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1. Introduction

The chemostat is a laboratory apparatus used for the continuous culture of microorganisms. It plays
an important role in biotechnology, microbial ecology, and population biology, and is the most simple
idealization of a biological system for population studies [1]. In recent decades, chemostat modeling
has drawn great attention from mathematics and ecology, see [2–5] and reference therein. One classic
chemostat with single species and single substrate is expressed in the form of

dS (t)
dt

= D(S 0 − S (t)) −
1
δ

p(S (t))x(t),
dx(t)

dt
= x(t) (p(S (t)) − D) ,

(1.1)
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where S (t) and x(t) represent the substrate concentration and the microbial concentration, respectively;
S 0 is the original input concentration of the nutrient; D is the dilution rate; δ is the growth yield constant
reflect the conversion of nutrient to organism, obviously, 1

δ
≥ 1, see literature [6] for details; p(S ) is the

per-capita growth rate of the species. The nutrient uptake function p is generally assumed to satisfy:
p is continuously differentiable; p(0) = 0, p(S ) > 0 for S > 0. Some kinds of the nutrient uptake
function are often found in literature are as follows:

• Lotka-Volterra (see e.g., [7]): p(S ) = mS .
• Michaelis-Menten (Monod) (see e.g., [8]): p(S ) = mS

a+S , here m is the maximal growth rate of the
microbial species and a is the half-saturation constant. The test result of the relationship between
microbial proliferation rate and substrate concentration obtained by Monod is consistent with the
form of Michaelis-Menten equation. So, function p(S ) = mS

a+S is also known as the Monod type
function.
• Monod-Haldane (see e.g., [9]): p(S ) = mS

a+S +bS 2 , here the term bS 2 is an inhibition.

Butler et al. [10] established a multiple competing species chemostat model with a general class of
functions describing nutrient uptake. If there is only one microbial species, we can obtain the dynamics
of system (1.1) from [10].

The deterministic models can neglect the stochastic effects only at the macroscopic scale, thanks to
the law of large numbers. However, ecosystem is inevitably affected by environmental stochasticity
which cannot be neglected at microscopic scale. Also the accumulation of small perturbations in the
context of multi-species could not be neglected (see Campillo et al. [11] for more details on this
respect). Moreover, stochastic noises may change the behavior in a substantial manner by directly
acting on the population densities or affecting the parameter values of ecosystems. In recent years,
much research has considered the stochastic influence [12–14]. Persistence and extinction are the
central question in ecosystems, including microorganism culture [15–18]. For example, Meng
et al. [15] established sufficient criteria for extinction and weak persistence of a nonlinear impulsive
stochastic chemostat system in a polluted environment. By using Lyapunov functions method, Lv
et al. [17] obtained sufficient conditions for the existence of a unique ergodic stationary distribution of
an impulsive stochastic chemostat model similar to that in [15]. While Nguyen [18] proved sufficient
and almost necessary condition to determine the persistence and extinction of the model by defining a
new threshold parameter. In addition to the research on the central question above, Yang et al. [19]
constructed a stochastic chemostat model with degenerate diffusion using a discrete Markov chain.
By solving the corresponding Fokker-Planck equation, they derived the explicit expression of the
stationary joint probability density and investigated the effect of white noise on the variance and
skewness of the concentration of microorganisms. Baratti et al. studied bioreactor models under the
assumption of constant volume, and described the probability density function evolution by using the
Fokker-Planck theory in [20, 21]. Besides, Zhang and Yuan [22] investigated the existence of ergodic
stationary distribution of a stochastic delayed chemostat model by using the stochastic Lyapunov
analysis method. Subsequently, Zhang and Yuan [23] considered a stochastic chemostat model with a
distributed delay and proved the sufficient condition for the extinction and the ergodicity of the
solution. For other work related to the delay stochastic chemostat model, we can refer to [24–26].

In industrial applications and most ecological situations an undisturbed dilution rate cannot be
expected. There are different possible approaches to introduce noise into stochastic differential
equations, both from a biological and from a mathematical perspective. One traditional approach is
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analogous to that of Stephanopoulos et al. [27] who superimposed a one-dimensional white noise
process on the dilution rate. In particular, the authors in [28] replaced the dilution rate D by
D + σidBi(t). Then, model (1.1) becomes the following system dS (t) =

(
D(S 0 − S (t)) −

1
δ

p(S (t))x(t)
)

dt + σ1S (t)dB1(t),

dx(t) = x(t)(p(S (t)) − D)dt + σ2x(t)dB2(t),
(1.2)

where Bi(t), i = 1, 2 are two mutually independent Brownian motions. Under the following
assumptions:

(i) p ∈ C2([0,∞), [0,∞)), p(S ) ≤ cS for any S ∈ (0,+∞);

(ii) p′′(S )S 3 ≥ m0, for any S ∈ (0,+∞),

the authors in [28] showed that system (1.2) admits a stationary distribution which is ergodic if

λs = p(S 0) − D −
1
2
σ2

2 −
1
2

c1

(
σ1S 0

)2
> 0, where, c1 = max

{
0,−

m0

2DS 0

}
.

Obviously, Michaelis-Menten response function p(S ) = mS
a+S satisfies the above assumptions.

Moreover, nutrient recycling is an important factor among the many processes which influence
ecosystem dynamics. Many researchers have studied the effect of nutrient recycling on ecosystem
stability and persistence, see [29, 30]. Usually, nutrient recycling is regarded as an instantaneous
term [31]. So in this work, we consider a stochastic chemostat model with instantaneous nutrient
recycling, and for convenience, we take p(S ) = mS

a+S . Then, the following model is obtained
dS (t) =

(
D

(
S 0 − S (t)

)
−

1
δ

mS (t)
a + S (t)

x(t) + bγx(t)
)

dt + σ1S (t)dB1(t),

dx(t) = x(t)
(

mS (t)
a + S (t)

− D − γ
)

dt + σ2x(t)dB2(t),
(1.3)

where, γ is mortality rate of microorganism population, b ∈ (0, 1) is the fraction of the nutrient recycled
by bacterial decomposition of the dead microorganism. Obviously, if γ = 0, then system (1.3) becomes
model (1.2) with the case p(S ) = mS

a+S .
There exist some important questions concerning the system: (i) Under what conditions will

microorganism population become extinct? (ii) When do microorganism population is persistent? (iii)
How is dynamic behavior affected by the noise intensity? In the existing literature, one of the
traditional method analogous to that in [28] to solve the above central question is to obtain the
sufficient but not necessary conditions for the existence of ergodic stationary distribution of the
system by using Khasmiskii theory. A different path taken by Imhofa and Walcherb [12] is to
establish appropriate Lyapunov functions to analyze the long-term dynamic behavior of systems,
including stochastic stability. In our paper, we develop a new treatment to deal with system (1.3) to
prove the sufficient and almost necessary conditions of the extinction and persistence for the model
and analyze the effect of noise intensity on system dynamics. Our results essentially improve the
corresponding research in [28]. One of the main difficulties in dealing with this model stems from the
fact that the stochastic comparison arguments do not work well for system (1.3) due to the nutrient
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cycling term. Therefore, some new techniques must require here. The rest of the paper is organised as
follows. Section 2 presents some preliminary results and defines the threshold λ which determines the
persistence and extinction of the system. In Section 3, we focus on the condition for the extinction
and persistence of system (1.3). Finally, some numerical examples and brief discussions are given in
Sections 4 and 5.

2. Preliminaries and the threshold λ

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions
(i.e., it is increasing and right continuous while F0 contains all P-null sets). R2

+ := {(x, y) : x ≥ 0, y ≥ 0}
and R2,◦

+ = {(x, y) : x > 0, y > 0}. Denote a ∧ b = min{a, b}, a ∨ b = max{a, b}.
Consider the deterministic system corresponding to (1.3)

dS (t)
dt

= D(S 0 − S (t)) −
1
δ

mS (t)
a + S (t)

x(t) + bγx(t),

dx(t)
dt

= x(t)
(

mS (t)
a + S (t)

− D − γ
)
.

(2.1)

We can derive from the monotonicity of the function p(S ) = mS
a+S that there exists a uniquely defined

positive real number λ∗ such that p(S ) < D for 0 < S < λ∗; p(S ) > D for λ∗ < S ; p(S ) = D for λ∗ = S .
Here, λ∗ represents the break-even concentration of the substrate for the species x(t).

Define λd = mS 0

a+S 0 − D − γ. Similar to [10], when p(S 0) < D, i.e., λd < 0, there exists a boundary
equilibrium E0 = (S 0, 0) for system (2.1) which is asymptotically stable, while when p(S 0) > D, i.e.,
λd > 0, there exists an internal equilibrium E∗ = (s∗, x∗) =

(
λ∗,

Dδ(S 0−λ∗)
D+(1−bδ)γ

)
which is asymptotically

stable.
The following theorem concerns the existence and uniqueness of positive solutions. The proof is

standard, so we only present it without proof.

Theorem 2.1. For any given initial value (S (0), x(0)) = (u, v) ∈ R2
+, system (1.3) has a unique global

solution (S u,v(t), xu,v(t)) on t ≥ 0, and the solution will always remain in R2
+ with probability 1.

Lemma 2.1. For any initial value (S (0), x(0)) ∈ R2
+, the solution of system (1.3) is stochastically

ultimately bounded.

Proof. Let V(t) = S (t) + 1
δ
x(t), by making use of Itô formula, we have

dV(t) = dS (t) +
1
δ

dx(t) + σ1S (t)dB1(t) + σ2
1
δ

x(t)dB2(t)

= LV(t) + σ1S (t)dB1(t) + σ2
1
δ

x(t)dB2(t),

where

LV(t) = S 0D − DS (t) − (D + γ − δbγ)
1
δ

x(t)

≤ S 0D − DS (t) − (D + (1 − δb)γ)
1
δ

x(t)
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≤ S 0D − DV(t).

Then, applying the argument of the proof of [23, Theorem 3.1], one can prove the theorem easily, we
omit the details here and refer the reader to [23, Theorem 3.1].

Remark 2.1. Lemma 2.1 implies that for any T > 0, there exists positive H0 such that for any t > T ,
S (t) ≤ H0, x(t) ≤ H0.

Lemma 2.2. The following assertions hold:

(i) Let p1 be a positive solution of

σ2
1 ∨ σ

2
2

2
p2 +

(
σ2

1 ∨ σ
2
2

2
− D

)
p − D = 0.

Then for any 0 ≤ q < p ≤ 1 and p < p1, there exists a constants M such that,

lim sup
t→∞

Eu,v

{
[S (t) + x(t)]1+p + [S (t)]−q

}
:= M < ∞, ∀(u, v) ∈ R2

+. (2.2)

(ii) For any ε ∈ (0, 1), T > 0 and H > 1, there is H̄ = H̄(ε,T,H) > 1 such that for any initial value
(u, v) ∈ [H−1,H] × [0,H],

Pu,v

{
H̄−1 ≤ S (t) ≤ H̄, 0 < x(t) ≤ H̄, ∀t ∈ [0,T ]

}
≥ 1 − ε. (2.3)

Proof. Consider the Lyapunov function V(S , x) =
(
S + 1

δ
x
)1+p

+ S −q. By directly calculating the
differential operator LV(S , x), we obtain

LV(S , x) = (1 + p)
(
S +

1
δ

x
)p (

DS 0 − DS + bγx −
mS

a + S
x
δ

+
mS

a + S
x
δ
− (D + γ)

1
δ

x
)

+
p(1 + p)

2

(
S +

1
δ

x
)p−1 (

σ2
1S 2 +

σ2
2

δ2 x2
)

+
q(1 + q)

2
σ2

1S 2

−qS −q−1
(
DS 0 − DS + bγx −

mS
a + S

1
δ

x
)

≤ (1 + p)
(
S +

1
δ

x
)p (

DS 0 − DS − (D + (1 − δb)γ)
1
δ

x
)

+
p(1 + p)

2

(
σ2

1 ∨ σ
2
2

) (
S +

1
δ

x
)p+1

− qDS 0S −q−1

+q
(
D +

q + 1
2

σ2
1

)
S −q +

qm
a

S −q 1
δ

x.

Let q < p̄ < p, Young’s inequality says that

S −q x
δ
≤

p̄
1 + p̄

S −
q(1+p̄)

p̄ +
1

1 + p̄

( x
δ

)1+ p̄
≤

p̄
1 + p̄

S −
q(1+p̄)

p̄ +
1

1 + p̄

(
S +

1
δ

x
)1+ p̄

.
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Therefore,

LV(S , x) ≤ (1 + p)DS 0
(
S +

1
δ

x
)p

+

[
p(1 + p)

2

(
σ2

1 ∨ σ
2
2

)
− (p + 1)D

] (
S +

1
δ

x
)1+p

+
qm

a(1 + p̄)

(
S +

1
δ

x
)1+ p̄

− qDS 0S −q−1 + q
(
D +

q + 1
2

σ2
1

)
S −q +

qmp̄
a(1 + p̄)

S −
q(1+p̄)

p̄ .

We choose 0 < H2 < (1 + p)D − p(1+p)
2

(
σ2

1 ∨ σ
2
2

)
. Since 1 + p̄ < 1 + p and q(1+ p̄)

p̄ < 1 + q, we have

H1 = sup
(S ,x)∈R2

+

{LV(S , x) + H2V(S , x)} < ∞.

Hence,

LV(S , x) ≤ H1 − H2V(S , x). (2.4)

Define the stopping time τn = inf{t ≥ 0 : V(S (t), x(t)) ≥ n} . By Itô formula and (2.4) yield that

Eu,v

[
eH2(t∧τn)V (S (t ∧ τn) , x (t ∧ τn))

]
≤ V(u, v) + E

∫ t∧τn

0
eH2 s (LV(S (s), x(s)) + H2V(S (s), x(s))) ds

≤ V(u, v) +
H1

(
eH2t − 1

)
H2

.

By letting n→ ∞, applying Fatou’s lemma obtains the part (i) of Lemma 2.2,

Eu,v[eH2tV(S (t), x(t)] ≤ V(u, v) +
H1(eH2t − 1)

H2
.

The proof for the second part is standard, we omit the details here and refer the reader
to [32, Lemma 2.1].

Consider the first equation of (1.3) on boundary when microorganism population is absent, i.e.,

dS̃ (t) = D
(
S 0 − S̃ (t)

)
dt + σ1S̃ (t)dB1(t), S̃ (0) ≥ 0. (2.5)

We write S̃ u(t) for the solution of the Eq (2.5) with initial value S̃ (0) = u. By solving the Fokker-Planck
equation, the Eq (2.4) has an ergodic stationary distribution ν0 with density function

f (s) =
βα

Γ(α)
sα−1e−βs, s > 0,

where α = 2D
σ2

1
+ 1, β = 2DS 0

σ2
1

. Then we have

E[S̃ (t)] =

∫ ∞

0
sν0( ds) =

∫ ∞

0
s f (s)ds = S 0.

Lemma 2.3. [33] The following assertions hold:
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(i) lim
t→∞

ln S̃ (t)
t = 0, a.s.

(ii) The unique stationary distribution ν0 of the Markov process S̃ (t) satisfies

lim
t→∞

1
t

∫ t

0
S̃ −1(s)ν0( ds) = D +

1
2
σ2

1 < ∞, a.s. (2.6)

Define
λ :=

∫ ∞

0

ms
a + s

ν0( ds) − D − γ −
1
2
σ2

2.

The inequality ms
a+s ≤

m
a s implies that∫ ∞

0

ms
a + s

ν0( ds) ≤
m
a

∫ ∞

0
s f (s)ds =

m
a

S 0.

As a result, λ is well-defined.

Remark 2.2. The solution S̃ (t) of the boundary equation (2.5) has a stationary distribution ν0. Let S be
a random variable with distribution ν0. Then, for the nonlinear convex response function p(S ) = mS

a+S ,
there are parameters such that Eν0[p(S )] > D + 1

2σ
2
2 > D > p(S 0) for γ = 0, namely, λ > 0 > λd;

further suppose that σ2 = 0, then there must be λ > λd (see Figure 1).

0 2 4 6 8 10

S

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p
(S

)

S
0

p(S
0
)

E
µ

0

[p(S)]

D

Figure 1. The graph of function p(S ) = mS
a+S . Here, Eν0[p(S )] ≈ 0.3218 > D + 1

2σ
2
2 ≈

0.2025 > D = 0.2 > p(S 0) ≈ 0.1286 with parameters S 0 = 0.4, D = 0.2, m = 0.45, a = 1,
σ1 = 0.07 and σ2 = 0.08.

Furthermore, we consider the perturbed equation of model (2.5)

dS̃ θ(t) =
(
DS 0 + bγθ − DS̃ θ(t)

)
dt + σ1S̃ θ(t)dB1(t), S̃ θ(0) ≥ 0. (2.7)

According to the comparison theorem, S̃ (t) ≤ S̃ θ(t). Similar to (2.5), there exists a unique invariant
probability measure νθ to the solution S̃ θ(t) of (2.7). The following key lemma reflects the relationship
between the perturbation equation of (2.5) and itself.

AIMS Mathematics Volume 8, Issue 4, 9331–9351.



9338

Lemma 2.4. [34] We have

lim
θ→0

∣∣∣∣∣∫ ∞

0

ms
a + s

νθ(ds) −
∫ ∞

0

ms
a + s

ν0( ds)
∣∣∣∣∣ = 0.

3. Extinction and persistence

This section analyzes the long term properties of the system by using the parameter λ. Roughly
speaking, if λ < 0, microorganism population will die out. If λ > 0, the system has an invariant
probability measure and the transition probability of the solution process converges to the invariant
measure and we refer to the cases as the system being persistent.

Lemma 3.1. Assume that λ < 0, for any ε > 0, H > 1, ρ > 0, there exists δ0 = δ0(ε,H) ∈ (0,H) such
that for any initial value (u′, v′) ∈ [H−1,H] × (0, δ0],

Pu′,v′

{
lim
t→∞

∣∣∣∣∣ ln x(t)
t
− λ

∣∣∣∣∣ < ε} ≥ 1 − 7ε. (3.1)

Proof. By the ergidicity of S̃ θ(t), we obtain

lim
t→∞

1
t

∫ t

0

mS̃ θ(s)

a + S̃ θ(s)
ds =

∫ ∞

0

ms
a + s

νθ(ds) a.s..

Consequently, for any ε > 0, there exists a T1 = T1(ε,H) > 0 such that PH (Ω1) ≥ 1 − ε, where

Ω1 =

ω :
1
t

∫ t

0

mS̃ θ(s)

a + S̃ θ(s)
ds ≤

∫ ∞

0

ms
a + s

νθ(ds) + ε,∀t ≥ T1

 ≥ 1 − ε. (3.2)

According to the uniqueness of solution, we have S̃ θ
u′(s) ≤ S̃ θ

H(s), ∀t ≥ 0, where the subscript of S̃ θ
u′(s)

indicates the initial value S̃ θ(0) = u′, which implies that Pu′ (Ω1) ≥ 1 − ε, ∀u′ ∈
[
H−1,H

]
. From

Lemma 2.4, we obtain that there is a θ0 ∈ [0, 1] such that Pu′ (Ω2) ≥ 1 − ε, where

Ω2 =

{
ω :

∣∣∣∣∣∫ ∞

0

ms
a + s

νθ(ds) −
∫ ∞

0

ms
a + s

ν0( ds)
∣∣∣∣∣ < ε

2
, θ ∈ [0, θ0]

}
. (3.3)

The strong law of large numbers for Brownian motions

lim
t→∞

Bi(t)
t

= 0 a.s., for k = 1, 2, (3.4)

implies that there is a T2 > 0 such that Pu′,v′ (Ω3) ≥ 1 − ε, where

Ω3 =

{
ω :

∣∣∣∣∣σ2B2(t)
t

∣∣∣∣∣ ≤ ε

2
, ∀t ≥ T2

}
. (3.5)

Let T := T1 ∨ T2. Using (2.3), there is H̄ > 1 such that ∀ (u′, v′) ∈
[
H−1,H

]
× (0,H] and H > 1,

Pu′,v′ (Ω4) ≥ 1 − ε, where

Ω4 =
{
ω : H̄−1 ≤ S (t) ≤ H̄, 0 < I(t) ≤ H̄,∀t ∈ [0,T ]

}
. (3.6)
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To proceed, we will establish the difference of (S̃ θ(t) − S (t)). It follows from (1.3) and (2.7) that

d(S̃ θ(t) − S (t)) =

(
−D

(
S̃ θ(t) − S (t)

)
+

mS (t)
a + S (t)

x(t) + bγ(θ − x(t))
)

dt + σ1(S̃ θ(t) − S (t))dB1(t).

Denoting

ϑ(t) = exp
{(

D +
1
2
σ2

1

)
t − σ1B1(t)

}
.

Then, by constant variation formula we have

S̃ θ(t) − S (t) = ϑ−1(t)
∫ t

0
ϑ(s)

(
mS (s)

a + S (s)
x(s) + bγ(θ − x(s))

)
ds.

Choosing positive constants ρ and θ satisfying

ρ < min
{
ε,

a
2m

ε
}

and θ < min

θ0, ρ
2,

ρ

2φ1(ε)
(

mH̄
aH̄ + bγ

)
 ,

such that for ∀ (u′, v′) ∈
[
H−1,H

]
× (0, θ], Pu′,v′ (Ω5) ≥ 1 − ε where

Ω5 =
{
|S̃ θ(t) − S (t)| < ρ, ∀t ∈ [0,T ∧ τθ]

}
, τθ = inf{t ≥ 0 : x(t) ≥ θ}. (3.7)

Indeed, let % = τθ ∧ inf{t : S (t) ≥ H̄}, we can obtain by the inequality

 n∑
i=1

ai

2

≤ 2n
n∑

i=1

a2
i , Young’s

inequality and Burkholder-Davis-Gundy inequality that for any t ∈ [0,T ],

Eu′,v′

[
sup
s≤t

∣∣∣S̃ θ(s ∧ %) − S (s ∧ %)
∣∣∣2] ≤ M1θ

2 + M2

∫ t

0
Eu′,v′

[
sup
s≤u

∣∣∣S̃ θ(s ∧ %) − S (s ∧ %)
∣∣∣2] du,

where M1 = 16
(
m2 + b2γ2

)
T 2,M2 = 16

(
D2T + 4σ2

1

)
. Then further using Gronwall’s inequality we

have

Eu′,v′

[
sup
s≤T

∣∣∣S̃ θ(s ∧ %) − S (s ∧ %)
∣∣∣2] ≤ M1eM2Tθ2.

Hence, for arbitrarily small θ as defined above,

Pu′,v′

{
sup
s≤T

∣∣∣S̃ θ(s ∧ %) − S (s ∧ %)
∣∣∣2 ≥ ρ2

}
≤

M1eM2Tθ2

ρ2 < ε.

By virtue of

Pu′,v′
{
s ∧ % = s ∧ τθ,∀s ∈ [0,T ]

}
≥ Pu′,v′

{
sup
s≤T

S (s) ≤ H̄
}
≥ 1 − ε,

we obtain
Pu′,v′

{∣∣∣S̃ θ(t) − S (t)
∣∣∣ < ρ,∀t ∈

[
0,T ∧ τθ

]}
≥ 1 − ε.

Define a stoping time

τρ = inf
{
t ≥ 0 :

∣∣∣S̃ θ(t) − S (t)
∣∣∣ > ρ} , τ = τθ ∧ τρ.
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Applying exponential martingale inequality, there is δ1 ∈ (0, θ) such that Pu′,v′ (Ω6) ≥ 1 − ε, where

Ω6 =
{
ω : τθ ≥ T

}
. (3.8)

As a consequence, for ω ∈
⋂6

i=1 Ωi, we have τθ ≥ T . Applying comparison argument, one has S (t) ≤
S̃ θ(t) for ω ∈

⋂6
i=1 Ωi and t ≤ τθ. Combining (3.2), (3.3) and (3.5), one has that for ∀ (u′, v′) ∈[

H−1,H
]
× (0, δ1], ω ∈

⋂6
i=1 Ωi and t ≥ T ,

ln x(t) = ln v′ +
∫ t

0

(
mS (s)

a + S (s)
− D − γ −

1
2
σ2

2

)
ds + σ2B2(t)

= ln v′ +
∫ t

0

 mS̃ θ(s)

a + S̃ θ(s)
− D − γ −

1
2
σ2

2

 ds +

∫ t

0

 mS (s)
a + S (s)

−
mS̃ θ(s)

a + S̃ θ(s)

 ds + σ2B2(t)

≤ ln v′ +
∫ t

0

 mS̃ θ(s)

a + S̃ θ(s)
− D − γ −

1
2
σ2

2

 ds + σ2B2(t)

≤ ln v′ + (λ + 2ε)t.

Therefore, for ∀ (u′, v′) ∈
[
H−1,H

]
× (0, δ1] , ω ∈

⋂6
i=1 Ωi, t ∈ [T, τ],

x(t) ≤ v′e(λ+2ε)t. (3.9)

In addition, by the law of iterated logarithm, there exits qε such that Pu′,v′ (Ω7) ≥ 1 − ε where

Ω7 =
{
|σ1B1(t)| ≤ qε

√
t(| ln t| + 1),∀t ≥ 0

}
.

Denote qε(t) = qε
√

t(| ln t| + 1). Hence, for all (u′, v′) ∈
[
H−1,H

]
× (0, δ1] , ω ∈

⋂7
i=1 Ωi and t ≥ T , one

has ∣∣∣S̃ θ(t ∧ τ) − S (t ∧ τ)
∣∣∣ = ϑ−1(t ∧ τ)

∫ t∧τ

0
ϑ(s)

(
mS (s)

a + S (s)
+ bγ

)
x(s)ds

= e−(D+ 1
2σ

2
1)(t∧τ)+σ1B1(t∧τ)

∫ T

0
e(D+ 1

2σ
2
1)s−σ1B1(s)

(
mS (s)

a + S (s)
+ bγ

)
x(s)ds

+e−(D+ 1
2σ

2
1)(t∧τ)+σ1B1(t∧τ)

∫ t∧τ

T
e(D+ 1

2σ
2
1)s−σ1B1(s)

(
mS (s)

a + S (s)
+ bγ

)
x(s)ds

≤

(
mH̄

a + H̄
+ bγ

)
θe−(D+ 1

2σ
2
1)(t∧τ)+qε (t∧τ)

∫ T

0
e(D+ 1

2σ
2
1)s+qε (s)ds

+(m + bγ)v′e−(D+ 1
2σ

2
1)(t∧τ)+qε (t∧τ)

∫ t∧τ

T
e(D+ 1

2σ
2
1)s+qε (s)eλ+3εds

≤

(
mH̄

a + H̄
+ bγ

)
θφ1(ε) + (m + bγ)v′φ2(ε),

where

φ1(ε) = sup
t≥0

e−(D+ 1
2σ

2
1)(t∧τ)+qε (t∧τ)

∫ T

0
e(D+ 1

2σ
2
1)s+qε (s)ds < ∞,

AIMS Mathematics Volume 8, Issue 4, 9331–9351.



9341

φ2(ε) = sup
t≥T

e−(D+ 1
2σ

2
1)(t∧τ)+qε (t∧τ)

∫ t∧τ

T
e(D+ 1

2σ
2
1)s+qε (s)eλ+3εds < ∞.

Let δ0 ∈ (0, δ1) satisfying
δ0e(λ+2ε)T < θ, δ0(m + bγ)φ2(ε) <

ρ

2
.

Then, for all (u′, v′) ∈
[
H−1,H

]
× (0, δ0] , ω ∈

⋂7
i=1 Ωi and t ≥ T , we obtain∣∣∣S̃ θ(t ∧ τ) − S (t ∧ τ)

∣∣∣ < ρ.
It follows that t ∧ τ ≤ τρ,∀t ≥ T . Therefore,

7⋂
i=1

Ωi ⊂ {τ ≤ τ
ρ} .

Since τ = τθ ∧ τρ, we have

7⋂
i=1

Ωi ⊂
{
τθ ≤ τρ

}
.

Hence, for all (u′, v′) ∈
[
H−1,H

]
× (0, δ0] , ω ∈

⋂7
i=1 Ωi, t ≥ T ,

x
(
t ∧ τθ

)
≤ δ0e(λ+2ε)T < θ. (3.10)

This means t ∧ τθ < τθ, ∀t ≥ T . As a result

τθ = τρ = ∞.

Hence, for any (u′, v′) ∈
[
H−1,H

]
× (0, δ0] and ω ∈

⋂7
i=1 Ωi,

lim sup
t→∞

∣∣∣∣∣ ln x(t)
t
− λ

∣∣∣∣∣ ≤ lim sup
t→∞

ln v′

t
+ lim sup

t→∞

1
t

∫ t

0

∣∣∣∣∣∣ mS (s)
a + S (s)

−
mS̃ θ(s)

a + S̃ θ(s)

∣∣∣∣∣∣ ds

+ lim sup
t→∞

1
t

∫ t

0

∣∣∣∣∣∣ mS̃ θ(s)

a + S̃ θ(s)
−

mS̃ (s)

a + S̃ (s)

∣∣∣∣∣∣ ds + lim sup
t→∞

1
t

∫ t

0
σ2(s)dB2(s)

≤
m
a
ρ +

ε

2
< ε,

where Pu′,v′

ω ∈ 7⋂
i=1

Ωi

 > 1 − 7ε.

Remark 3.1. 3.1 shows that when λ < 0, the component x(t) of the solution (S (t), x(t)) starting from
any initial value in the designated area [H−1,H] × (0, δ0] finally enters the interval (0, δ0] and tends to
zero exponentially. Biologically, it implies that microorganism population is eventually extinct.

Theorem 3.1. If λ < 0, for any initial value (u, v) ∈ R2,◦
+ , we have P

{
lim
t→∞

ln xu,v(t)
t

= λ

}
= 1, i.e., the

number of microorganism population in the chemostat will tend to zero with exponential rate.
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Proof. We shall use the manners established in [34] to prove this theorem. By virtue of Lemma 2.2 and
Cheybshev’s inequality, for any initial value (u, v) ∈ R2,◦

+ , one has

lim sup
t→∞

Pu,v{(S (t), x(t)) ∈ M} ≥ 1 − ε, (3.11)

where

M =
{
(s, u) : (s, u) ∈

[
H−1,H

]
× (0,H]

}
.

In view of Lemma 3.1, the process (S (t), x(t)) is not recurrent in R2,◦
+ . Since Bi(t), i = 1, 2, 3 are

independent, (S (t), x(t)) must be transient [35]. Denote

M1 =
{
(s, u) : (s, u) ∈ [H−1,H] × (δ0,H]

}
,

which is a compact subset of R2,◦
+ . It follows from the definition of transience that

lim
t→∞
Pu,v {(S (t), x(t)) ∈ M1} = 0. (3.12)

Combining (3.11) and (3.12), one has

lim sup
t→∞

Pu,v {(S (t), x(t)) ∈ M\M1} ≥ 1 − ε.

Therefore, there exits T ′ > 0 such that

Pu,v

{
(S (T ′), x(T ′)) ∈ [H−1,H] × (0, δ0]

}
≥ 1 − 2ε. (3.13)

The Markov property of the process, (3.1) and (3.13) deduce that

Pu,v

{
lim sup

t→∞

∣∣∣∣∣ ln x(t)
t
− λ

∣∣∣∣∣ ≤ ε} ≥ 1 − 9ε. (3.14)

Since ε is arbitrary, one has

Pu,v

{
lim sup

t→∞

ln x(t)
t

= λ

}
= 1.

Theorem 3.2. If λ > 0, for any initial value (u, v) ∈ R2,◦
+ , the solution of the system (1.3) has a unique

invariant probability measure π with support R2,◦
+ . Moreover, for any π-integrable f (x, y) : R2,◦

+ → R,
we have

lim
t→∞

1
t

∫ t

0
f (S (s), x(s))ds =

∫
R2,◦

+

f (x, y)π(dx, dy) a.s.,

and

lim
t→∞
‖P(t, (u, v), ·) − π(·)‖ = 0,

where P(t, (u, v), ·) is the transition probability of (S (t), x(t)) and ‖ · ‖ is the total variation norm.
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Proof. Let (S (0), x(0)) = (u, v) ∈ R2,0
+ . It follows from Lemma 2.1 that

lim sup
t→∞

ln S (t)
t
≤ 0, (3.15)

and

lim sup
t→∞

ln x(t)
t
≤ 0. (3.16)

From the first equation of system (1.3), we have

ln S (t) = ln S (0) +

∫ t

0

(
DS 0

S (s)
− D −

1
2
σ2

1 −
mx(s)

a + S (s)
+ bγ

x(s)
S (s)

)
ds + σ1B1(t). (3.17)

In view of (3.15), (3.17) and large numbers for martingales, we have

lim sup
t→∞

1
t

∫ t

0

(
DS 0

S̃ (s)
− D −

1
2
σ2

1 +
DS 0

S (s)
−

DS 0

S̃ (s)
−

mx(s)
a + S (s)

+ bγ
x(s)
S (s)

)
ds ≤ 0,

which follows from (2.6) of Lemma 2.3 that

lim sup
t→∞

1
t

∫ t

0

(
DS 0

S (s)
−

DS 0

S̃ (s)
−

mx(s)
a + S (s)

+ bγ
x(s)
S (s)

)
ds ≤ 0.

Then,

−DS 0 lim inf
t→∞

1
t

∫ t

0

(
1

S (s)
−

1

S̃ (s)

)
ds +

m
a

lim inf
t→∞

1
t

∫ t

0
x(s)ds ≥ 0. (3.18)

From the second equation of system (1.3), we have

ln x(t) = ln x(0) +

∫ t

0

(
mS (s)

a + S (s)
− D − γ −

1
2
σ2

2

)
ds + σ2B2(t). (3.19)

By (3.16), (3.19) and the strong large numbers for martingales, we have

lim sup
t→∞

1
t

∫ t

0

 mS̃ (s)

a + S̃ (s)
− D − γ −

1
2
σ2

2 +
mS (s)

a + S (s)
−

mS̃ (s)

a + S̃ (s)

 ds ≤ 0.

Hence,

λ + lim sup
t→∞

1
t

∫ t

0

 mS (s)
a + S (s)

−
mS̃ (s)

a + S̃ (s)

 ds ≤ 0.

Therefore,

lim inf
t→∞

1
t

∫ t

0

(
1

S (s)
−

1

S̃ (s)

)
ds ≥

λ

ma
. (3.20)

By combing (3.18) and (3.20) we obtain

lim inf
t→∞

1
t

∫ t

0
x(s)ds ≥

DS 0

m2 λ := Θ. (3.21)
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For 0 < η < Θ < κ < ∞, Hölder’s inequality yields that

1
t

∫ t

0
Eu,v

[
1{x(s)≥η}x(s)

]
ds ≤

(
1
t

∫ t

0
Eu,v

[
1{x(s)≥η}

]
ds

) p
1+p

(
1
t

∫ t

0
Eu,v[x(s)]1+p ds

) 1
1+p

.

By Fatou’s lemma, we get

lim inf
t→∞

1
t

∫ t

0
Eu,v

[
1{x(s)≥η}

]
ds ≥

(
lim inft→∞

1
t

∫ t

0
Eu,v

[
1{x(s)≥η}x(s)

]
ds

) 1+p
p(

lim supt→∞
1
t

∫ t

0
Eu,v[x(s)]1+p ds

) 1
p

≥ M− 1
p

(
lim inf

t→∞

1
t

∫ t

0
Eu,v[x(s)]ds − η

) 1+p
p

≥ M− 1
p (Θ − η)

1+p
p > 0. (3.22)

Applying (2.2), we obtain

lim sup
t→∞

1
t

∫ t

0
Eu,v

[
1{S (s)+x(s)≥κ}

]
ds ≤

1
κ1+p lim sup

t→∞

1
t

∫ t

0
Eu,v[S (s) + x(s)]1+p ds ≤

M
κ1+p .

(3.23)

Choosing sufficiently small η and sufficiently large κ. It follows from (3.22) and (3.23) that

lim inf
t→∞

1
t

∫ t

0
Eu,v

[
1{S (s)+x(s)∈B}

]
ds ≥

(Θ − η)
1+p

p

M
1
p

−
M
κ1+p > 0, (3.24)

where B = {(x, y) : y ≥ η, x + y ≤ κ}. By the invariance ofM = {x ≥ 0, y > 0} under system (1.3), we
consider the process (S (t), x(t)) onM. Obviously, (S (t), x(t)) is a Feller Markov process. Thus, (3.24)
and compactness of B in M implies that there is a invariant probability measure π on M. Then, by
similar arguments of [33, Theothem 2.4] we can derive that π is a unique invariant probability measure
of (S (t), x(t)) on R2,◦

+ and the strong of large numbers holds. The proof is complete.

Remark 3.2. Theorem 3.2 shows that when λ > 0, the positive solution of system (1.3) has a ergodic
stationary distribution. Biologically, it implies that microorganism population is persistent.

4. Numerical simulations

In this section, we will introduce several numerical examples to illustrate our theoretical results.
For the numerical simulation, we use Milstein’s higher order method [36] to obtain the discretization
equations of system (1.3)

S k+1 = S k +

(
D

(
S 0 − S k

)
−

1
δ

mS k

a + S k
xk + bγxk

)
4t + σ1S k

√
4tξk +

1
2
σ2

1S k(ξ2
k − 1)4t,

xk+1 = xk + xk

(
mS k

a + S k
− D − γ

)
4t + σ2xk

√
4tξk +

1
2
σ2

2xk(ξ2
k − 1)4t,

where the time increment 4t > 0, ξk are the independent Gaussian random variables which follow the
distribution N(0, 1) for k = 1, 2, . . . , n.
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Example 4.1. Consider the small noises. Without loss of generality, let σ1 = σ2 = 0.08. Set S 0 = 1.4,
D = 0.2, m = 0.4, a = 0.45, δ = 0.3, γ = 0.03, bγ = 0.02. By calculation, we have λ ≈ 0.0135 > 0,
which satisfies the condition of Theorem 3.2. Figure 2a,b show time series diagrams of the stochastic
model (1.3) and the corresponding deterministic model. Figure 2c,d depict histograms of S and x,
respectively; Figure 2e shows the phase diagram of the stochastic model (1.3). Biologically, Figure 2
shows that the microorganism population will be persistent with lower noise intensity.

Although the theorem shows the existence of the stationary distribution π of system (1.3) with
small noise, its analytic formula determined by Kramers-Fokker-Planck (KFP) equation appears to be
technically a very difficult problem. This means that it is not easy to obtain the threshold value of noise
intensity containing (or causing) microbial persistence (or extinction). Under this circumstance, if
σ1 = σ2, an asymptotic of the the stationary distribution in Gaussian form can be proposed to estimate
the noise intensity [37]:

π(z, σ1) ≈ Kexp
(
−
〈z − E∗,W−1(z − E∗)〉

2σ2
1

)
,

where z = (S , x), W is the stochastic sensitive function (SSF) of deterministic equilibrium
E∗ = (0.6088, 0.2119) determined by the matrix equation:

FW + WFT + G = 0,

where

F =

 −D − 1
δ

max∗
(a+s∗)2 −1

δ
ms∗
a+s∗

+ bγ
ma

(a+s∗)2
mS ∗
a+S ∗
− D − γ

 , G =

(
s2
∗ 0

0 x2
∗

)
.

Hence, the confidence ellipse of system (1.3) can be presented by SSF technique [37]:

〈z − E∗,W−1(z − E∗)〉 = 2σ2
1 ln

1
1 − P

, (4.1)

where P is a fiducial probability. By calculation, we obtain that

W =

(
0.9244 −0.1398
−0.1398 0.2575

)
, W−1 =

(
1.1785 0.6398
0.6398 4.2309

)
,

and the corresponding confidence ellipse equation is

1.1785(S − 0.6088)2 + 1.2796(S − 0.6088)(x − 0.2119) + 4.2309(x − 0.2119)2 = 2 × 0.082 × ln
1

1 − P
.

Further if the fiducial probability P = 0.95, then the confidence ellipse for model (1.3) is shown in
Figure 2e. One can see from Figure 2e that the random states of system are distributed around the
corresponding deterministic equilibrium, and belong to the interior of the confidence ellipse with large
probability 0.95.
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Figure 2. (a) and (b) Time series diagrams of system (1.3); (c) and (d) Histograms of S
and x, respectively; (e) Two-dimensional diagram of S and x; (f) Random states and the
confidence ellipse of system (1.3) with fiducial probability P = 0.95, and the vector field of
the corresponding deterministic model (2.1).

Example 4.2. Consider the large noise σ2. Let σ2 = 0.55 and keep other parameters the same as in
Example 4.1. Then λ ≈ −0.1353 < 0, the condition of Theorem 3.2 is satisfied. Figure 3 depicts the
solutions S (t) and x(t) of system (1.3) and the corresponding deterministic model. We can see that
microorganism population go to extinction in the stochastic system (1.3) while it is still persistent in
the deterministic model. Thus, larger white noise σ2 is harmful to microorganism population.
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Figure 3. Time series diagrams of system (1.3) and the corresponding deterministic model
(2.1).

Moreover, it can be seen from the expression of λ that σ1 also has an important effect on
microorganism population. From Figure 4 we can see that the peak of the density for ν0 becomes
smaller with the increase of the noise σ1, Resonating with the convexity of p(S ) = mS

a+S , λ as a
function of σ1 is not a monotonic function, while λs is a decreasing function about σ1. Remark 2.2
points out for the convex function p(S ) = mS

a+S and γ = 0, Eν0[p(S )] > p(S 0). Hence, there are
parameter sets such that λ > 0 > λs. If σ2 = 0, σ1 , 0, then λ > λs.
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1
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Figure 4. The density of the stationary distribution ν0 in differential cases: σ1 = 0.45, 0.5,
0.55 and 0.6, respectively.

Example 4.3. Consider the effect of the instantaneous nutrient recycling on microorganism. Let
S 0 = 2, D = 0.1, m = 0.6, a = 0.1, δ = 0.3, γ = 0.4, σ1 = 0.08 and σ2 = 0.07. Take b = 0, 0.75.
Although the nutrient recovery rate b is not a key factor affecting the persistence and extinction of
microorganism population, numerical simulations show that b may affect the concentration of
microorganism. From Figure 5 we can see that the concentration of microorganism population will
become larger with the increase of b.
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Figure 5. (a) Time series diagrams of microorganism population x(t) for system (1.3) with
b = 0 and b = 0.75, respectively. (b) Phase diagrams of system (1.3) with b = 0 and b = 0.75,
respectively.

5. Conclusions

In this paper, we proposed a stochastic chemostat model with instantaneous nutrient recycling.
Then, we constructed a key threshold value λ which enabled us to obtain the asymptotic behavior of

the system. Concretely, if λ < 0, then P
{

lim
t→∞

ln x(t)
t

= λ

}
= 1, biologically, microorganism population

will go extinct with exponential rate; if λ > 0, there exists an invariant probability measure such that
the distribution of (S (t), x(t)) approximate to this invariant probability at infinite time, biologically,
microorganism population is persistent. Although it failed to give an explicit analytic formula of the
invariant probability, we constructed the stochastic sensitivity matrix by using the SSF technique to
describe the scatter of trajectories in the neighborhood of stable equilibrium. It should be emphasized
that if γ = 0, then system (1.3) becomes the (1.2) with the case p(S ) = mS

a+S . We propose a new method
to define the threshold value λ instead of λs in [28]. Moreover, different from [28], the condition in
Theorem 3.1 (Theorem 3.2) is sufficient and almost necessary condition of the exponential extinction
(persistence) for the model. However, the case of λ = 0 remains unsolved. We will continue this
interesting work with the concluding of this paper.

Acknowledgments

This work was supported by Basic Research Project (Free Exploration) of Shanxi Province
(No.20210302124256), Shanxi Province Department of Finace under Grant No. Z24179 and Talent
Special Project of Research Project of Guangdong Polytechnic Normal University under Grant
No.2021SDKYA053. We thank the three referees for the careful reading of our paper and all of the
insightful suggestions and comments that greatly improved the presentation of the paper.

Conflict of interest

The authors declare that they have no conflict of interest.

AIMS Mathematics Volume 8, Issue 4, 9331–9351.



9349

References

1. L. Becks, F. M. Hilker, H. Malchow, K. Jürgens, H. Arndt, Experimental demonstration of chaos
in a microbial food web, Nature, 435 (2005), 1226–1229. https://doi.org/10.1038/nature03627

2. A. Novick, L. Szilard, Description of the chemostat, Science, 112 (1950), 715–716.
https://doi.org/10.1126/science.112.2920.715

3. A. W. Bush, A. E. Cool, The effect of time delay and growth rate inhibition in the bacterial treatment
of wastewater, J. Theor. Biol., 63 (1976), 385–395. https://doi.org/10.1016/0022-5193(76)90041-2

4. S. Ruan, S. K. Wolkowicz, Bifurcation analysis of a chemostat model with a distributed delay, J.
Math. Anal. Appl., 204 (1996), 786–812. https://doi.org/10.1006/jmaa.1996.0468

5. X. Meng, Q. Zhao, L. Chen, Global qualitative analysis of new Monod type chemostat model with
delayed growth response and pulsed input in polluted environment, Appl. Math. Mech., 29 (2008),
75–87. https://doi.org/10.1007/s10483-008-0110-x

6. M. Rehim, L. L. Sun, X. Abdurahman, Z. D. Teng, Study of chemostat model with impulsive
input and nutrient recycling in a environment, Commun. Nonlinear Sci., 16 (2011), 2563–2574.
https://doi.org/10.1016/j.cnsns.2010.09.030

7. G. Pang, F. Wang, L. Chen, Study of Lotka-volterra food chain chemostat with periodically varying
dilution rate, J. Math. Chem., 43 (2008), 901–913. https://doi.org/10.1007/s10910-007-9263-5

8. T. Wang, L. Chen, Global analysis of a three-dimensional delayed Michaelis-Menten
chemostat-type models with pulsed input, J. Appl. Math. Comput., 35 (2011), 211–227.
https://doi.org/10.1007/s12190-009-0352-4

9. G. Pang, F. Wang, L. Chen, Analysis of a Monod-Haldene type food chain chemostat
with periodically varying substrate, Chaos Soliton. Fract., 38 (2008), 731–742.
https://doi.org/10.1016/j.chaos.2007.01.018

10. G. J. Butler, G. S. K. Wolkowicz, A mathematical model of the chemostat with a general
class of functions describing nutrient uptake, SIAM J. Appl. Math., 45 (1985), 138–151.
https://doi.org/10.1137/0145006

11. F. Campillo, M. Joannides, I. Larramendy-Valverde, Stochastic modeling of the chemostat, Ecol.
Model., 222 (2011), 2676–2689. https://doi.org/10.1016/j.ecolmodel.2011.04.027

12. L. Imhof, S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models,
J. Differ. Equ., 217 (2005), 26–53. https://doi.org/10.1016/j.jde.2005.06.017

13. H. J. Alsakaji, F. A. Rihan, A. Hashish, Dynamics of a tsochastic epidemic model with vaccination
and multiple time-delays for COVID-19 in the UAE, Complexity, 2022 (2022), 4247800.
https://doi.org/10.1155/2022/4247800

14. H. J. Alsakaji, F. A. Rihan, Stochastic delay differential equations of three-species prey-predator
system with cooperation among prey species, Discrete Contin. Dyn. Syst., 15 (2022), 245–263.
https://doi.org/10.3934/dcdss.2020468

15. X. Meng, L. Wang, T. Zhang, Global dynamics analysis of a nonlinear impulsive stochastic
chemostat system in a polluted environment, J. Appl. Anal. Comput., 6 (2016), 865–875.
https://doi.org/10.11948/2016055

AIMS Mathematics Volume 8, Issue 4, 9331–9351.

http://dx.doi.org/https://doi.org/10.1038/nature03627
http://dx.doi.org/https://doi.org/10.1126/science.112.2920.715
http://dx.doi.org/https://doi.org/10.1016/0022-5193(76)90041-2
http://dx.doi.org/https://doi.org/10.1006/jmaa.1996.0468
http://dx.doi.org/https://doi.org/10.1007/s10483-008-0110-x
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2010.09.030
http://dx.doi.org/https://doi.org/10.1007/s10910-007-9263-5
http://dx.doi.org/https://doi.org/10.1007/s12190-009-0352-4
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2007.01.018
http://dx.doi.org/https://doi.org/10.1137/0145006
http://dx.doi.org/https://doi.org/10.1016/j.ecolmodel.2011.04.027
http://dx.doi.org/https://doi.org/10.1016/j.jde.2005.06.017
http://dx.doi.org/https://doi.org/10.1155/2022/4247800
http://dx.doi.org/https://doi.org/10.3934/dcdss.2020468
http://dx.doi.org/https://doi.org/10.11948/2016055


9350

16. S. Sun, Y. Sun, G. Zhang, X. Liu, Dynamical behavior of a stochastic two-species
Monod competition chemostat model, Appl. Math. Comput., 298 (2017), 153–170.
https://doi.org/10.1016/j.amc.2016.11.005

17. X. Lv, X. Meng, X. Wang, Extinction and stationary distribution of an impulsive stochastic
chemostat model with nonlinear perturbation, Chaos Soliton. Fract., 110 (2018), 273–279.
https://doi.org/10.1016/j.chaos.2018.03.038

18. D. H. Nguyen, N. Nguyen, G. Yin, General nonlinear stochastic systems motivated
by chemostat models: Complete characterization of long-time behavior, optimal controls,
and applications to wastewater treatment, Stoch. Proc. Appl., 130 (2020), 4608–4642.
https://doi.org/10.1016/j.spa.2020.01.010

19. J. Yang, Z. Zhao, X. Song, Statistical property analysis for a stochastic chemostat
model with degenerate diffusion, AIMS Mathematics, 8 (2023), 1757–1769.
https://doi.org/10.3934/math.2023090

20. R. Baratti, J. Alvarez, S. Tronci, M. Grosso, A. Schaum, Characterization with Fokker-Planck
theory of the nonlinear stochastic dynamics of a class of two-state continuous bioreactors, J.
Process Contr., 102 (2021), 66–84. https://doi.org/10.1016/j.jprocont.2021.04.004

21. A. Schaum, S. Tronci, R. Baratti, J. Alvarez, On the dynamics and robustness
of the chemostat with multiplicative noise, IFAC-PapersOnLine, 54 (2021), 342–347.
https://doi.org/10.1016/j.ifacol.2021.08.265

22. X. Zhang, R. Yuan, The existence of stationary distribution of a stochastic delayed chemostat
model, Appl. Math. Lett., 93 (2019), 15–21. https://doi.org/10.1016/j.aml.2019.01.034

23. X. Zhang, R. Yuan, Stochastic properties of solution for a chemostat model with
a distributed delay and random disturbance, Int. J. Biomath., 13 (2020), 2050065.
https://doi.org/10.1142/s1793524520500667

24. S. Sun, X. Zhang, Asymptotic behavior of a stochastic delayed chemostat model with nutrient
storage, J. Biol. Syst., 26 (2018), 225–246. https://doi.org/10.1142/S0218339018500110

25. F. Mazenc, S. L. Niculescu, G. Robledo, Stability analysis of mathematical model of competition
in a chain of chemostats in series with delay, Appl. Math. Model., 76 (2019), 311–329.
https://doi.org/10.1016/j.apm.2019.06.006

26. W. Wang, W. Chen, Persistence and extinction of Markov switched stochastic
Nicholson’s blowies delayed differential equation, Int. J. Biomath., 13 (2020), 2050015.
https://doi.org/10.1142/S1793524520500151

27. G. Stephanopoulos, R. Aris, A. G. Fredrickson, A stochastic analysis of the growth of competing
microbial populations in a continuous biochemical reactor, Math. Biosci., 45 (1979), 99–135.
https://doi.org/10.1016/0025-5564(79)90098-1

28. L. Wang, D. Jiang, A note on the stationary distribution of the stochastic chemostat
model with general response functions, Appl. Math. Lett., 73 (2017), 22–28.
https://doi.org/10.1016/j.aml.2017.04.029

29. R. M. Nisbet, W. Gurney, Model of material cycling in a closed ecosystem, Nature, 264 (1976),
633–634. https://doi.org/10.1038/264633a0

AIMS Mathematics Volume 8, Issue 4, 9331–9351.

http://dx.doi.org/https://doi.org/10.1016/j.amc.2016.11.005
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2018.03.038
http://dx.doi.org/https://doi.org/10.1016/j.spa.2020.01.010
http://dx.doi.org/https://doi.org/10.3934/math.2023090
http://dx.doi.org/https://doi.org/10.1016/j.jprocont.2021.04.004
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2021.08.265
http://dx.doi.org/https://doi.org/10.1016/j.aml.2019.01.034
http://dx.doi.org/https://doi.org/10.1142/s1793524520500667
http://dx.doi.org/https://doi.org/10.1142/S0218339018500110
http://dx.doi.org/https://doi.org/10.1016/j.apm.2019.06.006
http://dx.doi.org/https://doi.org/10.1142/S1793524520500151
http://dx.doi.org/https://doi.org/10.1016/0025-5564(79)90098-1
http://dx.doi.org/https://doi.org/10.1016/j.aml.2017.04.029
http://dx.doi.org/https://doi.org/10.1038/264633a0


9351

30. S. Ruan, Persistence and coexistence in zooplankton-phytoplankton-nutrient models
with instantaneous nutrient recycling, J. Math. Biol., 31 (1993), 633–654.
https://doi.org/10.1007/BF00161202

31. Y. M. Svirezhev, D. O. Logofet, Stability of Biological Communities, Mir Publishers, 1983.

32. N. H. Du, N. H. Dang, N. T. Dieu, On stability in distribution of stochastic
diferential delay equations with markovian switching, Syst. Control Lett., 65 (2014), 43–49.
https://doi.org/10.1016/j.sysconle.2013.12.006

33. N. T. Dieu, T. Fugo, N. H. Du, Asymptotic behaviors of stochastic epidemic models with jump-
diffusion, Appl. Math. Model., 86 (2020), 259–270. https://doi.org/10.1016/j.apm.2020.05.003

34. N. H. Du, N. N. Nhu, Permanence and extinction for the stochastic SIR epidemic model, J. Differ.
Equ., 269 (2020), 9619–9652. https://doi.org/10.1016/j.jde.2020.06.049

35. W. Kliemann, Recurrence and invariant measures for degenerate diffusions, Ann. Probab., 15
(1987), 690–707. https://doi.org/10.1214/aop/1176992166

36. D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential
equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/s0036144500378302

37. L. B. Ryashko, I. A. Bashkirtseva, On control of stochastic sensitivity, Automat. Rem. Contr., 69
(2008), 1171–1180. https://doi.org/10.1134/S0005117908070084

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 4, 9331–9351.

http://dx.doi.org/https://doi.org/10.1007/BF00161202
http://dx.doi.org/https://doi.org/10.1016/j.sysconle.2013.12.006
http://dx.doi.org/https://doi.org/10.1016/j.apm.2020.05.003
http://dx.doi.org/https://doi.org/10.1016/j.jde.2020.06.049
http://dx.doi.org/https://doi.org/10.1214/aop/1176992166
http://dx.doi.org/https://doi.org/10.1137/s0036144500378302
http://dx.doi.org/https://doi.org/10.1134/S0005117908070084
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries and the threshold 
	Extinction and persistence
	Numerical simulations
	Conclusions

