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Abstract: In our paper, a delayed diffusive phytoplankton-zooplankton-fish model with a refuge
and Crowley-Martin and Holling II functional responses is established. First, for the model without
delay and diffusion, we not only analyze the existence and stability of equilibria, but also discuss the
occurrence of Hopf bifurcation by choosing the refuge proportion of phytoplankton as the bifurcation
parameter. Then, for the model with delay, we set some sufficient conditions to demonstrate the
existence of Hopf bifurcation caused by delay; we also discuss the direction of Hopf bifurcation and
the stability of the bifurcation of the periodic solution by using the center manifold and normal form
theories. Next, for a reaction-diffusion model with delay, we show the existence and properties of
Hopf bifurcation. Finally, we use Matlab software for numerical simulation to prove the previous
theoretical results.
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1. Introduction

Plankton is divided into two groups: zooplankton and phytoplankton. Phytoplankton are the
primary producers in aquatic ecological models, as well as the main supplier of dissolved oxygen to
phytoplankton blooms. Phytoplankton opens up the food web of aquatic ecosystems. Zooplankton,
as economic aquatic animals, constitute an important feed for fish and other economic animals in the
middle and upper waters, which is of great significance to the development of fishery [1-4].

Plankton has been studied extensively in many ways. In References [1-4], the researchers found
that zooplankton eat plankton and zooplankton smaller than themselves, or feed on algae, bacteria,
copepods and other food scraps. Therefore, there is a predator-prey relationship between zooplankton
and phytoplankton. In 1939, Fleming [5] presented the first mathematical model of plankton. Since
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then, researchers have done a lot of work on plankton [6-10], focusing on factors such as nutrients,
temperature, light, viral diseases and harvest to understand the bloom and disappearance of algal
blooms. However, the researchers found that toxins released by toxic-producing phytoplankton have
an effect on the termination of plankton blooms, which means that toxic chemicals can act as
biological control for other plankton populations [11].

When the predator captures the prey, the prey seeks shelter because of a survival instinct. Nature
provides shelter to the prey, and this behavior keeps the balance of the predator-prey model [12-14].
For lake ecosystems, prey refuge can stabilize plankton biomass by preventing phytoplankton from
being temporarily eaten by zooplankton. Scholars have found that phytoplankton shelters can be
obtained through benthic sediments, which can allow phytoplankton to temporarily escape from
zooplankton predation. At the same time, the water layer can also form a temporary shelter for
phytoplankton, and the shelter can prevent the extinction of the prey population [15-17]. Li et al. [18]
proposed a model with the refuge as follows:

dt ay+(P-m)’
iz _ BP=mz _ g7 0Pz (1.1)

dr a1 +(P—-m) ar+P?’

where P and Z represent the number of phytoplankton and zooplankton, respectively. r represents the
intrinsic growth rate of phytoplankton, K represents the environmental carrying capacity of
phytoplankton, B, represents the predation rate, 3, represents the conversion rate, d represents the
mortality rate of zooplankton, 6 represents the toxin release rate, a; and a, represent half-full
constants, m represents the number of protected phytoplankton when phytoplankton have the ability
to shelter and P — m denotes the number of unprotected phytoplankton that can be preyed upon by
zooplankton. They [18] studied the effect of refuge of phytoplankton on the phytoplankton-
zooplankton model.

In nature, the population diffuse from one area to another in order to survive. The predator-prey
model with diffusion can generate complex spatial patterns [19-22]. There are two types of diffusion:
self-diffusion and cross-diffusion. The former refers to the diffusion of one species from the
higher-density area to the lower-density area in order to survive, while the latter refers to the diffusion
of one species as influenced by other species. Meanwhile, time delay in nature is an important factor
affecting the predator-prey model. A dynamical model without time delay can only be an
approximation [23]. Generally speaking, there are many kinds of delayed factors in the growth
process, such as the digestion of food [24], the maturation of cells [25], pregnancy [26,27]. These
processes are not instantaneous and take time to complete. Later, it is found that the existence of time
delay would make the positive steady state of a predator-prey model lose stability, resulting in
bifurcation or periodic oscillation [21,28]. Zhao et al. [19] proposed a reaction-diffusion model with
mature delay:

ot a+P’

L = yAZ + B — 57 - UL (-
where d, and d, represent the diffusion coefficients. 7 is the time required for phytoplankton to form a
mature cell to release toxins. They [19] analyzed the stability of the equilibrium, the existence and
properties of Hopf bifurcation. They [19] also found that time delay has an effect on the model (1.2).
Recently, Hopf bifurcation has also continued to be investigated in fractional-order dynamical

systems [29-32] and integer-order differential systems [33-37].

{"’—P = d,AP + rP(1 — L) - #Z
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In lake ecosystems, fish eat plankton for survival, while zooplankton eat phytoplankton. Thus,
phytoplankton, zooplankton and fish form a food chain. There is a lot of work that has done by many
researchers [20, 38, 39].

The functional response reflects the predator’s predation on the prey, which is an important part
of the predator-prey model. It can be divided into prey-dependent (Holling I-IV type [40], Ivlev
type [41], Rosenzweig type [22]) and predator-dependent functional responses
(Beddington-DeAngelis type [42, 43], Crowley-Martin (C-M) type [44], Hassell-Varley type [45],
ratio-dependent type [46]). A predator-prey model that takes into account interactions between
predators is more realistic. In [44], Crowley and Martin first proposed the C-M functional response:

aH

FH.P) = 3 b + cP)’

(1.3)

where F(H, P) represents the predation rate per predator, H represents the density of the prey per unit
of area, P represents the density of the predator per unit of area, a represents the attack coefficient, b
is the handling time and c is the interference coefficient. This functional response indicates that there
is interference between predators as they feed on and handle prey. In [47], the authors proposed a
model with the C-M functional response and showed that the system has complex dynamical behavior.
In [48], the interaction between mature prey and predator is assumed to be the C-M functional response;
the authors analyzed the positivity, boundedness and existence of equilibrium points. They not only
analyzed the stability behavior of the delayed and non-delayed system, but also discussed the properties
of Hopf bifurcation by choosing delay as the bifurcation parameter. In recent years, the researchers
have done a great deal of work on this predator-prey models with a C-M functional response [49-51].
Therefore, in this paper, on the basis of Eq (1.3), we will consider that fish predation on zooplankton
follows the C-M functional response:

vZF
(1 +aZ)1 +bF)’

where Z and F' represent the number of zooplankton and fish, respectively. a represents interference
between zooplankton, b is the interference between fish and y is the maximum rate of fish predation
on zooplankton. For different values of a and b, we have that (i) Eq (1.4) has turned into a Holling 11
functional response if @ > 0 and b = 0; (i1) Eq (1.4) expresses a saturation response with respect to a
predator if a = 0 and b > 0; (iii) Eq (1.4) becomes a linear mass-action functional response if a = 0
and b = 0.

In this paper, we consider the self-diffusion of populations. Let P(x,t), Z(x,t) and F(x, t) be the
densities of phytoplankton, zooplankton and fish at the location x and the time ¢, respectively. We also
give the following assumptions.

(1) The phytoplankton population follows the logistic growth under the condition of no zooplankton.
(2) Zooplankton preyed upon by fish is a C-M functional response.

(3) Phytoplankton preyed upon by zooplankton is a Holling II functional response. Nature provides
shelter to the prey, so a constant proportion m € (0, 1) of the phytoplankton take refuge, leaving (1-m)P
of the unprotected phytoplankton available for zooplankton grazing, following the Holling II functional
response, 1.e., fi(P) = al(:(_l—@nP)P.

(4) The progress of release of toxins takes the Holling II functional response and considers the mature

delay of toxins in the cell, i.e., fo(P) = a;(;:_)f).

pZF) =

(1.4)
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Based on the above assumptions, a schematic diagram that expresses the interactions of
phytoplankton, zooplankton and fish is depicted in Figure 1. The corresponding model is

aP—gJ) =d|AP + ri P(1 - %) _ %’
OZ(x.t) _ Br(1-m)PZ SP(—-1)Z WZF

o drAZ + ar+(I-m)P ~ ay+P(t-1)  (1+aZ)(1+bF) 81Z,
OF(x,t) _ 2 ZF

o = BAF + riann — &oF

P(0,1) = Z(0,1) = Fx(0,1) =0,
P (In,t) = Z,(In,t) = F(Im, 1) = 0,
P(x,t) > 0,Z(x,t) > 0, F(x,1t) > 0,

x€(0,Inm),t>0,

x € (0,Im),t >0,

x € (0,Im),t >0,
t>0,

t>0,

x € [0,Ir],t € [-7,0],

(1.5)

where d;, d, and d; represent the diffusion coefficients of each population, respectively; A is the
Laplace operator, 3, represents the maximum predation rate of phytoplankton by zooplankton, 3, is
the conversion rate, K represents the environmental carrying capacity, y; represents the predation rate,
v, represents the conversion rate, m is the refuge proportion of phytoplankton, @, and a, are half
saturation constants, ¢ represents the release rate of phytoplankton toxins and g, and g, represent the
natural mortality rates of zooplankton and fish, respectively. a represents the degree of interference
between zooplankton, b represents the degree of interference between fish and 7 represents the mature
time delay of phytoplankton toxin release. The Neumann boundary condition indicates that the area is

closed and no individuals can move across this area.

P
r1P(1 —E)

B.P(1—m)Z

a,+P(1—m)
SP(t —1)Z

a, +P(t—1)

V. ZF
(1+aZ)(1+ bF)

—
g:F

Figure 1. Diagram of interactions among phytoplankton, zooplankton and fish populations.

We rescale the model (1.5) by

. P - . N ~ d ~
P=—, Z=27 F=F i=nt d=—, ﬁ1=ﬂ,
K rt Krl
. a1 -1 - d s B @
= 7> = - b = 7 d = > = > )
@ K a a b 2 r IBZ r 2 K
x_ 0 - Y1 ;s d; _ " . _ 81 - _ 82
6 - > yl - 5 d3 - T 2 = T gl - > g2 - .
r abry r abry r r

AIMS Mathematics

Volume 8, Issue 4, 8867-8901.



8871

For the sake of convenience, omitting the breaking line, the model (1.5) becomes

8 = d\AP + P(1 — P) - B0 x €(0,Im),t> 0,

% = bAZ + ifil(_l’i%i - ;211(;3_(23) - (a+yzl)%1iF> —&1Z, x€(0,in),1>0,

B = d3AF + 20 — eoF, x € (0,im),t >0, 16)
P.(0,1) = Z,(0,1) = F(0,1) = 0, t>0,

P.(n,t)=Z.(n,t) = F.(Im, 1) =0, t>0,

P(x,t) > 0,Z(x,t) > 0, F(x,t) > 0, x €[0,In],t € [-,0],

where 0 < P < 1,0 < m < 1 and all parameters are positive.

Our paper is organized as follows. The existence and stability of equilibrium of the model (2.1)
are discussed in Section 2. Meanwhile, the occurrence of Hopf bifurcation is given by choosing m as
a bifurcation parameter. The existence and properties of Hopf bifurcation of the model (3.1) are
discussed in Section 3. In Section 4, Hopf bifurcation of the reaction-diffusion model (1.6) at the
positive equilibrium and its properties are analyzed. In Section 5, a numerical simulation is
demonstrated to prove the previous theoretical results by using Matlab software. In the last section,
we have a brief discussion.

2. Existence and stability of equilibria of ODE model

In this section, we will investigate the dynamical behavior of the model (1.6) with no delay and
no diffusion. That is, the model is

dr ay+(1-m)P’

4z _ B(-mPZ _ spz __ nZF

A T ait(-mP  axtP  (a+Z)(b+F) [SVA 2.1
dF _ v2ZF

i = @zeen — 82T

According to the existence theorem of the solution of ordinary differential equations, we can know
that the solution of the model (2.1) exists. By Lemma 2.1 in Reference [52], we give the following
lemma to explain the positivity of the solution of the model (2.1).

Lemma 2.1. All solutions of the model (2.1) that start positive remain positive.

Proof. Let (P(t), Z(t), F(t)) be any solution of the model (2.1). Assuming that the initial time is ¢y, and
one solution of the model (2.1) is at least not positive, then we have the following three cases:
(i) there exists time #; such that P(ty) > 0, P(t;) =0, P'(t;) <0, Z(t) >0, F(t) > 0, 1ty <t < ty;
(i1) there exists time f, such that Z(¢y) > 0, Z(t,) =0, Z'(t,) <0, P(t) >0, F(t) >0, ty <t < ty;
(i11) there exists time #3 such that F(fg) > 0, F(t;) =0, F'(t3) <0, P(t) >0, Z(t) >0, 1o <t < t3.
If the first case is true, then we get P’(¢;) = 0. This contradicts with P’(¢;) < 0. Similarly, we have
that Z'(t,) = 0, which contradicts with Z’(#,) < 0. And, F’(t;) = 0, which contradicts with F’(t;) < 0.
Because of the arbitrariness of P(¢), Z(t) and F(¢), all solutions of the model (2.1) remain positive
for all # > ;. Thus, all solutions of the model (2.1) that start positive remain positive. O
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2.1. Existence of all equilibria

Obviously, the model (2.1) has three boundary equilibria: one trivial equilibrium E,(0,0,0) and
two boundary equilibria £,(1,0,0) and E,(P,,7,,0) if (Hy) : 5, — 6 — g1 > 0 holds, where

P, _~B+ VB2 +4(1 —m)(B, — 6 - 81)810110/2’
2(1 =m)(B2 — 6 —g1)
_(I=Pylay + (1 —m)P,]
- (1 -mp, ’
here, B = (8, — g1)(1 — m)a, — (0 + g1)a.
Assume that the model (2.1) has the coexistence equilibrium E.(P., Z,, F.), where P,, Z, and F,
satisfy

Z,

P (1 _p ) _ B1(1-m)P.Z, — 0
¢ * a1+(1-m)P, >
B(1-m)P.Z,  6P.Z. NZF. Q1Z, =0, 2.2)

a1 +(l-m)P, ~ aa+P,  (a+Z.)(b+F,)
’}/ZZ*F* _ F — O
@izom+ry 824 =1,

By the first equation of (2.2), we can obtain
_ A =PIla; + (1 -—m)P,]

Z, (2.3)
(1 —m)B,
Substituting Eq (2.3) into the third equation of (2.2), we have
F- (y2 — bg2)(1 = P)la; + (1 —m)P.] — bgaafi(1 — m). 2.4)

glapi(1 —m)+ (1 - P)(a; + (1 —m)P,)]

If (Hy) : (y2 — bgy)(1 — P)la; + (1 —m)P,] — bgraB;(1 — m) > 0 holds, then we have that F, > 0.
Substituting Eqgs (2.3) and (2.4) into the second equation of (2.2), P, is the positive root of the
equation
f(P) =MsP> + MyP* + M5P° + M,P*> + M\P + M, = 0, (2.5)

where

Ms =(1 —m)*y,(B> — 6 — g1),

My ==y(1-m)(1-m-a)Br—6—g1)+dy(1 —m)(l —m—ay)
—72(1 =mP*(1 — @2)(B2 — 1) — g1y201(1 — m),

Ms =—[api(1 —m) + a1]y2(1 —=m)(Ba =6 — g1) + (B2 — g172(1 —m)(1 — ax)(1 —m — ay)
—6y(1 —m—a))’ + givaan(1 —m — @) + y1(1 = m)*(y, — bgo)
— @ Baya(l —m)* +y2(1 —m)ai (6 + g1) + g1y22(1 = m)(1 —m — ay),

M, =a(g1y202 + y1BD)(1 —m) + B2y2(1 —m)(1 —m — ay)
+ (I =m)(1 — a)ar1y2(B2 — g1) — y2au(1 —m — a1)(26 + g1)
+apigryrai (1 —m) + 817202 — aP16y2(1 =m)(1 —m —ay)
+B1(1 = m)*(1 - ax)laPays — agryz — v1(y2 — bga)l,

M, =[aBi(1 —m) + a11[y202(B2 — 81) + @1817202 — Y21 (6 + g1)] — (I —m — a1)g1y2a12
+y1abg:Bi(1 —m)* — yiB1(1 — m)(y2 — bgo)laa(1 = m — ay) + 1],

My =y1abg:Biar(1 —m)* = [aBi(1 — m) + a;1g1y2a122 — Y1Bi(1 — m)(y2 — bgr)a .
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Under the condition (H;), we have that Ms > 0. By the Descarte’s rule of signs [53], Eq (2.5) has
only one positive root P, if and only if one of the following terms is satisfied:
(1) M4>0,M3>0,M2>0,M1>0,M0<0;
(2) M4>O,M3>O,M2>O,M1<O,M0<O;
(3) M4>O,M3>O,M2<0,M1<O,M0<O;
4 My>0,M;<0,M, <0,M; <0,M, <0;
(5) M4<0,M3<0,M2<0,M1<0,M0<0.
Here, we give two figures as examples of the first two cases to verify the conclusion that there is only

one positive root (see Figure 2). We first give the assumption (H3): one of the conditions (1)—(5) is
true. Therefore, the following conclusion can be obtained.

& £eP)
0 P 0 P
M, M,
(1)M4>0,M3 >0,M2>0,M1 >O,M()<O (2) M4>0,M3 >O,M2>O,M1 <0,M0<0

Figure 2. Existence and uniqueness of the positive roots of f(P).

Theorem 2.1. Under the conditions (H), (H,) and (H3), the model (2.1) has only one positive
equilibrium E.(P., Z., F.), which is determined by Egs (2.3)—(2.5).

2.2. Stability of all equilibria

The stability of all equilibria will be analyzed in this part.
The Jacobian matrix of the model (2.1) is

ay ap 0O
A=| ay an ax |, (2-6)

0 axn asx

where
4 = 1—-2P - a1 -mZz = — Bl —m)P
[ + (1 = m)P)?’ a+ (1 -=mP’

_ 01,82(1 — m)Z 60’2Z _ ’)/1bZ

Ul A-mPE (@m+ P2 BT @r b+ P
ﬁz(l - m)P oP ’)/I(ZF
an = - - 2 - 81
a+(1-mpP ar+P (a+2)(b+F)

3 vraF B v2bZ

B ar 220+ Py P T wrnwrFe %
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e characteristic equation of the model (2.1) is
The ch teristic equat f th del (2.1
3 2
A = (an +axn +az3)d” + (a1axn + ay1aszs + anaszz)d + ajaza; — ananas; + apazaszz = 0. (2.7)

According to Eq (2.7), we have the following conclusions.
Theorem 2.2. The boundary equilibrium Ey(0, 0, 0) of the model (2.1) is always unstable.

Proof. The characteristic equation of the model (2.1) at Ej is
(A-D@+ g +g)=0.

It has three roots:
/11:1>0, /lzz—g1<0, /13:—g2<0.

Thus, the boundary equilibrium E|, is unstable. O

Theorem 2.3. If (H,) : 202 _ 8 _ o\ < 0 holds, then the boundary equilibrium E(1,0,0) of the

ai+1-m ar+1

model (2.1) is locally asymptotically stable.

Proof. The characteristic equation of the model (2.1) at E| is

Bl-m) &
a+(1-m) ar+1

A+ DA-( - g1+ g>) =0.

It has three roots:

1- 1
L=-1<0, A= Pl —m) _ _
a+(1-m) ar+1

g1, Az3=-g<0.

When (H,) is true, then A, < 0. Therefore, the boundary equilibrium E is locally asymptotically stable
under the condition (Hy). |

The characteristic equation of the model (2.1) at E»(P,, Z,,0) is
(A= 5)(A* + 554 + 53) = 0,

where

51 = Y21 = Py)[ay + (1 —m)P;] B
1 abB(1 —m) + b(1 — Py)[a; + (1 —m)P;] 82
@ =il =m)Zy + (1 =m)P? =281 = m)Py
a+ (1 -—m)P, )
1
Tl + Polm + (L—myp,p 2P = mPy)
- (1= Po)l[Bs(1 = m)Pa(as + P2) = (o + (1= m)P2)(G + 8P + 0gy)]
o Pr(1 - (I —m)P;)  barPr(1 — Py)

[) + (1 = m)P, ] (a+ Pp)?

Sy =

§3 =

Assume that the condition (Hs) : 1 < 0, s% —4s3 >0, s, < 0and s;3 > 0 are true; we can get the
following result.
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Theorem 2.4. Under the assumptions (H;) and (Hs), the boundary equilibrium E(P,,Z,,0) of the
model (2.1) is locally asymptotically stable.

The characteristic equation of the model (2.1) at E.(P,, Z., F,) is
A+ MgA* + M7A + Mg = 0, (2.8)
where

Mg = —(Aj1 + Ay +Az3), M7 =ApAsz+A11A33 +Aj1Ayn — ApAry — ApAs,
Mg = A11A33Az + A1pA21Asy — A11AnA33,

2
Ay =-P,+ pd —myz. 7> 12=- A = mpP. ,
[a) + (1 =m)P,] a; + (1 —m)P,
_ alﬁZ(l - m)Z* 6“22* _ Y1 F*Z*
T+ (1 -mP.PR (@ + P P @+ Z)P0b+F)
A = Y1bZ, B v2ak, A = v F.Z,
BT+ Z)b+F) T T @+ 22+ FY T @+ Z)b+ F)Y

From the Routh-Hurwitz criterion [54], if Mg > 0, M7 > 0 and M¢M; — Mg > 0, then all solutions
of Eq (2.8) have negative real parts. When Mg > 0, M7; > 0 and M¢cM; — Mg < 0, Eq (2.8) has one
negative root and a pair of complex roots with a positive real part. Assume that (Hg) : Mg > 0, M7 > 0
and M¢M; — Mg > 0; then, the stability of the positive equilibrium E, will be obtained.

Theorem 2.5. Suppose that the conditions (H,)—(H3) are true. If the condition (Hg) holds, then E, is
locally asymptotically stable. Further, E, loses stability when M¢M; — Mg passes through O; in other
words, the model (2.1) undergoes a Hopf bifurcation at E, when M¢M7; — Mg = 0.

Next, we will choose m as the bifurcation parameter to study the occurrence of Hopf bifurcation
of the model (2.1) at E,. By using the results in Reference [55], the following result can be obtained.

Theorem 2.6. If the characteristic equation of the model (2.1) at E.(P., Z., F.) is
A+ Ms(m)A* + M7(m)A + Mg(m) = 0,

where M¢(m), T (m) = M¢(m)M;(m) — Mg(m) and Mg(m) are the smooth functions of m and there exists
a positive number m* that satisfies

(1) Mg(m*) > 0, T(m*) = 0 and Mg(m*) > 0;

(2) &L, %0,
then Hopf bifurcation occurs at E.(P., Z., F.) when m = m".

We used Matlab software for numerical simulations to obtain this result in Section 5. Meanwhile,
we can also choose ¢ as a bifurcation parameter to study the occurrence of Hopf bifurcation of the
model (2.1) at E.(P., Z., F.). Since the discussion process is similar, we will only give the bifurcation
diagram in Section 5.

Under some conditions, Hopf bifurcation may not take place. Thus, we will discuss the global
asymptotical stability of the positive equilibrium E, as follows.
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Theorem 2.7. Suppose that the conditions (H,)—(H3) are true. The positive equilibrium E, of the

. . . —m)? 2 —
model (2.1) is globally asymptotically stable if 1 — mﬁﬁ(;"_)mz);] - mfp = > 0and W -2 -
BH(1-m)P.y, 0

a1g1ab

Proof. Let (P, Z, F) be any positive solution of the model (2.1). Define a Lyapunov function

P +(1=m)P. Z F
Vi = P—p, - pnt Lt d=mPB o oy v m—F - Fan L
P* ﬁZa/l Z* F*

Calculating the derivative of V(¢) along the solution of the model (2.1), then we have

v _ (A =mZ(P-P)=lan+ (1 -mP.IZ-Z)
dt =(P= PP =P+ pid —m) [@; + (1 = m)P.][a; + (1 —m)P] }
[a) + (1 —m)P.]B, Bo(l — m)a;
7 -7, P-P,
YT me . AN T a s mPdia A —mp )
Ba(1 —m)P, Z-7)- oa, (P_P- P.5
Zla; + (1 — m)P.] (@ + P)(@ + P,) @, + P,
b yiaF.

_m+aw+m@+afFﬁR%zm+am+aw+m)

+(F = F) Y26 Z-27) riL.

(a+2Z)b+F)a+Z) b+ F)a+Z)b+F,)
Bi(1 —m)’Z. &3 2
_M+O—MHMﬁUmeJ_Wﬁfﬂw+ﬂw@_h)
B Bi1(1 —m)P, N [a; + (1 —=m)P,]BP.O N yviaF, N &}
aZ Boay(ay + P,) Z(a+Z)a+Z)b+F,) Z
YV2Z, + 7’%02
b+F)a+Z)b+F.) (a+Z)>2*b+F)a+Z)
<—{1- Bi(1 —m)*Z, B 6 (P = P.)
aila; + (1 -m)P.] [ar + P.J?
_ ﬁ%(l - m)P.y, N [a; + (1 —m)P.]B,P.O
ag1ab Bra(ay + P,)
Y2Z, N ysa°
b+F)a+Z)b+F,) (a+2)2*b+F)*a+Z7Z)*

(Z - Z*)

81
(Z - Z*) - ?(Z - Z*)}

<-{1

—{-2 Z-2.)

—{

}(F - F*)z

—{-2 WZ-Z.)

—{ J(F - F.).

.. . 27, y3d* __Ba-mPz, & _9_
Here, it is obvious that T AT AR A 0.If1 T (omPd et 0 and -2

2(1-m)P, - .
Frldm) - lotI=mP BP0 () hold, then we have that the coefficients of (P — P,)?, (Z — Z.)* and
1814 Brai(a@a+Py) o
t

(F — F.,)? are always negative. Thus, T

is negative. This completes the proof. O
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3. Hopf bifurcation of DDE model

3.1. Existence of Hopf bifurcation

Here, under the conditions (H,)-(H3), we choose delay 7 as the bifurcation parameter and study
its influence on the stability of the positive equilibrium E,(P., Z., F.). The model (2.1) is

dP _ Bil-m)PZ
& — p(1 - p) - Bl

Bo(1-m)PZ %};E(l_)"f)w ZF

dz _ p2(I-m _ —0L Y1 _

& = e (omP ~ mrPen ~ @oer ~ 814 CRY
dF _ Y2ZF

o = woon — 82F

Let u;(t) = P(t) — P., us(t) = Z(t) — Z,, us(t) = F(t) — F, and u(t) = (u, (1), u(t), u3(¢))’ € R*. The
linearized system of the model (3.1) at E, is
=3 = bum (@) + bpua(1),
S = byyuy (1) + basur(0) + basus(t) + cun (£ = 1), (3:2)
% = byuy(t) + bzus(2),

duy (1)
t

where

a12Z.(1 —m)

bii=An, bnp=Apn, by= )
1 1 12 12 2= T+ P —m

6&’22*
by = Ay, by =Ax, by =Az, by =As;, =
22 2 23 23 32 32 33 33, C @+ P.)?
Then, the model (3.2) can also be given by
du(t
”(;(t) = Liu(r) + Lou(t — 1), (3.3)
where
by by, O 000
le b21 b22 b23 , Lzz c 0 0. (34)
0 b3y b3 000

Thus, 0(0,0,0) is the zero equilibrium of the model (3.2). The characteristic equation of the model (3.2)
at O is
A + D% + D1A+ Dy + e (D34 + Dy) = 0, (3.5)

where
Dy = —(by1 + by + b33), Dy = by1byy + b11b33 + byybsz — biabay — bazbsy,
Dy = b11by3b3s + b12by1bsz — by1byybsy, Dz = —cbyy, Dy = cbiybss.

The roots of Eq (3.5) have been discussed above when 7 = 0. Next, we will study the effect of
delay 7(7 > 0) on the model (3.2).

Suppose that 4 = iw(w > 0) is a pair of pure imaginary roots of Eq (3.5). Substituting it into
Eq (3.5), we can obtain

—iw® — Dyw® + Djiw + Dy + (coswt — isinwt)(iDsw + Dy) = 0. 3.6)
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Separating the real and imaginary parts of Eq (3.6), we can obtain

(3.7)

w? — Dyw = D3wcoswt — Dysinwr,
D,w? — Dy = Dywsinwt + Dycoswr.

From Eq (3.7), we can get
w® + w* (D3 = 2D)) + w*(D} - 2DyD, — D3) + D; — D = 0. (3.9)

Let z = w?, Ds = D} — 2Dy, D¢ = D? — 2DyD, — D3 and D; = D} — D;. Then, Eq (3.8) can be
rewritten as
f@) =2 + Dsz* + Dz + D7 = 0, 3.9)

and we have
f'(z) =327+ 2Dsz + Dg = 0. (3.10)

If Eq (3.9) has at least one positive root, then Hopf bifurcation takes place. Assume that (H) :
Ay = D} -3Dg < 0and (Hs) : A; = D3 — 3Ds > 0. By Lemmas 2.2 and 4.2 in Reference [56], we can
get the following results.

Since lim,_, ., f(z) = +00, Eq (3.9) has at least one positive root when D; < 0.

If (H7) holds, then f(z) is monotonically increasing for z € [0, +00); so, when D; > 0 and (H7)
hold, Eq (3.9) has no positive root for z € [0, +00).

When D; > 0 and (Hg) hold, Eq (3.10) has two roots, that is, zj and z3, where

*_—D5+ VA] *_—D5— VA]
Zl —_ fa Zz - #.
Furthermore, we have

(@) = =2Ds + 2yA; +2Ds = 24/A; > 0, f7(z3) = —2Ds — 2y/A; +2Ds = =2 +/A; < 0.
Therefore, we can obtain zj and z; as the local minimum and the local maximum of f(z), respectively.

Theorem 3.1. For Eq (3.9), the following conclusions are true.
(1) If D; <O, then Eq (3.9) has at least one positive root.
(2) If the condition (H7) holds and D7 > 0, then Eq (3.9) has no positive root.
(3) If the condition (Hg) holds and D7 > 0, then Eq (3.9) has two positive roots when z; > 0 and

£(Z) <0.

Without loss of generality, suppose that Eq (3.9) has three positive roots defined by z;, 2o and
z3, respectively. Thus, Eq (3.8) has three positive roots w; = /21, w2 = /22 and w3 = +/zz. From
Eq (3.7), we can get

i1 Dsw} + (DyDs — D\D3)wi — DDy . 2jn

T, = —arccos +—,k=1,2,3,j=0,1,2,---; 3.11
k= gpprecost D + D I+ J G-11)

thus, +iwy is a pair of purely imaginary roots of Eq (3.5) when 7 = Ti.
Define

: J
To = min T Wy = Wilr=1q-
0 k=1,2,3.jEN0{ k}’ 0 le—T()

Let A(t) = a(1) + iB(1) be the root of Eq (3.5) near 7 = 7/, and let it satisfy a(r]) = 0 and
B =wi, j=0,1,2,-- k=123
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Theorem 3.2. Assume that z; = w; and f'(z) # 0; then, dRZi(T)l Aziwp 7 0.

Proof. Differentiating Eq (3.5) for 7, we have

@\ G420+ D) +D; 7 G5.12)

dr | A(D3A + Dy) A '

Substituting A(7) = iw, into Eq (3.12), we can get
dA(7) -1 (—3w% + 2Dsiwy + D) (coswyT + isinwyT) + D; T
dr A=t i(x)o(D3 iwo + D4) iwg
(D3w3 + ia)oD4)(3a)g — D1 = 2Dywoi)(coswyT + isinwyt) + D3(D3a)g +iwgDy) Ti
= + —.
D%wg + Diwg wy
Therefore, we can get
. Ao\ . 3w§ + (2D3 — 4Dy)w} + (D} — 2Dy D, — D3)w}
dr e D%wg + Diw%

_ Tk 2 2 2 2

= W[Szk + (2D2 — 4D])Zk + (Dl - 2DOD2 - D3)]

__ wf'@)

D%wg + Dia)(z)'
Thus, we have
. dA(7) : dA(r) _ o
sign{——1aziw,} = sign{Re( )" aciwy} = signf’(z) # 0.
dr dr

This ends the proof of Theorem 3.2. O

Theorem 3.3. Under the conditions (H\)—(H3), the dynamics of the model (3.1) at the positive
equilibrium E, can be obtained.

(i) If D; > 0 and the condition (H-) is true, then E., is locally asymptotically stable for all T > 0.

(ii) If D7 < O or the condition (Hg), D7 > 0, zj > 0 and f(z}) < 0 are true, then E, is locally
asymptotically stable when T € [0, 1¢); but, E., is unstable when T > 1.

(iii) If the conditions in (ii) are all satisfied and f'(z;) # O holds, then a Hopf bifurcation occurs
at E, when T = 1.

3.2. Properties of Hopf bifurcation

For 7 = 71y, the existence of Hopf bifurcation has been discussed. The properties of the Hopf
bifurcation will be discussed in consideration of the work of Hassard et al. [57].

Let T = 79 + u, u € R; we can obtain that 4 = 0 is a Hopf bifurcation value of the model (3.1). Let
the phase space be C = C([-1,0],R*) and t — 5; then, the model (3.1) can be expressed as a functional
differential equation (FDE) in C as

w(t) = Ly(u,) + F(u, uy), (3.13)

where L, : C > R*and F : RXC — R°.
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Define ¢(6) = (¢1(6), ¢2(0), p3(8)" € R*,0 € [-1,0] such that
Ly(¢) = (to + w)L19(0) + (70 + ) L2p(—1)

and
Fi(p)
F(u,¢) = (10 +,U)( Fa(p) ],

F3(p)

where L; and L, are defined in Eq (3.4), and

Fi(p) = Cr1gi(0) + Cra1(0)p2(0),

(3.14)

(3.15)

Fa(p) = Cr1¢7(0) + C3(0) + Ca3¢3(0) + Caap1 (0)02(0) + Cas2(0)p3(0)

+ CzW%(—l) + Crr01(=1)2(0),
F3(p) = C3103(0) + C3005(0) + C3302(0)03(0),

ooy UmmPaBZ, L ap-m) L _(=mPap,z
[a) + P.(1 —m)]¥’ [a; + P.(1 —m)]*’ [a; + P.(1 —m)]*’
Cyy = Y1aF. Cp = Y1bZ, = a@1B8>(1 — m)
(a+Z)b+F) (a+Z)b+F)’ [a) + P.(1 - m)]*’
Cos = — viab = oarZ. = oas
(a+Z)Xb+F)* (@ + P.)*’ (ar + P)Y

)/ZaF* ’}/zbz*

Y2ab

Csy =— , Cyp=- , Cy= .
YT @+ Zp0+F) R @+Z)b+F)T P T @+ Z)Hb+ F.)?
From the Riesz representation theorem [58], there is a matrix function whose elements are

functions of bounded variation n(6, u) € C([-1, 0], R?); also,

0
L.(p) = f dn(@, e, ¢e€C.

1

Let
77(0, O) = TOL16(9) - TOL25(9 + 1),

where 6(6) is a Dirac function, as follows:
0, 0=+0,
o(0) = { 1, 6=1

For ¢ € C = C([-1,0], R%), we define that

Ao = &0 6¢[-1,0),
PV dnw e, 6=0,
R = 0, 0 e[-1,0),
SO_ F(/J’SD)’ 9:0

Therefore, Eq (3.13) becomes
u(t) = Au(u) + Ryu,.

AIMS Mathematics
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For y € C* = C([-1, 0], R%), let

A ) - s€[0,1),
S) =
YO wcodne0). s=o,

and establish the bilinear inner product

0 0
W(s), 9(0)) = ¥(0)p(0) - f 1 fo W€ = O)dn@p@)ds, Y(s)€C", @) €C,

where n(6) = n(6,0). Then, A(0) and A*(0) are adjoint operators. According to Theorem 3.3, we
can get that +iw,7, are eigenvalues of A(0). Thus, they are also eigenvalues of A*(0). Assume that
g0 = (1, q1, g2)T €™ is the eigenvector of A(0) corresponding to iwyTy; then, A(0)g(6) = iwyToq(6).
By the definition above, we have

dg(6)

F = ia)‘roq(é’), 0e [—1,0),

0
Log(0) = f dn(0)g(0) = A0) = iwrog(0), 6=0,
-1

bll — lwy b12 0 1
(o + )| bay + ce™™™ by —iwy b3 q |=0.

0 b3, b3z —iwy q>

that is,

Solving it, we can get

1 1
_ iwp—b1i
q1 - b1
q bz (iwo—bi1)
2 bia(iwo—b33)

Similarly, we assume that g*(s) = D(1, ¢}, ¢;)e”"*™" is the eigenvector of A*(0) corresponding to
—iwoTo; then, A*(0)g"(s) = —iwoToq*(s). By the definition above, we can get

1 1
% _ _ iw0+b11
ql - by _+cei“’0T0
bys3(iwo+bi1)

sk
12 bia(iwg+b33)(bay +ce070)

By Eq (3.2), {¢", g) can be expressed as
0 0
(q",q) = q*(0)q(0) — f 1 fo q*(& — 0)dn(0)q(&)dé

0
= D[(1,4},¢5)(1,q1,q2)" — f f (1, 4%, g3)e " man0)(1, q1, q2)" €*“"™d¢]
-1 Jo
= D[l + q1q; + q2q; + Tocq;e*™].

Thus, we can choose
D = [1+qiq;] + g2q5 + Tocq;e ™™
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then, (¢*,q) = 1.
Next, we adopt the ideas of Hassard et al. [57] to compute the coordinates describing the center
manifold Cy at u = 0. We assume that u, is the solution of Eq (3.13) when u = 0. Let

2(t) =4q",u), WI(t,0) = u,(6) — 2Ref{z(t)q(0)}. (3.13)
On the center manifold C, we can get
W(t,0) = W(z(1),z(1), 0),

where ) R
Z Z

W), 2(1).0) = W (O) 5 + WnzZ+ WoaO) 7 + - ; (3.19)

z and 7 express the local coordinates for the center manifold Cy in the direction of ¢* and g*. We can

get that W is real when u, is real. For the real solution u, € Cy of Eq (3.17), when u = 0, we have

A1) ={q"u(®) = {q", AO)u; + ROur) = (A" (0)q", ur) + g*(0)F (0, u;)
= iwoToz(t) + ¢*(0)F (0, W(t, 0) + 2Re{z(t)g(0)})

= iwoToz(t) + §(O)F(0, W(z. 2,0) + 2Relz(t)g(0)) (3:20)
= iwotoz(t) + ¢ (0)Fo(z,2).
Eq (3.20) can also be written as
(1) = iwoToz(t) + (2, 2),
where
- _ z ) 7 %7
8(z,2) = ¢*(0)Fy(z,2) = gzo(Q)E + g1(0)zz + 802(9)3 + 81> +e (3.21)
By Eq (3.18), we can get
. .. .. |AW =2Re{q*(0)Fq(6)}, 0e[-1,0),
W=u,—-29-2q = -
AW —2Re{q*(0)Foq(0)} + Fy, 6=0, (3.22)
AW + H(z, 2, 6),
where
_ 7 _ 7 %z
H(z,7Z,0) = Hzo(e)z + H1(0)zZ + Hoz(g)z + Hy; > +e (3.23)

From Egs (3.22) and (3.23), we obtain
(A = 2iwoTo)Wan(0) = —Hz0(0),
AW11(0) = —H11(0), (3.24)
(A + 2iwto)Woa(0) = —Hpo(6).
By Eq (3.18), we have

u(6) =W(t, 0) + 2Re{z(t)q(6))
7 7 (3.25)

=W20(9)3 + Wi(0)zz + Woz(g)z +(1,q1,92)" €™z + (1,41, o) e ™7 + - -
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Then, we have

_ Fi(u,)
8(z.2) =q*(0)F (0, u,) = D(1, 4", ¢2")to | Falu,)
F3(u,)
:DTO[Fl(ut) + " Fa(uy) + ¢ F3(u,)] (3.26)
2

Z N — % “x = N — % “x
:—[ZDTo(ku + ko gy + k3193)1 + 22 Dro(kin + kg™ + k323)]

_2 2
Lz
+3 =[2D7o(ki3 + kasgi™ + k33q3)] + _[2D70(k14 +koaqi” + kaagy)],

where

kit =Ci+Ciaqr,  kio =2C1 + Ca(g1 + q1),

ka1 = Ca1 + Coaghy + Co3q; + Cauqi + Casqiqa + Cage ™ + Crrqre ™,

k31 = C3147 + Cg3 + C3q1q2, k33 = C314; + Cds + C334130,

ko = 2Ca1 +2C0q1q1 + 2C3q2G2 + Caalqr + G1) + Cos(q1G2 + G192)
+2Ca + Co7(q1€™ + g1e™"™),

ky = 2C31q91G1 + 2C3q2G2 + C33(q1G2 + G1q2), ki3 = Cii + Ci2qy,s
ks = Co1 + Cny + C3s + Coat + Cosnn + Cape™ ™™ + Cyye™ ™,
kg = Cri(W)(0) + 2WP(0)) + Cia(5 W§3£<0>q1 +qlWP(0) + WP(0) + W§§><0>>
kg = czl(W<“<0> +2W(0)) + sz(W@)(O) + 2W<2><0>) + CZ3<W<3)(0) + 2W(3>(0)>
+ cm W20 01 + W (0) + W) + = ngf(m) + Cas(= ng,)(qu + W(0)q,
+ W0 + —W;?f(oml) + Cop(e ™ Wag (=1) + 2“0 W) (1))
1
+ Con(Gq1 Wag (1) + @i Wy (=1) + e W(0) + e’“’OTOW;”(O»,
kg = C31(W(0) + 2W'1(0)) + 633( 6]2W (0) + W2(0) + W (0) + = W<”(0>c71).
Comparing the coeflicients of Eqgs (3.21) and (3.26), we can get

820 =2D7o(kyy + Gikay + Gok31),
g =Drolkiz + Gika + G5ks)),

802 =2D7o(ki3 + Gikos + Grks3),
g1 =2D7(kis + Gikos + Grkss).

(3.27)

Since the expression of g,; contains Wy (6) and W;(6), we must compute W,o(6) and W;,(6).
According to Eq (3.22), when 6 € [-1,0), we get

H(z,Z,0) = — 2Re{g" (0)Fo(z,2)q(6)} = —2Re{g(z, 2)q(6)}

( = 24(¢ (3.28)
= —8(z,2)q(0) — 2(z,2)q(0).
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Comparing the coeflicients of Eqgs (3.23) and (3.28), we can receive
Hy(6) = —8209(0) = 8024(0),  Hi1(8) = —8119(6) — 8114(0). (3.29)
By Eq (3.24), we have
Wao(0) = 2iwotoWao(6) + g209(6) + §02(60), Wi1(6) = g11g(6) + 811G(6). (3.30)
Solving Eq (3.30), we can obtain

18204(0) 8024(0) _; .
WZO(G) :Metwo‘r(ﬂ + Me—twg‘r(ﬂ + Elezw.)()Toe,
WoTo 3wyTy
8119(0) 2114(0)
W) = - lgllq( )eWOTOe + lgllq( )e—zonOH
WoTo woTo

(3.31)
+ E2,

where E; = (EQ), El@, El@)) € R (i = 1,2) is a constant vector.

1

For 6 = 0, from Eq (3.22), we have
H(z,Z,0) = =2Re{q" (0)Fo(z,2)q(0)} + F.
From Eq (3.23), we can get

ki
H3(0) = — g209(0) — 202g(0) + 270{ ko ],

k
o (3.32)

k>
H1(0) = - g119(0) — g114(0) +To[ ka» ]
k3>

According to the meaning of A(0) and Eq (3.24), we have

0 0
f dn(@)Wy(0) = 2iwotoWa — Ha(0), f dn(@W,,(0) = —H,,(0), (3.33)
-1 -1

where n(6) = n(6,0).
From Egs (3.14), (3.16) and (3.33), we can get

ToL1 Wa(0) + ToLaWao(=1) = 2iwoty — Hy0(0), 7oLiWi1(0) + 1oL W11 (=1) = H;1(0). (3.34)

Substituting Eqgs (3.31) and (3.32) into Eq (3.34), we have

2ia)0 - b]] —b12 0 - kll
E, =2 —ce~2woto _ by 2iwy — by —bys ko |,

0 —b3, 2iwy — b33 k3
—b” —b12 0 - kll
E),=| —c—by by -—by ky .
0 —by; —bs3 k3
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Thus, all expressions of g;; can be represented in full. Also, we have

. 2
c1(0) = ﬁm%(gngzo —2lgnl’ - %) + &1,
— _ Refc1(0)
H1= " Retvimo) (3.35)
Mo = 2Re{c1(0)},
T, = _ Imici (O} Imi X' (7o)}

woTo

which determine the direction of Hopf bifurcation and the stability of bifurcating periodic solutions on
the center manifold at 7 = 7.

Theorem 3.4. From Eq (3.35), we have the following conclusions.

(i) uy determines the direction of Hopf bifurcation: if u; > 0, then the Hopf bifurcation is
supercritical; if u; < 0, then the Hopf bifurcation is subcritical and the bifurcating periodic solutions
exist when T > 1g;

(ii) uy determines the stability of the bifurcating periodic solutions: if u, < 0, then the bifurcating
periodic solutions are stable; if u, > 0, then the bifurcating periodic solutions are unstable;

(iii) T, determines the period of the bifurcating periodic solutions: if T, > 0, then the period
increases; if T, < 0, then the period decreases.

4. Hopf bifurcation of PDE model

4.1. Existence of Hopf bifurcation

Next, we will analyze the existence and properties of Hopf bifurcation of the model (1.6). The
model (1.6) is linearized at the positive equilibrium E, in the phase space C = C([-7, 0], R®):

du(r)
dr

where D = diagl{d,,d,,ds} and L and L, are defined in Eq (3.4).
We know that A has the eigenvalues —(%)2 and n € Ny under Neumann boundary conditions in
[0, Ir]. Then, the characteristic equation of the model (4.1) is

= DAu(t) + Liu(t) + Lou(t — 1), 4.1)

A+ qoud® + qiad + qo + € (q3ud + qan) = 0, (4.2)
where
Gon =(d1 + dy + d3)(;)2 = (b1 + b + D33),
qin =(d1dy + dod; + d1d3)(§)4 = (dibx + dyb11 + dabsz + d3by + d3by
+ dlb33)(§)2 + (D112 + b3z + b11D33 — biabay — bazbsy),
Gon =d1d2d3(;)6 — (didabss + didsbyy + 61'26131711)(%4
+ (d1bbsz + dabr1bs; + dﬂhﬂhz)(%)2 + b11D23b3y + b12by1b3z — br1baybss,

n
Gsn =—c¢bia,  qan = —61305712(7)2 + cbizbss.
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When 7 = 0, Eq (4.2) can be rewritten as
A+ @2 + (@1 + 43)A + (Goa + qa1) = 0. (4.3)
Furthermore, we have
Gon + Gan = — dBCbIZ(;)Z + cbiobys + d1d2d3(§)6 — (di1dabss + didsbayy + d2d3b11)(?)4

n
+ (d1byb3s + drby1b3s + dﬂhﬂ’zz)(y)2 + b11by3b3 + b12by b3z — by 1baybss,

n
@on(Gin + q3n) — (Gon + qan) = [(d) + dy + d3)(d1ds + drd3 + dyd3) — d1d2d3](7)6
= [(dy + dy + d3)(d by + drby) + dabsz + d3by + dsbyy + dib33)
n
+ (b11 + by + b33)(didy + drds + didz) — (didybss + dydsbay + d2d3b11)](7)4
+ [(dy + dy + d3)(b11b2y + byob3s + by1bs3 — biobay — byzbzy — cbyo)
+ (b11 + by + b33)(d1byy + dobyy + dybss + d3by, + d3byy + db33)
n
— (d1bypbs3s + drby b3z + dsby b)) + CI«'3CZ712](7)2
+ (b11 + by + b33)(cbia — b11byy — byobsz — bi1bsz + biabyy + by3bsy)
— (b11b23b3y + b12by1 b33 — b11byabss) — cbiabss.

Assume that the following condition holds true: (Hy): g2, > 0, ¢2.(q1n + @30) — (Gon + Gan) > 0,
qon + qan > 0, n € Ny. Using the Routh-Hurwitz criterion [54], we can obtain the next conclusion.

Theorem 4.1. If the conditions (H,)—(H3) and (Hy) hold, then all roots of Eq (4.3) have negative real
parts, that is, the positive equilibrium E. of the model (1.6) is locally asymptotically stable when T = 0.

When 7 # 0, the time delay may have some effect on the model (1.6). Therefore, we will analyze
the effect of delay 7 on the positive equilibrium E.. Let 4 = iw,(w, > 0) be the solution of Eq (4.2);
we can get

—iw) = W3qn + iWrq1n + Gon + € (W2 G0 + Gan) = 0. (4.4)

Separating the real and imaginary parts of Eq (4.4), we can receive

3 _ .
W5 — q1pW2 = q3,W2C08WLT — (4, SINW)T, (4.5)
2 — . .
qonWy — qon = q3pW3, SINWLT + 44y COSWAT,

which follows that
W3 + (g3, = 2q1)W3 + (1, — 2q0nG2n — G) W3 + (5, — G4,) = 0. (4.6)
Let po = 43, = 2q1ns Pin = 43, = 2qonG2n = @3> Pon = 4, — 43, and w3 = y; we can obtain
Y’ + pouy’ + piny + pon = 0. 4.7)

Further, if £(y) = ¥* + p2,y* + p1.y + pon, then f/(y) = 3y* + 2p>,y + pi1n. Assume that (Hg) : Ay =

—piat VA . —pia— VA
pln3\/72 and y; — Pln \/7 are

p%n —3piw < 0and (Hyy) : Ay = p%n — 3pi, > 0 are true, here yj = 3
the local minimum and the local maximum of Eq (4.7), respectively. Similarly, we have the following

conclusion by Lemmas 2.2 and 4.2 in [56].
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Theorem 4.2. For Eq (4.7), the following results are true.
(1) If po, <O, then Eq (4.7) has at least one positive root.
(2) If po, = 0 and the condition (H,() holds, then Eq (4.7) has no positive root.
(3) If pon > 0 and the condition (H\,) holds, then Eq (4.7) has positive roots when y| > 0 and

fop 0.
Without loss of generality, we suppose that it has three positive roots defined by y;,, y, and ys,.
So, Eq (4.6) has three positive roots:

1 _ 2 _ 3 _
Wy = Yins Wy = Yo, a)2 = Y3n-

Substituting w’é(k = 1,2,3) into Eq (4.5), we can get

i 1 nwk4+ nY4n — Yln nwkz_ nY4n 2j
v = L arecos L8N T @ntn ~ dundsn )W)~ dodany T 4y 5 io012, . 48)
w, (I3n(w2) + 44 W,

Thus, when 7 = Tin, we get that A = i} is a pair of purely imaginary roots of Eq (4.2). Define

— : J _ ok
w0 = B T 0 = Al

Assume that A(1) = &{(1)+igy(7) is the root of Eq (4.2) near 7 = T]{n, and that it satisfies 81(T£n) =0
and &x(1], ) = Wb,k =1,2,3, j € Ny, n € N,.

Theorem 4.3. If yy,, = (w%)? and f'(yi) # 0, then we have that FX@ |, ~# 0.

Proof. Differentiating Eq (4.2) for 7, we can get

d/l(T) _ (3/12 + 2612n/l + qln)e/l‘r + q3n T

e Agsnd + Gan) T 9
Substituting A = iw, into Eq (4.9), we have
da(r) (—Swflo + 2G0,iwn + q10)(COSWLT + ISINW,T) + G35 T
Car ) e = ~ Q3 + Wn0qan " o
then,
Re MOy )
dr [q3n(@)) 12 + (Wn0Gan)?
Thus, we can get
signt D) = signRe(HE ) ) % 0
The proof of Theorem 4.3 is completed. O

By computing as shown above, we have the following conclusion.

Theorem 4.4. Under the conditions (H,)—(H3), for the the positive equilibrium E. of the model (1.6),
we have the following:

(i) if the condition (H,) is true and py, > 0, then E, is locally asymptotically stable for all T > 0;

(ii) if pon < 0 0r po, 2 0, yi > 0, f(y]) < 0 and the condition (H\,) holds, then E, is locally
asymptotically stable when T € [0, 1,0), but, E, is unstable when v > 7,;

(iii) if the conditions in (ii) are all satisfied and f'(yi,) # O, then the spatially homogeneous Hopf
bifurcation occurs at E, when T = 1y and n = 0; and, the spatially inhomogeneous Hopf bifurcation
occurs at E, when t = 1,0 and n > 0.
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4.2. Direction and stability of Hopf bifurcation

Lett, = T‘,fn, w, = a)’gn and 7 = 7, + u,, u, € R. Thus, u, = 0 is a Hopf bifurcation value of the
model (1.6). Lett — ﬁ; then, the model (1.6) can be expressed as an FDE in C = C([-1,0],R%), as
follows:

u(t) = t,DAu(t) + L(t,)u, + F,(u,, u,), (4.10)
where L(0) : C — X, F,,(u,, u,) : C — X satisfies
b11¢1(0) + b12¢2(0)
L(O)(@) = 0| b21¢1(0) + bap2(0) + ba3p3(0) + cpi (1)
b3p2(0) + b333(0)
and

where F(u,, ¢) is defined in Eq (3.15), L; and L, are defined in Eq (3.4) and ¢ = (¢, ¢2, ¢3)T € C.
The linear equation of Eq (4.10) at O(0,0,0) is

u(t) = 7,DAu(t) + L(7,)u;. (4.12)
Let A = {iw,T,, —iw,T,} and z,(8) € C = C([-1, 0], R*); we consider the following FDE:
2(1) = L(7,)(21). (4.13)

On the basis of the Riesz representation theorem, there exists a 3 X 3 matrix function 7,(6, 1)
(-1 <60 <0) e C(-1,0],R%, and it satisfies

0
L(t,)(p) = fl dny(0, @), ¢ € C(I=1,01, R).

Let
77n(9, ,un) = (T, + ,un)Llé(G) — (1, + ,un)L25(0 + 1),
where 6(6) is the Dirac delta function.
We set C* = C([0, 1], R*), and R* is the three-dimensional vector space of row vectors. The
bilinear inner product is

0 0
(W (s), 0(0)) = ¥(0)p(0) — f 1 fo Y& = O)dn,(O)p(©)ds,  Y(s) e C,  ¢(0) € C. (4.14)

A, (1) describes the infinitesimal generator of the semigroup induced by the solutions of Eq (4.13),
and A;(7,) denotes the formal adjoint generator of A,(t,) satisfying Eq (4.14). Let V and V* denote
the center spaces of the generators A,(7,) and A} (7,) corresponding to A, respectively. Therefore, V*
is the adjoint space of V, dimV = dimV".

Lemma 4.1. Let

Vl _ iwn—bll, V2 _ b32(l:wn_bll),
bi» bis(iw, — b33)
Vo iw, — by . b3 (iw, — byy) ,
Y by +cemient’ T2 (jw, — bs)(byy + cemiontn)’

then, p1(0) = (1, Vy, V)T e ™ and p,(6) = pi(0), =1 < 6 < 0 form the basis of V associated with A;
pi(s) = (1,V7, V;)e""“”’"" and p5(s) = pi(s), 0 < s < 1 form the basis of V* associated with A.
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Denote @ = (@, ®,) and ¥* = (¥, ¥;)", where

p1(0) + p2(0)

@@z——;——d&w%%&me%m%WWN,9q4m,
0) — 6 . . .
%@:&QT%3=WMWWMWM%%MMWMN,eﬂ4m,
I
() + pi(s ‘ . .
lP](S) — pl( ) 2 p2( ) — (Re{e_lw"‘r"s},RE{VI*B_M"T"S},RE{VSE_M”T"S}), = [0’ 1],
*(s) — pi(s . . .
lljz(S) — pl( )2p2( ) — (Im{e—lwnrnS},Im{VTe—lwn‘rnS}’Im{v;e—lwn‘rnx})’ = [O, 1]
I

Suppose that (‘P*, ®) = (‘¥7, ®;)(i, j = 1,2.) is the basis ¥ of V*, which satisfies
Y=Y,V = (¥, 0¥

Thus, we have that (¥, ©) = L.

Let f, = (£).47,&)), where &) = (cos4x,0,0), & = (0,cos%x,0)" and & = (0,0, cos%x)".
f,{ (j = 1,2,3) denotes the eigenfunctions on R® of the eigenvalues —(%)2, n=20,1,2---. Define
Cn Jo = C1E) + €2 + 3E), ¢y = (c1,02,¢3)",¢; € R, j = 1,2,3, and the center space of Eq (4.12) is
written as

Peng = ©CY, <@, fu)) - Jas

where ¢ € C, C = PcyC @ P,C and P,C expresses the complementary subspace of PcyC.
According to [57] and [59], the center space of the linear model of (4.10) with w,, = 0 is expressed
as PcyC, where

1
PcyC = {E(pl(ﬁ)z + p2(0)2) - fu, z€Ch
Thus, the solution of the model (4.10) can be written as

1
U = E(pl(Q)Z + p2(0)2) - fu + Q2(0), 2(1))(0),

where Q(z2(1), Z(1))(0) = W(Z,i5,0), z = x; — ix,.
By Wu [59], 7 satisfies

7 = Ww,ThZ + 8:(2,2), 4.15)
where
81(2,2) = (¥1(0) — Y2 (0))(F,(0, u,), fny, ¥(0) = (¥1(0), ¥>(0))".
Let
7 7
0(z,2) = QZO(Q)E + 011(0)zz + Qoz(Q)E +oe, (4.16)
(02) = 805 + 31O + 2005 + 3 = -
8nlZ,2) = 820 > 811(0)2Z + Zoz 3 821 3

and

W1(0) — ¥2(0) = (Y1, Y2, ¥3).
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By computing and comparing the coefficients, we have

o Tn —2iw,T,
820 =3<[(C11 + CaViW + (Co + Cop Vi + Cp3 Vi + CoyVy + Cos Vi Vy + Coge™ 2™

—iwyT n n
+ CyyVie ™Yy + (C31 Vi + C3, V3 + C33 V) Vz)lﬁ3]0052(7)x, 005(7)X>,

81 =%<[(2C11 + Cpp(Vi + VWi + (2Ca; +2C Vi Vi +2C3 Vo Vo + Cou(Vy + V)
+ Cos(Vi Vo + Vi V3) + 2Ca6 + Cor (V1€ ™ + Vie ™))y,
+ (2C3 V1V +2C3, Vo Vy + C33(Vi Vs + V1V2))'ﬁ3]0052(2)x’ COS(E)X%
2 =Tn{<[C11(Q(210)(0) +201/(0) + Ca(3 Lo +V10)00) + 020)
Q(z)(O))]cos( P, cos(> DY+ (| [C21(O(0) +201(0)) + C2n(05)(0)
+201(0) + Cos(Q (0) + 201/ (0)) + Caal5 Lo )71 +V10)0) + 020)
Q‘”(O)) +Cas(5 Q<2>(0>V2 + Q) 0)V, + V, Qﬁ?((» + = Q<3>(0>V1)
+ Cap(e“™ QS (= 1) + 2™ Q) (=1)) + 627< V05 (-1 + v, 0)(=1)

+e ™ OR0) + %el’% R Olcos()x cos(’} )02 +([C31(Q(0) +20,/(0))

+ C33(%‘72Q(121)(0) + V2,00(0) + v, QG)(O) + = Q“)(owl)]cos( 1), cos(; )XW%}

We know that foﬂ cos3(’—;)xdx = 0 and gy, = &,,. Therefore, we can get that 50 = g1; = 0o = 0
whenn =1,2,3---. When n = 0, we have

o Tn —2iw,T,

820 :E[(C“ + CaViW + (Co + Cou Vi + C Vi + CogVy + Cospy Vy + Coge 2™
+ CyVie ™Yy + (C31 Vi + C3, Vi + C3V Vo),
T, _ _ _ _

g1 =7 1QCH + Cia(Vi + Vi + 2Ca + 200 V1 Vi + 205 VaVa + Co(Vi + V) (4.17)
+ Cos(Vi Vy + Vi V) + 2Cs6 + Coy (Vi€ ™ + Vle_iw"r”))l//z
+ (2C3 Vi Vi +2C3, Vo Vo + C3(Vi Vo + ViVo)s].

Considering the expression of g,;, it contains Qy(8) and Q(6), so we must compute Qy(d) and
0Q11(6). Seeking the derivative on both sides of Eq (4.16), we have

0(z,7) = Qxz+ 01122+ Onzz + QniZ+ -+ , (4.18)
ZZ 22
A, 0(z,2) = AT,,QZOE +A;, 01z +AT,1Q025 + e (4.19)

From Wu [59], O(z, 7) satisfies
0(z,2) = A, 0(z,2) + S (2, 2), (4.20)
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where
2 )

- e _ Z
$@2 =807 +SuZ+ S+ = XoFul, 0) = O, (XoFo(ur, 0), fu)) - fr:

and
1, 6=0,

0, -1<6<0,
Sl'jEPSC, l+]:2
From Eq (4.15) and Eqgs (4.17)—(4.20), we can get

{(ZiwnTn —A7,)02 = S,

Xo(0) = {

—Ar, Q=S

Because A;, has only two characteristic roots with a zero real part, i.e., +iw,7,, Eq (4.20) has a

unique solution Q;;(i + j = 2) in PgC, which satisfies

Q20 = Qiwy Ty — Ar,) 'S 20,
{Q11 =-A.'S 1.
From Eq (4.20), we can get that, for § € [—1,0),
S(z,2) = —OO)Y(0)F,(u;, 0), fu) - fa
= ~ZUp1OF + 5020 - f- ; + (10211 +&npa0) - fu - 22

)
+ (P1(0)g02 + B20p2(0)) - £, - %1 b

Comparing the coefficients in Eqs (4.20) and (4.22), when 6 € [—1, 0), we can receive
Tn ~ - n
S20(0) = —E(Pl(g)gzo + gozpz(e))COS(Y)X,
Tn ~ - n
S1(0) = —3(191(9)5’11 + g11p2(9))cos(7)x.

When 6 = 0, we have

Cii+ Cip
Tn CQ] + szpz + C23p2 + C24p1 + C25p1p2 + C26€_2iw”T” H N
S 20(0) =2 ! 2 | 1
20(0) 2 +Cyrpre ™ cos (l)x

Cs1p7 + Cxop; + Cx3pip2
Tn ~ - n
- E(Pl(Q)gzo + 802]?2(9))00S(7)X,

2C1 + Cia(p1 + p1)

$.1,(0) = 2C1 + 2Cnpipy + 2C3pap2 + Coa(pr + p1) + Cos(p1p2 + pip2)
H 4 +2C56 + Co7(p1€“r™ + pre™'“r™)

2C31p1p1 + 2Cnpapr + C33(pip2 + Pip2)
Tn ~ -— n
- 3(171(9)811 + g11p2(9))c0s(7)x.

cos2(§)x

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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Using Eqs (4.24) and (4.25), we can get 0»0(0), Q11(0), Ox(—1) and Q;;(—1). Because p;(0) =
p1(0)e ™ 9 € [-1,0), from Egs (4.21)—(4.25), we have

g

‘ 8 . —iw,T iw,T,
020(0) =3[ L2 pr(O) ™ 4 2 py )] +
i3 | = |
011(0) 25[ &1l p1(0)en™? — (j’]?‘_ pl(())e—lwnrne] +E,

where E3 = (E, E?, E{’) € R® and Ey = (E", E{’, E}’) € R’ satisfy

1 21(,(),, - b]l —b12 0
E3 = 5 —C€_2iw”T" - b21 2la),, - b22 —b23
0 —b32 le,, - b33
Ci+CVy ‘
Cy + C22V12 + C23V22 + Coy Vi + CpsV1 Vo + C26€_21w”‘r” s N
. cos“(=)x,
+Cyy Ve i @ntn l

C31V12 + C32V22 + C53V1V,

-byy  =bip O
Ey=| —c—=by —byn -by
0 —b3, —b33

. 2C11_+ C12(V1 + ‘712 B B
2C21 + 2C22V1V1 + 2C23V2V2 + C24(V1 + Vl) + 025(‘/1 V2 + Vl V2)
+2C26 + C27(V1 eiw”T" + Vle_i“’"T")
2C31V1 ‘71 + 2C32V2V2 + C33(V1 Vz + V] VQ)

cos2(§)x.

Therefore, we can get the following values:

~ 12 ~
x(0) = = (B - 2032 — B2k + &2,
_ _ Relar(0)}
H3 = T Refd @1 (4.26)
Mg = 2Re{c2(0)},
T, = _ Im{co (O} +ps Im{ 2 (7))
WyTy

b

which determine the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions
on the center manifold at T = 7,.

Theorem 4.5. According to Eq (4.26), we have the following conclusions.

(i) us determines the direction of Hopf bifurcation: if us > 0, then the Hopf bifurcation is
supercritical; if uz < 0, then the Hopf bifurcation is subcritical and the bifurcating periodic solutions
exist when T > 1,,;

(ii) u4 determines the stability of the bifurcating periodic solutions: if s > 0, then the bifurcating
periodic solutions are unstable; if us < 0, then the bifurcating periodic solutions are stable;

(iii) T, determines the period of the bifurcating periodic solutions: if T, > 0, then the bifurcating
periodic solutions increase; if T, < 0, then the bifurcating periodic solutions decrease.
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5. Numerical simulation

With the help of Matlab software, the stability of the positive equilibrium E.(P.,Z,, F.) was
simulated with the given values of all parameters in order to confirm the previous theoretical results.

First, we assume that P(0) = 0.8, Z(0) = 40 and F(0) = 0.1 for the model (2.1). And, we take the
values of all other parameters as follows: 5; = 0.016, 8, = 0.7, y; = 0.0875, y, = 0.075, a; = 0.1,
a,=02,a=05,b=0.25,g,=0.1,g, =0.2, m = 0.8 and 6 = 0.35. According to Theorem 2.1, we
can know that the model (2.1) has one unique positive equilibrium E,(0.5043,31.1137,0.1191). From
Theorem 2.5, E. is locally asymptotically stable (see Figure 3).

1 50 0.2

08 45
0.15

40

0.6
r E3s 0.1 .

0.4
30 V

0.2

P()
F@©

Z(

0.05
25

0 20 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Time t Time t Time t
(@) P(Y) (b) Z(v) (c) F(t)
Figure 3. Positive equilibrium E.(0.5043,31.1137,0.1191) of the model (2.1) is locally
asymptotically stable when 7 = 0. (a) P(t), (b) Z(t), (c) F(t).

In the second section, we obtained Theorem 2.6 by referring to [55]. Now, we will verify some
conclusions by taking m as the bifurcation parameter. When ¢ = 0.2, the critical value is m* = 0.82,
which satisfies Me(m*) > 0, T(m*) = 0, Mg(m*) > 0 and 4|, # 0. That is, all conditions in
Theorem 2.6 are satisfied. Therefore, Hopf bifurcation occurs at E, when m = m*. Meanwhile, we can
obtain that P(f) reaches a maximum value and Z(¢) and F(¢) are always O when m > 0.94. Therefore,
we can get the bifurcation diagram as m changes (see Figure 4). If we choose ¢ as the bifurcation
parameter when m = (.75, we can get the critical value 6* = 0.33. Therefore, Hopf bifurcation occurs
at E, when 6 = 6*. We can obtain that P(¢) reaches a maximum value of 1 and Z(7) and F'(¢) are always
0 when 6 > 0.49. Therefore, we can get the bifurcation diagram as ¢ changes (see Figure 5). From
Figure 5, when other parameter values are fixed, the density of zooplankton and fish will decrease to
0 whether the refuge capacity of phytoplankton or the probability of toxin release of phytoplankton-
produced toxic substances increase to some certain value. Properly increasing the shelter capacity of
phytoplankton and the rate of toxin release of by phytoplankton can stabilize the population and reach
a stable state. Then, the plankton and fish populations will always exist.

For the model (3.1), we assume that P(0) = 0.5, Z(0) = 30 and F(0) = 0.115. When m = 0.8 and
6 = 0.25, we have that 79 = 4.9397, and the model (2.1) has one unique positive equilibrium
E.(0.2671,35.1379,0.1197) according to Theorem 2.1. From Theorem 3.3, E. is locally
asymptotically stable when 7 € [0,4.9397], but Hopf bifurcation occurs when 7 € [4.9397, +c0).
From Eq (3.35), we can know that ¢;(0) = —=512.86 — 540.47i < 0, yy = 1457 > 0, u, = —1025.7 < 0
and T = 153.5416 > 0. Thus, the Hopf bifurcation is supercritical, the bifurcating periodic solution
is stable and the period of the bifurcating periodic solutions is increasing, which can be seen in
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Figure 6 (r = 1) and Figure 7 (r = 10). Here, we give the delay bifurcation diagram (see Figure 8).
This means that, if the mature delay exceeds the critical value, the model transitions to unstable from
stable. At this moment, the model has a Hopf bifurcation near the equilibrium and unstable behavior
occurs among populations. In other words, the presence of the mature delay can destabilize the
plankton-fish population.

N .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
m m m

(a) P(Y) (b) Z(1) () F(v)
Figure 4. When m € (0, 1), the dynamical behavior of the model (2.1) changes. (a) P(t), (b)
Z(v), (¢) F().

H -
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
d [J 5

(a) P(V) (b) Z(1) () F()
Figure 5. When 6 € (0, 1), the dynamical behavior of the model (2.1) changes. (a) P(t), (b)
Z(v), (¢) F().

Avn ('
1
aotY 0.115

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Time t Time t Time t

(a) P(V) (b) Z(1) () F(®)
Figure 6. Positive equilibrium E.(0.2671,35.1379,0.1197) of the model (2.1) is locally
asymptotically stable when 7 = 1 < 7y = 4.9397. (a) P(1), (b) Z(t), (c) F(t).
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Figure 7. Hopf bifurcation occurs at the positive equilibrium when 7 = 10 > 79 = 4.9397.

(a) P(1), (b) Z(v), (c) F(0).

0 0.095
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Figure 8. Bifurcation diagrams of the model (2.1) with respect to 7.

For the model (1.6), we choose / = 1, that is, x € (0,7). The values of other parameters as
follows: d; = 0.2,d, = 05,d; = 0.1, m = 0.84 and 6 = 0.25. The positive equilibrium is
E.(0.3794,38.9575,0.1202). From Eq (4.8), we have that 7, = 6.2832. Based on Theorem 4.1, E, is
also locally asymptotically stable when 7 = 0 (see Figure 9), and E. is locally asymptotically stable
when 7 = 3.5 < 1,0 = 6.2832 (see Figure 10). But, E. is unstable when 7 = 25 > 1,0 = 6.2832 (see
Figure 11). And, we can compute that c,(0) = —-1141.6 — 2543.9i < 0, u3 = 7257.8 > O,
Uy = —2283.3 < 0 and 7, = 646.8790 > 0. From Theorem 4.5, the Hopf bifurcation is supercritical,
the bifurcating periodic solution is stable and the period of the bifurcating periodic solutions is
increasing. For the reaction-diffusion model, we can know that the model will transitions to unstable
from stable if the mature delay exceeds the critical value. At this moment, the model has a spatially
homogeneous Hopf bifurcation or spatially inhomogeneous Hopf bifurcation near the equilibrium and
unstable behavior occurs between the populations. At this time, the presence of the mature delay can
destabilize the plankton-fish population.

By the theoretical conclusions and numerical simulation, we not only find that the existence of
delay will deteriorate the system stability under some conditions, but also that the refuge of the prey
and the release of toxins will cause the stability of system be damaged in a reaction-diffusion model
with delay, even causing Hopf bifurcation to occur at the positive equilibrium E..
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(@) P(H) (b) Z(1) (c) F(t)
Figure 9. Positive equilibrium E.(0.3794,38.9575,0.1202) of the model (1.6) is locally
asymptotically stable when 7 = 0. (a) P(t), (b) Z(t), (c) F(t).

() P () Z(v (©) F(t)
Figure 10. Positive equilibrium E.(0.3794,38.9575,0.1202) of the model (1.6) is locally
asymptotically stable when 7 = 3.5 < 7,0 = 6.2832. (a) P(t), (b) Z(t), (c) F(t).

(@) P(Y) (b) Z(t) () F(®)
Figure 11. Positive equilibrium E,(0.3794,38.9575,0.1202) of the model (1.6) is unstable
and Hopf bifurcation occurs when 7 = 25 > 1,0 = 6.2832. (a) P(1), (b) Z(t), (c) F(t).

6. Conclusions

In our paper, we establish a phytoplankton-zooplankton-fish model with mature delay and
population diffusion by considering the refuge of phytoplankton, C-M functional response and
Holling II functional response. In [18], the authors found that the refuge affects the stability of the
positive equilibrium. However, in our paper, we not only analyzed the effect of refuge, but also
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studied the effects of diffusion and delay on the model; we obtained that the stability of the system
may be destroyed due to the existence of delay. In [19], the authors analyzed Hopf bifurcation caused
by delay. However, in our paper, we not only obtained the properties of Hopf bifurcation induced by
delay, but also the influence of prey refuge on the population. We determined that the existence of
prey refuge can also lead to Hopf bifurcation.

After the parameters in the model were selected, the existence and stability of the equilibrium were
analyzed. First, we chose m as a bifurcation parameter to study the dynamical behavior as m changes
in the model (2.1). Meanwhile, we consider the effect of the parameter 6 on the positive equilibrium
in the model (2.1). Through analysis, it could be obtained that the model undergoes a Hopf bifurcation
when m = m" or 6 = ¢°. We found that, when other parameter values are fixed, the densities of
zooplankton and fish will decrease to O regardless whether the refuge capacity of phytoplankton or the
probability of toxin release of phytoplankton-produced toxic substances increase to a certain value.
And, we chose the time delay 7 as the bifurcation parameter and discussed the dynamical behavior
of the model without diffusion, or with diffusion, respectively. We give the direction of the Hopf
bifurcation and the stability of the bifurcating periodic solution by the center manifold theorem and
normal form theory. We found that the model transitions to unstable from stable when the mature delay
exceeds the critical value. At this moment, the model has a spatially homogeneous Hopf bifurcation or
spatially inhomogeneous Hopf bifurcation near the positive equilibrium and unstable behavior occurs
between the populations. In a word, the existence of time delay has a great influence on such a model.
Meanwhile, we used Matlab software for numerical simulation to prove our theoretical results.

In this paper, we have discussed the influence of factors such as prey refuge, the disturbance
between predators, time delay and diffusion on the model. However, in nature, there are external factors
to influence the model, such as changing temperature, environmental pollution, human activities and
noise. We did not take these influencing factors into account. Therefore, in the future work, we will
introduce the influence of environmental pollution on the model and analyze the dynamical behavior
of the phytoplankton-zooplankton model under the influence of environmental pollution. The model is

oP _ P Bid-m)PZ 3
E—d]AP‘FI’]P(l—E—m—WL]P, xeQ,t>0,

9z _ z Bo(1-m)PZ oP(t-1)Z 2

S = AL +nZ(1 - K—z) + o (omPrZ ~ miPi-D mZzZ-—gZ, xe€Q,t>0,
Pux,0) = Z(x,1) =0, x €0Q,t>0,
P(x,t) > 0,Z(x,1) > 0, xeQ te[-10],

where m; and m, are the effects of environmental pollution on phytoplankton and zooplankton,
respectively. We leave this work for the future.
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