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Abstract: By using the outer space branch-and-reduction scheme, we present a novel algorithm for
globally optimizing the sum of several affine fractional functions problem (SAFFP) over a nonempty
compact set. For providing the reliable lower bounds in the searching process of iterations, we devise
a novel linearizing method to establish the affine relaxation problem (ARP) for the SAFFP. Thus, the
main computational work involves solving a series of ARP. For improving the convergence speed of
the algorithm, an outer space region reduction technique is proposed by utilizing the objective function
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iteration times. Finally, numerical comparison results are given to reveal the algorithmic computational
advantages.
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1. Introduction

We investigate globally optimizing the sum of several affine fractional functions problem defined by

(SAFFP) :


v = min F(z) =

q∑
m=1

n∑
j=1

hm jz j + dm

n∑
j=1

gm jz j + fm

s.t. z ∈ Λ = {z ∈ Rn | Az ≤ b, z ≥ 0} ,
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where hm j, dm, gm j, fm ∈ R,m = 1, 2, . . . , q, j = 1, 2, . . . , n, A ∈ Rµ×n, b ∈ Rm, Λ is a nonempty compact

set, and
n∑

j=1
gm jz j + fm , 0 for any z ∈ Λ.

From 1990s, the SAFFP has attracted a lot of attention attentions of many practitioners and
researchers. The SAFFP is widely used in computer vision, investment and portfolio optimization,
optimal strategy in supply chain, risk-averse and so on, see Refs. [1–6]. Besides, the SAFFP is non-
convex optimization problem, which usually contains many locally minimum solutions that are not
globally minimum.

In the past 20 years, many scholars have presented a large number of different algorithms to globally
solve the SAFFP. Generally, these algorithms may be classified as below, such as, parametric simplex
algorithms [7], outer approximation algorithms [8], image space analysis methods [9], monotonic
optimization algorithms [10], branch-and-bound algorithms [11–28], polynomial-time approximation
algorithms [29, 30], and so on. In addition, for an excellent review, we can refer to Schaible and
Shi [31].

Additionally, there are some theoretical progress on the generalized SAFFP, for example, Saxena
and Jain [32] presented an dual problem for the linear fractional programming problem under fuzzy
environment. Based on the membership function of the target multiplied by the appropriate weights,
Borza and Rambely [33] proposed a set of linear inequalities. Goli and Nasseri [34] investigate for
linear programming problems with intuitionistic fuzzy variables and proposed its pairwise results with
a generalization of the pairwise simplex method.

In this article, by using the outer space branch-and-reduction scheme, we propose a global algorithm
to effectively solve the SAFFP. We first convert the SAFFP into an equivalent bilinear optimization
problem (EBOP). Next, by utilizing new linearizing method, we establish the ARP of the EBOP. To
improve the running speed of the outer space searching algorithm, an outer space region reduction
method is proposed. By iteratively subdividing the initial outer space region and computing a sequence
of LRP, the presented algorithm is globally convergent to the minimum point of the SAFFP. By
analysing the algorithmic complexity, we give an estimation for the maximum number of iterations
of the proposed algorithm in this paper. Finally, numerical comparisons are reported to reveal the
computational superiority and higher efficiency of the algorithm.

The rests of this article are organized as below. In Section 2, the EBOP and its ARP of the SAFFP
are derived. In Section 3, based the outer space branch-and-reduction scheme, we construct a global
algorithm for the SAFFP, prove and analyse the algorithmic convergence and complexity, and estimate
the algorithmic maximum iteration times. Numerical examples and their computational comparisons
are reported in Section 4. Finally, we give some conclusions in Section 5.

2. Equivalence problem and its affine relaxation

In this section, we firstly equivalently convert the SAFFP into the EBOP. Since the denominator
n∑

j=1
gm jz j + fm , 0 for any z ∈ Λ, by the continuity of the function

n∑
j=1

gm jz j + fm, it follows that

n∑
j=1

gm jz j + fm > 0 or
n∑

j=1
gm jz j + fm < 0. Since

n∑
j=1

hm jz j+dm

n∑
j=1

gm jz j+ fm
=
−

 n∑
j=1

hm jz j+dm


−

 n∑
j=1

gm jz j+ fm

 , without losing generality, we
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can always assume
n∑

j=1
gm jz j + fm > 0.

Without losing generality, let sm =
1

n∑
j=1

gm jz j+ fm
, and define

s0
m =

1

maxz∈Λ

n∑
j=1

gm jz j + fm

, s0
m =

1

minz∈Λ

n∑
j=1

gm jz j + fm

, m = 1, 2, . . . , q,

and construct the initial outer space rectangle

S 0 =
{
s ∈ Rq | s0

m ≤ sm ≤ s0
m,m = 1, 2, . . . , q

}
,

then the SAFFP may be changed to the following equivalent bilinear optimization problem:

EBOP
(
S 0

)
:



v(S 0) = max Ψ0(z, s) =
q∑

m=1
sm

(
n∑

j=1
hm jz j + dm

)
s.t. Ψm(z, s) = sm

(
n∑

j=1
gm jz j + fm

)
= 1, m = 1, 2, . . . , q,

z ∈ Λ, s ∈ S 0.

Obviously, (z∗, s∗) is a globally optimum solution to the EBOP
(
S 0

)
if and only if z∗ is a globally

optimum solution to the SAFFP, where s∗m =
1

n∑
j=1

gm jz∗j+ fm
,m = 1, 2, . . . , q.

Therefore, we may consider globally solving the EBOP
(
S 0

)
instead of globally solving the SAFFP.

Next, we will give the detailed process for constructing the ARP of the EBOP
(
S 0

)
as below.

For the convenience of expression, for each m = 1, 2, . . . , q, we let

H+m =
{
j | hm j > 0, j = 1, 2, . . . , n

}
,H−m =

{
j | hm j < 0, j = 1, 2, . . . , n

}
,

G+m =
{
j | gm j > 0, j = 1, 2, . . . , n

}
,G−m =

{
j | gm j < 0, j = 1, 2, . . . , n

}
.

Firstly, consider the objective function Ψ0(z, s), we can follow that

Ψ0(z, s) =
q∑

m=1
sm(

n∑
j=1

hm jz j + dm)

≥
q∑

m=1
(
∑

j∈H+m
hm jsmz j +

∑
j∈H−m

hm jsmz j) +
q∑

m=1
dmsm

= ΨL
0(z, s).

(1)

Secondly, consider the constrained function Ψm(z, s),m = 1, 2, . . . , q, we can follow that

Ψm(z, s) = sm(
n∑

j=1
gm jz j + fm) ≥

∑
j∈G+m

gm jsmz j +
∑

j∈G−m
gm jsmz j + fmsm = Ψ

L
m(z, s),

Ψm(z, s) = sm(
n∑

j=1
gm jz j + fm) ≤

∑
j∈G+m

gm jsmz j +
∑

j∈G−m
gm jsmz j + fmsm = Ψ

U
m(z, s).
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Therefore, for any S =
{
s ∈ Rq | sm ≤ sm ≤ sm,m = 1, 2, . . . , q

}
⊆ S 0, we can construct the ARP(S ) of

the problem (EBOP (S )) as below:

LB(S ) = min ΨL
0(z, s) =

q∑
m=1

(
∑

j∈H+m
hm jsmz j +

∑
j∈H−m

hm jsmz j) +
q∑

m=1
dmsm

s.t. ΨL
m(z, s) =

∑
j∈G+m

gm jsmz j +
∑

j∈G−m
gm jsmz j + fmsm ≤ 1, m = 1, 2, . . . , q,

ΨU
m(z, s) =

∑
j∈G+m

gm jsmz j +
∑

j∈G−m
gm jsmz j + fmsm ≥ 1, m = 1, 2, . . . , q,

z ∈ Λ, s ∈ S .

Theorem 1. For each m ∈ {1, 2, . . . , q}, we have

|Ψ0(z, s) − ΨL
0(z, s)| → 0 as ∥sm − sm∥ → 0.

Proof. From the above conclusion, we have that∣∣∣Ψ0(z, s) − ΨL
0(z, s)

∣∣∣ = ∣∣∣∣∣∣ q∑
m=1

sm

(
n∑

j=1
hm jz j + dm

)
−

q∑
m=1

(
∑

j∈H+m
hm jsmz j +

∑
j∈H−m

hm jsmz j) −
q∑

m=1
dmsm

∣∣∣∣∣∣
=

∣∣∣∣∣∣ q∑
m=1

[ ∑
j∈H+m

hm jz j(sm − sm) +
∑

j∈H−m
hm jz j(sm − sm)

]∣∣∣∣∣∣
≤ (sm − sm) ×

∣∣∣∣∣∣ q∑
m=1

n∑
j=1

hm jz j

∣∣∣∣∣∣ .
When ∥sm − sm∥ → 0, |Ψ0(z, s) − ΨL

0(z, s)| → 0, the proof of Theorem is finished.
Remark 1. Denotes v[P] as the globally minimum value of the problem (P), based on the previous
discussions, then: for any S ⊆ S 0, the global minimum values for the ARP(S ) and EBOP(S ) satisfy
v[ARP(S )] ≤ v[EBOP(S )].
Remark 2. Obviously, for any Ŝ ⊆ S ⊆ S 0, it follows that LB(Ŝ ) ≥ LB(S ).

3. Global algorithm, convergence, and its complexity

In this part, for globally solving the SAFFP, combining the previous affine relaxation problem,
we design an outer space region reduction operation, and based on the branch-and-bound searching
framework, a global algorithm is designed.

3.1. Outer space region reduction operation

To enhance convergence speed of the presented algorithm, we construct a new outer space region
reduction operation as follows.

For any investigated rectangles

S =
{
s ∈ Rq|sm ≤ sm ≤ sm,m = 1, 2, . . . , q

}
⊆ S 0,

denote by

RLB =
q∑

m=1

min{l0
msm, l

0
msm},
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where

l0
m = min

z∈Λ

n∑
j=1

hm jz j + dm, m = 1, 2, . . . , q.

Theorem 2. Denote UBk as the known best upper bound at the kth iteration, for any investigated
rectangle S ⊆ S 0, we get the following several conclusions:

(i) If RLB > UBk, then the rectangle S contains no globally optimum point to the EBOP(S 0).
(ii) If RLB ≤ UBk, then, for each σ ∈ {1, 2, . . . , q}, the following two cases hold:
(a) If l0

σ > 0, then the rectangle Ŝ 1 contains no globally optimum point to the EBOP(S 0), where

Ŝ 1 = {s ∈ Rq|sm ≤ sm ≤ sm,m = 1, . . . , q,m , σ; ρ1
σ < sσ ≤ sσ}

with

ρ1
σ =

UBk − RLB + l0
σLσ

l0
σ

.

(b) If l0
σ < 0, then the rectangle Ŝ 2 contains no globally optimum point to the EBOP(S 0), where

Ŝ 2 = {s ∈ Rq|sm ≤ sm ≤ sm,m = 1, . . . , q,m , σ; s
σ
≤ sσ < ρ2

σ}

with

ρ2
σ =

UBk − RLB + l0
σsσ

l0
σ

.

Proof. (i) If RLB > UBk, then:

min
z∈Λ,s∈S

Ψ0(z, s) = min
z∈Λ,s∈S

q∑
m=1

sm(
n∑

j=1
hm jz j + dm)

=
q∑

m=1
min{l0

msm, l
0
msm}

= RLB > UBk.

Thus, the rectangle S contains no globally optimum point to the EBOP(S 0).
(ii) If RLB ≤ UBk, for each σ ∈ {1, 2, . . . , q}, then, we firstly prove the conclusion.
(a) If l0

σ > 0, σ ∈ {1, 2, . . . , q}, then, for ans z ∈ Λ and s ∈ Ŝ 1, we have

n∑
j=1

hm jz j + dm ≥ l0
m

and

sm ≤ sm ≤ sm,m = 1, 2, . . . , q,m , σ; l0
σ > 0, ρ1

σ < sσ ≤ sσ.
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Thus, min
z∈Λ,s∈S 1

Ψ0(z, s) satisfies the following inequalities:

min
z∈Λ,s∈S 1

Ψ0(z, s) = min
z∈Λ,s∈S 1

q∑
m=1

sm(
n∑

j=1
hm jz j + dm)

=
q∑

m=1,m,σ
min{l0

msm, l
0
msm} + min

z∈Λ,s∈S 1
sσ(

n∑
j=1

hσ jz j + dσ)

>
q∑

m=1,m,σ
min{l0

msm, l
0
msm} + lσρ1

σ

=
q∑

m=1,m,σ
min{l0

msm, l
0
msm} + l0

σ ×
UBk−RLB+l0σsσ

l0σ

=

q∑
m=1,m,σ

min{l0
msm, l

0
msm} + UBk − RLB + l0

σs
σ

= RLB + UBk − RLB = UBk.

Therefore, Ŝ 1 contains no globally optimum point to the EBOP(S 0).
(b) Similarly, if l0

σ < 0, σ ∈ {1, 2, . . . , q}, then, for ∀z ∈ Λ, s ∈ Ŝ 2, we have

n∑
j=1

hm jz j + dm ≥ l0
m

and
sm ≤ sm ≤ sm,m = 1, 2, . . . , q,m , σ; l0

σ < 0, s
σ
< sσ ≤ ρ2

σ.

Thus, min
z∈Λ,s∈S 2

Ψ0(z, s) satisfies the following inequalities:

min
z∈Λ,s∈S 2

Ψ0(z, s) = min
z∈Λ,s∈S 2

q∑
m=1

sm(
n∑

j=1
hm jz j + dm)

=

q∑
m=1,m,σ

min{l0
msm, l

0
msm} + min

z∈Λ,s∈S 2
sσ(

n∑
j=1

hσ jz j + dσ)

>

q∑
m=1,m,σ

min{l0
msm, l

0
msm} + lσρ2

σ

=

q∑
m=1,m,σ

min{l0
msm, l

0
msm} + l0

σ ×
UBk − RLB + l0

σsσ
l0
σ

=

q∑
m=1,m,σ

min{l0
msm, l

0
msm} + UBk − RLB + l0

σsσ

= RLB + UBk − RLB = UBk.

Therefore, Ŝ 2 contains no globally optimum point to the EBOP(S 0). □

From Theorem 2, the constructed outer space region reduction technique gives a probability to prune
the whole rectangle S or a portion of it which contains no global optimum point of the EBOP(S 0). Next,
we will propose a novel algorithm based on the outer space branch-and-reduction scheme.
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3.2. Novel algorithm base on the outer space branch-and-reduction scheme

By combining the above affine relaxation problem and outer space region reduction technique, a
novel algorithm to globally solve the SAFFP can be described as below:

Step 0. Letting
S 0 =

{
s ∈ Rq | s0

m ≤ sm ≤ s0
m,m = 1, . . . , q

}
,

and setting ϵ ∈ [0, 1), solve the ARP
(
S 0

)
to achieve its optimum solution (z0, ŝ0) and optimum value

LB
(
S 0

)
, respectively. Simultaneously, let

LB0 = LB
(
S 0

)
, zc = z0, sc

m =
1

n∑
j=1

gm jzc
j + fm

,m = 1, . . . , q,UB0 = Ψ0 (zc, sc) .

If UB0 − LB0 ≤ ϵ, then the presented algorithm will finish with obtaining the ϵ-globally optimum
solution (zc, sc) to the EBOP(S 0) and the ϵ-globally optimum solution zc to the SAFFP.

Otherwise, set P0 =
{
S 0

}
, F = ∅, k = 1, and continue to Step 1.

Step 1. Let UBk = UBk−1, by using the dichotomy method to segment the largest edge of the
selected rectangle, and subdivide S k−1 into two q-dimensional sub-rectangles S k,1 and S k,2. Let F =
F ∪

{
S k−1

}
.

Step 2. Use the proposed outer space region reduction technique to compress the range of the
rectangle S k,α, where α = 1, 2, solve the ARP(S k,α) to obtain LB

(
S k,α

)
and its optimum solution

(zk,α, ŝk,α). Set η = 0.
Step 3. Let η = η + 1. If η > 2, then continue with Step 5. Otherwise, continue with Step 4.
Step 4. If LB

(
S k,η

)
≥ UBk, then let F = F ∪

{
S k,η

}
, and continue with Step 3.

Otherwise, let

sk,η
m =

1
n∑

j=1
gm jz

k,η
j + fm

,m = 1, 2, . . . , q,

renew the upper bound UBk+1 = min
{
UBk,Ψ0

(
zk,η, sk,η

)}
.

If UBk < Ψ0

(
zk,η, sk,η

)
, then proceed with Step 3.

If UBk = Ψ0

(
zk,η, sk,η

)
, then let zc = zk,η, (zc, sc) =

(
zk,η, sk,η

)
,

F = F
⋃
{S ∈ Pk−1 | LB(S ) ≥ UBk} ,

and proceed with Step 5.
Step 5. Let

Pk =
{
S | S ∈

(
Pk−1 ∪

{
S k,1, S k,2

})
, S < F

}
and

LBk = min {LB(S ) | S ∈ Pk} .

Step 6. Let
Pk+1 = {S | UBk − LB(S ) > ϵ, S ∈ Pk} .

If Pk+1 = ∅, then the presented algorithm will finish with obtaining the ϵ-globally optimum solution
(zc, sc) to the EBOP(S 0) and the ϵ-globally optimum solution zc to the SAFFP. Otherwise, select S k+1

satisfying that S k+1 = arg minS∈Pk+1 LB (S ) , set k = k + 1, and go back Step 1.
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3.3. Convergence analysis

In this sub-section, we will prove the convergence of the proposed algorithm by the following
theorem.
Theorem 3. For any given ϵ ∈ [0, 1). We denote zk as the obtained best solution zc of the SAFFP at
the kth iteration. If the presented algorithm finitely terminates after k iterations, then we can obtain
an ϵ-globally optimum solution (zc, sc) to the EBOP(S 0) and an ϵ-globally optimum solution zc to the
SAFFP. Otherwise, the presented algorithm will generate an infinite feasible solution sequence {zk}

with that its each gathering point is a globally optimum solution to the SAFFP.
Proof. Assume that the presented algorithm finitely finishes at the kth iteration, then: when the
algorithm terminates, (zc, ŝc) can be obtained by solving the ARP(S ) for some S ⊆ S 0, and let

sc
m =

1
n∑

j=1
gm jzc

j + fm

,m = 1, 2, . . . , q.

Obviously, zc and (zc, sc) are the feasible solutions for the SAFFP and EBOP
(
S 0

)
, respectively. Upon

termination of the presented algorithm, we have

UBk − LBk ≤ ϵ.

From Steps 0 and 4, this implies that

Ψ0 (zc, sc) ≤ LBk + ϵ.

By the bounding method, it can follow that

LBk ≤ v.

Since (zc, sc) is feasible to the EBOP
(
S 0

)
, it follows that

v ≤ Ψ0 (zc, sc) .

Combine the above several inequalities, we can get that

v ≤ Ψ0 (zc, sc) ≤ LBk + ϵ ≤ v + ϵ.

Therefore,
v ≤ Ψ0 (zc, sc) ≤ v + ϵ.

Since sc
m =

1
n∑

j=1
gm jz j+ fm

,m = 1, 2, . . . , q, we can follow that

F(zc) =
q∑

m=1

n∑
j=1

hm jzc
j + dm

n∑
j=1

gm jzc
j + fm

=

q∑
m=1

sc
m(

n∑
j=1

hm jzc
j + dm) = Ψ0(zc, sc).
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Combine the above several inequalities, we have that

v ≤ F (zc) ≤ v + ϵ.

If the presented method does not terminate in finite step, then it will create a best feasible solution
sequence

{(
zk, sk

)}
to the EBOP

(
S 0

)
.

For each k ≥ 1, for some a rectangle S k ⊆ S 0, suppose that
(
zk, ŝk

)
is obtained by solving the

problem ARP
(
S k

)
, and let

sk
m =

1
n∑

j=1
gm jzk

j + fm

,m = 1, 2, . . . , q.

Obviously,
{(

zk, sk
)}

is a feasible solution sequence to the EBOP
(
S 0

)
.

Without losing generality, we assume that z̃ is an accumulation point of the sequence
{
zk
}

with that
lim
k→∞

zk = z̃, then, due to the fact that zk is always feasible solution to the SAFFP and Λ is a nonempty
bounded compact set, we must have z̃ ∈ Λ.

Furthermore, when the presented algorithm is infinite, without loss of generality, for each k ≥ 1,
assume that S k+1 ⊆ S k. For each k ≥ 1, since the rectangles S k are generated by rectangular bisection,
by Horst and Tuy [35], then there must exist some a point s̃ ∈ Rq such that

lim
k→∞

S k =
⋂

k

S k = {s̃}. (2)

Let S̃ = {s̃} and
S k =

{
s ∈ Rq | sk

m ≤ sm ≤ sk
m,m = 1, 2, . . . , q

}
for each k ≥ 1, since S k+1 ⊂ S k ⊂ S 0, and from Step 4 of the algorithm and Remark 2, this indicates
that

{
LB

(
S k

)}
is a nondecreasing bounded sequence satisfying that LB

(
S k

)
≤ v. Thus, lim

k→∞
LB

(
S k

)
exists and meets that

lim
k→∞

LB
(
S k

)
≤ v. (3)

From Step 2 of the algorithm, for each k ≥ 0, LB
(
S k

)
is the optimum value to the ARP

(
S k

)
, and

(zk, ŝk) is the optimal solution for this problem.
From (2), it follows that

lim
k→∞

sk = lim
k→∞

sk
= {s̃} = S̃ .

By the continuity of the function
n∑

j=1
gm jz j + fm, lim

k→∞
zk = z̃, and

sk
m ≤

1
n∑

j=1
gm jzk

j + fm

≤ sk
m,

it follows that
s̃m =

1
n∑

j=1
gm jz̃ j + fm

,m = 1, 2, . . . , q.
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This indicates that (z̃, s̃) is a feasible solution to the EBOP
(
S 0

)
). Thus,

Ψ0(z̃, s̃) ≥ v. (4)

Combine (3) and (4) together, it follows that

lim
k→∞

LB
(
S k

)
≤ v ≤ Ψ0(z̃, s̃).

Since ŝk ∈ [sk, sk] and lim
k→∞

sk = lim
k→∞

sk
= {s̃}, it follows that

lim
k→∞

LB(S k) = lim
k→∞

q∑
m=1

(
∑

j∈H+m
hm jz jsk

m +
∑

j∈H−m
hm jz js

k
m) +

q∑
m=1

dm ŝk
m

=
q∑

m=1
s̃m(

n∑
j=1

hm jz̃ j + dm)

= Ψ0(z̃, s̃).

(5)

From (4), (5), and the former discussions, it can follow that

lim
k→∞

LB
(
S k

)
= v = Ψ0(z̃, s̃).

Hence, (z̃, s̃) is a globally optimum solution to the EBOP
(
S 0

)
. From equivalent conclusions of the

EBOP
(
S 0

)
and SAFFP, this indicates that z̃ is also a global optimal solution to the SAFFP.

For each k ≥ 1, since zk is the best feasible solution to the SAFFP at the kth iteration, then the upper
bound satisfies that

UBk = F
(
zk
)
.

By the function continuity of F(z), we can follow that

lim
k→∞

F
(
zk
)
= F

(
lim
k→∞

zk
)
= F(z̃).

Since z̃ is a globally optimum solution to the SAFFP, we have F(z̃) = v. Thus, we have that

lim
k→∞

UBk = lim
k→∞

F
(
zk
)
= F(z̃) = v = lim

k→∞
LBk,

and the proof of the theorem is completed. □
By the above theorem, the algorithm is convergent, then, we will analyze the computational

efficiency of the algorithm in the worst case.

3.4. Complexity results

In this sub-part, by analyzing the algorithmic complexity, we give a maximum estimation of
iterations of the outer space algorithm. First of all, for convenience, we denote the maximum size
∆(S ) of the sub-rectangle

S = {s ∈ Rq|sm ≤ sm ≤ sm,m = 1, 2, . . . , q}
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as
∆(S ) := max{sm − sm| m = 1, 2, . . . , q}.

In addition, we denote

β = max

 n∑
j=1

|hm jδ
0
j | + |dm||m = 1, 2, . . . , q

 ,
where δ0

j = max{z j| z ∈ Λ}.
Theorem 3. For any setting convergence error ϵ > 0, at iteration k, when the sub-rectangle S k

generated by the outer space branching process satisfies

∆(S k) ≤
ϵ

qβ
,

we can get that
UB − LB(S k) ≤ ϵ,

where LB(S k) is the optimum value to the ARP(S k), and UB is the currently known upper bound of
the global optimum value to the EBOP

(
S 0

)
.

Proof. Denote (zk, ŝk) as the optimum solution to the ARP(S k), and let

sk
m =

1
n∑

j=1
gm jzk

j + fm

,m = 1, 2, . . . , q,

then (zk, sk) is a feasible point of the EBOP(S k).
By the updating and computing methods of UB and LB(S k), we have that

Ψ0(zk, sk) ≥ UB ≥ LB(S k) = ΨL
0(zk, ŝk). (6)

Thus, from (1), (6), and the definitions of ∆(S k) and β, it follows that

UB − LB(S k) ≤ Ψ0(zk, sk) − ΨL
0(zk, ŝk)

= sk
m(

n∑
j=1

hm jzk
j + dm) − (

q∑
m=1

(
∑

j∈H+m
hm jsk

mzk
j +

∑
j∈H−m

hm jUk
mzk

j) +
q∑

m=1
dm ŝk

m)

=
q∑

m=1
(
∑

j∈H+m
hm j(sk

m − sk
m)zk

j −
∑

j∈H−m
hm j(sk

m − sk
m)zk

j) +
q∑

m=1
(dm(sk

m − ŝk
m))

≤
q∑

m=1
(
∑

j∈H+m
hm j(sk

m − sk
m)zk

j −
∑

j∈H−m
hm j(sk

m − sk
m)zk

j) +
q∑

m=1
(dm(sk

m − sk
m))

=
q∑

m=1
((sk

m − sk
m)(

∑
j∈H+m

hm jzk
j −

∑
j∈H−m

hm jzk
j + dm))

≤
q∑

m=1
((sk

m − sk
m)(

∑
j∈H+m

hm jδ
0
j −

∑
j∈H−m

hm jδ
0
j + |dm|))

≤
q∑

m=1
((sk

m − sk
m)(

n∑
j=1
|hm jδ

0
j | + |dm|))

≤
q∑

m=1
(∆(S k)β)

= qβ∆(S k).
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Further, from the previous inequalities and ∆(S k) ≤ ϵ
qβ , we can follow that

UB − LB(S k) ≤
q∑

m=1

(∆(S k)β) ≤ ϵ,

and the proof of the theorem is completed. ⋄

By the above Theorem 4 and Step 6 of the presented algorithm, when ∆(S k) ≤ ϵ
qβ , S k will be deleted.

Hence, when the sizes of all refined subdivision rectangle S produced by the outer space bisection
operation satisfy ∆(S ) ≤ ϵ

qβ , the proposed algorithm will be terminated. According to Theorem 4, we
may give a maximum estimation of iteration times for the proposed algorithm in this article, see the
following Theorem 4 for details.
Theorem 4. For arbitrary ϵ > 0, the presented algorithm can seek out an ϵ-globally optimum solution
to the SAFFP in at most

K = 2
q∑

m=1
⌈log2

qβ(s0
m−s0

m)
ϵ ⌉

− 1

iterations, where β is defined in the former, and S 0 =
∏q

m=1 S 0
m with S 0

m = [L0
m,U

0
m].

Proof. According to Theorem 4 and the partitioning process of the algorithm, the conclusion of the
Theorem can be easily concluded, so it is omitted. ⋄

4. Numerical experiments

In this part, we give numerical comparison results among the BARON solver [36], the algorithm
proposed in Jiao and Liu [12] which works by globally addressing an equivalent bilinear programming
problem, and our algorithm. All algorithms are coded in the software MATLAB R2014a and run on
a microcomputer with 2.50 GHz i5-7200U processor and 16 GB RAM. The maximum CPU running
time limit for all test problems is set at 3800 s. We reported the numerical result statistics for all test
Problems 1 and 2. For each randomly generated test problem, we all solved ten randomly generated test
examples and recorded their best results, their worst results and their average results, and highlighted
the winner of comparisons of their average results in bold. In the following, we firstly present these
test problems and then report their numerical comparisons.

Problem 1: 
max

p∑
i=1

n∑
j=1

hi j x j+di

n∑
j=1

gi j x j+ fi

s.t.
n∑

j=1
ak jx j ≤ bk, k = 1, 2, . . . ,m,

x j ≥ 0.0, j = 1, 2, . . . , n,

where hi j, gi j, ak j, i = 1, 2, . . . , p, k = 1, 2, . . . ,m, j = 1, 2, . . . , n, are all randomly generated in the
interval [0, 10]; bk = 10, k = 1, 2, . . . ,m, gi and hi, i = 1, 2, . . . , p, are all randomly generated in the unit
interval [0, 1]. What needs to be clearly pointed out is that, Problem 1 has the little constant number di

and fi at the numerators and denominators of ratios.
For Problem 1 with the large-size number of variables, with the convergent tolerance ϵ = 10−2,

numerical comparisons among algorithm of Jiao and Liu [12], our algorithm and BARON are reported
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in Table 1. For each random example, we solve ten independently generated instances and record the
best, the worst and the average results among these ten tests, and we highlight in bold the winner of
average results in comparison.

Problem 2:


min

p∑
i=1

n∑
j=1

hi j x j+di

n∑
j=1

gi j x j+ fi

s.t.
n∑

j=1
ak jxi j ≤ bk, k = 1, . . . ,m,

x j ≥ 0.0, j = 1, . . . , n.

where hi j, gi j ∈ [−0.1, 0.1], i = 1, . . . , p, j = 1, . . . , n, ak j ∈ [0.01, 1], j = 1, . . . , n, are all uniform
distribution random numbers; bk = 10, k = 1, . . . ,m; all constant terms di and fi of numerators and

denominators of ratios satisfying
n∑

j=1
hi jx j + di > 0 and

n∑
j=1

gi jx j + fi > 0.

For Problem 2 with the large-size number q, with the convergence tolerance ϵ = 10−3, numerical
comparisons between our algorithm and BARON are reported in Table 2. In Tables 1 and 2, “−” stand
for the condition that the used algorithm failed to seek out the globally optimum solution to some of
ten random examples in 3800s.

From Table 1, for Problem 1 with large-size number of variables, we firstly can observe that the
BARON solver takes more time than our algorithm proposed in this article, despite its number of
iterations for the BARON solver is smaller. Secondly, our algorithm is obviously better than the
BARON solver and the algorithm of Jiao and Liu [12]. The iteration number of our algorithm proposed
in this article is much less than the algorithm of Jiao and Liu [12]. Especially, when q = 2 and n = 8000,
the BARON solver failed to seek out the globally optimum solution to each of ten random examples
in 3800s, but our outer space searching algorithm can achieve the globally optimum solution to all ten
random examples of Problem 1 with higher computational efficiency and performance.

From Table 2, for Problem 2 with the large-size number q, we observe that, when q = 10, 15 and
n = 500, 600, and q = 20 and n = 400, 500, the BARON solver failed to terminate in 3800s for each
one of ten independently generated instances, but our outer space searching algorithm in this paper can
seek out the globally optimum solution to all ten independently generated instances within a reasonable
time, this demonstrate the strong robustness and reliable stability of our algorithm.
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Table 1. Comparisons of numerical results among the algorithm of Jiao and Liu [12], the
BARON solver and our algorithm in this article on Problem 1 with q = 2 and n = 100.

n Algorithms
Iterations Time(s)

Min Ave Max Min Ave Max

1000 Jiao and Liu [12] 25 81.7 142 20.05 70.78 122.97
BARON 1 1.8 3 20.36 42.02 86.48
Ours 29 98.3 178 18.89 59.67 107.69

2000 Jiao and Liu [12] 28 108.7 222 51.92 205.71 441.71
BARON 1 1.2 3 77.42 279.01 478.45
Ours 32 105.9 199 43.16 152.34 285.78

3000 Jiao and Liu [12] 46 82.7 153 136.07 239.74 459.27
BARON 1 1.4 5 214.25 587.91 1198.08
Ours 47 109.6 189 92.51 236.23 465.73

4000 Jiao and Liu [12] 56 74.6 110 225.69 290.80 429.96
BARON 1 1.8 5 527.52 1408.32 2671.62
Ours 37 80.5 146 97.79 224.18 439.39

5000 Jiao and Liu [12] 40 104.8 244 186.21 530.14 1244.53
BARON 1 1.2 3 920.05 1083.93 1408.27
Ours 52 80.3 121 180.41 291.78 453.67

6000 Jiao and Liu [12] 67 93.5 146 431.38 611.27 969.71
BARON 1 1 1 1392.75 1909.50 2518.44
Ours 27 94.4 185 111.42 422.56 849.12

7000 Jiao and Liu [12] 31 81.7 184 217.49 615.68 1290.42
BARON 1 1 1 2253.22 2778.35 3727.55
Ours 26 74.9 160 130.01 395.59 835.53

8000 Jiao and Liu [12] 32 84.9 139 276.25 802.90 1323.32
BARON − − − − − −

Ours 25 71.5 111 145.40 452.78 712.18
10000 Jiao and Liu [12] 35 76.6 112 405.80 933.54 1414.22

BARON − − − − − −

Ours 42 69.5 96 329.85 585.72 826.81
20000 Jiao and Liu [12] 41 69.4 105 1239.04 2216.69 3495.84

BARON − − − − − −

Ours 35 69.5 140 691.74 1551.82 3343.63
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Table 2. Comparisons of numerical results between the BARON solver and our algorithm
on Problem 2.

(q, µ, n) Algorithms
Number of iterations Time(s)

Min Ave Max Min Ave Max

(10,100,300) BARON 3 9.2 13 8.28 12.66 17.64
Ours 200 220.8 269 112.49 122.92 139.39

(10,100,400) BARON 9 35.8 93 22.28 30.86 42.33
Ours 203 218.2 236 131.94 144.23 161.48

(10,100,500) BARON − − − − − −

Ours 197 221.1 273 163.62 184.40 222.16
(10,100,600) BARON − − − − − −

Ours 199 216.6 255 191.31 202.13 230.07
(15,100,300) BARON 5 10.4 17 15.66 24.24 38.45

Ours 375 559.2 1032 219.29 293.51 492.41
(15,100,400) BARON 11 34 157 36.14 47.92 79.81

Ours 342 453.1 734 247.01 317.91 513.57
(15,100,500) BARON − − − − − −

Ours 376 616.9 1075 323.77 501.02 858.10
(15,100,600) BARON − − − − − −

Ours 382 593.1 1004 390.22 578.89 970.74
(20,100,200) BARON 15 17 19 17.84 20.50 26.39

Ours 929 1634.6 4332 406.10 662.12 1611.65
(20,100,300) BARON 5 14 17 22.53 36.14 51.11

Ours 787 1401.3 2215 477.65 758.77 1115.45
(20,100,400) BARON − − − − − −

Ours 628 1804.8 3688 464.02 1344.29 2805.79
(20,100,500) BARON − − − − − −

Ours 974 1820 3246 885.26 1574.39 2739.26

5. Conclusions

By combining the outer space branch searching scheme, the constructed affine relaxation problem,
and the outer space region reduction technique, we design a novel algorithm to efficiently solve the
SAFFP. In contrast to the known existing algorithms, by analysing the algorithmic complexity, we
can get that the proposed algorithm in this paper can achieve an ϵ-global optimum solution of the

SAFFP after at most 2
q∑

m=1
⌈log2

qβ(s0
m−s0

m)
ϵ ⌉

− 1 iterations. Finally, numerical comparison results are given
to demonstrate better computational performance of the proposed algorithm in this paper. In the
future work, we will extend our algorithm to globally solve generalized linear fractional programming
problem.
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