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1. Introduction

The weighted linear complementarity problem (WLCP) is to find a pair of vectors belonging to the
intersection of a manifold with a cone, such that their product equals a given weight vector. Many
equilibrium problems can be modeled as a nonlinear complementarity problem (CP) [1] or a WLCP.
The latter may lead to some highly efficient algorithms for solving the corresponding equilibrium
problems [2]. It is shown that the Fisher market equilibrium problem [3] can be reformulated as
a WLCP. What is more, when the weight vector is a zero vector, a WLCP reduces to a linear
complementarity problem (LCP). It should be mentioned that the analysis of WLCP becomes more
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difficult than the theory of LCP. Now, we summarize some versions of WLCP. In 2016, Potra [4]
introduced the sufficient WLCP, generalized the characterization of the sufficient LCP to the sufficient
WLCP and then presented a corrector-predictor interior point algorithm (IPA) for its numerical
solution. Zhang [5] gave a smoothing Newton algorithm [6] for solving monotone WLCP and proved
its global and local convergence. In [7], a variant nonmonotone smoothing algorithm was proposed
by Tang for solving monotone WLCP. He and Tang [8] introduced a Levenberg-Marquardt method
for WLCP. Recently, Chi, Gowda and Tao [9] presented some existence and uniqueness results for
weighted horizontal linear complementarity problem (WHLCP) in the setting of Euclidean Jordan
algebras.

IPA can be extended for solving WLCP. Since Karmarkar [10] presented the well-known IPA, which
becomes one of the most effective algorithms for optimization. Asadi et al. [11] proposed a full-
Newton step IPA for monotone weighted linear complementarity problems (MWLCP) and proved that
this algorithm has a quadratic rate of convergence to the target point on the central path. In 2021,
Chi and Wang [12] presented a full-Newton step infeasible interior-point method (IIPM) for a special
WLCP [13] over the nonnegative orthant.

The IPA based on kernel functions is a popular algorithm in optimization. In this IPA, kernel
functions are used to define the search directions and measure the distance to the central path. Darvay
presented a new technique for finding search directions for LP problems [14], namely the algebraic
equivalent transformation (AET). The most frequently used function in AET technology is the identity
map. The idea of this method is to apply a continuously differentiable φ on the centering equation of
the central path problem. Darvay [14] used the square root function for constructing search directions.
Based on a search direction generated by considering the function φ(t) =

√
t

2(1+
√

t)
in the AET, Kheirfam

and Haghighi [15] defined IPA for P∗(κ)-LCPs. In 2020, Darvay et al. [16] used the function φ(t) =
t−
√

t for solving P∗(κ)-LCPs in the AET method. Recently, he considered the kernel function φ(t) = t2

in the new AET v2 = v and proposed a predictor-corrector (PC) IPA [17] for P∗(κ)-LCP. Based on
a simple locally-kernel function, Zhang et al. [18] proposed a full-Newton step infeasible IPA for
monotone linear complementarity problems (MLCP), which obtains the same search directions as [14].
In 2012, Mansouri and Pirhaji [19] considered a continuously differentiable kernel function φ(t) =

√
t

based on Darvay’s technique [14] for linear optimization (LO), and they proposed an IPA for MLCP.
Motivated by the aforementioned work, in this paper we consider a PC IPA for P∗(κ)-WLCP. We use

AET technology for the system of central path based on the function φ(t) =
√

t. By applying Newton’s
method to the transformed system, the search directions are obtained. We prove the global convergence
of the algorithm and derive the iteration bound. Our algorithm has the following properties: (1) Our
algorithm is well-defined and a solution of P∗(κ)-WLCP can be obtained from a sequence of feasible
point of the problem. (2) No line-searches are needed at each iteration. (3) It is shown that our
algorithm is convergent.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the search directions
of the PC IPA for P∗(κ)-WLCP. The convergence analysis and the iteration bound of the algorithm are
shown in Sect. 3. In Sect. 4, we present some numerical results. Finally, some conclusions are given
in Sect. 5.

The symbols used throughout the paper are as follows. Rn
+ (Rn

++) represents the non-negative
(positive) orthant on Rn. The vector of all ones is denoted by e. As usual, ∥ · ∥ and ∥ · ∥∞ denote
the Euclidean and the infinity norms for vectors, respectively. For two given vectors x, y ∈ Rn, the
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inner product is defined as xT y =
n∑

i=1

xiyi. We shall also use the notation xy = (xiyi)1≤i≤n. Similarly,

the coordinate-wise division of vectors x, y is defined as x/y = (xi/yi)1≤i≤n, where yi (1 ≤ i ≤ n) is
non-zero. min v = min{vi : i = 1, 2, ..., n} (max v = max{vi : i = 1, 2, ..., n}) is the smallest (maximum)
element of a vector v.

2. A PC IPA for P∗(κ)-WLCP

In this section, we give the central path and search directions for P∗(κ)-WLCP. We consider the
AET v2 = e for defining search directions. We define the proximity measure in order to measure the
distance from the iteration point to the central path.

2.1. The central path and search directions for P∗(κ)-WLCP

For a given matrix M ∈ Rn×n and a vector q ∈ Rn, the P∗(κ)-WLCP in Rn consists in finding a pair
vectors (x, s) ∈ Rn × Rn such that [

−Mx + s
xs

]
=

[
q
ω

]
, x, s ≥ 0, (2.1)

where ω ∈ Rn
++ is a given weight vector. For a nonnegative number κ, we call that M is a P∗(κ)-

matrix [20] if
(1 + 4κ)

∑
i∈I+

xi (Mx)i +
∑
i∈I−

xi (Mx)i ≥ 0, ∀x ∈ Rn,

where I+(x) = {i : xi (Mx)i > 0}, I−(x) = {i : xi (Mx)i < 0}. The handicap of the matrix M is defined as:
κ̂(M) := min{κ : κ ≥ 0,M is P∗(κ) −matrix}. When κ = 0, a P∗(0)-WLCP reduces to a MWLCP.

Let F = {(x, s)| −Mx+ s = q, x ≥ 0, s ≥ 0} denote the set of all feasible solutions of P∗(κ)-WLCP.
Define the strictly feasible region of P∗(κ)-WLCP (2.1) as

F 0 = {(x, s) ∈ F |x > 0, s > 0} .

It is proved in [4] that if WLCP is not only monotone but also strictly feasible, then it has a solution.
Choosing a strictly feasible initial point

(
x0, s0

)
∈ F 0 such that x0s0 ≥ ω, we define

ω(t) = tx0s0 + (1 − t)ω, (2.2)

where t ∈ (0, 1]. The central path [14] of P∗(κ)-WLCP (2.1) is formed by the unique solution of the
system: [

−Mx + s
xs

]
=

[
q
ω(t)

]
, x, s ≥ 0. (2.3)

System (2.3) has a solution if the interior-point condition (IPC) holds [21], i.e., there exists a strictly
feasible solution

(
x0, s0

)
∈ F 0. Furthermore, if t tends to zero, system (2.3) reduces to (2.1). Then we

obtain a solution of P∗(κ)-WLCP (2.1).
Now, we present the search directions for P∗(κ)-WLCP. Define the notations

v =
√

xs
ω(t)
, dx =

v∆x
x
, ds =

v∆s
s
, d =

√
x
s
. (2.4)
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Let us consider the continuously differentiable function φ : Rn → Rn and suppose that the inverse
function φ−1 exists. We use the AET:

xs = ω(t)⇔
xs
ω(t)

= e⇔ v2 = e.

Therefore, system (2.3) can be written as −Mx + s

φ

(
xs
ω(t)

)  =
[

q
φ(e)

]
, x, s ≥ 0. (2.5)

For t ∈ (0, 1], consider the following function

f (x, s) =

 −Mx + s − q

φ

(
xs
ω(t)

)
− φ(e)

 .
We can see that system (2.5) is equivalent to f (x, s) = 0. Using Newton’s method, we obtain

J f (x, s)
[
∆x
∆s

]
= − f (x, s),

where J f (x, s) denotes the Jacobian matrix of f . After some simple calculations, we have the Newton’s
system:  −M∆x + ∆s

s
ω(t)
φ′

(
xs
ω(t)

)
∆x +

x
ω(t)
φ′

(
xs
ω(t)

)
∆s

 =
 0

φ(e) − φ
(

xs
ω(t)

)  , x, s ≥ 0, (2.6)

where ∆x and ∆s are search directions. Substituting relation (2.4) into system (2.6), we get[
−Mdx + ds

dx + ds

]
=

[
0
pv

]
, (2.7)

where M =
√

W(t)−1DMD
√

W(t), D = diag(d), W(t) = diag(ω(t)) and pv =
φ(e) − φ(v2)

vφ′(v2)
. By

choosing function φ(t) appropriately, the system (2.7) can be used to define a class of search directions.
For example:
• φ(t) = t gives the classical search directions [21] pv = v−1 − v.
• φ(t) =

√
t

2(1+
√

t)
gives the search directions pv = e − v2 which used by Kheirfam in [15].

• φ(t) = t −
√

t gives the search directions pv =
2(v−v2)

2v−e which used by Darvay in [16].
In this paper, we consider the function φ(t) =

√
t [14]. Thus, from system (2.7), we have pv =

2(e− v). We define the distance from the current iteration point (x, s) to the central path as a proximity
measure

δ(v) = δ(x, s;ω(t)) =
∥pv∥

2
= ∥e − v∥. (2.8)

For (x, s) ∈ F 0, we have
δ(x, s;ω(t)) = 0⇔ e = v⇔ xs = ω(t).
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Hence, δ(v) can be considered as a measure from point (x, s) to the central path. Lemma 1 gives a
bound for the component of v, which will be used in the proof of the feasibility.
Lemma 1. ([22]) For any v ∈ Rn, we have

1 − δ(v) ≤ vi ≤ 1 + δ(v), i = 1, · · ·, n.

2.2. The corrector step and predictor step

In this subsection, we give the search directions for P∗(κ)-WLCP. We compute (∆x,∆s) from (2.7)
by using (2.4). The corrector step is x+ = x + ∆x, s+ = s + ∆s. To simplify the analysis, we define

qv = dx − ds.

Then

dx =
pv + qv

2
, ds =

pv − qv

2
, dxds =

p2
v − q2

v

4
. (2.9)

Define

v+ =
√

x+s+

ω(t)
, d+ =

√
x+

s+
, D+ = diag(d+), M+ =

√
W(t)−1D+MD+

√
W(t).

The predictor system is [
−M+d

p
x + dp

s

dp
x + dp

s

]
=

[
0
−2v+

]
. (2.10)

Then we obtain the search directions (∆px,∆ps) from

∆px =
x+

v+
dp

x , ∆
ps =

s+

v+
dp

s . (2.11)

After a predictor step, the new iterate is

(xp, sp) = (x+, s+) + θt(∆px, ∆ps), (2.12)

where θ is a update parameter.
Now, we give a PC IPA for P∗(κ)-WLCP in details. For a given weight vector ω > 0, we choose

a strictly feasible initial point (x0, s0) such that x0s0 ≥ ω. The update parameter is θ ∈
(
0, 1

2

)
. Our

PC IPA takes one corrector step and one predictor step in a main iteration. The corrector step stays
in the neighbourhood of the central path. In the corrector step, we take a full-Newton step. We apply
Newton’s method to system (2.7) and then obtain a search direction (∆x,∆s) of the corrector step for
P∗(κ)-WLCP from (2.4). The goal of the predictor step is to reach optimality. We can calculate the
predictor search directions (∆px,∆ps) from (2.10) and (2.11). In order to determine the new search
directions, the presented PC IPA applies the kernel function φ(t) =

√
t to the equation v2 = e. The

stopping criterion is ∥xksk − ω∥ ≤ ε, where ε > 0 is an accuracy parameter. The framework of our
algorithm is described as Algorithm 1.

3. Analysis of PC IPA for P∗(κ)-WLCP

In this section, we analyze that Algorithm 1 is well-defined. Then we establish an upper bound
for the value of proximity measure after a full-Newton step. We show that Algorithm 1 can solve
P∗(κ)-WLCP in polynomial complexity.
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Algorithm 1. A PC IPA for P∗(κ)-WLCP

Input
Accuracy parameter ε > 0;
Update parameter θ ∈

(
0, 1

2

)
;

Let (x0, s0) ∈ F 0, where δ(x0, s0;ω(t0)) ≤ t0
2(1+4κ′) with t0 = 1;

Set k := 0;
begin
x := x0, s := s0; t := t0;

while ∥xksk − ω∥ > ε do
begin

(corrector step)
obtain (∆x,∆s) by solving the system (2.7) and using (2.4);
let x+ := x + ∆x, s+ := s + ∆s;
(predictor step)
obtain (∆px,∆ps) by solving the system (2.10) and using (2.11);
let xp := x+ + θt∆px, sp := s+ + θt∆ps;
set ωp(t) := (1 − 2θt)ω(t), tp := (1 − 2θ)t;
xk := xp, sk := sp; ω(t) = ωp(t); t := tp; k := k + 1;

end
end

3.1. Feasibility of algorithm

In the following, Lemma 2 gives the estimates of dT
x ds and ∥dxds∥∞ which are important for

analyzing the feasibility of Algorithm 1. After a corrector step, we define the new point as x+ =
x + △x, s+ = s + ∆s.
Lemma 2. (c. f . [20, 23]) Let δ = δ(x, s;ω(t)) and x0s0 ≥ ω. Then the following inequality holds:

∥qv∥
2
≤ 4(1 + 4κ′)δ2, − 4κ′δ2 ≤ dT

x ds ≤ δ
2, ∥dxds∥∞ ≤ (1 + 4κ′)δ2,

where κ′ =
(1 + 4κ) max(x0s0) −minω

4 minω
and κ′ is the handicap of the matrix M.

Lemma 3. Let x0s0 ≥ ω. The iterate (x+, s+) is positive if δ <
1

√
2 + 4κ′

.

Proof. For any α ∈ [0, 1], let x(α) = x + α∆x, s(α) = s + α∆s. By (2.4), we get

x(α) =
√
ω(t)

√
x
s

(v + αdx), s(α) =
√
ω(t)

√
s
x

(v + αds).

From the second equation in (2.7), it follows that

x(α)s(α) = ω(t)(v + αdx)(v + αds)

= ω(t)
[
(1 − α)v2 + α

(
v2 + vpv

)
+ α2dxds

]
. (3.1)
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Since pv = 2(e − v), we have for any α ∈ [0, 1]

x(α)s(α) = ω(t)
[
(1 − α)v2 + α

(
−v2 + 2v

)
+ α2dxds

]
≥ ω(t)

[
(1 − α)v2 + α2

(
−v2 + 2v + dxds

)]
. (3.2)

By Lemma 1, we have −v2 + 2v ≥ e − δ2e. Now we obtain from (3.2) and Lemma 2

x(α)s(α) ≥ ω(t)
[
(1 − α)v2 + α2

(
e − δ2e + dxds

)]
≥ ω(t)

[
(1 − α)v2 + α2

(
1 − δ2 − ∥dxds∥∞

)
e
]

≥ ω(t)
[
(1 − α)v2 + α2

(
1 − δ2 − (1 + 4κ′)δ2

)
e
]

= ω(t)
[
(1 − α)v2 + α2

(
1 − (2 + 4κ′)δ2

)
e
]
.

Thus, for 0 ≤ α ≤ 1, none of the entries of x(α) and s(α) vanishes if δ <
1

√
2 + 4κ′

. Since x(α) and s(α)

are both linear functions of α and x(0) = x0 > 0, s(0) = s0 > 0, this implies that x(α) > 0, s(α) > 0.
Hence, x+ = x(1) > 0 and s+ = s(1) > 0. The proof is complete.

Lemma 3 shows that after the predictor step, both x+ and s+ are strictly feasible. The next lemma
gives an upper bound on

∥∥∥e − v2
+

∥∥∥.

Lemma 4. Let v+ =
√

x+s+

ω(t)
and x0s0 ≥ ω. If δ = δ(x, s;ω(t)) <

1
√

2 + 4κ′
, then∥∥∥e − v2

+

∥∥∥ ≤ (1 + 4κ′)δ2.

Proof. By (2.7), (2.9) and (3.1), we obtain

e − v2
+ = e − v2 − vpv −

p2
v − q2

v

4

= e −
(
v +

pv

2

)2
+

q2
v

4

=
q2

v

4
. (3.3)

It follows from (3.3) and Lemma 2 that∥∥∥e − v2
+

∥∥∥ = ∥∥∥q2
v

∥∥∥
4
≤
∥qv∥

2

4
≤ (1 + 4κ′)δ2. (3.4)

3.2. Convergence of algorithm

In this subsection, we investigate the upper bound of the proximity measure after a corrector step
and a predictor step. Then we show the convergence of Algorithm 1. First, we give an upper bound for
δ(v+) after a full-Newton step when ω(t) is fixed.

Lemma 5. Let δ(v+) = δ(x+, s+;ω(t)) and x0s0 ≥ ω. If δ = δ(x, s;ω(t)) <
1

√
2 + 4κ′

, then

δ(v+) ≤
(1 + 4κ′)δ2

1 +
√

1 − (1 + 4κ′)δ2
.
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Proof. We have by (2.8)

δ(v+) = ∥e − v+∥ =

∥∥∥∥∥∥e − v2
+

e + v+

∥∥∥∥∥∥ ≤
∥∥∥∥∥ e

e + v+

∥∥∥∥∥
∞

∥∥∥e − v2
+

∥∥∥ . (3.5)

Then, we will provide an upper bound for
∥∥∥∥∥ e

e + v+

∥∥∥∥∥
∞

. From (3.3) and (3.4), we obtain

min v2
+ = min

(
e −

q2
v

4

)
≥ 1 −

∥∥∥∥∥∥q2
v

4

∥∥∥∥∥∥
∞

≥ 1 −
∥qv∥

2

4
≥ 1 − (1 + 4κ′)δ2. (3.6)

It follows from (3.6) that
min v+ ≥

√
1 − (1 + 4κ′)δ2,

which implies ∥∥∥∥∥ e
e + v+

∥∥∥∥∥
∞

≤
1

1 +min v+
≤

1

1 +
√

1 − (1 + 4κ′)δ2
. (3.7)

According to (3.5), (3.7) and Lemma 4, we derive that

δ(v+) ≤
(1 + 4κ′)δ2

1 +
√

1 − (1 + 4κ′)δ2
.

This completes the proof of the lemma.

Let vp =

√
xpsp

ωp(t)
with ωp(t) = (1 − 2θt)ω(t). In the following lemma, we give an upper bound of

proximity measure after a predictor step with ω(t) updated.
Lemma 6. ([24]) Let x0s0 ≥ ω. One has∥∥∥dp

x dp
s

∥∥∥ ≤ 2(1 + 2κ′) ∥v+∥2 .

Lemma 7. Let δ <
1

√
2 + 4κ′

and x0s0 ≥ ω, then

∥∥∥dp
x dp

s

∥∥∥ ≤ 2n(1 + 2κ′)
[
1 + (1 + 4κ′)δ2

]
.

Proof. From (3.2) with α = 1, we have

∥v+∥2 =
n∑

i=1

(
−v2

i + 2vi + dxidsi

)
.

Let g(λ) = −λ2 + 2λ, then g′(λ) = −2λ + 2. When δ <
1

√
2 + 4κ′

, it follows from Lemma 1 that

0 < vi < 2 and g(λ) ≤ g(1) = 1. By Lemma 2, we get

∥v+∥2 ≤ n +
n∑

i=1

∣∣∣dxidsi

∣∣∣ ≤ n + n ∥dxds∥∞ ≤ n
[
1 + (1 + 4κ′)δ2

]
.
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Using Lemma 6, we obtain the desired result.

Lemma 8. Let x+ > 0, s+ > 0, x0s0 ≥ ω and θ <
1

2
√

2n(1 + 2κ′)
with n ≥ 2. If δ <

1
√

3(1 + 4κ′)
, then

xp > 0, sp > 0.
Proof. Let us define

xp(α) = x+ + αθt∆px, sp(α) = s+ + αθt∆ps,

for 0 ≤ α ≤ 1. We have from (2.12)

xp(α) =
x+

v+
(v+ + αθtdp

x ), sp(α) =
s+

v+
(v+ + αθtdp

s ).

Therefore, using system (2.10) we obtain

xp(α)sp(α) = ω(t)
[
v2
+ + αθtv+(d

p
x + dp

s ) + α2θ2t2dp
x dp

s

]
= ω(t)

[
(1 − 2αθt)v2

+ + α
2θ2t2dp

x dp
s

]
, (3.8)

which implies that

min
xp(α)sp(α)
ω(t)(1 − 2αθt)

≥ min v2
+ −

α2θ2t2

1 − 2αθt

∥∥∥dp
x dp

s

∥∥∥
∞

≥ min v2
+ −

θ2t2

1 − 2θt

∥∥∥dp
x dp

s

∥∥∥ . (3.9)

Combining (3.6), (3.9) and Lemma 7 yields that

min
xp(α)sp(α)
ω(t)(1 − 2αθt)

≥ 1 − (1 + 4κ′)δ2 −
2n(1 + 2κ′)θ2t2

1 − 2θt

[
1 + (1 + 4κ′)δ2

]
= h(δ, θ, n). (3.10)

Now we give the strict positivity of h(δ, θ, n). Let n ≥ 2, θ <
1

2
√

2n(1 + 2κ′)
and δ <

1
√

3(1 + 4κ′)
, we

have

h(δ, θ, n) ≥ 1 −
1
3
−

2n(1 + 2κ′)θ2t2

1 − 2θt

(
1 +

1
3

)
≥

2
3
−

√
2n(1 + 2κ′)

3
(√

2n(1 + 2κ′) − 1
)

> 0.

The second inequality follows from the fact that f (γ) =
2γ2

1 − 2γ
is increasing for 0 < γ <

1
2

.

Then h(δ, θ, n) > 0 with κ′ ≥ 0 and n ≥ 2. This implies that xp(α)sp(α) > 0 for 0 ≤ α ≤ 1 and

0 < θ <
1

2
√

2n(1 + 2κ′)
. Hence xp(α) > 0 and sp(α) > 0 for all 0 ≤ α ≤ 1. Using xp(0) = x+ > 0 and

sp(0) = s+ > 0, we have xp(1) = xp > 0 and sp(1) = sp > 0.
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In the next lemma, we investigate the value of the proximity measure after a predictor step.

Lemma 9. Let x0s0 ≥ ω, δ <
1

√
3(1 + 4κ′)

and ωp(t) = (1 − 2θt)ω(t) with θ <
1

2
√

2n(1 + 2κ′)
, then

δ(vp) := δ(xp, sp;ωp(t)) ≤ 1 −
√

h(δ, θ, n),

where h(δ, θ, n) = 1 − (1 + 4κ′)δ2 −
2n(1 + 2κ′)θ2t2

1 − 2θt

[
1 + (1 + 4κ′)δ2

]
.

Proof. By the definition of δ(v), we get

δ(vp) = ∥e − vp∥ ≤

∥∥∥e − (vp)2
∥∥∥

1 +min vp . (3.11)

We first estimate an lower bound on the component of vp. By (3.10), we obtain

min(vp)2 = min
xpsp

(1 − 2θt)ω(t)
≥ h(δ, θ, n),

which implies
min vp ≥

√
h(δ, θ, n). (3.12)

Using (3.8), we have∥∥∥e − (vp)2
∥∥∥ = ∥∥∥∥∥∥e − v2

+ −
θ2t2

1 − 2θt
dp

x dp
s

∥∥∥∥∥∥ ≤ ∥∥∥e − v2
+

∥∥∥ + θ2t2

1 − 2θt

∥∥∥dp
x dp

s

∥∥∥ .
It follows from Lemma 4, Lemma 7 and (3.10) that

∥∥∥e − (vp)2
∥∥∥ ≤ (1 + 4κ′)δ2 +

2n(1 + 2κ′)θ2t2
[
1 + (1 + 4κ′)δ2

]
1 − 2θt

= 1 − h(δ, θ, t). (3.13)

Combining (3.11)–(3.13) yields that

δ(vp) ≤
1 − h(δ, θ, t)

1 +
√

h(δ, θ, t)
= 1 −

√
h(δ, θ, t).

Lemma 10. Let x0s0 ≥ ω, tp = (1 − 2θ)t and θ ≤
2 − t

8(1 + 4κ′)
√

n
with n ≥ 2. If δ(v) ≤

t
2(1 + 4κ′)

, then

δ(vp) ≤
tp

2(1 + 4κ′)
.

Proof. From Lemma 9, it follows that δ(vp) ≤
tp

2(1 + 4κ′)
holds, if

1 −
√

h(δ, θ, t) ≤
(1 − 2θ)t
2(1 + 4κ′)

.

Then, we have

(1 − 2θ)2t2

4(1 + 4κ′)2 −
(1 − 2θ)t
1 + 4κ′

+ (1 + 4κ′)δ2 +
2n(1 + 2κ′)θ2t2

1 − 2θt

[
1 + (1 + 4κ′)δ2

]
≤ 0. (3.14)
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Since δ(v) ≤
t

2(1 + 4κ′)
and θmax =

1
4(1 + 4κ′)

√
n
≤

1

4
√

2
, we obtain from (3.14) that

(1 − 2θ)3t − 4(1 − 2θ)2 + (1 − 2θ)t + 8θ2tn(1 + 2κ′)(1 + 4κ′)
[
1 +

t2

4(1 + 4κ′)

]
≤ (1 − 2θ)3 − 4(1 − 2θ)2 + (1 − 2θ) + 2θ2n

[
4(1 + 2κ′)(1 + 4κ′) + (1 + 2κ′)

]
≤ −8θ3 − 4θ2 + 8θ − 2 + 10θ2n(1 + 4κ′)2

≤ −8
(

1

4
√

2

)3

− 4
(

1

4
√

2

)2

+ 8
(

1

4
√

2

)
− 2 + 10θ2maxn(1 + 4κ′)2

≤ 1.2451 − 2 + 0.625
= −0.1299.

Here the third inequality follows from the fact that −8θ3 − 4θ2 + 8θ is increasing for 0 < θ ≤
1

4
√

2
.

Then (3.14) holds, which implies the result.

3.3. Complexity bound

In this subsection, we will give an upper bound of iterations for Algorithm 1. We first examine the
value of Gap=∥xs − ω∥.

Lemma 11. Let x0s0 ≥ ω. If δ(v) ≤
t

2(1 + 4κ′)
and θ ≤

2 − t
8(1 + 4κ′)

√
n

with n ≥ 2, then

∥xpsp − ω∥ ≤

[
17

16(1 + 4κ′)
max

(
x0s0

)
+

∥∥∥x0s0 − ω
∥∥∥] t,

where t ∈ (0, 1].
Proof. From (2.2), (3.13) and x0s0 ≥ ω, we have

∥xpsp − ω∥ ≤ ∥xpsp − ωp(t)∥ + ∥ωp(t) − ω(t)∥ + ∥ω(t) − ω∥

≤
∥∥∥e − (vp)2

∥∥∥ ∥ωp(t)∥∞ + 2θt ∥ω(t)∥ +
∥∥∥x0s0 − ω

∥∥∥ t

≤

(1 + 4κ′)δ2 +
2n(1 + 2κ′)θ2t2

[
1 + (1 + 4κ′)δ2

]
1 − 2θt

+ 2θ
√

nt

 max
(
x0s0

)
+

∥∥∥x0s0 − ω
∥∥∥ t.

Suppose that δ(v) ≤
t

2(1 + 4κ′)
. Due to the fact that θmax =

1
4(1 + 4κ′)

√
n
≤

1

4
√

2
and t ∈ (0, 1], we

obtain

∥xpsp − ω∥ ≤

{
t

4(1 + 4κ′)
+

2n(1 + 2κ′)θ2t
1 − 2θt

[
1 +

t2

4(1 + 4κ′)

]
+ 2θ
√

n
}

max
(
x0s0

)
t +

∥∥∥x0s0 − ω
∥∥∥ t

≤

 1
4(1 + 4κ′)

+
2n(1 + 2κ′)

16n(1 + 4κ′)2 ·
1

1 − 1
2
√

2

·

[
1 +

1
4(1 + 4κ′)

]
+

1
2(1 + 4κ′)

 max
(
x0s0

)
t

+
∥∥∥x0s0 − ω

∥∥∥ t
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<

[
1

4(1 + 4κ′)
+

1
8(1 + 4κ′)

· 2 ·
5
4
+

1
2(1 + 4κ′)

]
max

(
x0s0

)
t +

∥∥∥x0s0 − ω
∥∥∥ t

≤
17

16(1 + 4κ′)
max

(
x0s0

)
+

∥∥∥x0s0 − ω
∥∥∥ .

Here the third inequality holds because
1

1 − 1
2
√

2

<
1

1 − 1
2

= 2 and 1 +
1

4(1 + 4κ′)
≤

5
4

. This completes

the proof of the lemma.
Lemma 12 provides an upper bound for the number of iterations generated by Algorithm 1.

Theorem 12. Let (x0, s0) ∈ F 0, x0s0 ≥ ω and θ ≤
2 − t

8(1 + 4κ′)
√

n
with n ≥ 2. Then Algorithm 1

provides an ε-optimal solution of the P∗(κ)-WLCP (2.1) after at most

O

(1 + 4κ′)
√

n log

17
16(1 + 4κ′)

max
(
x0s0

)
+

∥∥∥x0s0 − ω
∥∥∥

ε


iterations.
Proof. Let t0 = 1 and t+ = (1 − 2θ)t. From Lemma 11, we obtain

∥∥∥xksk − ω
∥∥∥ ≤ [

17
16(1 + 4κ′)

max
(
x0s0

)
+

∥∥∥x0s0 − ω
∥∥∥] tk−1

≤

[
17

16(1 + 4κ′)
max

(
x0s0

)
+

∥∥∥x0s0 − ω
∥∥∥] (1 − 2θmin)k−1.

The inequality
∥∥∥xksk − ω

∥∥∥ ≤ ε holds if[
17

16(1 + 4κ′)
max

(
x0s0

)
+

∥∥∥x0s0 − ω
∥∥∥] (1 − 2θmin)k−1 ≤ ε. (3.15)

Taking logarithms of both sides and using the inequality log(1 − ξ) ≤ −ξ, (3.15) holds if

k ≥
1

2θmin
log

17
16(1 + 4κ′)

max
(
x0s0

)
+

∥∥∥x0s0 − ω
∥∥∥

ε
+ 1.

Then Algorithm 1 finds an ε-optimal solution in at most
1

2θmin
log

17
16(1 + 4κ′)

max
(
x0s0

)
+

∥∥∥x0s0 − ω
∥∥∥

ε

 + 1

iterations. Since t ∈ (0, 1] and θmin =
1

8(1 + 4κ′)
√

n
, the proof is straightforward.
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4. Numerical examples

In this section, we present some numerical results of P∗(κ)-WLCPs to show the effectiveness of
Algorithm 1. All the experiments were performed on a personal computer with Intel(R) Core(TM)
i5-10210U CPU @2.11 GHz 8.00GB memory. The operating system was Windows 10 and the
implementations were done in MATLAB (R2018a). In the implementation of Algorithm 1, let
x0s0 ≥ ω, accuracy parameter ε = 10−5 and Gap= ∥xs − ω∥.
Example 1. [25] Consider the P∗(κ)-WLCP (2.1) in R4×4, where

M =


2 1 1 1
1 2 0 1
1 0 1 2
−1 −1 −2 0

 , q = [−4 − 3 − 3 5]T , ω = rand(4, 1).

The strictly feasible initial point for Algorithm 1 is x0 = s0 = [1 1 1 1]T . We set the update
parameter θ = 0.1. The unique solution of Example 1 is

x∗ = [1.3091 0.6449 0.8426 1.3953],

s∗ = [0.5903 1.0682 0.1496 0.6438],

which takes 0.0261 seconds and 52 iterations.

Example 2. [26] Let us consider the P∗(κ)-WLCP (2.1) with

M =



1 2 2 · · · 2
2 5 6 · · · 6
2 6 9 · · · 10
...
...
...
. . .

...

2 6 10 · · · 4n − 3


, q = [−1 − 1 − 1 · · · − 1]T , ω = rand(n, 1).

We choose the initial point x0 = e, s0 = Mx0 + q. The value of update parameter is θ = 0.05. The
running time and iterations of Algorithm 1 for solving Example 2 are denoted by ‘CPU’ and ‘Iter’.
Gap and δ(v) are the values of ∥xs − ω∥ and ∥e − v∥, respectively. The numerical results with different
n are summarized in Table 1.

Table 1. Numerical results for Example 2.

n CPU Iter Gap δ(v)
10 0.0207 114 9.8003e-6 1.4574e-12
100 0.5537 126 9.7951e-6 5.0575e-11
300 9.1477 133 9.9024e-6 6.0770e-12
600 36.4226 136 9.8653e-6 5.7824e-10
900 102.6694 138 9.5108e-6 7.1522e-10
1200 214.4561 149 9.8031e-6 1.6408e-09
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Example 3. [27] Consider the P∗(κ)-WLCP (2.1), where the matrix M ∈ Rn×n and the weight vector
ω ∈ Rn are given by

M =



6 −4 2 · · · 0
−4 6 −4 · · · 0
2 −4 6 · · · 0
...
...
...
. . .
...

0 0 0 · · · 6


, ω = rand(n, 1).

In this example, we take x0 = s0 = e and q = −Mx0 + s0. Set the update parameters as θ ∈
{0.05, 0.10, 0.15, 0.20, 0.25} and dimensions of the example as n ∈ {100, 300, 500, 700, 900}. The
numerical results of Example 3 for different θ and n are shown in Table 2.

Table 2. Numerical results for Example 3 with different θ and n.

n
θ = 0.05 θ = 0.10 θ = 0.15 θ = 0.20 θ = 0.25

CPU Iter CPU Iter CPU Iter CPU Iter CPU Iter
100 0.6147 129 0.2651 62 0.1889 36 0.0984 28 0.0912 18
300 8.0243 134 3.4047 64 2.9213 37 1.5469 29 1.3415 19
500 27.8059 135 12.8321 65 7.3513 39 5.5678 30 4.5624 21
700 54.3689 137 25.7613 66 14.7698 40 11.0765 32 8.8229 22
900 101.4634 138 50.2722 68 28.1039 42 21.8132 34 16.3462 23

It is obvious from Table 1 that the running time and the number of iterations are depend on n. The
running time and the number of iterations decrease as n reduces. Furthermore, the number of iterations
grows slowly as n increases. It can be seen from Table 2 that the larger θ gives the less running time.
Obviously, the minimum value of θ leads to the largest number of iterations.
Example 4. [27] We randomly generate five P∗(κ)-WLCPs (2.1) with M = AT A, where A ∈ Rn×n,
rank(A) = n and n ∈ {20, 100, 200, 400, 600}. The initial point is x0 = s0 = e. Let the weight vector

ω =
x0s0

2
and update parameter θ = 0.1. In Table 3, we compare the result of Algorithm 1 with the

algorithm in MLCP [19]. Moreover, we denote by Algorithm 2 the algorithm introduced by Mansouri
and Pirhaji [19].

Table 3. Numerical results for Example 4 by Algorithm 1 and Algorithm 2.

Algorithm 1 Algorithm 2
n CPU Iter Gap δ(v) CPU Iter Gap δ(v)

20 0.0152 57 9.0261e-06 1.7586e-12 0.0246 60 8.4706e-06 4.9652e-13
100 0.1531 60 9.6533e-06 4.6658e-13 0.3127 63 8.4829e-06 1.0427e-12
200 0.8112 62 9.9522e-06 2.2747e-13 1.3889 65 9.4029e-06 5.5448e-13
400 7.1878 63 9.2343e-06 1.8058e-13 7.2245 66 9.6939e-06 2.7296e-12
600 12.5847 70 9.1608e-06 5.6522e-12 21.7197 81 9.6168e-06 1.7469e-12
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Figures 1 and 2 show the Gap of Example 1 and Example 2 are convergent in the iterative process.
Besides, based on the value of δ(v) in Figures 1 and 2, δ(v) reduces to 0 as t tends to zero. The values
of Gap in Figures 3 and 4 are provided to demonstrate the convergence of Example 3 and Example 4
with different n. Thus, Algorithm 1 could efficiently solve P∗(κ)-WLCP.
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Figure 1. The results for Example1.
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Figure 2. The results for Example2.
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Figure 3. The value of Gap for Example 3.
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Figure 4. The value of Gap for Example 4.

5. Conclusions

We propose a PC IPA for P∗(κ)-WLCP based on the kernel function ϕ(t) =
√

t. Applying this
function to the central path, new search directions for P∗(κ)-WLCP are obtained. The analysis of
P∗(κ)-WLCP is more complicated than P∗(κ)-LCP because of the nonzero weight vector. We prove the
feasibility and convergence of Algorithm 1. Numerical results indicate the efficiency of our algorithm.
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16. Z. Darvay, T. Illés, B. Kheirfam, P. R. Rigó, A corrector-predictor interior-point method with
new search direction for linear optimization, Cent. Eur. J. Oper. Res., 28 (2020), 1123–1140.
http://dx.doi.org/10.1007/s10100-019-00622-3
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