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1. Introduction

Consider the spatial fractional reaction-diffusion equation (SFRDE)

ou

=~ oDiuls, 0 = f(s,0, (50 €(@b)x0,7), (1.1)
u(s,0) = ¢(s), s € (a,b), (1.2)
where a € (1,2) and
1 S Ou(r,r) dr
, h—1<€&<n,
Cprusry={ TE-a) fo o (s—pprie MTIEEST (13)
u(n)(s())’ ne N,

where I'(@) = fooo x> le™*dx, x € (0, c0) is I function, see [1].
Reaction-diffusion equation (RDE) as
ou Ou

= =55 = fls0. (.0 €@b)x(O.1), (14)
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as a kind of important partial differential equation, originates from a wide range of diffusion
phenomena, influent flow theory, biochemistry, engineering,brain activity detection [2] and other
fields.

Systems of fractional differential equations are also used in the study of electric circuits. In
reference [3], explicit solutions for several families of such systems, both homogeneous and
inhomogeneous cases, both commensurate and incommensurate are presented. Multi-dimensional
time-dependent spatial fractional convection-diffusion (SFCD) equations [4] based on the
Riemann-Liouville (RL) derivative is studied by high-efficient accurate mesh-free scheme. Time
fractional diffusion equation [5] with discontinuous coefficients is investigated by immersed finite
element (IFE) method, stabilities and error estimates are obtained. In reference [6], the authors have
developed novel numerical schemes for the Caputo fractional derivative with order a € (1, 2) by cubic
interpolating polynomial and cubic Hermite interpolation. A space-time finite element method for the
multi-term time-space fractional diffusion equation is proposed in reference [7], the existence,
uniqueness and stability of numerical scheme are also discussed. Weak Galerkin finite element [8]
method to solve multi-term time fractional diffusion equation is considered, the stability analysis for
both semi-discrete and fully-discrete schemes are presented. Collocation approach [9] is developed
and stability of this scheme is investigated.

Barycentrix interpolation collocation [10-15] have been developed rapidly. In the recent paper,
heat conduction equation [16], integral-differential equation [17], biharmonic equation [18, 19] and
fractional differential equations [20] have been solved by linear barycentrix rational collocation
methods (LBRCM). In the paper [21-24], barycentric interpolation collocation method for nonlinear
parabolic partial differential equations [25], incompressible plane elastic problems and plane elastic
problems [26] and so on are presented.

In this paper, SFRDE is considered by linear barycentrix interpolation collocation methods. The
fractional term is calculated by fractional integration which the singular part is changed to Riemman
integral under the condition that the density function have one order more regularity. Different from
the classical Gauss quadrature, new Gauss quadrature with weight function (s, — 7)™ is constructed
which have high accuracy. Then matrix equation of SFRDF is obtained from discrete SFRDE and
convergence rate is proposed.

2. Matrix equation of SFRDE
Matrix equation of SFRDE is given in this part. The domain [a, b] X [0, T'] is divided into
(Si?tj)ai = Oa 19”' s mvj = Oa 17”' , N,

which can be chosen as equidistant nodes or Chebyshev nodes [27]. For equidistant meshes, we have

_ b-a _T
hy =225 = 5.

The barycentric interpolation function is given by
u(s,0) = > > R(IR (D, @.1)

i=0 j=0
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where u;; = u(s;, t;) and

Wi 4,
s =5 =1
Ri(s) = — , Ri(ty = ———, (2.2)
2 >
=m0 T Sk im0 LTIk

is basis function [28]. For different weight function w; and A;, there are different kind of barycentric
interpolation, such as barycentric Lagrange interpolation (BLI) and barycentric rational interpolation
(BRI) [21] and so on.

The w; denoted as weight function of BLI is defined as

1 1
wp = — s A = ,
[1 Si — S8 H ty—t (2.3)
J=0,j#i Jj=0,j#k
A; of BRI is defined as
r1+dj
wi= (=1 L di={nci-d o< <),
ried; k=ry,r1#i Si = Sk (24)
r2+d, 1
/lk—Z( 1)” 1_[ Jk:{rzik—dtﬁrzﬁk},
reJy i=ry,rn#k k N t
where r; € {0,1,--- ,m —d,}, rn € {0,1,--- ,n — d,}, the parameters d, d, are integers and 0 < d, <

m,0<d, <n.
As there are singularity in Eq (1.3), the numerical methods can not get high accuracy, so we
change (1.3) by fractional integration to overcome the difficulty singularity. We get

* u(t, 1) dr

C R _ 1
oDy = T(f—a)fo o7 (s— )y
1 [Eﬁu(() 1) o fs Flu(r, ) dr ]
0

“TE—a)E-a)| o5 OrET (s — 1)t
O u(0,1) o Fu(r,t)  dr
=T, [ 0sé - f(; orstl (s — T)a‘f] ’ )
where
1

Iy = :
['¢-a)§-a)
Combining (2.5) and (1.1), we have

s aé+1
au—f‘i[a w0 f"+f P uvd_dr | g, 2.6)
0

ot dsé el (s — 1)t

Combining Eqgs (2.1) and (2.6), then we get
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n

Ms

i=0 j=0

where

and

Ri(7)

Lets = s,, 1 =15, we get

)

i=0 j=0

n

where u =0,1,---,

[Ri@OR;(5)| w;; —TE Y

=Ri(1) |-

RE V() =

R (IH)R (S/z) Ui —

m0=0,1,---,n

m n
0

|R/(ORD(0)s | uy
0

s (f+1)( )
Rj(l‘)‘f(; md?’] Ujj

= ]=
m n

)

i=0 j=0

= f(s.1),

2.7)

Ak

Ri(1) = —F—,

A
ZT ka

k=0

l B
1 SZ::O (T — 1)
+
T— Ty L A

s=0 T — Tk

’

[RY(1)],€ € N*.

n

Ms

|Ri(t)RE )55 | s

(§+1)( )
R(fa)f (5= D ng] Uij

l=0 Jj=0

m
l=0 Jj=

= f(s,u’ t@)’

=

(2.8)

0

The integral term of (2.8) can be written as

foS# RV (@) (s, — DFdT = Qil(s,) = Qi

then we get

m

% 3 [RiaR(s]u; =T )

i=0 j= =0

noting the notation,

Ri(s,) = Oiys

Ri(tg) = MV, Ry(ty) = 6,6, RS (0) =

2.9)

|[Rit)RE )5 + R(t) Qi(5,) | wij = f(sys o), (2.10)

:0

M,
iy

where MOV M €0 is the first order derivative of barycentrix matrix related with ¢ and s [20].

Jjo
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The integral (2.9) is calculated by
Sp 8
Qi = Qi(sy) = f R (0)(s, — 1) dr = Z R&V (G,
0 i=1

where Gf’a i1s Gauss weight and T?’“ is Gauss points with weights (s, — 7)™ [20].
Equation systems (2.10) can be written as

[ Uoo ] [ Joo ]
Uon ﬁ)n
Uio flo
[ @ MY —TE (T4 (L @ M) + L O)|| ¢ [=| & |,
Uin ﬁm
Um0 me
| umn B | fmn .

I,.+1 and I, are identity matrices, ® is Kronecker product (see [21]),

01 01 0 0
MO = [M,(j )]n+l,n+l9 M@ = [M,(f )]n+1,n+1, 0= [Qij]m+1,m+1,

and
T = diag(s/‘i_").

Then Eq (2.12) can be noted as

(L1 ® MOV T4 (75 (L @ M) + L © Q)| U = F,

and
LU = F,
with
L=l ® MO =T (15 (L1 @ M) + L1 © Q)
U= [MOO' *Uon, U10° * "Uln, Umo* * 'umn]Ts
and

F = [foo - fon> J1o* * *fins fon0" * *frnn) " -

(2.11)

(2.12)

(2.13)

(2.14)

The initial and boundary condition can be dealt with the additional methods or replacement

methods [21].
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3. Convergence and error analysis

In this part, we present the proof convergence rate of LBRCM for SFRDE. Firstly, we define the
error function

e(s) = u(s) — pu(s) = (s — 8) - (s = Sixa) Ul S, Siz1, - - - 5 Sixa, 51, 3.1)

and

S
Q..

Ai(s) (u(s) — pi(s))
_A(9)

e(s) = = 305 = 00D, (32)
> ais)
i=0
whereh = (b — a)/m,
n /1!
LI
§S— S
Pals) = = :
Ak
=0 5 T Sk
and )
A9 = D (=Dulx,..., sivas 51,
i=0
n—d
B(s) := ) Ai(5), 4,
i=0
is defined as (2.3).

In the following, C denotes positive constant different places maybe its value is different.

Lemma 1. [/0] For e(s) defined as (3.1), there holds
e®(9)| < Ch' T, we Ca,b], k=0,1,---. (3.3)

For the SFRDE, we can get the error function as rational interpolation function of u(s, t) is defined
as run(s, 1)

Wi,j "
Lj
=0 =0 (5 —s) (f - 1«‘])
rmn(s9 t) = md, n+d, s (34)
W,"j

where
k1+ds k2+d,
wip= (DN ] >0 Tl (3.5)
ki€d; hy=ky,hi#j |s, - sh1| kyed; o=k, hzi] thz

AIMS Mathematics Volume 8, Issue 4, 9009-9026.
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We define u(s, t) to be
e(s,t) 1 =u(s,t) = ry(s, 1) (3.6)
=(s—5) " (S - si+d5) u [Si» Sitls ey Sitd)s S]
+ (t - tj) e (t - tj+dt) u [tj, Fists s Ljsdys t] )
See [28].

With similar analysis of Lemma 1, we have
Lemma 2. For e(s, t) defined as (3.6) and ¢(s,t) € C4h+2[q, b] x C4***2[0, T, then we have
e (s, )| < CRET*T 4+ B, 3.7)
where k],kz = 0, 1, LR
Combining (2.8) and (1.1), we have

Le(s, 1) :=e,(s,1) = I'(€)es (0,1) —I'(€) f“' Md?’ — R (s, 1), (3.8)
o (s—7)*%

where
Rf(S,t) = f(s’t) _f(si’ t})a l,,] = 09 1’2" e ,n
Let u(s, t) to be the solution of (1.1) and u,,,(s, t) is the numerical solution, then we have

Lityn(sit) = f(sinty), 1,7=0,1,2,--- ,m,n,

and
lim u,(s;,¢;) = u(s, ).

n—oo

We get the following theorem.

Theorem 1. Let
an(sa t) . -Eumn(si’ tj) = f(si’ t])a M(S, t) € C3[a7 b] X [Oa T]’

and suppose L be the invertible operator, we have
Jtn(sis ) = u(s, D) < CUE™" + 1.

Proof. Combining the Lemma 1 and Eq (3.8), we have

| Le(s, D) = |e; (5, 1) = T(&)e,s (0,1) - F(f)f (emLt_)dT = Ry(s, t)’

eTT‘I‘(

<le: (s, )|+ T(&)ess (0,0 ] + 'F(f)f (5= )a f

< COhE™ + B + Che ™" + H™hy + Ché™" + ™)
< C(HS™" + h). (3.9)

7|+ Ry (s, 1)l

As L is invertible operator. Then we have
(35 1)) = uCs, O < CCHE™" + B,

The proof is completed.

AIMS Mathematics Volume 8, Issue 4, 9009-9026.
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4. Numerical examples

Example is presented to valid our theorem.

Example 1. Consider the SFRDE

% — SD%u(s,0) = f(s,1), (s,1)€(0,1)x(0,T), 4.1)
u(s,0) = s3(1 — 5)2, s€(0,1), 4.2)
u(s, 1) =0, (s,) e R\ (0,1)x(0,T), “4.3)
and source term is
— ot 301 )2 F(Z) 3—a _ r(3) 4—a r(4) 5—q
f(s,t) =—e " (s(1 — x) +6F(4—a)x F(S—cx)x +20F(6—a)x )

Its exact solution

u(s,r) = e's>(1 — )%

In Table 1, for different dy, = d, = 1,2,--- ,8 withm = n = 12, = 1.5, errors of BRCM with
uniform and non uniform partition are presented, we can take the value d; = d, > % to get the high
accuracy.

Table 1. Errors of the BRCM for d, = d,.

d, = d, uniform nonuniform
1 4.6993e-01 7.5345e-02
2 7.2988e-02 2.8702e-02
3 7.9305e-04 3.4180e-05
4 7.9579¢-03 5.0769e-04
5 6.8798e-08 5.7736e-11
6 3.9454e-07 1.3449¢-12
7 3.3420e-06 1.4611e-13
8 2.0505e-05 7.1919e-13

In Table 2, Lagrange barycentrix collocation method (LBCM) and RBCM are taken, errors show
that accuracy of LBCM is higher than RBCM with m = n = 12. For RBCM, we take m = n = 12 and
dy, = d, = 7. In Table 3, errors of BRCM with uniform and non uniform partition for ¢ are presented
withm =n = 12, = 1.1. From Table 3, the accuracy of LBCM is higher than RBCM.

Table 2. Errors of LBCM and RBCM m =n = 12.

o 1.1 1.3 1.5 1.7 1.9
LBCM 9.5138e-12 2.4257e-12 1.6542e-12 6.4369¢e-13  9.5138e-12
RBCM 7.0692e-10 1.4440e-10 2.0669e-10 1.0278e-10 6.9905e-12

AIMS Mathematics Volume 8, Issue 4, 9009-9026.
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Table 3. Errors of LBCM and BRCM for ¢.

uniform partition

nonuniform partition

t LBCM RBCM RBCM LBCM
0.2 8.1691e-13 1.7989¢-10 6.9215e-15 6.8522e-16
0.5 1.7290e-13 1.5966¢-10 4.3611e-15 3.0786e-16

1 6.9905e-12 1.9534e-10 7.4393e-13 4.5667e-16

2 1.0755e-12 9.5327e-10 9.7622e-11 5.6413e-14

5 1.4066¢-09 7.2354e-08 2.5801e-08 3.1917e-10
10 4.4450e-07 3.0357e-06 9.6720e-07 8.0330e-08

In Tables 4-7, errors of equidistant nodes for fractional reaction-diffusion equation with
a = 1.8, @« = 1.1 by LBRCM are presented respectively. As our numerical scheme, there are no
influence of fractional differential integral. In Tables 4 and 5, for spatial variable, the convergence rate
can reach to O(h%). In Tables 6 and 7, for time variable, the convergence rate also can reach O(hf’).

Table 4. Errors of equidistant nodes a@ = 1.8, d, = 6.
n dy=2 dy =73 d; =4
1.0675e-02 3.3277e-03 2.2951e-10
12 4.6326e-03 2.0588 8.6592e-04 3.3202 3.9579%e-11 4.3349
16 2.5221e-03 2.1135 3.4191e-04 3.2301 4.1461e-09 -
20 1.5765e-03 2.1058 1.6294e-04 3.3215 3.1576e-05 -

Sl

Table 5. Errors of equidistant nodes @ = 1.1, d, = 6.

n dy=2 dy =3 d; =4
1.0675e-02 3.3277e-03 2.2951e-10

12 4.6326e-03 2.0588 8.6592e-04 3.3202 3.9579%-11 4.3349

16 2.5221e-03 2.1135 3.4191e-04 3.2301 4.1461e-09 -

20 1.5765e-03 2.1058 1.6294e-04 3.3215 3.1576e-05 -

SNl

Table 6. Errors of equidistant nodes @ = 1.8, d; = 6.
n d =2 d=3 d =4
3.5786e-06 1.1346e-06 2.8635e-08
12 1.8147e-06 1.6747 3.6189e-07 2.8182 7.6203e-09 3.2649
16 1.0961e-06 1.7526 1.6175e-07 2.7993 9.4889¢-09 -
20 1.7494e-06 - 2.1987e-06 - 3.0205e-06 -

SN

AIMS Mathematics Volume 8, Issue 4, 9009-9026.
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Table 7. Errors of equidistant nodes @ = 1.1, d; = 6.

m= d =2 d =3 d =4
8 9.2124e-06 3.0304e-06 1.0333e-07
12 4.4886e-06 1.7733 9.9503e-07 2.7467 2.2176e-08 3.7954
16 2.2164e-06 2.4528 3.4298e-07 3.7024 2.5502e-08 -
20 2.4477e-06 - 3.0062e-06 - 4.4543e-06 -

In Tables 8-11, errors of Chebychev nodes for SFRDE with @ =

1.8, = 1.1 by LBRCM are

presented respectively. The convergence rate of LBRCM is similar as the case of equidistant nodes.

Table 8. Errors of non-equidistant nodes @ = 1.8, d; = 6.

m = dt =2 dz =3 d, =4
8 2.6415e-03 6.6688e-04 5.8189%e-11
12 4.5016e-04 4.3641 5.2184e-05 6.2837 3.1597e-12 7.1849
16 1.3558e-04 4.1714 8.5782e¢-06 6.2762 6.6963e-13 5.3931
20 5.2841e-05 4.2227 2.1155e-06 6.2737 9.7490e-14 8.6356
Table 9. Errors of non-equidistant nodes @ = 1.1, d; = 6.
m = dy=2 d; =3 d, =4
8 3.4071e-03 9.5228e-04 1.5986e-10
12 7.3160e-04 3.7941 8.2882e-05 6.0213 4.4480e-12 8.8339
16 2.3489¢-04 3.9492 1.4075e-05 6.1631 8.3639¢-13 5.8089
20 1.2705e-04 2.7540 3.9952¢-06 5.6435 2.0594e-12 -
Table 10. Errors of non-equidistant nodes @ = 1.8, d; = 6.
m = dt =2 d[ =3 d[ =4
8 1.7801e-06 3.4045e-07 6.8588e-09
12 6.0764e-07 2.6509 9.2108e-08 3.2242 1.6211e-09 3.5575
16 2.5934e-07 2.9596 2.8259e-08 4.1072 4.2633e-10 4.6428
20 1.3001e-07 3.0946 1.1082e-08 4.1950 1.3837e-10 5.0427
Table 11. Errors of non-equidistant nodes @ = 1.1, d; = 6.
m= d =2 d=3 d =4
8 3.8320e-06 7.3600e-07 1.3248e-08
12 9.6554e-07 3.3997 1.3592e-07 4.1660 2.4590e-09 4.1534
16 3.3325e-07 3.6978 3.4298e-08 4.7864 5.0191e-10 5.5238
20 1.5073e-07 3.5556 1.2913e-08 4.3777 1.6029¢e-10 5.1154

From Figures 1-5, errors of LBCM withm =n =12, = 1.1, 1.3, 1.5, 1.7, 1.9 are proposed.

AIMS Mathematics
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x 10

Figure 1. Errors of LBCM withm =n =12, a = 1.1.

Figure 2. Errors of LBCM withm =n =12, @ = 1.3.
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x 10

200 T

15

Figure 3. Errors of LBCM withm =n =12, = 1.5.

Figure 4. Errors of LBCM withm =n =12, a = 1.7.

AIMS Mathematics Volume 8, Issue 4, 9009-9026.



9021

Figure 5. Errors of LBCM withm =n =12, ¢ = 1.9.

Figures 6-10, errors of RBCM with m = n = 12,d; = d, = 7, = 1.1,1.3,1.5,1.7,1.9 are
proposed. Compared with LBCM and RBCM, the error accuracy can reach 107! by choosing d,, d,
approximately.

Figure 6. Errors of RBCM withm =n=12,d,=d, =7, @ = 1.1.

AIMS Mathematics Volume 8, Issue 4, 9009-9026.
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x 10

154

Figure 7. Errors of RBCM withm =n=12,d;, =d, =7, a = 1.3.

x 10

Figure 8. Errors of RBCM withm =n=12,d;=d, =7, = 1.5.

AIMS Mathematics Volume 8, Issue 4, 9009-9026.
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x 10

5

10

Figure 9. Errors of RBCM withm =n=12,d;,=d, =7, a = 1.7.

Figure 10. Errors of RBCM withm =n=12,d;=d, =7, a = 1.9.

AIMS Mathematics Volume 8, Issue 4, 9009-9026.
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5. Conclusions

One dimensional SFRDE is studied by RBCM, in order to get the higher accuracy, the fractional
term is transformed into Riemman integral by fractional integration. The time variable and spatial
variable are solved by RBCM at the same time, matrix equation of SFRDE can be obtained which is
same as the SFRDE. While for the two dimensional SFRDE and non-linear SFRDE, the LRBCM can
also be used to get the corresponding matrix equation.
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