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Abstract: q-Rung orthopair fuzzy soft set handles the uncertainties and vagueness by membership and 

non-membership degree with attributes, here is no information about the neutral degree so to cover 

this gap and get a generalized structure, we present hybrid of picture fuzzy set and q-rung orthopair 

fuzzy soft set and initiate the notion of q-rung orthopair picture fuzzy soft set, which is characterized 

by positive, neutral and negative membership degree with attributes. The main contribution of this 

article is to investigate the basic operations and some averaging aggregation operators like q-rung 

orthopair picture fuzzy soft weighted averaging operator and q-rung orthopair picture fuzzy soft order 

weighted averaging operator under the environment of q-rung orthopair picture fuzzy soft set. 

Moreover, some fundamental properties and results of these aggregation operators are studied, and 

based on these proposed operators we presented a stepwise algorithm for MADM by taking the problem 

related to medical diagnosis under the environment of q-rung orthopair picture fuzzy soft set and finally, 

for the superiority we presented comparison analysis of proposed operators with existing operators. 
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List of abbreviations 

MD membership degree

NMD non-membership degree

FS Fuzzy set

IFS Intuitionistic fuzzy set

𝑃𝑦FS Pythagorean fuzzy set

q-ROFS q-rung orthopair fuzzy set

q-ROPFS𝑓Ss q-rung orthopair picture fuzzy soft sets

PFS Picture fuzyy set

AOs Averaging operators

MADM Multi attribute decision making

𝑃𝑌FWA Pythagorean fuzzy weighted averaging

𝑃𝑌FWG Pythagorean fuzzy weighted geometric

𝑃𝑌FWPA operator Pythagorean fuzzy weighted power averaging operator

𝑃𝑌FWPG operator Pythagorean fuzzy weighted power geometric operator

q-ROFWA operators q-rung orthopair fuzzy weighted averaging operators

q-ROFWG operators q-rung orthopair fuzzy weighted geometric operators

q-ROPFS𝑓WA operator q-rung orthopair picture fuzzy weighted averaging operator

q-ROPFS𝑓OWA operator q-rung orthopair picture fuzzy order weighted averaging operator

WV Weighted vector

 

1. Introduction  

In real-life situation, decision-making (DM) plays a vital role, for the selection of logical choice 

among several objects we use the process of MD. The foundation of a fuzzy set (FS) was laid by Zadeh [1] 

in 1965, characterized by member function belong to [0,1]. This concept was further extended by 

Zadeh [2] in 1975, and proposed an interval-valued fuzzy (IVF)set characterized by a lower fuzzy set 

and an upper fuzzy set. In the DM problem parameterized fuzzy operators were introduced by 

Song et al. [3]. In 1986, Atanassov [29] generalized the theory of FS and initiated intuitionistic fuzzy 

(IF)set by the affix of non-MF with the restriction (𝑀𝐹) + (𝑁𝑀𝐹) ≤ 1. Some aggregation operators 

like generalized AOs by Zhao et al. [4] and generalized geometric AOs by Tan et al. [5,6] under the 

environment of IFS. In IFS we study the MD and NMD, here we ignore the neutral degree, so to cover 

these gaps in 2014 Cuong [7] proposed the generalized structure of IFS and FS called picture fuzzy 

set, which is characterized by three membership degree positive, neutral and negative member degree 

with the restriction that the sum of this three-membership degree is less and equal than 1. In 1998, 

Smarandache [25] proposed a neutrosophic set, which is characterized by truth, indeterminacy, and 

falsehood membership degree, with the condition that the sum of truth, indeterminacy, and falsehood 

membership degree is less and equal to 3. In a neutrosophic set it is difficult to handle the voting 

problems when the expert’s judgment is of a type like yes, abstinence, no, and rejection, as the sum of 

the three membership degrees is greater than 1, beside this it cannot be provided the information of 

voting of non-candidates of the above voting. In the other words, we say that picture fuzzy set is a 

special case of a neutrosophic set, because every picture fuzzy set can be neutrosophic set but the 

converse is not true. Some aggregation operators under the environment of picture fuzzy set are 
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aggregation operators for PF set by Garg [8], PFAOs and their application in MADM by Wei [9], PF 

Einstein AOs by Khan et al. [10], and PF Dombi AOs by Jana et al. [11]. However, during the research, 

experts faced some issues when they have taken the value of MD is 0.8 and NMD is 0.6, then 0.8+0.6

≰1, so here the condition of IFS failed. So, to cover this limitation in 2013 Yager [12] proposed the 

generalized structure of IFS, which is called the Pythagorean fuzzy set. A Pythagorean fuzzy set is 

characterized by MD and NMD, with the condition that (𝑀𝐷)2 + (𝑁𝑀𝐷)2 ≤ 1. Several aggregation 

operators under the environment of a Pythagorean fuzzy set such as 𝑃𝑌𝐹𝑊𝐴 , 

𝑃𝑌𝐹𝑊𝐺  ,𝑃𝑌𝐹𝑊𝑃𝐴 and𝑃𝑌𝐹𝑊𝑃𝐺  operators proposed by Yager [13,14]. In 2021, Akrma et al. [38], 

handle MCGDM problem under the environment of complex Pythagorean fuzzy set by using CPF-

VIKOR method. In 2021, Akram et al. [39], proposed two novel modified techniques, namely 

Pythagorean fuzzy hybrid order of preference by Similarity to an Ideal Solution (PFH-TOPSIS) 

method and Pythagorean fuzzy hybrid Elimination and Choice Translating Reality I (PPFH-ELECTRE 

I) method, in order to measure risk ranking in failure modes and effects analysis (FMEA). In 2021, 

Akram et al. [40], also proposed a novel multi-criteria optimization technique, namely, the complex 

Pythagorean fuzzy N-soft VIKOR (CPFNS-VIKOR) method that is highly proficient to express a great 

deal of linguistic imprecision and vagueness inherent in human assessments. In 2022, Akram et al. [41] 

proposed a new hybrid model with application under the environment of Complex fermatean fuzzy N-

soft set to handle uncertainties. In 2016, Yager [20] made a new generalization of IFS and PFS, called 

q-rung orthopair fuzzy set. q-ROFS is described by MD and NMD with the restriction that (𝑀𝐷)𝑞 +

(𝑁𝑀𝐷)𝑞 ≤ 1(𝑞 ≻ 1). Different aggregation operators under the environment of q-ROFS are q-ROFWA 

operators by Liu and Wang [15], q-ROF Bonferroni mean weighted operator by y Liu and Liu [16], q-

ROF power Maclaurin averaging operators by Liu et al. [17], q-ROF Dombi AOs by Jana et al. [18], 

q-ROF Neutrality AOs by Garg and Chen [19], MAGD with q-rung orthopair picture fuzzy information 

by Akram et al. [37]. In 2018, Joshi et al. [30] introduced the theory of interval-valued q-rung orthopair 

fuzzy soft set, which deals with the situation, of hesitation of assessment in the intervals. In such type 

of situation experts provide their grades in the closed subinterval of [0,1]. The concept of interval-

valued q-rung orthopair fuzzy soft set was further modified in various structures see Hayat et al. [31], 

Yang et al. [32], and Hayat et al. [33]. In 1999, Molodtsov [21] proposed a new structure called soft 

set which deals with the attribute. The theory of soft set was further merged with different structures 

and developed a generalized concept like Maji [22,23,34–36]. In 2020, Hussain et al. [24] combined 

the structure of soft set and q-ROF set and proposed a new concept called q-rung orthopair fuzzy soft 

set, which is characterized by membership degree and non-membership degree with attributes, but here 

no information about the neutral degree, so to cover this gap we present a hybrid of picture fuzzy set and 

q-rung orthopair fuzzy soft set to get a generalized structure called q-rung orthopair picture fuzzy soft set, 

which deal the uncertainty problem with positive, neutral and negative membership degree by affix a 

parameterization tool. 

The rest of this manuscript is as follows: Section 2, discusses some basic preliminaries. Section 3, 

presents a hybrid of picture fuzzy set and q-ROF soft set and develop a novel structure q-ROPF soft 

set, and also discuss their basic operations. In Section 4, we study some aggregation operators like q-

ROPF soft weighted averaging operator and q-ROPF soft order weighted averaging operator and their 

related fundamental properties. In Section 5, we develop a step-wise algorithm for MADM problem. 

In Subsection 5.1, for application we consider a biological example of common disease “obstructive 

goiter”. In Section 6, we present a comparison analysis of the proposed model with the existing model 

to show the superiority. In Section 7, provide a conclusion. 
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2. Preliminary 

Definition 2.1. [29] An IFS 𝑁̃ on a universe Η is expressed by the two-mapping given as 

𝑁̃ = {〈𝜇, ℒ𝑁̃(𝜇), 𝐺𝑁̃(𝜇)〉: 𝜇𝜖𝐻}.       (1) 

Where ℒ𝑁̃(𝜇):𝐻 → [0,1] and 𝐺𝑁̃(𝜇):𝐻 → [0,1] represent the MD and NMD, with the condition that 

0≤(ℒ𝑁̃(𝜇)) + (𝐺𝑁̃(𝜇)) ≤1. 

And the score S(𝑁̃) and accuracy A(𝑁̃) function is represented as  

S(𝑁̃) = ℒ𝑁̃(𝜇) − 𝐺𝑁̃(𝜇), S(𝑁̃) ∈ [−1,1]. 

(𝑁̃) = ℒ𝑁̃(𝜇) + 𝐺𝑁̃(𝜇), A(𝑁̃) ∈ [0,1]. 

Definition 2.2. [12] By YP FS  𝑁̃ on a universe of discourse Η is defined as 

𝑁̃={〈𝜇, ℒ𝑁̃(𝜇), 𝐺𝑁̃(𝜇)〉: 𝜇𝜖𝐻}.         (2) 

Where ℒ𝑁̃(𝜇):𝐻 → [0,1] and 𝐺𝑁̃(𝜇):𝐻 → [0,1] represent the MD and NMD, with the condition that 

0 ≤ (ℒ𝑁̃(𝜇))
2
+ (𝐺𝑁̃(𝜇))

2
≤ 1 

and the score and accuracy function of Pythagorean fuzzy set is represented as  

S(𝑁̃) = (ℒ𝑁̃(𝜇))
2
− (𝐺𝑁̃(𝜇))

2
, S(𝑁̃) ∈ [−1,1]. 

A(𝑁̃) = (ℒ𝑁̃(𝜇))
2
+ (𝐺𝑁̃(𝜇))

2
, A(𝑁̃) ∈ [0,1]. 

Definition 2.3. [20] A q-ROFS 𝑁̃ on a universe of discourse Η is defined as 

𝑁̃={〈𝜇, ℒ𝑁̃(𝜇), 𝐺𝑁̃(𝜇)〉: 𝜇𝜖𝐻}.        (3) 

Where ℒ𝑁̃(𝜇):𝐻 → [0,1] and 𝐺𝑁̃(𝜇):𝐻 → [0,1] represent the MD and NMD, with the condition that  

0 ≤ (ℒ𝑁̃(𝜇))
𝑞
+ (𝐺𝑁̃(𝜇))

𝑞
≤1 (𝑞 ≥ 1) 

and the score and accuracy function of q-ROFS is represented as  

S(𝑁̃) = (ℒ𝑁̃(𝜇))
𝑞
− (𝐺𝑁̃(𝜇))

𝑞
, S(𝑁̃) ∈ [−1,1] 

A(𝑁̃) = (ℒ𝑁̃(𝜇))
𝑞
+ (𝐺𝑁̃(𝜇))

𝑞
, A(𝑁̃) ∈ [0,1]. 

Definition 2.4. [21] Let an Η be a fixed set and € represent the set of parameters and ₵⊆€. Then the 

pair (₣, ₵) is said to be soft set over H, where ₣ is a function define as ₣: ₵ → 𝑃(𝐻). 𝑃(𝐻) represent 

the power set of H. 

Definition 2.5. [28] Let (H, ₵)be a soft universe and ₵⊆€. By Pythagorean fuzzy soft set we mean a 

pair (𝑁̃, ₵) over 𝐻, where 𝑁̃ is a function given by 𝑁̃: ₵ → 𝑃𝐹𝑆(𝐻) is defined as  

𝑁̃𝑒̈𝑗(𝜇𝑖) = {〈𝜇𝑖, ℒ𝑗(𝜇𝑖), 𝐺𝑗(𝜇𝑖)〉: 𝜇𝑖𝜖𝐻}.       (4) 

Where ℒ𝑗(𝜇𝑖)  represent the MD and 𝐺𝑗(𝜇𝑖)  represent the NMD 𝜇𝑖𝜖𝐻  to a set 𝑁̃𝑒̈𝑗(𝜇𝑖) , with the 

condition that  

0 ≤ (ℒ𝑗(𝜇𝑖))
2

+ (𝐺𝑗(𝜇𝑖))
2

≤ 1, 
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which is simply denoted by 𝑁̃𝑒̈𝑗(𝜇𝑖) = 〈𝜇𝑖, ℒ𝑗(𝜇𝑖), 𝐺𝑗(𝜇𝑖)〉. 

Definition 2.6. [24] Let (H, ₵)be a soft universe and ₵⊆€. By q-rung orthopair fuzzy soft set we mean 

a pair (𝑁̃, ₵) over 𝐻, where 𝑁̃ is a function given by 𝑁̃: ₵ → 𝑞 − 𝑅𝑂𝐹𝑆(𝐻) is defined as  

𝑁̃𝑒̈𝑗(𝜇𝑖)={〈𝜇𝑖, ℒ𝑗(𝜇𝑖), 𝐺𝑗(𝜇𝑖)〉: 𝜇𝑖𝜖𝐻}.       (5) 

Where ℒ𝑗(𝜇𝑖)  represent the MD and 𝐺𝑗(𝜇𝑖)  represent the NMD 𝜇𝑖𝜖𝐻  to a set 𝑁̃𝑒̈𝑗(𝜇𝑖) , with the 

condition that  

0≤(ℒ𝑗(𝜇𝑖))
𝑞

+ (𝐺𝑗(𝜇𝑖))
𝑞

≤1 (𝑞 ≥ 1), 

which is simply denoted by 𝑁̃𝑒̈𝑗(𝜇𝑖) = 〈𝜇𝑖, ℒ𝑗(𝜇𝑖), 𝐺𝑗(𝜇𝑖)〉  and the degree of indeterminacy of 

fq ROPFS N− is defined as 𝜋𝑁̃𝑒̈𝑖𝑗
=√1 − ((ℒ𝑗(𝜇𝑖))

𝑞

+ (𝐺𝑗(𝜇𝑖))
𝑞

)
𝑞

. 

Definition 2.7. [7] A picture fuzzy set 𝑁̃ on a fixed set Η is displayed as 

𝑁̃ = {〈𝜇, ℒ𝑁̃(𝜇), 𝐺𝑁̃(𝜇), Ł𝑁̃(𝜇)〉: 𝜇𝜖𝐻}.       (6) 

Where ℒ𝑁̃(𝜇), 𝐺𝑁̃(𝜇), Ł𝑁̃(𝜇):𝐻 → [0,1]  represent the positive MD, neutral MD and negative MD, 

with the condition that, with the condition that  

0 ≤ (ℒ𝑁̃(𝜇)) + (𝐺𝑁̃(𝜇) + (Ł𝑁̃(𝜇))) ≤ 1. 

3. q-Rung orthopair picture fuzzy soft (q-𝑹𝑶𝑷𝑭𝑺𝒇𝑺) set 

Definition 3.1. Let (H, ₵)be a soft universe and ₵⊆€. By q-rung orthopair picture fuzzy soft set we 

mean a pair (𝑁̃, ₵) over 𝐻, where 𝑁̃ is a function given by 𝑁̃: ₵ → 𝑞 − 𝑅𝑂𝑃𝐹𝑆(𝐻) is defined as  

𝑁̃𝑒̈𝑗(𝜇𝑖)={〈𝜇𝑖, ℒ𝑗(𝜇𝑖), 𝐺𝑗(𝜇𝑖), Ł𝑗(𝜇𝑖) 〉: 𝜇𝑖𝜖𝐻 and q ≥ 1}    (7) 

where ℒ𝑗(𝜇𝑖)  represent the positive MD and 𝐺𝑗(𝜇𝑖)  represent the neutral MD and Ł𝑗(𝜇𝑖)  denoted 

negative MD of 𝜇𝑖𝜖𝐻 to a set 𝑁̃𝑒̈𝑗(𝜇𝑖), with the condition that 

0 ≤ (ℒ𝑗(𝜇𝑖))
𝑞

+ (𝐺𝑗(𝜇𝑖))
𝑞

+ (Ł𝑗(𝜇𝑖))
𝑞

≤ 1 (𝑞 ≥ 1) 

which is simply denoted by 𝑁̃𝑒̈𝑗(𝜇𝑖)=〈𝜇𝑖, ℒ𝑗(𝜇𝑖), 𝐺𝑗(𝜇𝑖), Ł𝑗(𝜇𝑖)〉𝑞 and the degree of indeterminacy of 

q-𝑅𝑂𝑃𝐹𝑆𝑓𝑁 is defined as 

𝜋𝑁̃𝑒̈𝑖𝑗
=√1 − ((ℒ𝑗(𝜇𝑖))

𝑞

+ (𝐺𝑗(𝜇𝑖))
𝑞

+ (Ł𝑗(𝜇𝑖))
𝑞

)
𝑞

. 

Basic operations on q-ROPF soft set 

Let 𝑁̃ = (ℒ, 𝐺, Ł) be any tree q-𝑅𝑂𝑃𝐹𝑆𝑓𝑁𝑠 and 𝑁̃𝑒̈1𝑗=(ℒ1𝑗, 𝐺1𝑗, Ł1𝑗) (j=1,2) and λ, λ₁, λ₂≻0. Then 

the operations of q-𝑅𝑂𝑃𝐹𝑆𝑓𝑁𝑠 are define as 

(1) 𝑁̃𝑒̈11 ∪ 𝑁̃𝑒̈11=(max(ℒ11, ℒ12) ,min(𝐺11, 𝐺12) ,min(Ł11, Ł12)); 

(2) 𝑁̃𝑒̈11 ∩ 𝑁̃𝑒̈11=(min(ℒ11, ℒ12) , min(𝐺11, 𝐺12) ,max(Ł11, Ł12)); 

(3) 𝑁̃𝐶=(Ł, 𝐺, ℒ); 
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(4) 𝑁̃𝑒̈11 ≤ 𝑁̃𝑒̈11if and only if (ℒ11 ≤ ℒ12, 𝐺11 ≤ 𝐺12, Ł11 ≥ Ł12); 

(5) 𝑁̃𝑒̈11 ⊕ 𝑁̃𝑒̈11= (√(ℒ11)𝑞 + (ℒ12)𝑞 − (ℒ11)𝑞(ℒ12)𝑞
𝑞

, 𝐺11𝐺12, Ł11Ł12); 

(6) 𝑁̃𝑒̈11 ⊗ 𝑁̃𝑒̈11= (ℒ11ℒ12, √(𝐺11)𝑞 + (𝐺12)𝑞 − (𝐺11)𝑞(𝐺12)𝑞
𝑞

, √(Ł11)𝑞 + (Ł12)𝑞 − (Ł11)𝑞(Ł12)𝑞
𝑞

); 

(7) λ𝑁̃= (√1 − (1 − ℒ𝑞)λ
𝑞

, 𝐺λ, Łλ); 

(8) 𝑁̃λ= (ℒλ, √1 − (1 − 𝐺𝑞)λ
𝑞

, √1 − (1 − Ł𝑞)λ
𝑞

). 

Definition 3.2. A score function of 
fq ROPFS N− 𝑁̃𝑒̈𝑖𝑗=(ℒ𝑖𝑗 , 𝐺𝑖𝑗 , Ł𝑖𝑗) can be define as  

(𝑁̃𝑒̈𝑖𝑗)=ℒ𝑖𝑗
𝑞

−𝐺𝑖𝑗
𝑞 − Ł𝑖𝑗

𝑞
+(

𝑒
ℒ
𝑖𝑗
𝑞
−𝐺

𝑖𝑗
𝑞
−Ł
𝑖𝑗
𝑞

𝑒
ℒ
𝑖𝑗
𝑞
−𝐺

𝑖𝑗
𝑞
−Ł
𝑖𝑗
𝑞

+1

−
1

2
)𝜋

𝑁̃𝑒̈𝑖𝑗

𝑞
       (8) 

where q ≥ 1 and S(𝑁̃𝑒̈𝑖𝑗) ∈ [−1,1]. 

Example 3.1. Assume that a person wants to select a car out of five possible alternatives in a market 

that is 𝑈 ̅= {t₁, t₂, t₃, t₄, t₅} with the parameters € = {𝑒1, 𝑒2, 𝑒3, 𝑒4}. 

𝑒1 = Price  

𝑒2 = Comfort 

𝑒3 = Fuel Efficiency 

𝑒4 = Looks. 

Let 𝑁̃𝑒̈11= (ℒ11, 𝐺11, Ł11) and 𝑁̃𝑒̈12= (ℒ12, 𝐺12, Ł12) be two 
fq ROPFS Ns− . Then 

(i) S(Ñë11) >S(Ñë12), Ñë11 ≥ Ñë12 

(ii) S(Ñë11) < S(Ñë12), Ñë11 ≤ Ñë12 

(iii) S(Ñë11) = S(Ñë12), then 

(a) πÑë11
> πÑë11

, then Ñë11< Ñë12  

(b) π
Ñë11

q
> π

Ñë12

q
, then Ñë11= Ñë12 . 

From “Table 1” we show the result in the form of fq ROPFS Ns− , by evaluated the alternative with 

rating values. 

Table 1. Tabular representation of 
fq ROPFS S− (ℒ, 𝐺, Ł) for q ≥ 3. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4

1

2

3

4

5

0.6,0.2,0.3 0.5,0.1,0.4 0.3,0.1,0.5 0.5,0.4,0.1

0.5,0.2,0.1 0.3,0.1,0.2 0.4,0.2,0.3 0.4,0.3,0.2

0.6,0.2,0.1 0.4,0.2,0.3 0.3,0.2,0.5 0.4,0.5,0.1

0.4,0.1,0.3 0.6,0.1,0.4 0.3,0.1,0.4 0.4,0.2,0.3

0.5,0

U e e e e

t

t

t

t

t ( ) ( ) ( ) ( ).3,0.2 0.4,0.1,0.5 0.3,0.1,0.5 0.6,0.1,0.4

 

Theorem 3.1. Let Ñëij  =(ℒij, Gij, Łij)  and Ñ = (ℒ, G, Ł)  be any two fq ROPFS Ns−   and λ, λ1 , λ2≻0, 

having the properties. 

(i) Ñë11 ⊕ Ñë12= Ñë12 ⊕ Ñë11 

(ii) Ñë11 ⊗ Ñë12= Ñë12 ⊗ Ñë11 

(iii) λ(Ñë11 ⊕ Ñë12) = λÑë11 ⊕  λÑë12 

(iv) (λ1⊕ λ2)N ̃= λ1Ñ ⊕ λ2Ñ 
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(v) Ñ(λ1⊕λ2) = λ1⊗ Ñλ2 

(vi) Ñë11
λ ⊗ Ñë12

λ = (Ñë11 ⊕ Ñë12)
λ
. 

Proof. Straightforward. 

4. Average aggregation operator under the environment of q-ROPF soft set 

In this section, we discuss some aggregation operators like 
fq ROPFS WA−  and 

fq ROPFS OWA−  operators and their related results. 

4.1. q-ROPF soft weighted average (
fq ROPFS WA− ) operators 

Definition 4.1. Assume that Ñëij  =(ℒij, Gij, Łij)  for (𝑖 = 1,2, … n and j = 1,2, … .m)  be collection of 

fq ROPFS Ns=  and weight vector ω= {ω1, ω2, .... ,ωn} with the condition ∑ 𝜔𝑖
𝑛
𝑖=1 = 1 and υ= {υ1, 

υ2, ......, υm} with the condition that ∑ 𝜐𝑖
𝑛
𝑖=1 = 1 for alternatives xi and parameters ej, respectively. The 

mapping :f

nĐ Đq ROPFS WA− →   is said to be 
fq ROPFS WA−   operator. (Đ is the collection of 

fq ROPFS Ns− ). 

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm)=⊕𝑗=1
𝑚 𝜐𝑖 (⊕𝑖=1

𝑛 𝜔𝑖Ñëij).   (9) 

Theorem 4.1. Consider the collection of fq ROPFS Ns−  Ñëij=(ℒij, Gij, Łij) then the aggregation result 

for 
fq ROPFS WA−  operator is expressed: 

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm)=⊕𝑗=1
𝑚 𝜐𝑖 (⊕𝑖=1

𝑛 𝜔𝑖Ñëij) 

=(√1 −∏ (∏ (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖𝑛
𝑖=1 )

𝜐𝑖
𝑚
𝑗=1

𝑞

, Π𝑗=1
𝑚 (Π𝑖=1

𝑛 G𝑖𝑗
𝜔𝑖)

𝜐𝑖
 , Π𝑗=1

𝑚 (Π𝑖=1
𝑛 Ł𝑖𝑗

𝜔𝑖)
𝜐𝑖
)  

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm)=

(

  
 
√1 −∏ (∏ (1 − ℒ𝑖𝑗

𝑞 )
𝜔𝑖𝑛

𝑖=1 )
𝜐𝑖

𝑚
𝑗=1

𝑞

,

Π𝑗=1
𝑚 (Π𝑖=1

𝑛 G𝑖𝑗
𝜔𝑖)

𝜐𝑖
 ,

Π𝑗=1
𝑚 (Π𝑖=1

𝑛 Ł𝑖𝑗
𝜔𝑖)

𝜐𝑖

)

  
 

  (10) 

Ω = {ω1, ω2, ...., ωn} with the condition ∑ 𝜔𝑖
𝑛
𝑖=1 = 1 and υ= {υ1, υ2, ......, υm} with the condition that 

∑ 𝜐𝑖
𝑛
𝑖=1 = 1 for alternatives xi and parameters ej, respectively. 

Proof. To solve this result we use the mathematical induction. We have, 

Ñë11 ⊕ Ñë12 = (√(ℒ11)
𝑞 + (ℒ12)𝑞 − (ℒ11)𝑞(ℒ12)𝑞

𝑞
, G11G12 , Ł11Ł12) 

λ (Ñ = (√1 − [1 − ℒ𝑞]λ
𝑞

, Gλ , Łλ)) 

for λ ≥ 1. For n = 2 and m = 2, Eq (10) is true. 
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fq ROPFS WA− (Ñë11 , Ñë12)=⊕𝑗=1
2 𝜐𝑖 (⊕𝑖=1

2 𝜔𝑖Ñëij) = 𝜐1(⊕𝑖=1
2 𝜔𝑖Ñë11) ⊕ 𝜐2(⊕𝑖=1

2 𝜔𝑖Ñë12) 

= 𝜐1(𝜔1Ñë11 ⊕𝜔2Ñë21) ⊕ 𝜐2(𝜔1Ñë12 ⊕𝜔2Ñë22) 

= 𝜐1

{
 
 

 
 (√1 − (1 − ℒ11

𝑞 )
𝜔1𝑞

, G11
𝜔1  , Ł11

𝜔1)⊕

(√1 − (1 − ℒ21
𝑞 )

𝜔2𝑞

, G21
𝜔2  , Ł21

𝜔2)
}
 
 

 
 

⊕ 𝜐2

{
 
 

 
 (√1 − (1 − ℒ12

𝑞 )
𝜔1𝑞

, G12
𝜔1 , Ł12

𝜔1)⊕

(√1 − (1 − ℒ22
𝑞 )

𝜔2𝑞

, G22
𝜔2 , Ł22

𝜔2)
}
 
 

 
 

 

= 𝜐1 (
√1 − Π𝑖=1

2 (1 − ℒ𝑖1
𝑞 )

𝜔𝑖𝑞

,

Π𝑖=1
2 G𝑖1

𝜔𝑖  , Π𝑖=1
2 Ł𝑖1

𝜔𝑖

)⊕ 𝜐2 (
√1 − Π𝑖=1

2 (1 − ℒ𝑖2
𝑞 )

𝜔𝑖𝑞

,

Π𝑖=1
2 G𝑖2

𝜔𝑖  , Π𝑖=1
2 Ł𝑖2

𝜔𝑖

) 

= 𝜐1 (
√1 − (Π𝑖=1

2 (1 − ℒ𝑖1
𝑞 )

𝜔𝑖
)
𝜐1𝑞

,

(Π𝑖=1
2 G𝑖1

𝜔𝑖)
𝜐1
 , (Π𝑖=1

2 Ł𝑖1
𝜔𝑖)

𝜐1
)⊕ 𝜐2(

√1 − (Π𝑖=1
2 (1 − ℒ𝑖2

𝑞 )
𝜔𝑖
)
𝜐2𝑞

,

(Π𝑖=1
2 G𝑖2

𝜔𝑖)
𝜐2
 , (Π𝑖=1

2 Ł𝑖2
𝜔𝑖)

𝜐2
) 

= (√1 − ∏ (∏ (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖
2
𝑖=1 )

𝜐𝑖
2
𝑗=1

𝑞

, Π𝑗=1
2 (Π𝑖=1

2 G𝑖𝑗
𝜔𝑖)

𝜐𝑖
 , Π𝑗=1

2 (Π𝑖=1
2 Ł𝑖𝑗

𝜔𝑖)
𝜐𝑖
). 

Next, we will check for n=κ1 and m=κ2. 

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñëκ1κ2)=⊕𝑗=1
𝜅2. 𝜐𝑖 (⊕𝑖=1

𝜅1 𝜔𝑖𝑁̃𝑒̈𝑖𝑗) 

= (√1 −∏ (∏ (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖𝜅1
𝑖=1 )

𝜐𝑖𝜅2
𝑗=1

𝑞

, 𝛱𝑗=1
𝜅2 (𝛱𝑖=1

𝜅1 𝐺𝑖𝑗
𝜔𝑖)

𝜐𝑖
, 𝛱𝑗=1

𝜅2 (𝛱𝑖=1
𝜅1 Ł𝑖𝑗

𝜔𝑖)
𝜐𝑖
). 

And further for n=κ1 + 1 and m=κ2 + 1. 

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñëκ1+1 κ2+1)={⊕𝑗=1
κ2 𝜐𝑖 (⊕𝑖=1

κ1 𝜔𝑖Ñëij)} ⊕

𝜐(κ1+1) (𝜔κ2+1Ñë(κ1+1)(κ2+1)
) 

= (
√1 −∏ (∏ (1 − ℒ𝑖𝑗

𝑞 )
𝜔𝑖κ1

𝑖=1 )
𝜐𝑖κ2

𝑗=1

𝑞

,

Π𝑗=1
κ2 (Π𝑖=1

κ1 G𝑖𝑗
𝜔𝑖)

𝜐𝑖
, Π𝑗=1

κ2 (Π𝑖=1
κ1 Ł𝑖𝑗

𝜔𝑖)
𝜐𝑖
)⊕ 𝜐(κ1+1) (𝜔κ2+1Ñë(κ1+1)(κ2+1)

) 

= (√1 − ∏ (∏ (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖(κ1+1)

𝑖=1 )
𝜐𝑖(κ2+1)

𝑗=1

𝑞

, Π𝑗=1
(κ2+1) (Π𝑖=1

(κ1+1)G𝑖𝑗
𝜔𝑖)

𝜐𝑖
, Π𝑗=1

(κ2+1) (Π𝑖=1
(κ1+1)Ł𝑖𝑗

𝜔𝑖)
𝜐𝑖
). 

Hence by the induction process we prove that Eq (10) is true for all m, n≥1 and also Eq (10) is true for 

 n =  κ1 + 1  and m =  κ2 + 1 . Moreover, to obtained the aggregated result from fq ROPFS WA−

operator is again fq ROPFS Ns−  . For, any Ñëij  = (ℒij, Gij, Łij)  be collection of fq ROPFS Ns−  and 

weight vector ω = {ω1, ω2, ...., ωn} with the condition ∑ 𝜔𝑖
𝑛
𝑖=1 = 1 and υ = {υ1, υ2, ......, υm} with the 

condition that ∑ 𝜐𝑖
𝑛
𝑖=1 = 1 for alternatives xi and parameters ej, respectively. So, 

0 ≤ ℒij ≤ 1 

⇒ 0 ≤ 1 − ℒij ≤ 1 
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⇒ 0 ≤ (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖
≤ 1 

⇒ 0 ≤ Π𝑖=1
𝑛 (1 − ℒ𝑖𝑗

𝑞 )
𝜔𝑖
≤ 1 

⇒ 0 ≤ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖
)
𝜐𝑖
≤ 1 

⇒ 0 ≤ √Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖
)
𝜐𝑖𝑞

≤ 1. 

Now, for 0 ≤ Gij ≤ 1 ⇒ 0 ≤ Π𝑖=1
𝑛  G𝑖𝑗

𝜔𝑖 ≤ 1 ⇒ 0 ≤ Π𝑗=1
𝑚 (Π𝑖=1

𝑛  G𝑖𝑗
𝜔𝑖)

𝜐𝑖
≤ 1 and  

0 ≤ Łij ≤ 1 ⇒ 0 ≤Π𝑖=1
𝑛  Ł𝑖𝑗

𝜔𝑖 ≤ 1 ⇒ 0 ≤ Π𝑗=1
𝑚 (Π𝑖=1

𝑛  Ł𝑖𝑗
𝜔𝑖)

𝜐𝑖
≤ 1. 

As, 0 ≤  ℒ𝑖𝑗
𝑞

+ G𝑖𝑗
𝑞 +  Ł𝑖𝑗

𝑞 ≤ 1 ⇒ G𝑖𝑗
𝑞 +  Ł𝑖𝑗

𝑞 ≤ 1 −  ℒ𝑖𝑗
𝑞

 

⇒ Π𝑖=1
𝑛 ( G𝑖𝑗

𝑞 )
𝜔𝑖
+ Π𝑖=1

𝑛 ( Ł𝑖𝑗
𝑞 )

𝜔𝑖
≤ Π𝑖=1

𝑛 (1 −  ℒ𝑖𝑗
𝑞 )

𝜔𝑖
             

⇒ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 ( G𝑖𝑗
𝑞 )

𝜔𝑖
)
𝜐𝑖

+Π𝑗=1
𝑚 (Π𝑖=1

𝑛 ( Ł𝑖𝑗
𝑞 )

𝜔𝑖
)
𝜐𝑖
≤ Π𝑗=1

𝑚 (Π𝑖=1
𝑛 (1 −  ℒ𝑖𝑗

𝑞 )
𝜔𝑖
)
𝜐𝑖

.     (11) 

Now, we have 

0 ≤ {√1 − ∏ (∏ (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖𝑛
𝑖=1 )

𝜐𝑖
𝑚
𝑗=1

𝑞

}

𝑞

+{Π𝑗=1
𝑚 (Π𝑖=1

𝑛 G𝑖𝑗
𝜔𝑖)

𝜐𝑖
}
𝑞

+ {Π𝑗=1
𝑚 (Π𝑖=1

𝑛 Ł𝑖𝑗
𝜔𝑖)

𝜐𝑖
}
𝑞

. 

By Eq (11), 0 ≤ 1 − ∏ (∏ (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖𝑛
𝑖=1 )

𝜐𝑖𝑚
𝑗=1 + Π𝑗=1

𝑚 (Π𝑖=1
𝑛 G𝑖𝑗

𝜔𝑖)
𝜐𝑖
+ Π𝑗=1

𝑚 (Π𝑖=1
𝑛 Ł𝑖𝑗

𝜔𝑖)
𝜐𝑖
= 1. 

Therefore,  

0 ≤  {√1 − ∏ (∏ (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖𝑛
𝑖=1 )

𝜐𝑖
𝑚
𝑗=1

𝑞

}

𝑞

+ {Π𝑗=1
𝑚 (Π𝑖=1

𝑛 G𝑖𝑗
𝜔𝑖)

𝜐𝑖
}
𝑞

+ {Π𝑗=1
𝑚 (Π𝑖=1

𝑛 Ł𝑖𝑗
𝜔𝑖)

𝜐𝑖
}
𝑞

≤ 1. 

Hence, we proved the required result. 

Example 4.1. Assume that a person wants to purchase a new laptop in the domain set  

𝑈̅= {t₁, t₂, t₃, t₄, t₅}  

t₁=HP Pavilion, 

t₂=Dell Inspiron, 

t₃=Apple iBook, 

t₄=Toshiba, 

t₅=Lenovo 

and with the parameters €= {𝑒1, 𝑒2, 𝑒3, 𝑒4} 

e₁=Battery life, 

e₂=Memory and storage, 

e₃=Carrying weight, 

e₄=Warranty. 

Suppose that the weight vectors ω= {0.15,0.16,0.20,0.25,0.24} and υ= {0.5,0.17,0.13,0.20} for the 

expert xi and parameters ej, respectively. From “Table 2” we decision maker show the result in the 

form of fq ROPFS Ns− , by evaluated each laptop to their corresponding parameters. 
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Table 2. Tabular representation of 
fq ROPFS S− Ñëij=(ℒij, Gij, Łij) for q ≥ 3. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4

1

2

3

HP Pavilion 0.66,0.4,0.2 0.6,0.5,0.3 0.45.0.25,0.1 0.73,0.22,0.1

Dell Inspiron 0.76,0.2,0.1 0.55,0.5,0.2 0.77,0.4,0.3 0.87,0.32,0.15

Apple iBook 0.71,0.3,0.1 0.9,0.5,0.3 0.66,0.54,0.2 0.7,0.5,0.1

U e e e e

t

t

t

t

=

=

=

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
4

5

Toshiba 0.8,0.4,0.3 0.65,0.35,0.15 0.83,0.2,0.1 0.8,0.3,0.2

Lenovo 0.62,0.5,0.2 0.8,0.33,0.1 0.58,0.3,0.1 0.84,0.35,0.1t

=

=

 

By Eq (10) we have 

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñë54)=

(

  
 
√1 −∏ (∏ (1 − ℒ𝑖𝑗

𝑞 )
𝜔𝑖𝑛

𝑖=1 )
𝜐𝑖

𝑚
𝑗=1

𝑞

,

Π𝑗=1
𝑚 (Π𝑖=1

𝑛 G𝑖𝑗
𝜔𝑖)

𝜐𝑖
 ,

Π𝑗=1
𝑚 (Π𝑖=1

𝑛 Ł𝑖𝑗
𝜔𝑖)

𝜐𝑖

)

  
 

 

= 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
√

1 − {(1 − 0.663)0.15(1 − 0.763)0.16(1 − 0.713)0.20(1 − 0.83)0.25(1 − 0.623)0.24}0.5

1 − {(1 − 0.63)0.15(1 − 0.553)0.16(1 − 0.093)0.20(1 − 0.653)0.25(1 − 0.83)0.24}0.17

1 − {(1 − 0.453)0.15(1 − 0.773)0.16(1 − 0.663)0.20(1 − 0.833)0.25(1 − 0.583)0.24}0.13

1 − {(1 − 0.733)0.15(1 − 0.873)0.16(1 − 0.73)0.20(1 − 0.83)0.25(1 − 0.843)0.24}0.20

3

,

(

 
 

{(1 − 0.43)0.15(1 − 0.23)0.16(1 − 0.33)0.20(1 − 0.43)0.25(1 − 0.53)0.24}0.5

{(1 − 0.53)0.15(1 − 0.53)0.16(1 − 0.53)0.20(1 − 0.353)0.25(1 − 0.333)0.24}0.17

{(1 − 0.253)0.15(1 − 0.43)0.16(1 − 0.543)0.20(1 − 0.23)0.25(1 − 0.33)0.24}0.13

{(1 − 0.223)0.15(1 − 0.323)0.16(1 − 0.53)0.20(1 − 0.33)0.25(1 − 0.353)0.24}0.20)

 
 
,

(

 
 

{(1 − 0.2)0.15(1 − 0.13)0.16(1 − 0.13)0.20(1 − 0.33)0.25(1 − 0.23)0.24}0.5

{(1 − 0.33)0.15(1 − 0.23)0.16(1 − 0.33)0.20(1 − 0.153)0.25(1 − 0.13)0.24}0.17

{(1 − 0.13)0.15(1 − 0.33)0.16(1 − 0.23)0.20(1 − 0.13)0.25(1 − 0.13)0.24}0.13

{(1 − 0.13)0.15(1 − 0.153)0.16(1 − 0.13)0.20(1 − 0.23)0.25(1 − 0.13)0.24}0.20)

 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

= (0.7471,0.3543,0.1588). 

Theorem 4.2. Assume that Ñëij= (ℒij, Gij, Łij) be the collection of fq ROPFS Ns−  and weight vector 

ω = {ω1, ω2, ...., ωn} with the condition ∑ 𝜔𝑖
𝑛
𝑖=1 = 1 and υ = {υ1, υ2, ......, υm} with the condition that 

∑ 𝜐𝑖
𝑛
𝑖=1 = 1 for alternatives xi and parameters ej, respectively. Then the fq ROPFS WA− operator hold 

the following properties: 

(1) Idempotency: If Ñëij= ℜë , where ℜë = (∁, Ə, Ⅎ) and for all (i = 1,2, … , n and j = 1,2, … . ,m), 

then fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) = ℜë. 

(2) Boundedness: If  

Ñëij
− = {min min

j i
(ℒij), min min

j i
(Gij), max max

j i
(Łij)} 

and  
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Ñëij
+ = {max max

j i
(ℒij), min min

j i
(Gij), min min

j i
(Łij)}, 

then 

Ñëij
− ≤

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) ≤ Ñëij
+ . 

(3) Monotonicity: If ℜëij= (∁ij, Əij,  Ⅎij) be the collection of 
fq ROPFS Ns− such that  

ℒij ≤ ∁ij, Gij ≤ Əij, Łij ≥  Ⅎij then  

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) ≤ 
fq ROPFS WA− (ℜë11 , ℜë12 , … . , ℜënm). 

(4) Shift Invariance: If ℜë = (∁ij, Əij,  Ⅎij) is 
fq ROPFS Ns− , then  

fq ROPFS WA− (Ñë11 ⊕ℜë, Ñë12 ⊕ℜë, … . , Ñënm ⊕ℜë) = 

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) ⊕ℜë. 

(5) Homogeneity: If λ ≥ 0, then  

fq ROPFS WA− (λÑë11 , λÑë12 , … . , λÑënm)= λ 
fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm). 

Proof. We know that Ñë11 = ℜë = (∁, Ə, Ⅎ), then we have 

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) =

(

  
 
√1 −∏ (∏ (1 − ℒ𝑖𝑗

𝑞 )
𝜔𝑖𝑛

𝑖=1 )
𝜐𝑖

𝑚
𝑗=1

𝑞

,

Π𝑗=1
𝑚 (Π𝑖=1

𝑛 G𝑖𝑗
𝜔𝑖)

𝜐𝑖
 ,

Π𝑗=1
𝑚 (Π𝑖=1

𝑛 Ł𝑖𝑗
𝜔𝑖)

𝜐𝑖

)

  
 

 

=

(

 
 
√1 −∏ (∏ (1 − ∁𝑞)𝜔𝑖𝑛

𝑖=1 )𝜐𝑖𝑚
𝑗=1

𝑞
,

Π𝑗=1
𝑚 (Π𝑖=1

𝑛 Ə𝑞)𝜐𝑖  ,

Π𝑗=1
𝑚 (Π𝑖=1

𝑛 Ⅎ𝑞)𝜐𝑖
)

 
 

 

=(√1 − (1 − ∁𝑞)
𝑞

, Ə𝑞 , Ⅎ𝑞). 

Hence, 
fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) = ℜë. 

(2) Boundedness: We know that  

Ñëij
− ={min min

j i
(ℒij), min min

j i
(Gij), max max

j i
(Łij)} 

and  

Ñëij
+ ={max max

j i
(ℒij), min min

j i
(Gij), min min

j i
(Łij)}. 

To show that, 

Ñëij
− ≤ fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) ≤ Ñëij

+ . 
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⟹ min min
j i

{ℒij} ≤ ℒij ≤max max
j i

{ℒij} 

⇔ 1− max max
j i

{ℒ𝑖𝑗
𝑞 } ≤ 1 − ℒ𝑖𝑗

𝑞 ≤ 1 − min min
j i

{ℒ𝑖𝑗
𝑞 } 

⇔ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − max max
j i

{ℒ𝑖𝑗
𝑞 })

𝜔𝑖

)

𝜐𝑖

≤ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖
)
𝜐𝑖
≤ Π𝑗=1

𝑚 (Π𝑖=1
𝑛 (1 − min min

j i

{ℒ𝑖𝑗
𝑞 })

𝜔𝑖

)

𝜐𝑖

 

⇔ ((1 − max max
j i

{ℒ𝑖𝑗
𝑞 })

∑ 𝜔𝑖
𝑛
𝑖=1

)

∑ 𝜐𝑖
𝑚
𝑖=1

≤ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖
)
𝜐𝑖
≤ ((1 − min min

j i

{ℒ𝑖𝑗
𝑞 })

∑ 𝜔𝑖
𝑛
𝑖=1

)

∑ 𝜐𝑖
𝑚
𝑖=1

 

⇔ (1 − max max
j i

{ℒ𝑖𝑗
𝑞 }) ≤ Π𝑗=1

𝑚 (Π𝑖=1
𝑛 (1 − ℒ𝑖𝑗

𝑞 )
𝜔𝑖
)
𝜐𝑖
≤ (1 − min min

j i
{ℒ𝑖𝑗

𝑞 }) 

⇔ 1 − (1 − max max
j i

{ℒ𝑖𝑗
𝑞 }) ≤ 1 − Π𝑗=1

𝑚 (Π𝑖=1
𝑛 (1 − ℒ𝑖𝑗

𝑞 )
𝜔𝑖
)
𝜐𝑖
≤ 1 − (1 − min min

j i
{ℒ𝑖𝑗

𝑞 }) 

⇔ min min
j i

{ℒij} ≤ √1 − Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖
)
𝜐𝑖𝑞

≤ max max
j i

{ℒij}.      (12) 

Next, we have 

⇔ min min
j i

{Gij} ≤ Gij ≤max max
j i

{Gij} 

⇔ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (min min
j i

{Gij})

𝜔𝑖

)

𝜐𝑖

≤ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (Gij)
𝜔𝑖
)
𝜐𝑖
≤ Π𝑗=1

𝑚 (Π𝑖=1
𝑛 (max max

j i
{Gij})

𝜔𝑖

)

𝜐𝑖

 

⇔  ((min min
j i

{Gij})

∑ 𝜔𝑖
𝑛
𝑖=1

)

∑ 𝜐𝑖
𝑚
𝑖=1

≤ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (Gij)
𝜔𝑖
)
𝜐𝑖
≤ ((max max

j i
{Gij})

∑ 𝜔𝑖
𝑛
𝑖=1

)

∑ 𝜐𝑖
𝑚
𝑖=1

 

⇔ min min
j i

{Gij} ≤ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖
)
𝜐𝑖
≤ max max

j i
{Gij}        (13) 

and 

⇔ min min
j i

{Łij} ≤ Łij ≤max max
j i

{Łij} 

⇔ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (min min
j i

{Łij})

𝜔𝑖

)

𝜐𝑖

≤ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (Łij)
𝜔𝑖
)
𝜐𝑖
≤ Π𝑗=1

𝑚 (Π𝑖=1
𝑛 (max max

j i
{Łij})

𝜔𝑖

)

𝜐𝑖

 

⇔ ((min min
j i

{Łij})

∑ 𝜔𝑖
𝑛
𝑖=1

)

∑ 𝜐𝑖
𝑚
𝑖=1

≤ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (Łij)
𝜔𝑖
)
𝜐𝑖
≤ ((max max

j i
{Łij})

∑ 𝜔𝑖
𝑛
𝑖=1

)

∑ 𝜐𝑖
𝑚
𝑖=1

 

⇔ min min
j i

{Łij} ≤ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (Łij)
𝜔𝑖
)
𝜐𝑖
≤max max

j i
{Łij}         (14) 
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Therefore, from Eqs (12)–(14), we have 

⇔ min min
j i

{ℒij} ≤ √1 − Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖
)
𝜐𝑖𝑞

≤ max max
j i

{ℒij} 

⇔ min min
j i

{Gij} ≤ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖
)
𝜐𝑖
≤max max

j i
{Gij} 

⇔ min min
j i

{Łij} ≤ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (Łij)
𝜔𝑖
)
𝜐𝑖
≤max max

j i
{Łij}. 

Let δ=
fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) = (ℒδ, Gδ, Łδ), then by score function 

S(δ)=ℒδ
𝑞
−𝐺δ

𝑞 − Łδ
𝑞
+(

𝑒
ℒ
δ
𝑞
−𝐺

δ
𝑞
−Ł
δ
𝑞

𝑒
ℒ
δ
𝑞
−𝐺

δ
𝑞
−Ł
δ
𝑞

+1
−
1

2
)𝜋δ

𝑞
 

≤ (max max
j i

{ℒij})

𝑞

≤ (min min
j i

{𝐺ij})

𝑞

≤ (min min
j i

{Łij})

𝑞

+ 

(

 
 𝑒

(max max
j i

{ℒij})

𝑞

−(min min
j i

{𝐺ij})

𝑞

−(min min
j i

{Łij})

𝑞

𝑒

 (max max
j i

{ℒij})

𝑞

−(min min
j i

{𝐺ij})

𝑞

−(min min
j i

{Łij})

𝑞

+1

−
1

2

)

 
 
𝜋
Ñëij
+

𝑞
 

= S(Ñëij
+ ) 

⇒ S(δ)≤ S(Ñëij
+ ) 

and  

⇔ S(δ)=ℒδ
𝑞
−𝐺δ

𝑞 − Łδ
𝑞
+(

𝑒
ℒ
δ
𝑞
−𝐺

δ
𝑞
−Ł
δ
𝑞

𝑒
ℒ
δ
𝑞
−𝐺

δ
𝑞
−Ł
δ
𝑞

+1
−
1

2
)𝜋δ

𝑞
 

≥ (min min
j i

{ℒij})

𝑞

≤ (min min
j i

{𝐺ij})

𝑞

≤ (max max
j i

{Łij})

𝑞

+ 

(

 
 𝑒

 (min min
j i

{ℒij})

𝑞

− (min min
j i

{𝐺ij})

𝑞

−  (max max
j i

{Łij})

𝑞

𝑒

  (min min
j i

{ℒij})

𝑞

− (min min
j i

{𝐺ij})

𝑞

− (max max
j i

{Łij})

𝑞

+1

−
1

2

)

 
 
𝜋
Ñëij
−

𝑞
 

= S(Ñëij
− ) 

⇒ S(δ) ≥ S(Ñëij
− ). 

Now we have the following cases: 

(i) If S(δ)≤ S(Ñëij
+ ) and S(δ)≥S(Ñëij

− ), by the comparison of these two fq ROPFS Ns− , we get 

Ñëij
− < fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) < Ñëij

+ . 

(ii) If S(δ)=S(Ñëij
+ ), then  
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ℒδ
𝑞
−𝐺δ

𝑞 − Łδ
𝑞
+(

𝑒
ℒ
δ
𝑞
−𝐺

δ
𝑞
−Ł
δ
𝑞

𝑒
ℒ
δ
𝑞
−𝐺

δ
𝑞
−Ł
δ
𝑞

+1
−
1

2
)𝜋δ

𝑞
 

= (max max
j i

{ℒij})

𝑞

≤ (min min
j i

{𝐺ij})

𝑞

≤ (min min
j i

{Łij})

𝑞

+ 

(

 
 𝑒

(max max
j i

{ℒij})

𝑞

−(min min
j i

{𝐺ij})

𝑞

−(min min
j i

{Łij})

𝑞

𝑒

 (max max
j i

{ℒij})

𝑞

−(min min
j i

{𝐺ij})

𝑞

−(min min
j i

{Łij})

𝑞

+1

−
1

2

)

 
 
𝜋
Ñëij
+

𝑞
 

then by above inequalities, we get 

⟹ ℒδ =max max
j i

{ℒij}, 𝐺δ = min min
j i

(Gij), Łδ= max max
j i

(Łij) 

⟹ 𝜋δ
𝑞 = 𝜋

Ñëij
−

𝑞
 

⟹ 
fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm)=Ñëij

− . 

Hence 

Ñëij
− ≤ 

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) ≤ Ñëij
+ . 

(3) Monotonicity: Since ℒij ≤ ∁ij, Gij ≤ Əij and Łij ≥ Ⅎij, then 

⇒ ℒij ≤ ∁ij ⇒ 1−∁ij ≤ 1−ℒij ⇒ 1−∁𝑖𝑗
𝑞

 ≤ 1−ℒ𝑖𝑗
𝑞

 

⇒ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − ∁𝑖𝑗
𝑞 )

𝜔𝑖
)
𝜐𝑖
≤ Π𝑗=1

𝑚 (Π𝑖=1
𝑛 (1 − ℒ𝑖𝑗

𝑞 )
𝜔𝑖
)
𝜐𝑖

 

⇒ 1−Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖
)
𝜐𝑖
≤ 1 − Π𝑗=1

𝑚 (Π𝑖=1
𝑛 (1 − ∁𝑖𝑗

𝑞 )
𝜔𝑖
)
𝜐𝑖

 

⇒ √ 1 − Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − ℒ𝑖𝑗
𝑞
)
𝜔𝑖
)
𝜐𝑖𝑞

≤ √1 − Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − ∁𝑖𝑗
𝑞
)
𝜔𝑖
)
𝜐𝑖𝑞

 

next Gij ≤ Əij 

⇒ Π𝑖=1
𝑛 (Gij)

𝜔𝑖
≤ Π𝑖=1

𝑛 (Əij)
𝜔𝑖

 

⇒ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (Gij)
𝜔𝑖
)
𝜐𝑖
≤ Π𝑗=1

𝑚 (Π𝑖=1
𝑛 (Əij)

𝜔𝑖
)
𝜐𝑖

 

and  Łij ≥ Ⅎij 

⇒ Π𝑖=1
𝑛 (Łij)

𝜔𝑖
≥ Π𝑖=1

𝑛 (Ⅎij)
𝜔𝑖

 

⇒ Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (Łij)
𝜔𝑖
)
𝜐𝑖
≤ Π𝑗=1

𝑚 (Π𝑖=1
𝑛 (Ⅎij)

𝜔𝑖
)
𝜐𝑖

. 

Suppose that δÑ= fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) = (ℒδÑ , GδÑ , ŁδÑ) and  

δℜ= fq ROPFS WA− (ℜë11 , ℜë12 , … . , ℜënm) = (∁δℜ , Əδℜ , Ⅎδℜ). 

Now, from the above equation, we have  
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ℒij ≤ ∁ij, Gij ≤ Əij and Łij ≥ Ⅎij 

then by the score function we have S(δÑ) ≤ S(δℜ). 

Now, we have the following cases: 

(I) By the comparison of two q-ROPF soft numbers, if S(δÑ) < S(δℜ), then 

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) < fq ROPFS WA− (ℜë11 , ℜë12 , … . , ℜënm). 

(II) If S(δÑ) = S(δℜ), where 

S(δÑ) = ℒδÑ
𝑞

−𝐺δÑ
𝑞 − ŁδÑ

𝑞
+(

𝑒
ℒ
δÑ

𝑞
−𝐺

δÑ

𝑞
−Ł
δÑ

𝑞

𝑒
ℒ
δÑ

𝑞
−𝐺

δÑ

𝑞
−Ł
δÑ

𝑞

+1

−
1

2
)𝜋δÑ

𝑞
 

S(δℜ) = ℒδℜ
𝑞

−𝐺δℜ
𝑞 − Łδℜ

𝑞
+(

𝑒
ℒ
δÑ

𝑞
−𝐺

δÑ

𝑞
−Ł
δÑ

𝑞

𝑒
ℒ
δℜ

𝑞
−𝐺

δℜ

𝑞
−Ł
δℜ

𝑞

+1

−
1

2
)𝜋δδℜ̃

𝑞
. 

We have, ℒδÑ = ∁δℜ , GδÑ = Əδℜ  and ŁδÑ = Ⅎδℜ. Hence 

⇒ 𝜋δÑ
𝑞

= 𝜋δℜ
𝑞

 

⇒ (ℒδÑ , GδÑ , ŁδÑ) = (∁δℜ , Əδℜ , Ⅎδℜ). 

Proved that 
fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) < fq ROPFS WA− (ℜë11 , ℜë12 , … . , ℜënm). 

(4) Shift Invariance: Since ℜë = (∁, Ə, Ⅎ) and Ñëij= (ℒëij , Gëij , Łëij) are the q-ROPF soft numbers, so 

Ñëij ⊕ ℜë = (√(1 − ℒ𝑖𝑗
𝑞 ) (1 − ∁𝑞)

𝑞

, G𝑖𝑗
𝑞 Ə, Ł𝑖𝑗

𝑞 Ⅎ). Therefore,  

fq ROPFS WA− (Ñë11 ⊕ ℜë, Ñë12⊕ ℜë , … . , Ñënm ⊕ ℜë)= ⊕𝑗=1
𝑚 𝜐𝑖 (⊕𝑖=1

𝑛 𝜔𝑖 (Ñëij ⊕ ℜë)) 

= (√1 − Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖
(1 − ∁𝑞)𝜔𝑖)

𝜐𝑖𝑞

, Π𝑗=1
𝑚 (Π𝑖=1

𝑛 G𝑖𝑗
𝜔𝑖Ə𝜔𝑖)

𝜐𝑖
 , Π𝑗=1

𝑚 (Π𝑖=1
𝑛 Ł𝑖𝑗

𝜔𝑖Ⅎ𝜔𝑖)
𝜐𝑖
) 

= (√1 − (1 − ∁𝑞)Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖
)
𝜐𝑖𝑞

, ƏΠ𝑗=1
𝑚 (Π𝑖=1

𝑛 G𝑖𝑗
𝜔𝑖)

𝜐𝑖
 , ℲΠ𝑗=1

𝑚 (Π𝑖=1
𝑛 Ł𝑖𝑗

𝜔𝑖)
𝜐𝑖
) 

= (√1 − Π𝑗=1
𝑚 (Π𝑖=1

𝑛 (1 − ℒ𝑖𝑗
𝑞 )

𝜔𝑖
)
𝜐𝑖𝑞

, Π𝑗=1
𝑚 (Π𝑖=1

𝑛 G𝑖𝑗
𝜔𝑖)

𝜐𝑖
 , Π𝑗=1

𝑚 (Π𝑖=1
𝑛 Ł𝑖𝑗

𝜔𝑖)
𝜐𝑖
)⊕ (∁, Ə, Ⅎ) 

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) ⊕ℜë. 

(5) Homogeneity: Let Ñëij= (ℒëij , Gëij , Łëij) be a fq ROPFS Ns− and λ ≥0, be any real number, then 

λ𝑁̃ = (√1 − (1 − ℒ𝑖𝑗
𝑞 )

λ𝑞

, G𝑖𝑗
𝑞 , Ł𝑖𝑗

𝑞 ) 
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fq ROPFS WA− (λÑë11 , λÑë12 , … . , λÑënm) = 

(

 
 
 
 √1 − (∏ (∏ (1 − ℒ𝑖𝑗

𝑞 )
𝜔𝑖𝑛

𝑖=1 )
𝜐𝑖

𝑚
𝑗=1 )

λ𝑞

,

(Π𝑗=1
𝑚 (Π𝑖=1

𝑛 G𝑖𝑗
𝜔𝑖)

𝜐𝑖
)
λ

 ,

(Π𝑗=1
𝑚 (Π𝑖=1

𝑛 Ł𝑖𝑗
𝜔𝑖)

𝜐𝑖
)
λ

)

 
 
 
 

 

= λ 
fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm). 

Hence, the property proved. 

4.2. q-ROPF soft ordered weighted average (
fq ROPFS OWA− ) operator 

Definition 4.2. Assume that Ñëij =(ℒij, Gij, Łij)  for (𝑖 = 1,2, … n and j = 1,2, … .m)  be collection of 

fq ROPFS Ns=  and weight vector ω= {ω1, ω2, .... ,ωn} with the condition ∑ 𝜔𝑖
𝑛
𝑖=1 = 1 and υ= {υ1, 

υ2, ......, υm} with the condition that ∑ 𝜐𝑖
𝑛
𝑖=1 = 1 for alternatives xi and parameters ej, respectively. The 

mapping :f

n Đq ROPFS OW ĐA− →  is said to be 
fq ROPFS OWA−  operator. (Đ is the collection of 

fq ROPFS Ns− ). 

fq ROPFS OWA− (Ñë11 , Ñë12 , … . , Ñënm)=⊕𝑗=1
𝑚 𝜐𝑖 (⊕𝑖=1

𝑛 𝜔𝑖Ñ𝜎ëij).    (15) 

Theorem 4.3. Consider the collection of 
fq ROPFS Ns−  Ñëij=(ℒij, Gij, Łij) then the aggregation 

result for 
fq ROPFS OWA−  operator is expressed: 

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) = ⊕𝑗=1
𝑚 𝜐𝑖 (⊕𝑖=1

𝑛 𝜔𝑖Ñσëij) 

=(√1 −∏ (∏ (1 − ℒ𝜎𝑖𝑗
𝑞 )

𝜔𝑖𝑛
𝑖=1 )

𝜐𝑖
𝑚
𝑗=1

𝑞

, Π𝑗=1
𝑚 (Π𝑖=1

𝑛 G𝜎𝑖𝑗
𝜔𝑖 )

𝜐𝑖
 , Π𝑗=1

𝑚 (Π𝑖=1
𝑛 Ł𝜎𝑖𝑗

𝜔𝑖 )
𝜐𝑖
)  

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) = 

(

  
 
√1 −∏ (∏ (1 − ℒ𝜎𝑖𝑗

𝑞 )
𝜔𝑖𝑛

𝑖=1 )
𝜐𝑖

𝑚
𝑗=1

𝑞

,

Π𝑗=1
𝑚 (Π𝑖=1

𝑛 G𝜎𝑖𝑗
𝜔𝑖 )

𝜐𝑖
 ,

Π𝑗=1
𝑚 (Π𝑖=1

𝑛 Ł𝜎𝑖𝑗
𝜔𝑖 )

𝜐𝑖

)

  
 

    (16) 

ω= {ω1, ω2, ...., ωn} with the condition ∑ 𝜔𝑖
𝑛
𝑖=1 = 1 and υ= {υ1, υ2, ......, υm} with the condition that 

∑ 𝜐𝑖
𝑛
𝑖=1 = 1 for alternatives xi and parameters ej, respectively. 

Proof. Proof is similar to the theory of “ fq ROPFS WA− ” operator. 

Example 4.2. From “Table 2” of Example 4.1, we take the collections fq ROPFS Ns−

Ñëij  =  (ℒij, Gij, Łij) ) by using the score function, the we obtain the tabular representation of 

Ñëij= (ℒσij, Gσij, Łσij) is presented in “Table 3”. 
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Table 3. Tabular representation of 
fq ROPFS S− Ñëij=(ℒσij, Gσij, Łσij) for q ≥ 3. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 3 4

1

2

3

4

0.8,0.4,0.3 0.9,0.5,0.3 0.83,0.2,0.1 0.87,0.32,0.15

0.76,0.2,0.1 0.8,0.33,0.1 0.77,0.4,0.3 0.84,0.35,0.1

0.71,0.3,0.1 0.65,0.35,0.15 0.66,0.54,0.2 0.8,0.3,0.2

0.66,0.4,0.2 0.6,0.5,0.3 0.58,0.3,0.1 0

U e e e e

t

t

t

t ( )

( ) ( ) ( ) ( )5

.73,0.22,0.1

0.62,0.5,0.2 0.55,0.5,0.2 0.45.0.25,0.1 0.7,0.5,0.1t

 

By Eq (16) we have 

fq ROPFS WA− (Ñë11 , Ñë12 , … . , Ñënm) = 

(

  
 
√1 −∏ (∏ (1 − ℒ𝜎𝑖𝑗

𝑞 )
𝜔𝑖𝑛

𝑖=1 )
𝜐𝑖

𝑚
𝑗=1

𝑞

,

Π𝑗=1
𝑚 (Π𝑖=1

𝑛 G𝜎𝑖𝑗
𝜔𝑖 )

𝜐𝑖
 ,

Π𝑗=1
𝑚 (Π𝑖=1

𝑛 Ł𝜎𝑖𝑗
𝜔𝑖 )

𝜐𝑖

)

  
 

 

= 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
√

1 − {(1 − 0.83)0.15(1 − 0.763)0.16(1 − 0.713)0.20(1 − 0.663)0.25(1 − 0.623)0.24}0.5

1 − {(1 − 0.93)0.15(1 − 0.83)0.16(1 − 0.653)0.20(1 − 0.63)0.25(1 − 0.553)0.24}0.17

1 − {(1 − 0.833)0.15(1 − 0.773)0.16(1 − 0.663)0.20(1 − 0.583)0.25(1 − 0.453)0.24}0.13

1 − {(1 − 0.873)0.15(1 − 0.843)0.16(1 − 0.83)0.20(1 − 0.733)0.25(1 − 0.73)0.24}0.20

3

,

(

 
 

{(1 − 0.43)0.15(1 − 0.23)0.16(1 − 0.33)0.20(1 − 0.43)0.25(1 − 0.53)0.24}0.5

{(1 − 0.53)0.15(1 − 0.333)0.16(1 − 0.353)0.20(1 − 0.53)0.25(1 − 0.53)0.24}0.17

{(1 − 0.23)0.15(1 − 0.43)0.16(1 − 0.543)0.20(1 − 0.33)0.25(1 − 0.253)0.24}0.13

{(1 − 0.323)0.15(1 − 0.353)0.16(1 − 0.33)0.20(1 − 0.223)0.25(1 − 0.53)0.24}0.20)

 
 
,

(

 
 
{(1 − 0.33)0.15(1 − 0.13)0.16(1 − 0.13)0.20(1 − 0.23)0.25(1 − 0.23)0.24}0.5

{(1 − 0.33)0.15(1 − 0.13)0.16(1 − 0.153)0.20(1 − 0.33)0.25(1 − 0.23)0.24}0.17

{(1 − 0.13)0.15(1 − 0.33)0.16(1 − 0.23)0.20(1 − 0.13)0.25(1 − 0.13)0.24}0.13

{(1 − 0.153)0.15(1 − 0.13)0.16(1 − 0.23)0.20(1 − 0.13)0.25(1 − 0.13)0.24}0.20)

 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

= (0.7264,0.3568,0.1568). 

Theorem 4.4. Consider the collection of fq ROPFS Ns−   Ñëij =(ℒij, Gij, Łij)  of weight vector ω= {ω1, 

ω2, ...., ωn} with the condition ∑ 𝜔𝑖
𝑛
𝑖=1 = 1 and υ= {υ1, υ2, ......, υm} with the condition that ∑ 𝜐𝑖

𝑛
𝑖=1 = 1 

for alternatives xi and parameters ej, respectively. Then the fq ROPFS OWA−  operator hold the 

following properties: 

(1)  Idempotency: If Ñëij  = ℜë  , where ℜë = (∁, Ə, Ⅎ)  and for all (i = 1,2, … , n and j = 1,2, … . , m) , 

then fq ROPFS OWA− (Ñë11 , Ñë12 , … . , Ñënm) = ℜë. 

(2) Boundedness: If 

Ñëij
− = {min min

j i
(ℒij), min min

j i
(Gij), max max

j i
(Łij)} 

and 



9044 

AIMS Mathematics  Volume 8, Issue 4, 9027–9053. 

Ñëij
+ = {max max

j i
(ℒij), min min

j i
(Gij), min min

j i
(Łij)}, 

then 

Ñëij
− ≤

fq ROPFS OWA− (Ñë11 , Ñë12 , … . , Ñënm) ≤ Ñëij
+ . 

(3) Monotonicity: If ℜëij=(∁ij, Əij,  Ⅎij) be the collection of 
fq ROPFS Ns− such that  

ℒij ≤ ∁ij, Gij ≤ Əij, Łij ≥  Ⅎij then  

fq ROPFS OWA− (Ñë11 , Ñë12 , … . , Ñënm) ≤ 
fq ROPFS OWA− (ℜë11 , ℜë12 , … . , ℜënm). 

(4) Shift Invariance: If ℜë = (∁ij, Əij,  Ⅎij) is 
fq ROPFS Ns− , then  

fq ROPFS OWA− (Ñë11 ⊕ℜë, Ñë12 ⊕ℜë, … . , Ñënm ⊕ℜë) = 

fq ROPFS OWA− (Ñë11 , Ñë12 , … . , Ñënm) ⊕ℜë. 

(5) Homogeneity: If λ ≥ 0, then  

fq ROPFS OWA− (λÑë11 , λÑë12 , … . , λÑënm) = λ 
fq ROPFS OWA− (Ñë11 , Ñë12 , … . , Ñënm). 

Proof. Straight forward. 

5. MADM under q-ROPF soft information 

In real life situation DM play very important role, and it is a pre-plan process of selecting the best 

choice out of many alternatives. Let Ą= {ą₁, ą₂, ......ąl} be the set of alternative and corresponding set 

parameter Ĉ= {c₁, c₂…..., cm}. The team of n senior expert Đ₁, Đ₂, ......., Đn} evaluate to each 

alternative ąs to their corresponding parameters cj. The group of senior experts provide their evaluation 

in terms of Ñëij  =(ℒij, Gij, Łij)  with the weight vector ω= (ω₁,ω2, . . . . . , ωn)T with the condition 

∑ 𝜔𝑖
𝑛
𝑖=1 = 1 and υ = (υ1, υ2, . . . . . . , υm)T with the condition that ∑ 𝜐𝑖

𝑛
𝑖=1 = 1 for alternatives xi and 

parameters ej, respectively. Where the collective information of senior expert are described by the 

decision matrix M=[Ñëij]m×n 
and the aggregated q-ROPF soft number ℧S for alternative (S=1, 2,….,l) 

is given as ℧S=(ℒS, GS, ŁS). Finally, we apply the score function on each aggregated q-ROPF soft 

number ℧S=(ℒS, GS, ŁS) for the alternative and rank them in a specific ordered to get the best option. 

Steps involve in algorithm for solving MADM applications. 

Algorithm: 

Step 1. Construct a decision matrix M=[Ñëij]m×n 
: 

𝑀 = [

(ℒ11,G11,Ł11) (ℒ12,G12,Ł12) ⋯ (ℒ1𝑚,G1𝑚,Ł1𝑚)

(ℒ21,G21,Ł21) (ℒ22,G22,Ł22) ⋯ (ℒ2𝑚,G2𝑚,Ł2𝑚)
⋮ ⋮ ⋱ ⋮

(ℒ1𝑚,G1𝑚,Ł1𝑚) (ℒ2𝑚,G2𝑚,Ł2𝑚) ⋯ (ℒ𝑛𝑚,G𝑛𝑚,Ł𝑛𝑚)

] 

Step 2. Normalization of q-ROPF soft decision matrix M=[Ñëij]m×n 
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𝑃𝑖𝑗 = {
for cost type parameter we use Ñëij

𝐶

for benefit type parameter we use Ñëij
 

where Ñëij
𝐶 } reprsent the complement of Ñëij . 

Step 3. To aggregate the -ROPF soft number Ñëij=(ℒij, Gij, Łij) for each alternative. 

Step 4. To calculate the score value. 

Step 5. At the end arrange the score value to choose the best option. 

5.1. Application of the proposed model to MCDM 

For a decision-making problem, we consider a numerical example. Let consider a Đ₁, Đ₂, Đ₃, Đ₄, 

Đ₅ which represents the set of senior expert doctors having ω=(0.16,0.26,0.15,0.20,0.23)T represent 

the weight-vector which evaluate a common disease “obstructive goiter” of four different patients 

(alternatives) z₁, z₂, z₃ and z₄ based on the following signs and symptoms may include: 

Ĉ = 

{
 
 

 
 

c1 = Difficulty swallowing
c2 = Difficulty breathing with exertion

c3 = Cough
c4 = Hoarseness
c5 = Snoring }

 
 

 
 

 

which represent the set of parameters having weight vectors υ= (0.28,0.20,0.1,0.15,0.27)T . To 

diagnose the illness patients, we construct a step-wise algorithm. 

By q-ROPF soft weight averaging operator: 

Step 1. Construct a decision matrix M=[Ñëij]m×n 
expressed in q-ROPF soft numbers, which are given 

in Tables 4–7, respectively 

Table 4. q-ROPF soft matrix for patient 𝑧1. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4 5

1

2

3

Đ 0.71,0.25,0.1 0.77,0.2,0.15 0.88,0.22,0.11 0.81,0.18,0.11 0.79,0.2,0.1

Đ 0.8,0.22,0.11 0.85,0.12,0.11 0.7,0.3,0.15 0.75,0.15,0.1 0.74,0.4,0.14

Đ 0.77,0.2,0.1 0.75,0.25,0.15 0.84,0.12,0.11 0.86,0.2,0.1 0

c c c c c

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
4

5

.86,0.2,0.1

Đ 0.78,0.18,0.1 0.7,0.18,0.11 0.75,0.25,0.1 0.7,0.25,0.15 0.65,0.16,0.11

Đ 0.7,0.35,0.25 0.8,0.19,0.1 0.74,0.2,0.1 0.6,0.3,0.2 0.5,0.3,0.1

 

Table 5. q-ROPF soft matrix for patient 𝑧2. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4 5

1

2

3

Đ 0.6,0.3,0.15 0.7,0.22,0.11 0.66,0.25,0.1 0.8,0.2,0.1 0.63,0.3,0.1

Đ 0.5,0.25,0.1 0.8,0.25,0.13 0.75,0.16,0.12 0.66,0.25,0.18 0.71,0.17,0.2

Đ 0.64,0.25,0.1 0.5,0.2,0.1 0.85,0.24,0.1 0.7,0.3,0.2 0.6,0.26,

c c c c c

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
4

5

0.15

Đ 0.66,0.4,0.25 0.6,0.3,0.18 0.76,0.2,0.1 0.68,0.25,0.15 0.55,0.25,0.15

Đ 0.7,0.5,0.2 0.75,0.2,0.18 0.67,0.25,0.15 0.6,0.3,0.2 0.7,0.3,0.1
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Table 6. q-ROPF soft matrix for patient 𝑧3. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4 5

1

2

3

Đ 0.7,0.25,0.15 0.55,0.33,0.11 0.76,0.2,0.1 0.8,0.19,0.1 0.65,0.22,0.1

Đ 0.65,0.22,0.11 0.8,0.3,0.1 0.8,0.2,0.18 0.5,0.15,0.1 0.9,0.1,0.1

Đ 0.87,0.23,0.1 0.6,0.25,0.15 0.7,0.2,0.1 0.76,0.21,0.11 0.76,0.23

c c c c c

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
4

5

,0.11

Đ 0.8,0.3,0.2 0.78,0.13,0.1 0.75,0.25,0.15 0.4,0.2,0.1 0.66,0.3,0.2

Đ 0.75,0.4,0.2 0.65,0.3,0.1 0.6,0.1,0.1 0.6,0.23,0.1 0.66,0.3,0.2

 

Table 7. q-ROPF soft matrix for patient 𝑧4. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4 5

1

2

3

Đ 0.76,0.3,0.1 0.85,0.22,0.11 0.84,0.2,0.1 0.78,0.3,0.1 0.65,0.26,0.1

Đ 0.82,0.14,0.11 0.78,0.18,0.1 0.6,0.12,0.11 0.73,0.17,0.11 0.9,0.3,0.1

Đ 0.72,0.22,0.1 0.83,0.25,0.1 0.84,0.13,0.11 0.72,0.22,0.11 0.

c c c c c

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
4

5

77,0.2,0.1

Đ 0.6,0.27,0.16 0.6,0.3,0.2 0.7,0.3,0.2 0.83,0.13,0.11 0.6,0.25,0.15

Đ 0.66,0.23,0.11 0.80,0.22,0.12 0.77,0.25,0.15 0.70,0.17,0.12 0.5,0.3,0.2

 

Step 2. Normalization is not necessary because all the parameters are similar. 

Step 3. To aggregate the 
fq ROPFS WA− operator for each alternative, so we get 

℧₁ = (0.7590,0.2206,0.1198) 

℧₂ = (0.6772,0.2621,0.1429) 

℧₃ = (0.7361,0.2172,0.1210) 

℧₄ = (0.7557,0.2220,0.1204). 

Step 4. To calculate the score value. 

S(℧₁) = 0.5120 

S(℧₂) = 0.3539 

S(℧₃) = 0.4681 

S(℧₄) = 0.5052. 

Step 5. At the end arrange the score value to choose the best option. 

S(℧₁) ≻S(℧₄) ≻S(℧₃) ≻S(℧₂). 

Figure 1 shows the ranking order of alternatives of fq ROPFS WA−  operator. 
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Figure 1. The ranking order of alternatives of 
fq ROPFS WA−  operator. 

So, from the above analysis, it is observed that patient z₁ is more illness. 

By q-ROPF soft ordered weight averaging operator: 

Step 1. Construct a decision matrix M=[Ñëij]m×n 
expressed in q-ROPF soft numbers, which are given 

in Table 8–11, respectively. 

Table 8. q-ROPF soft matrix for patient z1. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4 5

1

2

3

Đ 0.8,0.22,0.11 0.85,0.12,0.11 0.88,0.22,0.11 0.86,0.2,0.1 0.86,0.2,0.1

Đ 0.78,0.18,0.1 0.8,0.19,0.1 0.84,0.12,0.11 0.81,0.18,0.11 0.79,0.2,0.1

Đ 0.77,0.2,0.1 0.77,0.2,0.15 0.75,0.25,0.1 0.75,0.15,0.1 0.7

c c c c c

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
4

5

4,0.4,0.14

Đ 0.71,0.25,0.1 0.75,0.25,0.15 0.74,0.2,0.1 0.7,0.25,0.15 0.65,0.16,0.11

Đ 0.7,0.35,0.25 0.7,0.18,0.11 0.7,0.3,0.15 0.6,0.3,0.2 0.5,0.3,0.1

 

Table 9. q-ROPF soft matrix for patient 𝑧2. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4 5

1

2

3

Đ 0.8,0.22,0.11 0.85,0.12,0.11 0.88,0.22,0.11 0.86,0.2,0.1 0.86,0.2,0.1

Đ 0.78,0.18,0.1 0.8,0.19,0.1 0.84,0.12,0.11 0.81,0.18,0.11 0.79,0.2,0.1

Đ 0.77,0.2,0.1 0.77,0.2,0.15 0.75,0.25,0.1 0.75,0.15,0.1 0.7

c c c c c

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
4

5

4,0.4,0.14

Đ 0.71,0.25,0.1 0.75,0.25,0.15 0.74,0.2,0.1 0.7,0.25,0.15 0.65,0.16,0.11

Đ 0.7,0.35,0.25 0.7,0.18,0.11 0.7,0.3,0.15 0.6,0.3,0.2 0.5,0.3,0.1

 

Table 10. q-ROPF soft matrix for patient 𝑧3. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4 5

1

2

3

Đ 0.87,0.23,0.1 0.8,0.3,0.1 0.8,0.2,0.18 0.8,0.19,0.1 0.9,0.1,0.1

Đ 0.8,0.3,0.2 0.78,0.13,0.1 0.76,0.2,0.1 0.76,0.21,0.11 0.76,0.23,0.11

Đ 0.75,0.4,0.2 0.65,0.3,0.1 0.75,0.25,0.15 0.6,0.23,0.1 0.66,0.3,0.

c c c c c

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
4

5

2

Đ 0.7,0.25,0.15 0.6,0.25,0.15 0.7,0.2,0.1 0.5,0.15,0.1 0.65,0.22,0.1

Đ 0.65,0.22,0.11 0.55,0.33,0.11 0.6,0.1,0.1 0.4,0.2,0.1 0.55,0.15,0.1
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Table 11. q-ROPF soft matrix for patient 𝑧4. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4 5

1

2

3

Đ 0.82,0.14,0.11 0.85,0.22,0.11 0.84,0.2,0.1 0.83,0.13,0.11 0.9,0.3,0.1

Đ 0.76,0.3,0.1 0.83,0.25,0.1 0.80,0.13,0.11 0.78,0.3,0.1 0.77,0.2,0.1

Đ 0.72,0.22,0.1 0.80,0.22,0.12 0.77,0.25,0.15 0.73,0.17,0.11 0

c c c c c

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
4

5

.65,0.26,0.1

Đ 0.66,0.23,0.11 0.78,0.18,0.1 0.7,0.3,0.2 0.72,0.22,0.11 0.6,0.25,0.15

Đ 0.6,0.27,0.16 0.6,0.3,0.2 0.6,0.12,0.11 0.70,0.17,0.12 0.5,0.3,0.2

 

Step 2. Normalization is not necessary because all the parameters are similar. 

Step 3. To aggregate the 
fq ROPFS OWA− operator for each alternative, so we get 

℧₁ = (0.7597,0.2172,0.1186) 
℧₂ = (0.6698,0.2648,0.1421) 
℧₃ = (0.7295,0.2176,0.1201) 
℧₄ = (0.7473,0.2277,0.1201). 

Step 4. To calculate the score value. 

S(℧₁) = 0.5140 

S(℧₂) = 0.3413 

S(℧₃) = 0.4557 

S(℧₄) = 0.4878. 

Step 5. At the end arrange the score value to choose the best option. 

S(℧₁) ≻S(℧₄) ≻S(℧₃) ≻S(℧₂). 

Figure 2 shows the ranking order of alternatives of 
fq ROPFS OWA− operator. 

 

Figure 2. The ranking order of alternatives of fq ROPFS OWA− operator. 

So, from the above analysis, it is observed that patient z₁ is more illness. 

6. Comparative analysis 

In this section we compare the result of our proposed model with the existing methods based 

on different operators, to show superiority and influence. In the existing method of various operators 

(see [15,24,26–28]) we handle the DM problem with the help of membership and non-membership 
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degree with attributes, but it cannot handle the situation when the expert’s judgment is of a type like 

yes, abstinence, no and rejection, because there is no information about the neutral degree. So, the 

logic behind our proposed model is that they have the capability to handle the situations with more 

generality than the existing concepts, with positive, neutral, and negative degrees (0≤(μ)𝑞 + (η)𝑞 +
(ν)𝑞 ≤1) with parameterization tools, which is more generalized than the previous concept. Based on 

q-ROPF soft weighted averaging operator and q-ROPF soft order weighted averaging operator we 

construct a decision matrix M=[Ñëij]m×n 
 expressed in q-ROPF soft numbers, which are given in 

Table 4–11 than aggregated this decision matrix with weight vector ω=(0.16,0.26,0.15,0.20,0.23)T 

and their corresponding results for each candidate are given in Table 12 and also Figure 3 shows the 

graphical representation of proposed operators with existing operators. 

Table 12. Comparison analysis with existing operators. 

Methods 𝑧1 𝑧2 𝑧3 𝑧4 Ranking 

IFWA [26] 0.220169 0.211734 0.332146 0.270078 ℧3>℧4>℧1>℧2 

IFOWA [26] 0.230663 0.217267 0.329021 0.254617 ℧3>℧4>℧1>℧2 

IFHA [26] 0.232465 0.225013 0.32471 0.240629 ℧3>℧4>℧1>℧2 

IF𝑆𝑓WA [27] 0.516859 0.548324 0.604673 0.590214 ℧3>℧4>℧2>℧1 

PF𝑆𝑓WA [28] 0.522097 0.565965 0.621904 0.590214 ℧3>℧4>℧2>℧1 

PF𝑆𝑓OWA [28] 0.532526 0.575719 0.621094 0.593809 ℧3>℧4>℧2>℧1 

PF𝑆𝑓HA [28] −0.39452 −0.37378 −0.34634 −0.33975 ℧3>℧4>℧2>℧1 

q-ROFWA [15] 0.81579 0.79845 0.147617 0.099586 ℧3>℧4>℧1>℧2 

𝑞 − ROF𝑆𝑓WA [24] 0.414877 0.46537 0.522354 0.484856 ℧3>℧4>℧2>℧1 

𝑞 − ROF𝑆𝑓OWA [24] 0.426939 0.475573 0.521928 0.483572 ℧3>℧4>℧2>℧1 

𝑞 − ROF𝑆𝑓HA [24] −0.29764 −0.27858 −0.2507 −0.5753 ℧3>℧4>℧2>℧1 

𝑞 − ROPF𝑆𝑓WA 0.5120 0.3539 0.4681 0.5052 ℧1>℧4>℧3>℧2 

𝑞 − ROPF𝑆𝑓OWA 0.5140 0.3413 0.4557 0.4878 ℧1>℧4>℧3>℧2 

 

Figure 3. Graphical representation of comparison analysis. 
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7. Conclusions 

In this article we present the hybrid of picture fuzzy set and q-rung orthopair fuzzy soft set, to get 

the generalized structure of q-rung orthopair fuzzy soft set called q-rung orthopair picture fuzzy soft 

set 
fq ROPFS S− , which is characterized by positive, neutral and negative membership degree by 

affixing a parameterization tool to solve the uncertainties. The notion of 
fq ROPFS S− S covers the 

gap of neutral degree, in the existing concept of q-rung orthopair fuzzy soft set. The main contribution 

of this article is to investigate the basic operations and aggregation operators like q-ROPF soft 

weighted averaging operator and q-ROPF soft ordered weighted averaging operator under the 

environment of q-rung orthopair picture fuzzy soft set. Moreover, some fundamental properties like 

idempotency, boundedness, monotonicity, shift invariance, and homogeneity based on these operators 

are studied. Under the environment of q-ROPF soft set, we consider a biological problem (medical 

problem) and construct a stepwise algorithm for decision-making problem. Finally, we make a 

comparison analysis to compare the result of our proposed model with the existing methods, for show 

superiority and influence. The advantage of our proposed model is that they can handle the situations 

with more generality than an existing concept (q-rung orthopair fuzzy soft set), i.e., the existing 

concept, we deal the real-life problems with membership degree and non-membership degree 

(0≤(μ)𝑞 + (η)𝑞≤1) with attributes but in the proposed method we handle the situations with positive, 

neutral and negative degree (0≤(μ)𝑞 + (η)𝑞 + (ν)𝑞 ≤1) with parameterization tools, which is more 

generalized than the previous concept. This proposed work will be extended in various directions such 

as q-rung orthopair interval-valued picture fuzzy soft set, q-rung orthopair bi-polar picture fuzzy soft 

set, q-rung orthopair m-polar picture fuzzy soft set, q-rung orthopair cubic picture fuzzy soft set and 

q-rung orthopair neutrosophic fuzzy soft set, etc. 
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