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1. Introduction

Nowadays, AC machines are considered an important type of electric power supply systems for
every industrial establishment, since they convert mechanical energy into electrical energy
(generators) or vice versa (motors). Most of the electrical energy is obtained from mechanical sources
(e.g., waterfalls and wind) or by using a mechanical station as an intermediate stage such as steam and
gas power stations. In such systems, the generation process is known as electromechanical energy
conversion. Normally, a magnetic field is used as a conversion medium. That field can be obtained
from a separate source or through some type of self-excitation which uses a part of the generated
power for field production.

The basic operation of many types of electrical generators relies on periodic inductance time
variation. This variation is possible, as shown in Figure 1, by using two methods. The first method
depends on the variation of magnetic coupling between two series-connected coils, where one is fixed
while the other is rotating. The second method is obtained if the magnetic reluctance to a coil MMF
varies on rotation due to the magnetic saliency of the rotor member. For self-excitation, the varying
inductance (regardless the source of variation) is connected to a capacitor with a suitable amount of
capacitance that depends on the circuit parameters and mechanical speed. Consequently, the whole
system can be described by using (non)linear differential equations. To ensure successful generation,
the system has to have some residual magnetism in its iron parts and/or a capacitor charge. These
amounts represent the necessary initial conditions required for a non-trivial solution. So, this type of
generator represents a simple and reliable type of energy converter which is expected to be suitable
for use with renewable energy sources and energy harvesting applications.

Figure 1. Basic construction of AC machines.

The dynamic analysis of such power machines is as necessary as the need to obtain particular
sustained periodic stable output modes that have to be achieved. So, finding an exact mathematical
model by considering real variations is needed to investigate the dynamic stability of the machines
and their periodic responses under transient events such as those induced by the saturation effect, slow
change in the resistances and the existence of relative movement between the stator and rotor. In most
cases, AC machines in general might be considered as a dynamic RLC circuit which is represented by
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non-autonomous (non)linear second order differential equations, cf. [1, 2]. For instance, the existence
of relative movement between the stator and the rotor in AC machines considers inductances as variable
coefficients in the equivalent circuit structure, cf. [2, 3].

The stability analysis of a dynamical system is considered to be the key step that facilitates an
understanding of how changes can affect such a system. Indeed, the design parameters and the design
of stabilizing feedback controllers might cause a bounded or unbounded response. Recently, the
appearance of the three common mathematical phenomena in nature, i.e, periodic coefficients,
fractional order derivatives and time delays that are included in modern models of real processes
makes the study of stability and control much more attractive, cf. [4–10]. Specifically, systems with
periodic coefficients are often relevant to models of engineering and physical problems which have
been studied carefully, as described by Mathieu in [11] for free oscillations of an elliptic membrane;
also see [12–18].

It is generally agreed upon that, such systems with periodic coefficients are still a hot point in
mathematical research. However, an analytical solution of the general Mathieu equation is still an
attractive study for its applications. In particular, the study of parametric resonances (which are
subharmonic resonances that exemplify the response of a system to a kind of periodic force) and
transition curves require relatively high accuracy to ensure that the practical use does not depend on
numerical calculations. In general, somehow, certain approaches are designed in order to introduce
semi-analytical approximations of periodic solutions for such systems, cf. [19–22].

Due to the electrical construction of AC machines, they might be expressed by a circuit structure.
Additionally, the difference between AC machines and general static machines is the existence of
relative movement between the stator and the rotor of the former. Hence, some loop inductances of
AC machines depend upon the rotor position, i.e., these inductances are considered to be variable
coefficients, cf. [23, 24].

Consequently, regardless of the power measurements and control accessories, the complete
governing equation of the natural response (y) in such AC machines under a periodic variation of
inductances reads as follows:

(1 + h cos 2x)y′′ +
Q
α

y′ +
1
α2 y = 0, y(0) = c1, y′(0) = c2, (1.1)

ω0 =
1
√

L0C
> 0, α =

ω

ω0
> 0,Q =

R
ω0L0

≥ 0,

where h is a constant representing a system perturbation on the inductance due to the relative movement
between the stator and rotor of the AC machine, L0 is the inductance when h→ 0, C is the capacitance,
R is the resistance, ω is the operating frequency due to the existence of h, and x = ωt (t refers to the
time). However, if it is considered that, the system is undamped (Q = 0), then the solution can be
easily obtained with the aid of Jacobian elliptic functions, cf. [25–27].

The contribution of this work is that: it is an investigation of the dynamic stability of linear
dynamic models of AC machines via the Lyapunov second approach which is needed to construct
approximate forms of stable periodic responses. Based on the equivalent circuit parameters, it is
essential to obtain the intervals of such parameters to get a stable periodic output. Moreover, the
prediction of resonances defined on the stable domains is considered. Consequently, the stability
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charts have been drawn to illustrate the stable and unstable regions separated by the transition curves
via the method of strained parameters based on the deduced stability conditions. In addition to, this
work is introduced to complete the work of the mathematical development for certain interesting
engineering problems through the use of the harmonic balance and variational iteration methods
in [23, 24].

This paper is organized as follows. In Section 2, we introduce the model of AC machines and the
derivations of the stability conditions through the use of the Lyapunov function approach. In Section 3,
the existence of a periodic solution is proved by using the method of strained parameters based on
the stability conditions. In Section 4, transition curves are obtained with the aid of relations between
the α − h parameters. In Section 5, we predict the stability of periodic motion by using the change
of energy due to the perturbation and dissipation of the governing system. In the last section, the
conclusion, discussion and future outlook are given.

2. Stability analysis

This section is devoted to obtaining the relationships among the model parameters in order to
establish necessary and sufficient conditions for the asymptotic stability of the natural response.
However, it would be better to apply the second approach of Lyapunov by constructing a suitable
Lyapunov function for the required analysis. However, optimal construction of the Lyapunov function
is dependent on the system parameters for the derivation of consistent conditions; this is required to
obtain an asymptotically stable response and capture the ranges of parameters used for the
construction of the periodic solutions, cf. [28–31]. To generalize the stability results for the case of
time varying inductance, the governing equation is transformed to the following general form:

y′′ + f (x)y′ + g(x)y = 0, (2.1)

where
f (x) =

Q
α(1 + h cos 2x)

, g(x) =
1

α2(1 + h cos 2x)
. (2.2)

In the proofs of the stated theorems, we propose different constructions for the Lyapunov function (V),
which is required to approach a reliable accuracy of the real energy functional needed to obtain more
specified conditions in the studied system.

Theorem 1. The zero solution of the governing equation is uniformly asymptotically stable if the
following conditions hold

|h| < 1andh <
Q
α
. (2.3)

Proof. 1st construction of V: Let the Lyapunov function with the aid of [32] be the following

V = V(x, y, y′) = y2 + cyy′ +
y′2

g(x)
, (2.4)

where

c = min{
1√
g
,

2gp

g(2g + f
2
)
} > 0, g, g, f , p > 0 (2.5)
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and
p(x) =

1
2

g′(x)
g(x)

+ f (x). (2.6)

Now, we have to prove that V is positive definite and decreasing, and that the first derivative (V ′) is
negative definite until the zero solution of the governing equation becomes uniformly asymptotically
stable. Thus, we will write Eq (2.4) as

V =
1
2

y2 +
1
2

(y + cy′)2 + (
1

g(x)
−

c2

2
)y2. (2.7)

With the aid of Eq (2.5), and by using the following relation

g ≤ g(x) ≤ g, (2.8)

Eq (2.7) is converted to the following inequality

V ≥
1
2

y2 + (
1
g
−

c2

2
)y′2 ≥

1
2

(y2 +
y′2

g
) > 0. (2.9)

We also can write Eq (2.4) as follows

V = 2y2 − (y −
cy′

2
)2 + (

1
g(x)

+
c2

4
)y′2. (2.10)

With the aid of Eq (2.8), Eq (2.10) is converted to the following inequality

V ≤ 2y2 + (
1
g

+
c2

4
)y′2. (2.11)

From Eqs (2.7) and (2.10), V is positive definite and decreasing.
Now, we will calculate the first derivative of V which is given by

V ′ = (2y + cy′)y′ + (cy +
2y

g(x)
) − (g(x)y − f (x)y) −

g′(x)y′2

g2(x)
. (2.12)

Eq (2.12) is converted to

V ′ = −cg(x)y2 − c f (x)yy′ − (
2p(x)
g(x)

− c)y′2, (2.13)

and with the aid of the following relations

| f (x)| ≤ f , (2.14)

and
p(x) ≥ p, (2.15)

Eq (2.13) is converted to the following inequality:

V ′ ≤ −c[gy2 − f |y| |y′| + (
2p

cg
− 1)y2]. (2.16)
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From Eq (2.5), and by simplifying Eq (2.16), we get

V ′ ≤ −c[
gy2

2
+

g

2
(|y| −

f |y′|
g

)2 + (
2p

cg
−

f
2

2g
− 1)y′2]. (2.17)

Hence, with further simplification, we obtain

V ′ ≤ −c[
gy2

2
+ (

2p

cg
−

f
2

2g
− 1)y′2] ≤ −c[

1
2

gy2 +
p

cg
y′2]. (2.18)

Thus, from Eq (2.18), V ′ is negative definite.
Finally, the zero solution of the governing equation is uniformly asymptotically stable if the

following conditions are fulfilled:
i. | f (x)| ≤ f , ii. g ≤ g(x) ≤ g, iii. p(x) ≥ p.
Now we will apply the previous conditions to our practical system.

Condition (i) | f (x)| ≤ f ≤
Q
α

is satisfied.

Condition (ii) 0 <
1

α2(1 − h)
≤ g(x) ≤

1
α2(1 + h)

is fulfilled if

|h| < 1. (2.19)

Condition (iii) p(x) =
h sin 2x +

Q
α

1 + h cos 2x
≥ p > 0 is fulfilled if

h <
∣∣∣∣∣Qα

∣∣∣∣∣ . (2.20)

2nd construction of V: In this construction, the two functions f (x) and g(x) are bounded as follows:

| f (x)| < M1, |g(x)| < M2, |g′(x)| < M3. (2.21)

Now, with the aid of [33], let the Lyapunov function for this system be

V =
1
2

[y2 + 2B
yy′√
g(x)

+
y′2

g(x)
]. (2.22)

The first derivative of V is given by

V ′ =
1√
g(x)

((
−p(x)√

g(x)
+ B)y′2 − Bp(x)yy′ − Bg(x)y2), (2.23)

where

0 < B < min[1,
α2

2
√

M2
,

8α3
1α2

(M3 + 2α1M1)2
√

M2
], α1, α2 > 0. (2.24)

The zero solution of the governing equation is uniformly asymptotically stable if the following
conditions are satisfied:
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(i) g(x) > α1 > 0,
(ii) p(x) > α2 > 0.

Now we will apply the previous conditions to our practical system.
Condition (i) is satisfied if

|h| < 1. (2.25)

Condition (ii) is satisfied if

h <
Q
α
. (2.26)

From [33], if the two conditions are fulfilled, then there are exist positive numbers B1 and B2 such that
for x > x0 ≥ 0, the following inequalities hold

|y(x)| < B1e−B2(x−x0) , |y′(x)| < B1e−B2(x−x0). (2.27)

3rd construction of V: In this construction, we follow [34] and let the Lyapunov function be

V =
1
2

y2 +
1

2g(x)
y′2, (2.28)

with the first derivative given by

V ′ = −
1

2g(x)2 (2g(x) f (x) + g′(x))y′2. (2.29)

The zero solution of the governing system is uniformly asymptotically stable if the following conditions
are satisfied

(i) ∃ g, g > 0 ∀ x ≥ 0 : 0 < g ≤ g(x) ≤ g,

(ii) ∃ f > 0 ∀ x ≥ 0 : | f (x)| ≤ f ,
(iii) ∃ a > 0 ∀ x ≥ 0 : 0 < a ≤ g′(x) + 2g(x) f (x).

Condition (i) is satisfied if
|h| < 1, (2.30)

and Condition (ii) is consequently satisfied.

Also, from Condition (iii), g′(x) + 2g(x) f (x) =
2

α2(1 + h cos 2x)2 (h sin 2x +
Q
α

) > a > 0, is satisfied

if
h <

Q
α
. (2.31)

Then, the two conditions hold.
4th construction of V: In this construction, following [34], the Lyapunov function is

V = (y + Py′)2 + 2(q(x) − P2)y′2, (2.32)

and the first derivative reads as follows:

V ′ = −2Pg(x)V(x) − d(x)y′2, (2.33)
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where

P =min(
1

2 f
,

E

M + 4 + 4P2g + f E
),

q(x) =
2P2g(x) − P f (x) + 1

g(x)
d(x) = − 2P − q′(x) − 2Pg(x)q(x) + 2 f (x) + 1,

E,M, g, g, f > 0.

(2.34)

The zero solution of the governing equation is uniformly asymptotically stable if the following
conditions are fulfilled:

(i)
∫ x

0
g(s)ds→ ∞ as x→ ∞,

(ii) ∀ x ≥ 0 0 < g ≤ g(x) ≤ g,

(iii) ∀ x ≥ 0 | f (x)| ≤ f and | f ′(x)| < M |g(x)|,
(iv) ∀ x ≥ 0 0 < Eg(x)2 ≤ g′(x) + 2g(x) f (x).

From Condition (i), we have

1
α2

∫ x

0

ds
1 + h cos 2s

=
1

α2
√

1 − h2
tan−1(

√
1 − h2 tan x

1 + h
), h2 < 1,

and the integration→ ∞ as x→ ∞ if h � 1; then, Condition (i) is satisfied.
Condition (ii) is satisfied if

|h| < 1. (2.35)

From Condition (iii)

| f (x)| ≤ f ≤
Q
α

and | f ′(x)| < M |g(x)|

are satisfied if Q <
M
α

1 − h
h

and this is fulfilled if

|h| < 1. (2.36)

Condition (iv) is satisfied if

h <
Q
α
. (2.37)

Hence, the conclusion holds and the proof of the theorem is complete. �

Theorem 2. The zero solution of the governing equation is hyperbolic and asymptotically stable if the
following condition is fulfilled

α >
1

5√
1 − h2

√
1 − h2(1 +

Q2

4
), (2.38)

yielding

|h| < 1, (2.39)

Q ≤
2
h

√
1 − h2. (2.40)
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Proof. Let us transform the governing equation to the equivalent Hill’s equation, cf. [35, 36], by
imposing the conditions that f (x) and g(x) are continuously differentiable with

y(x) = z(x)e−
1
2

∫
f (x)dx. (2.41)

Then, the governing equation is transformed to

z′′(x) + β(x)z(x) = 0, (2.42)

where
β(x) = g(x) −

1
2

f ′(x) −
1
4

f 2(x). (2.43)

The function β(x) is continuous and π-periodic

β(x) =
1

α2(1 + h cos 2x)
−

Qh sin 2x
α(1 + h cos 2x)2 −

Q2

4α2(1 + h cos 2x)2 . (2.44)

If the following conditions are fulfilled: i.
∫ π

0
f (x)dx ≥ 0, ii.

∫ π

0
β(x)dx ≥ 0, iii.

∫ π

0
β(x)dx ≤

2
π

, then
solutions are bounded and the characteristic exponents of Eq (2.42) do not have a positive real part;
then, the zero solution is hyperbolic and asymptotically stable, cf. [28].

Now, let us apply these conditions to the governing system. First, by using contour integration, we
calculate the following definite integrals:∫ π

0
f (x)dx =

πQ

α
√

1 − h2
,∫ π

0
β(x)dx =

π

α2
√

1 − h2
[1 −

h2Q2

4(1 − h2)
];

then, the conclusion holds. �

These results are verified numerically by constructing the figures shown in Figures 2–6 using the
4th-order Runge-Kutta method. The stability of the solutions is clearly shown under the conditions
derived from Theorems 1 and 2 as well as the instability.
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0

0.1

0.2

(a) Stable state for h < 1 (h = 0.1, Q = 0.2
and α = 0.9).
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0.4

(b) Unstable state for h > 1 (h = 1.2, Q =

0.2 and α = 0.9).

Figure 2. Stable and unstable states according to the conditions of Theorem 1.
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(a) Stable state for h <
Q
α

(h = 0.4, Q =

0.5 and α = 1).
(b) Unstable state for h >

Q
α

(h = 0.5, Q =

0.2 and α = 1).

Figure 3. Stable and unstable states according to the conditions of Theorem 1.
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(a) Stable solution at h = 0.2, Q = 0 and
α = 1.1.
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(b) Unstable solution at h = 0.2, Q = 0 and
α = 1.

Figure 4. Stable and unstable states according to the conditions of Theorem 2.
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(a) Stable solution at h = 0.3, Q = 0.1 and
α = 1.1.
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(b) Unstable solution at h = 0.3, Q = 0.1
and α = 1.02.

Figure 5. Stable and unstable states according to the conditions of Theorem 2.
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(a) Stable solution at h = 0.5, Q = 0.2 and
α = 1.17.
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6

(b) Unstable solution at h = 0.5, Q = 0.2
and α = 1.06.

Figure 6. Stable and unstable states according to the conditions of Theorem 2.

3. Construction of periodic solutions

Based on the stability results presented in Section 2, in this section, we derive an approximate form
of periodic solutions of the governing equation in accordance with some specific regions of |h| < 1.
Hence, h can be a small perturbing parameter in the applied perturbation technique. However, several
methods can be applied based on h such as the Linstedt-Poincare method, multiple scale method and
averaging method, cf. [37–39]. An efficient method is needed to capture the behavior of the periodic
solutions for specific values of h that yield somewhat accurate relations for the transition curves. In
[40, 41], it is explicated that the straightforward expansion methods mostly fails to obtain a form of
periodic solution and consequently the prediction of the transition curves for linear problems with
periodic coefficients such as the classical Mathieu equation. Thus, here, we introduce the method of
strained parameters to deduce the required results for the construction of periodic solutions and hence
obtain a more accurate description of transition curves along them, cf. [42, 43].

The necessary condition for asymptotic stability is covered by |h| < 1 which allows us to construct
a convergent stable periodic solution as a function of y = y(x, h). We have eliminated the terms that
produce secular parts which do not lead to convergent solutions with non-resonant parts.

In order to facilitate the perturbation methods, we scale the damping coefficient Q to be hQ0; then,
Eq (1.1) reads as follows:

y′′ + δ2y = −h cos(2x)y′′ − hQ0δy′, (3.1)

where
δ =

1
α

=
ω0

ω
. (3.2)

By using the method of strained parameters, δ is needed to expand around δ0 = n2, where n ∈ Z+ in
powers of h, with the expansions of the solution y(x; h) and the coefficient Q0. Thus, we seek a uniform
expansion in the following form:

y(x, h) = y0 + hy1 + h2y2 + h3y3 + O(h4), (3.3)
δ = n2 + hδ1 + h2δ2 + h3δ3 + O(h4), (3.4)
δ2 = n4 + h(2n2δ1) + h2(δ2

1 + 2n2δ2) + h3(2δ1δ2 + 2n2δ3) + O(h4). (3.5)
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By substitution and upon equating the coefficients of each power of h, then we have

y′′0 + n4y0 =0, (3.6)
y′′1 + n4y1 = − (2n2δ1y0 + cos(2x)y′′0 + Q0n2y′0), (3.7)
y′′2 + n4y2 = − ((δ2

1 + 2n2δ2)y0 + 2n2δ1y1 + cos(2x)y′′1 (3.8)
+ Q0δ1y′0 + Q0n2y′1),

y′′3 + n4y3 = − ((2δ1δ2 + 2n2δ3)y0 + (δ2
1 + 2n2δ2)y1 + cos(2x)y′′2 (3.9)

+ Q0n2y′2 + Q0δ1y′1 + Q0δ2y′0).

Hence, we seek the periodic solutions at different values of n. First, when n = 0, the periodic
solution is zero, thus this case leads to the trivial solution. Typically, the period of the solution is based
on the oddness or evenness of n, within 2π or π respectively. In what follows, it is considered only
for some different cases for n. Consequently, the transition curves that correspond to the positive and
negative δ values are derived.

Case of n = 1:

The periodic solution with period 2π reads as follows:

y(x, h) =a cos x + b sin x −
1

16
h[a cos 3x + b sin 3x]

+ h2[−
1
8

(A1 cos 3x + A2 sin 3x) +
3

256
(a cos 5x + b sin 5x)]

+ h3[
1
8

(A3 cos 3x + A4 sin 3x) +
1

24
(A5 cos 5x + A6 sin 3x)

+
25

8192
(a cos 7x + b sin 7x)] + O(h4),

(3.10)

where the coefficients are

a = −
Q0

2δ1 −
1
2

b for δ+, b =
Q0

2δ1 + 1
2

a for δ−,

A1 =
1
8
δ1a +

3
16

Q0b, A2 =
1
8
δ1b −

3
16

Q0a,

A3 = −
1

16
((δ2

1 + 2δ2)a − 6Q0A2 + 3Q0δ1b),

A4 = −
1

16
((δ2

1 + 2δ2)b + 6Q0A1 − 3Q0δ1a),

A5 = −
1

16
(9A1 −

15
16

Q0b), A6 = −
1

16
(9A2 +

15
16

Q0a),

δ+
1 =

1
4
−

1
2

Q0, δ−1 = −
1
4

+
1
2

Q0,

δ+
2 =

1
2

(δ2
1 −

1
2
δ1 −

9
32

), δ−2 =
1
2

(δ2
1 +

1
2
δ1 −

9
32

),

δ+
3 = −

1
2
δ2 +

9
64
δ1 −

27
512

, δ−3 =
1
2
δ2 +

9
64
δ1 +

27
512

.
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a and b are arbitrary constants to be determined from the initial conditions.
The corresponding positive and negative values of δ read as follows:

δ+ =1 + h(
1
4
−

1
2

Q0) +
1
2

h2(δ2
1 −

1
2
δ1 −

9
32

)

+ h3(−
1
2
δ2 +

9
64
δ1 −

27
512

) + O(h4),
(3.11)

δ− =1 + h(
1
2

Q0 −
1
4

) +
1
2

h2(δ2
1 +

1
2
δ1 −

9
32

)

+ h3(
1
2
δ2 +

9
64
δ1 +

27
512

) + O(h4)
(3.12)

Special Case of Q0 = 0:

The values of δ read as follows:

δ+ = 1 +
1
4

h −
11
64

h2 +
35

1024
h3 −

479
8192

h4 + O(h5), (3.13)

δ− = 1 −
1
4

h −
11
64

h2 −
35

1024
h3 −

479
8192

h4 + O(h5). (3.14)

Case of n =
√

2:

The periodic solution with period π reads as follows:

y(x, h) =a cos 2x + b sin 2x + h[
a
2
−

1
6

(a cos 4x + b sin 4x)]

− h2[
δ1

2
a +

1
12

(A1 cos 4x + A2 sin 4x)

−
1

24
(a cos 6x + b sin 6x)] − h3[

a
4

(
1
2
δ2

1 + 2δ2)

+
1

12
(A3 cos 4x + A4 sin 4x) +

1
32

(A5 cos 6x + A6 sin 6x)

+
1

80
(a cos 8x + b sin 8x)] + O(h4),

(3.15)

where the coefficients are

a = −
Q0

δ1
b for δ+, b =

Q0

δ1
a for δ−,

A1 =
2
3
δ1a + 4

Q0

3
b, A2 =

2
3
δ1b − 4

Q0

3
a,

A3 =(
δ2

1 + 4δ2

6
+

3
4

)a + (
2
3

Q0δ1)b +
2
3

Q0A2,

A4 =(
δ2

1 + 4δ2
6

+
3
4

)b − (
2
3

Q0δ1)a −
2
3

Q0A1,

A5 =
2
3

A1 −
1
2

Q0b, A6 =
2
3

A2 −
1
2

Q0a,
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δ+
1 =Q0, δ−1 = −Q0,

δ+
2 =

1
4

(δ2
1 −

4
3

), δ−2 =
1
4

(δ2
1 −

4
3

),

δ+
3 = −

1
4
δ1(δ2 −

4
9

), δ−3 = −
1
4
δ1(δ2 −

4
9

).

The corresponding values of δ read as follows:

δ+ =2 + h(Q0) + h2[
1
4

(δ2
1 −

4
3

)] + h3(−
1
4
δ1(δ2 −

4
9

)) + O(h)4, (3.16)

δ− =2 + h(−Q0) + h2([
1
4

(δ2
1 −

4
3

)] + h3(−
1
4
δ1(δ2 −

4
9

)) + O(h)4. (3.17)

Case of n =
√

3

The periodic solution with period 2π reads as follows:

y(x, h) = a cos 3x + b sin 3x + h
9
16

[a cos x + b sin x

−
1
2

(a cos 5x + b sin 5x)] + h2[−
1

64
((A1 cos x + A2 sin x)

+
1
2

(A3 cos 5x + A4 sin 5x) −
15
4

(a cos 7x + b sin 7x))]

+ h3[y3 −
1

128
(A5 cos x + A6 sin x) +

1
16

(A7 cos 5x + A8 sin 5x)

+
1

2048
(A9 cos 7x + A10 sin 7x) −

245
6144

(a cos 9x + b sin 9x)] + O(h4),

(3.18)

where the coefficients are

a = −
3
2

Q0

δ1
b for δ+, b = −

3
2

Q0

δ1
a for δ−,

A1 =(27δ1 −
9
4

)a +
Q0

6
b, , A2 = (27δ1 +

9
4

)b −
Q0

6
a,

A3 =9δ1a +
45
4

Q0b, , A4 = 9δ1b −
45
4

Q0a,

A5 =9(δ2
1 + 6δ2)a + 9Q0δ1b +

1
4

(3Q0A2 −
1
2

A1),

A6 =9(δ2
1 + 6δ2)b − 9Q0δ1a −

1
4

(3Q0A1 −
1
2

A2),

A7 =
9

32
[(δ2

1 + 6δ2 −
735
256

)a +
5
2

b +
5

128
A4],

A8 =
9

32
[(δ2

1 + 6δ2 −
735
256

)b −
5
2

a −
5

128
A3],

A9 =5A3 − 21b, A10 = 5A4 + 21a,

δ+
1 =

3
2

Q0, δ−1 = −
3
2

Q0
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δ+
2 =

1
6

(δ2
1 −

207
64

), δ−2 =
1
6

(δ2
1 −

207
64

),

δ+
3 = −

1
54

(
1615

9
δ1 − 9), δ−3 = −

1
54

(
1615

9
δ1 + 9).

The corresponding positive and negative values of δ read as follows:

δ+ =3 + h(
3
2

Q0) +
1
6

h2[δ2
1 −

207
64

] −
1

54
h3[

1615
9

δ1 − 9] + O(h)4, (3.19)

δ− =3 + h(−
3
2

Q0) +
1
6

h2[δ2
1 −

207
64

] −
1

54
h3[

1615
9

δ1 + 9] + O(h)4. (3.20)

Case of n = 2

The periodic solution with period π reads as follows:

y(x, h) =a cos 4x + b sin 4x + h[
2
3

(a cos 2x + b sin 2x)

−
2
5

(a cos 6x + b sin 6x)] + h2[
1

12
a −

4
9

(A1 cos 2x + A2 sin 2x)

+
4

25
(A2 cos 6x + A3 sin 6x) +

3
20

(a cos 8x + b sin 8x)]

+ h3[−
1
18

(A5 cos 2x + A6 sin 2x) −
1

50
(A7 cos 6x + A8 sin 6x)

+
1

10
(
3
5

A3 + b) cos 8x +
1
10

(
3
5

A4 − a) sin 8x −
1

18
A1] + O(h4),

(3.21)

where the coefficients are

a = −
2Q0

δ1
b for δ+, b =

2Q0

δ1
a for δ−,

A1 =δ1a + Q0b, A2 = δ1b − Q0a,

A3 =δ1a + 3Q0b, A4 = δ1b − 3Q0,

A5 =(δ2
1 + 4δ2)a + (

8
3

Q0δ1)b −
32
9

Q0A2,

A6 =(δ2
1 + 4δ2)a − (

8
3

Q0δ1)b −
32
9

Q0A1,

A7 =(δ2
1 + 4δ2)a + (6Q0δ1)b +

48
5

Q0A4,

A8 =(δ2
1 + 4δ2)b − (6Q0δ1)a −

48
5

Q0A4,

δ+
1 =2Q0, δ−1 = −2Q0,

δ+
2 =

1
8

(δ2
1 +

88
15

), δ−2 =
1
8

(δ2
1 +

88
15

),

δ+
3 =

14
225

δ1, δ−3 =
14
225

δ1.

The corresponding positive and negative values of δ read as follows:

δ+ =4 + h(2Q0) +
1
8

h2(δ2
1 +

88
15

) + h3(
14

225
δ1) + O(h4), (3.22)
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δ− =4 + h(−2Q0) +
1
8

h2(δ2
1 +

88
15

) + h3(
14

225
δ1) + O(h4). (3.23)

The numerical verification of such results is shown in Figures 7 and 8. The first shows the stable
periodic solution with period 2π at Q0 = 0; the numerical solution is so closed to the approximate
solution. Also, the second shows that if Q0 is increased by increasing the resistance of the system then
it leads to changes in the positions of the periodic solution.

0 2 4 6

-0.3

-0.2

-0.1

0

0.1

0.2

(a) α=0.977248

0 2 4 6

-0.3

-0.2

-0.1

0

0.1

0.2

(b) α=1.027494

Figure 7. Periodic solutions for Q0 = 0 and h = 0.1.

0 2 4 6

-0.3

-0.2

-0.1

0

0.1

0.2

(a) α=0.967436

0 2 4 6

-0.3

-0.2

-0.1

0

0.1

0.2

(b) α=1.049660

Figure 8. Periodic solutions for Q0 = 0.1 and h = 0.2.

4. Prediction of transition curves

In this section, we are concerned with the existence of transition curves for the governing equation of
the studied problem. This means that, there exists critical boundary curves which divide the space (δ,h)
into regions where the numbers of unstable characteristic exponents might be constant according to the
derived relations from the method of strained parameters. Therefore, the changes of these numbers
along the boundary curves by the relationships between δ and h create regions separated by such
transition curves exhibiting the stability and instability regions for the studied system.
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The plot shown in Figure 9 illustrates the transition curves for each value of the damping coefficient
(Q) as a barrier between the stability and instability regions for different values of δ. So, it explains the
transition from stability to instability around the integer values of (δ = ω0

ω
). Practically, in accordance

with the presented theoretical analysis of stability, the region of the parameter h lies on (-1,1) for stable
motion coinciding with the machine operation points. So, as shown in Figures 10 and 11, around
(δ = ω0

ω
= 1), a set of transition curves separate the domain for 0 < h < 1 to stability and instability

regions depending on the damping coefficient (Q). As can be clearly noticed from the depicted figures,
when the damping coefficient (Q) is increased, the region of stability increases until the instability
region completely disappears.

stable

stable

unstable

unstable

unstable

unstable

stable

stable

h

-3

-2

-1

0

1

2

3

δ

0 1 2 3 4

Figure 9. Transition curves for different values of Q and n.

Q=0

Q=0.1

Q=0.2

Q=0.3

Q=0.4

stable

unstable

stable

h

0

0.2

0.4

0.6

0.8

1

δ

0 0.2 0.4 0.6 0.8 1 1.2

Figure 10. Transition curves for different values of Q and n = 1 in the δ − h plane.
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Q=0

Q=0.1

Q=0.2

Q=0.3

Q=0.4

stable

unstable

stable

h

0

0.2

0.4

0.6

0.8

1

α

0.8 0.9 1 1.1 1.2 1.3 1.4

Figure 11. Transition curves for different values of Q and n = 1.

5. Stability of periodic solutions

The stability of periodic solutions can be readily predicted from Figure 9 based on the value of h on
the interval (−1, 1). Additionally, it is mostly emitted from the integer number for the ratio α = ω

ω0
= n,

n ∈ Z+; otherwise, the periodic solution is unstable; this is obviously shown in Figures 12–13 when
Q = 0. Typically, this can be proved by calculating the average of the energy change (∆Hav(x)) over
the period [0, 2πα] for the basic generating solution y = a sin 1

α
x as follows

∆Hav(α) = −
h

2π

∫ 2πα

0
y′(cos 2xy′′ +

Q0

α
y′)dx. (5.1)

Then, the stability of periodic solutions is satisfied if the following condition holds

∂

∂a
(∆Hav(α)) = ∆H′av(α) < 0. (5.2)

Indeed, if this fraction is odd the curves show the periodic solutions with period 2π and if it is even the
curves show the periodic solutions with period π.
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δ
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unstable periodic solution region

critical line
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Q
0
= 0

Q
0
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Figure 12. Stability domains of periodic solutions based on δ values.

α

0 0.5 1 1.5 2 2.5
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-10
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0
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unstable periodic solution region

stable periodic solution regionQ
0
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Figure 13. Stability domains of periodic solutions based on α values.

Normally, increasing damping coefficient (Q)(resulted by increasing the dissipated energy in the
system) does not affect the stability of the periodic solutions, but it increases the stable regions by
default. Finally, we attempted the numerical verification for the existence of the periodic solution in
certain (α, h) curves. Thus, the periodic solutions we are checked at many points along the transition
curves for different values of Q0=0, 0.1, 0.2 and 0.3 emitted from α = 1 with period 2π. First, the
values of h and α at some points were set as shown in Figure 14. Then, we found the numerical
solutions with sustained periods which are shown in Figures 15–18. These figures show the existence
of periodic solutions for different values of h in (−1, 1) and the change in their configurations when h
and α are consequently changed.
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(a) Periodic solution at Q = 0.
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(b) Periodic solution at Q = 0.1.
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(c) Periodic solution at Q = 0.2.

0

0.2

0.4

0.6

0.8

1.0179

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

h 0.5863

 1.069

h 0.627

 1.184

h 0.7044

 1.01

h 0.7044

 1.298

h 0.9324

 1.055

h 0.798

 1.489

h 0.627

 1.03

(d) Periodic solution at Q = 0.3.

Figure 14. Values of h and α in the periodic solutions given Q=0, 0.1, 0.2 and 0.3.
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Figure 15. Periodic solutions given Q = 0.
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Figure 16. Periodic solutions given Q = 0.1.
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Figure 17. Periodic solutions given Q = 0.2.
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Figure 18. Periodic solutions given Q = 0.3.

6. Conclusions

This work was performed to explain and clarify the proper selections of parameters for the
dynamical motion of AC machines by using the stability analysis of the presented model. The used
model is considered to be a linear prototype model to obtain sustained periodic responses. The
qualitative study used to predict the stability regions, and it was carried out by using the Lyapunov
second approach. The concluded results are reasonably consistent with the experimental results. In
addition, the results were compared with the numerical solutions to realize a satisfactory agreement
with the theoretical ones, specifically in cases of small perturbations (h). The method of strained
parameters was used to obtain reasonably accurate forms of periodic solutions inside the required
stable regions. In particular, it showed that the operating regions of machines lies in |h| < 1; it also
revealed the integer numbers of the frequency ratio(α) required to obtain sustained stable periodic
modes of output. These results were checked experimentally for some configurations of AC induction
machines, and it was found that the two results matched relatively well.

Regarding the improvement of the study, this prototype will be enhanced by nonlinear terms due to
saturation and hysteresis of induction machines. Additionally, some other natural phenomena might
be taken into the account such as fractionalization, synchronization and delay effects, according to
the nature of the problem; this will help to obtain the best scenario of desirable results. Indeed, the
solution of the linear system might give conditions under which the sustained oscillations might occur.
Typically, this type of output represents the most usual forms of voltage and current in AC machines.
However, it is not possible to attain steady-state responses in the absence of some forms of controlling
actions, i.e., either via external means or due to some parameter variations. Accordingly, linear analysis
is not sufficient to allow for the study of voltage/current build-up behavior which is essential in self-
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excited generators. Often, the most important phenomenon associated with this type of problem is
the magnetic saturation, which results in a decrease in inductance with an increase in magneto-motive
force (as a result of current) or magnetic flux (as a result of voltage per frequency). So, the magnetic
saturation phenomenon could be considered to have the first impact to generate nonlinearities in the
mathematical modeling of AC machines.

However, due to the presence of such phenomenon within this engineering issue that cannot be
ignored in the study, development and improvement of the mathematical model have become necessary
to enhance the results to a level of perfect consistency with the corresponding practical ones.
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