assumptions 1.1

and 1.2 are satisfied, then Zε(t) := Xε
t −Zt

ε
1
4

converges weakly to Z0
t in the space C([0,T ];Rd), where Z0

t is
the solution of

dZ0
t =

1
2

(Dx f (Zt) + Dxg(Zt))Z0
t dt, Z0

0 = 0.

Proof. We split the proof of theorem into two subsection. To begin, the process {Zε , 0 6 t 6 T } is
tight in C([0,T ]) in Lemma 3.1. In view of Prohorov’s theorem, we can extract every sequence of such
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process contains a subsequence converging to a process; Next, we identify the limit via martingale
problem.

Let Qε be the probability measure of Zε(t) in C([0,T ];Rd). By the Itô formula to a function φ ∈
C2

b(Rd) with Zε(t), one has

φ(Zε(t)) =

∫ t

0
DxλsZε

s Dφ(Zε(s))ds +
1

ε
1
4

∫ t

0
o(X̃ε

s − Zs)Dφ(Zε(s))ds

+
1

2ε
1
4

∫ t

0
e−

2
ε s(x0 − y0)Dφ(Zε(s))ds +

1

2ε
1
4

∫ t

0

(
g(X̃ε

s −
√
εỸε

s ) − g(X̃ε
s)
)

Dφ(Zε(s))ds

+
1

2ε
1
4

∫ t

0

∫ s

0
e−

2
ε (s−r)

(
f (X̃ε

r ) − g(X̃ε
r −
√
εỸε

r )
)

Dφ(Zε(s))drds

+
1

2ε
1
4

∫ t

0

∫ s

0
e−

2
ε (s−r)(α − β)Dφ(Zε(s))dWrds

+
1

8
√
ε

∫ t

0

∫ s

0
e−

4
ε (s−r)(α − β)2Dxxφ(Zε(s))drds

:=
∫ t

0
DxλsZε

s Dφ(Zε(s))ds + R1 (ε, 0, t) + R2 (ε, 0, t) + R3 (ε, 0, t) ,

where

R1 (ε, 0, t) =
1

ε
1
4

∫ t

0
o(X̃ε

s − Zs)Dφ(Zε(s))ds +
1

2ε
1
4

∫ t

0
e−

2
ε s(x0 − y0)Dφ(Zε(s))ds

+
1

2ε
1
4

∫ t

0

(
g(X̃ε

s −
√
εỸε

s ) − g(X̃ε
s)
)

Dφ(Zε(s))ds

+
1

2ε
1
4

∫ t

0

∫ s

0
e−

2
ε (s−r)

(
f (X̃ε

r ) − g(X̃ε
r −
√
εỸε

r )
)

Dφ(Zε(s))drds,

R2 (ε, 0, t) =
1

2ε
1
4

∫ t

0

∫ s

0
e−

2
ε (s−r)(α − β)Dφ(Zε(s))dWrds,

R3 (ε, 0, t) =
1

8
√
ε

∫ t

0

∫ s

0
e−

4
ε (s−r)(α − β)2Dxxφ(Zε(s))drds.

We will consider the above cases separately. Firstly, by the linear growth of f and g, E|Xε
s − Zs|

4 6
Cε, Lemma 2.3, one gets that

lim
ε→0

E |R1 (ε, 0, t)| = 0. (3.1)

Secondly, the stochastic integrals in R2(ε, t, ω) are square integrable. The expected value vanishes
by Doob’s inequality, that is

lim
ε→0

E
[∫ t

s
R2 (ε, 0, r) dr

∣∣∣∣Fs

]
= 0. (3.2)
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Thirdly,

lim
ε→0

E |R3 (ε, 0, t)| = 0. (3.3)

Above all, combine (3.1)–(3.3), then

lim
ε→0

E
[
φ
(
Zε

t
)
− φ(Zε

s) −
∫ t

s

[
DxλrZε

r Dφ(Zε(r))
]
dr

∣∣∣∣Fs

]
= 0.

This concludes the proof of Theorem 3.2. �

Theorem 3.3. Let (Xν
t ,Y

ν
t ) and Zt be the unique solutions of (1.1) and (1.2) respectively. If Assumptions

1.1 and 1.2 are satisfied, then Zν(t) := ν
1
4
(
Xν

t − Zt
)

converges weakly to Z∞t in the space C([0,T ];Rd),
where Z∞t is the solution of

dZ∞t =
1
2

(Dx f (Zt) + Dxg(Zt))Z∞t dt, Z∞0 = 0.

Proof. Because of ν = 1
ε
,

Zν(t) := ν
1
4
(
Xν

t − Zt
)

=
Xε

t − Zt

ε
1
4

.

The result of this theorem follows from Theorem 3.2. �

Theorem 3.3 implies in particular that fluctuation of the stochastic coupled system.

4. Numerical simulations

Example 4.1. Consider the following equation dXε
t = 2Xε

t dt − 1
√
ε
Yε

t dt + 2dWt, Xε
0 = x0,

dYε
t = 1

√
ε

(
Xε

t +
√
εYε

t

)
dt − 2

ε
Yε

t dt + 1
√
ε
dWt, Yε

0 = y0,

where Wt is a two-sided Wiener process.
The corresponding averaged SDE is

dZt =
3
2

Ztdt +
3
2

dWt, Z0 =
1
2

(x0 + y0).

Let’s first illustrate the averaging principle through images.

Figure 1 are slow variable Xε
t and averaged variable Zt between the same initial value Xε

0 = 1, Z0 = 1
and the different ε ((a)ε = 0.1, (b)ε = 0.01), respectively. This means that the smaller ε is, the closer
Zt is to Xε

t .
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Figure 1. Phase diagram

5. Conclusions

This paper investigates the synchronization and fluctuation of stochastic coupled system with
additive Gaussian noise. Through a transformation, such stochastic coupled system is converted into
stochastic slow-fast system. The synchronization of the stochastic coupled system is then viewed as
the convergence of the corresponding stochastic slow-fast system to its averaged system. The
fluctuation considered in this paper is a central limit-type result of the fluctuation between the coupled
system and its averaged system. Moreover, we derives the fluctuation of synchronization for the
stochastic coupled system by verifying the conditions proposed for the stochastic fast-slow system. In
the further research, we will try using the multiscale analysis to consider the synchronization,
bifurcation (codimension-1 and codimension-2) which based on the the existence and
uniqueness [16], stability [17, 18], bifurcation [19] of the stochastic reaction-diffusion system. In
addition, the numerical solution method in [20] may provides theoretical support for our numerical
simulation.

Acknowledgments

This work was supported by the Scientific Research Foundation of Anhui Provincial Education
Department (No.KJ2020A0483) and the PhD Research Startup Fund for Anhui Jianzhu University
(NO.2019QDZ25,2022QDZ19).

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. T. Caraballo, P. E. Kloeden, The persistence of synchronization under environmental noise, Proc.
R. Soc. A, 461 (2005), 2257–2267. https://doi.org/10.1098/rspa.2005.1484

AIMS Mathematics Volume 8, Issue 4, 9352–9364.

http://dx.doi.org/https://doi.org/10.1098/rspa.2005.1484


9363

2. V. S. Afraimovich, S. N. Chow, J. K. Hale, Synchronization in lattices of coupled oscillators, Phys.
D, 103 (1997), 442–451. http://doi.org/10.1016/S0167-2789(96)00276-X

3. V. S. Afraimovich, W. W. Lin, Synchronization in lattices of coupled oscillators
with Neumann/Periodic boundary conditions, Dyn. Stab. Syst., 13 (1998), 237–264.
https://doi.org/10.1080/02681119808806263

4. A. S. Pikovsky, M. G. Rosenblum, J. Kurths, Synchronization, A Universal Concept in Nonlinear
Sciences, Cambridge: Cambridge University Press, 2001.

5. V. S. Afraimovich, H. M. Rodrigues, Uniform dissipativeness and synchronization of
nonautonomous equations, In: International Conference on Differential Equations, World
Scientific Publishing, 1998, 3–17.

6. A. N. Carvalho, H. M. Rodrigues, T. Dlotko, Upper semicontinuity of attractors and
synchronization, J. Math. Anal. Appl., 220 (1998), 13–41. https://doi.org/10.1006/jmaa.1997.5774

7. P. E. Kloeden, Synchronization of nonautonomous dynamical systems, Electron. J. Differ. Eq.,
2003 (2003), 1–10.

8. S. Al-Azzawi, J. C. Liu, X. M. Liu, Convergence rate of synchronization of
systems with additive noise, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 227–245.
http://doi.org/10.3934/dcdsb.2017012

9. J. C. Liu, M. L. Zhao, Convergence rate of synchronization of coupled stochastic lattice systems
with additive fractional noise, J. Dyn. Diff. Equat., 2021. https://doi.org/10.1007/s10884-021-
10028-y

10. J. C. Liu, M. L. Zhao, Normal deviation of synchronization of stochastic coupled systems, Discrete
Contin. Dyn. Syst. Ser. B, 27 (2022), 1029–1054. http://doi.org/10.3934/dcdsb.2021079

11. R. Z. Khasminskii, On stochastic processes defined by differential equations with a small
parameter, Theory Probab. its Appl., 11 (1966), 211–228. https://doi.org/10.1137/1111018

12. R. Z. Khasminskii, G. Yin, On averaging principles: An asymptotic expansion approach, SIAM J.
Math. Anal., 35 (2004), 1534–1560. https://doi.org/10.1137/S0036141002403973

13. A. Yu Veretennikov, On the averaging principle for systems of stochastic differential equations,
Math. USSR Sb., 69 (1991), 271–284. http://doi.org/10.1070/SM1991v069n01ABEH001237
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