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Abstract: In our paper, a delayed diffusive phytoplankton-zooplankton-fish model with a refuge
and Crowley-Martin and Holling II functional responses is established. First, for the model without
delay and diffusion, we not only analyze the existence and stability of equilibria, but also discuss the
occurrence of Hopf bifurcation by choosing the refuge proportion of phytoplankton as the bifurcation
parameter. Then, for the model with delay, we set some sufficient conditions to demonstrate the
existence of Hopf bifurcation caused by delay; we also discuss the direction of Hopf bifurcation and
the stability of the bifurcation of the periodic solution by using the center manifold and normal form
theories. Next, for a reaction-diffusion model with delay, we show the existence and properties of
Hopf bifurcation. Finally, we use Matlab software for numerical simulation to prove the previous
theoretical results.

Keywords: Hopf bifurcation; refuge; Crowley-Martin; time delay; diffusion
Mathematics Subject Classification: 34C23, 37G15, 92B05

1. Introduction

Plankton is divided into two groups: zooplankton and phytoplankton. Phytoplankton are the
primary producers in aquatic ecological models, as well as the main supplier of dissolved oxygen to
phytoplankton blooms. Phytoplankton opens up the food web of aquatic ecosystems. Zooplankton,
as economic aquatic animals, constitute an important feed for fish and other economic animals in the
middle and upper waters, which is of great significance to the development of fishery [1–4].

Plankton has been studied extensively in many ways. In References [1–4], the researchers found
that zooplankton eat plankton and zooplankton smaller than themselves, or feed on algae, bacteria,
copepods and other food scraps. Therefore, there is a predator-prey relationship between zooplankton
and phytoplankton. In 1939, Fleming [5] presented the first mathematical model of plankton. Since
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then, researchers have done a lot of work on plankton [6–10], focusing on factors such as nutrients,
temperature, light, viral diseases and harvest to understand the bloom and disappearance of algal
blooms. However, the researchers found that toxins released by toxic-producing phytoplankton have
an effect on the termination of plankton blooms, which means that toxic chemicals can act as
biological control for other plankton populations [11].

When the predator captures the prey, the prey seeks shelter because of a survival instinct. Nature
provides shelter to the prey, and this behavior keeps the balance of the predator-prey model [12–14].
For lake ecosystems, prey refuge can stabilize plankton biomass by preventing phytoplankton from
being temporarily eaten by zooplankton. Scholars have found that phytoplankton shelters can be
obtained through benthic sediments, which can allow phytoplankton to temporarily escape from
zooplankton predation. At the same time, the water layer can also form a temporary shelter for
phytoplankton, and the shelter can prevent the extinction of the prey population [15–17]. Li et al. [18]
proposed a model with the refuge as follows:dP

dt = rP(1 − P
K ) − β1(P−m)Z

a1+(P−m) ,
dZ
dt =

β2(P−m)Z
a1+(P−m) − dZ − θPZ

a2+P ,
(1.1)

where P and Z represent the number of phytoplankton and zooplankton, respectively. r represents the
intrinsic growth rate of phytoplankton, K represents the environmental carrying capacity of
phytoplankton, β1 represents the predation rate, β2 represents the conversion rate, d represents the
mortality rate of zooplankton, θ represents the toxin release rate, a1 and a2 represent half-full
constants, m represents the number of protected phytoplankton when phytoplankton have the ability
to shelter and P − m denotes the number of unprotected phytoplankton that can be preyed upon by
zooplankton. They [18] studied the effect of refuge of phytoplankton on the phytoplankton-
zooplankton model.

In nature, the population diffuse from one area to another in order to survive. The predator-prey
model with diffusion can generate complex spatial patterns [19–22]. There are two types of diffusion:
self-diffusion and cross-diffusion. The former refers to the diffusion of one species from the
higher-density area to the lower-density area in order to survive, while the latter refers to the diffusion
of one species as influenced by other species. Meanwhile, time delay in nature is an important factor
affecting the predator-prey model. A dynamical model without time delay can only be an
approximation [23]. Generally speaking, there are many kinds of delayed factors in the growth
process, such as the digestion of food [24], the maturation of cells [25], pregnancy [26, 27]. These
processes are not instantaneous and take time to complete. Later, it is found that the existence of time
delay would make the positive steady state of a predator-prey model lose stability, resulting in
bifurcation or periodic oscillation [21, 28]. Zhao et al. [19] proposed a reaction-diffusion model with
mature delay: ∂P

∂t = d1∆P + rP(1 − P
K ) − µPZ

α+P ,
∂Z
∂t = d2∆Z + µ1PZ

α+P − δZ −
ρP(t−τ)Z
α+P(t−τ) ,

(1.2)

where d1 and d2 represent the diffusion coefficients. τ is the time required for phytoplankton to form a
mature cell to release toxins. They [19] analyzed the stability of the equilibrium, the existence and
properties of Hopf bifurcation. They [19] also found that time delay has an effect on the model (1.2).
Recently, Hopf bifurcation has also continued to be investigated in fractional-order dynamical
systems [29–32] and integer-order differential systems [33–37].

AIMS Mathematics Volume 8, Issue 4, 8867–8901.



8869

In lake ecosystems, fish eat plankton for survival, while zooplankton eat phytoplankton. Thus,
phytoplankton, zooplankton and fish form a food chain. There is a lot of work that has done by many
researchers [20, 38, 39].

The functional response reflects the predator’s predation on the prey, which is an important part
of the predator-prey model. It can be divided into prey-dependent (Holling I-IV type [40], Ivlev
type [41], Rosenzweig type [22]) and predator-dependent functional responses
(Beddington-DeAngelis type [42, 43], Crowley-Martin (C-M) type [44], Hassell-Varley type [45],
ratio-dependent type [46]). A predator-prey model that takes into account interactions between
predators is more realistic. In [44], Crowley and Martin first proposed the C-M functional response:

F(H, P) =
aH

(1 + abH)(1 + cP)
, (1.3)

where F(H, P) represents the predation rate per predator, H represents the density of the prey per unit
of area, P represents the density of the predator per unit of area, a represents the attack coefficient, b
is the handling time and c is the interference coefficient. This functional response indicates that there
is interference between predators as they feed on and handle prey. In [47], the authors proposed a
model with the C-M functional response and showed that the system has complex dynamical behavior.
In [48], the interaction between mature prey and predator is assumed to be the C-M functional response;
the authors analyzed the positivity, boundedness and existence of equilibrium points. They not only
analyzed the stability behavior of the delayed and non-delayed system, but also discussed the properties
of Hopf bifurcation by choosing delay as the bifurcation parameter. In recent years, the researchers
have done a great deal of work on this predator-prey models with a C-M functional response [49–51].
Therefore, in this paper, on the basis of Eq (1.3), we will consider that fish predation on zooplankton
follows the C-M functional response:

p(Z, F) =
γZF

(1 + aZ)(1 + bF)
, (1.4)

where Z and F represent the number of zooplankton and fish, respectively. a represents interference
between zooplankton, b is the interference between fish and γ is the maximum rate of fish predation
on zooplankton. For different values of a and b, we have that (i) Eq (1.4) has turned into a Holling II
functional response if a > 0 and b = 0; (ii) Eq (1.4) expresses a saturation response with respect to a
predator if a = 0 and b > 0; (iii) Eq (1.4) becomes a linear mass-action functional response if a = 0
and b = 0.

In this paper, we consider the self-diffusion of populations. Let P(x, t), Z(x, t) and F(x, t) be the
densities of phytoplankton, zooplankton and fish at the location x and the time t, respectively. We also
give the following assumptions.
(1) The phytoplankton population follows the logistic growth under the condition of no zooplankton.
(2) Zooplankton preyed upon by fish is a C-M functional response.
(3) Phytoplankton preyed upon by zooplankton is a Holling II functional response. Nature provides
shelter to the prey, so a constant proportion m ∈ (0, 1) of the phytoplankton take refuge, leaving (1−m)P
of the unprotected phytoplankton available for zooplankton grazing, following the Holling II functional
response, i.e., f1(P) = (1−m)P

a1+(1−m)P .
(4) The progress of release of toxins takes the Holling II functional response and considers the mature
delay of toxins in the cell, i.e., f2(P) = P(t−τ)

a2+P(t−τ) .
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Based on the above assumptions, a schematic diagram that expresses the interactions of
phytoplankton, zooplankton and fish is depicted in Figure 1. The corresponding model is

∂P(x,t)
∂t = d1∆P + r1P(1 − P

K ) − β1(1−m)PZ
a1+(1−m)P , x ∈ (0, lπ), t > 0,

∂Z(x.t)
∂t = d2∆Z + β2(1−m)PZ

a1+(1−m)P −
δP(t−τ)Z

a2+P(t−τ) −
γ1ZF

(1+aZ)(1+bF) − g1Z, x ∈ (0, lπ), t > 0,
∂F(x,t)
∂t = d3∆F + γ2ZF

(1+aZ)(1+bF) − g2F, x ∈ (0, lπ), t > 0,

Px(0, t) = Zx(0, t) = Fx(0, t) = 0, t > 0,
Px(lπ, t) = Zx(lπ, t) = Fx(lπ, t) = 0, t > 0,
P(x, t) > 0,Z(x, t) > 0, F(x, t) > 0, x ∈ [0, lπ], t ∈ [−τ, 0],

(1.5)

where d1, d2 and d3 represent the diffusion coefficients of each population, respectively; ∆ is the
Laplace operator, β1 represents the maximum predation rate of phytoplankton by zooplankton, β2 is
the conversion rate, K represents the environmental carrying capacity, γ1 represents the predation rate,
γ2 represents the conversion rate, m is the refuge proportion of phytoplankton, α1 and α2 are half
saturation constants, δ represents the release rate of phytoplankton toxins and g1 and g2 represent the
natural mortality rates of zooplankton and fish, respectively. a represents the degree of interference
between zooplankton, b represents the degree of interference between fish and τ represents the mature
time delay of phytoplankton toxin release. The Neumann boundary condition indicates that the area is
closed and no individuals can move across this area.

Figure 1. Diagram of interactions among phytoplankton, zooplankton and fish populations.

We rescale the model (1.5) by

P̃ =
P
K
, Z̃ = Z, F̃ = F, t̃ = r1t, d̃1 =

d1

r1
, β̃1 =

β1

Kr1
,

α̃1 =
a1

K
, ã =

1
a
, b̃ =

1
b
, d̃2 =

d2

r1
, β̃2 =

β2

r1
, α̃2 =

a2

K
,

δ̃ =
δ

r1
, γ̃1 =

γ1

abr1
, d̃3 =

d3

r1
, γ̃2 =

γ2

abr1
, g̃1 =

g1

r1
, g̃2 =

g2

r1
.
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For the sake of convenience, omitting the breaking line, the model (1.5) becomes

∂P
∂t = d1∆P + P(1 − P) − β1(1−m)PZ

α1+(1−m)P , x ∈ (0, lπ), t > 0,
∂Z
∂t = d2∆Z + β2(1−m)PZ

α1+(1−m)P −
δP(t−τ)Z
α2+P(t−τ) −

γ1ZF
(a+Z)(b+F) − g1Z, x ∈ (0, lπ), t > 0,

∂F
∂t = d3∆F + γ2ZF

(a+Z)(b+F) − g2F, x ∈ (0, lπ), t > 0,

Px(0, t) = Zx(0, t) = Fx(0, t) = 0, t > 0,
Px(lπ, t) = Zx(lπ, t) = Fx(lπ, t) = 0, t > 0,
P(x, t) > 0,Z(x, t) > 0, F(x, t) > 0, x ∈ [0, lπ], t ∈ [−τ, 0],

(1.6)

where 0 < P < 1, 0 < m < 1 and all parameters are positive.
Our paper is organized as follows. The existence and stability of equilibrium of the model (2.1)

are discussed in Section 2. Meanwhile, the occurrence of Hopf bifurcation is given by choosing m as
a bifurcation parameter. The existence and properties of Hopf bifurcation of the model (3.1) are
discussed in Section 3. In Section 4, Hopf bifurcation of the reaction-diffusion model (1.6) at the
positive equilibrium and its properties are analyzed. In Section 5, a numerical simulation is
demonstrated to prove the previous theoretical results by using Matlab software. In the last section,
we have a brief discussion.

2. Existence and stability of equilibria of ODE model

In this section, we will investigate the dynamical behavior of the model (1.6) with no delay and
no diffusion. That is, the model is

dP
dt = P(1 − P) − β1(1−m)PZ

α1+(1−m)P ,
dZ
dt =

β2(1−m)PZ
α1+(1−m)P −

δPZ
α2+P −

γ1ZF
(a+Z)(b+F) − g1Z,

dF
dt =

γ2ZF
(a+Z)(b+F) − g2F.

(2.1)

According to the existence theorem of the solution of ordinary differential equations, we can know
that the solution of the model (2.1) exists. By Lemma 2.1 in Reference [52], we give the following
lemma to explain the positivity of the solution of the model (2.1).

Lemma 2.1. All solutions of the model (2.1) that start positive remain positive.

Proof. Let (P(t),Z(t), F(t)) be any solution of the model (2.1). Assuming that the initial time is t0 and
one solution of the model (2.1) is at least not positive, then we have the following three cases:
(i) there exists time t1 such that P(t0) > 0, P(t1) = 0, P′(t1) ≤ 0, Z(t) > 0, F(t) > 0, t0 < t < t1;
(ii) there exists time t2 such that Z(t0) > 0, Z(t2) = 0, Z′(t2) ≤ 0, P(t) > 0, F(t) > 0, t0 < t < t2;
(iii) there exists time t3 such that F(t0) > 0, F(t3) = 0, F′(t3) ≤ 0, P(t) > 0, Z(t) > 0, t0 < t < t3.

If the first case is true, then we get P′(t1) = 0. This contradicts with P′(t1) ≤ 0. Similarly, we have
that Z′(t2) = 0, which contradicts with Z′(t2) ≤ 0. And, F′(t3) = 0, which contradicts with F′(t3) ≤ 0.

Because of the arbitrariness of P(t),Z(t) and F(t), all solutions of the model (2.1) remain positive
for all t > t0. Thus, all solutions of the model (2.1) that start positive remain positive. □
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2.1. Existence of all equilibria

Obviously, the model (2.1) has three boundary equilibria: one trivial equilibrium E0(0, 0, 0) and
two boundary equilibria E1(1, 0, 0) and E2(P2,Z2, 0) if (H1) : β2 − δ − g1 > 0 holds, where

P2 =
−B +

√
B2 + 4(1 − m)(β2 − δ − g1)g1α1α2

2(1 − m)(β2 − δ − g1)
,

Z2 =
(1 − P2)[α1 + (1 − m)P2]

(1 − m)β1
;

here, B = (β2 − g1)(1 − m)α2 − (δ + g1)α.
Assume that the model (2.1) has the coexistence equilibrium E∗(P∗,Z∗, F∗), where P∗, Z∗ and F∗

satisfy 
P∗(1 − P∗) −

β1(1−m)P∗Z∗
α1+(1−m)P∗

= 0,
β2(1−m)P∗Z∗
α1+(1−m)P∗

−
δP∗Z∗
α2+P∗

−
γ1Z∗F∗

(a+Z∗)(b+F∗)
− g1Z∗ = 0,

γ2Z∗F∗
(a+Z∗)(b+F∗)

− g2F∗ = 0.
(2.2)

By the first equation of (2.2), we can obtain

Z∗ =
(1 − P∗)[α1 + (1 − m)P∗]

(1 − m)β1
. (2.3)

Substituting Eq (2.3) into the third equation of (2.2), we have

F∗ =
(γ2 − bg2)(1 − P∗)[α1 + (1 − m)P∗] − bg2aβ1(1 − m)

g2[aβ1(1 − m) + (1 − P∗)(α1 + (1 − m)P∗)]
. (2.4)

If (H2) : (γ2 − bg2)(1 − P∗)[α1 + (1 − m)P∗] − bg2aβ1(1 − m) > 0 holds, then we have that F∗ > 0.
Substituting Eqs (2.3) and (2.4) into the second equation of (2.2), P∗ is the positive root of the

equation
f (P) =M5P5 + M4P4 + M3P3 + M2P2 + M1P + M0 = 0, (2.5)

where

M5 =(1 − m)2γ2(β2 − δ − g1),
M4 = − γ2(1 − m)(1 − m − α1)(β2 − δ − g1) + δγ2(1 − m)(1 − m − α1)

− γ2(1 − m)2(1 − α2)(β2 − g1) − g1γ2α1(1 − m),
M3 = − [aβ1(1 − m) + α1]γ2(1 − m)(β2 − δ − g1) + (β2 − g1γ2(1 − m)(1 − α2)(1 − m − α1)

− δγ2(1 − m − α1)2 + g1γ2α1(1 − m − α1) + γ1(1 − m)2(γ2 − bg2)
− α2β2γ2(1 − m)2 + γ2(1 − m)α1(δ + g1) + g1γ2α2(1 − m)(1 − m − α1),

M2 =α1(g1γ2α2 + γ1β1)(1 − m) + α2β2γ2(1 − m)(1 − m − α2)
+ (1 − m)(1 − α2)α1γ2(β2 − g1) − γ2α1(1 − m − α1)(2δ + g1)
+ aβ1g1γ2α1(1 − m) + g1γ2α

2 − aβ1δγ2(1 − m)(1 − m − α1)
+ β1(1 − m)2(1 − α2)[aβ2γ2 − ag1γ2 − γ1(γ2 − bg2)],

M1 =[aβ1(1 − m) + α1][γ2α2(β2 − g1) + α1g1γ2α2 − γ2α1(δ + g1)] − (1 − m − α1)g1γ2α1α2

+ γ1abg2β
2
1(1 − m)2 − γ1β1(1 − m)(γ2 − bg2)[α2(1 − m − α1) + α1],

M0 =γ1abg2β
2
1α2(1 − m)2 − [aβ1(1 − m) + α1]g1γ2α1α2 − γ1β1(1 − m)(γ2 − bg2)α1α2.
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Under the condition (H1), we have that M5 > 0. By the Descarte’s rule of signs [53], Eq (2.5) has
only one positive root P∗ if and only if one of the following terms is satisfied:

(1) M4 > 0,M3 > 0,M2 > 0,M1 > 0,M0 < 0;
(2) M4 > 0,M3 > 0,M2 > 0,M1 < 0,M0 < 0;
(3) M4 > 0,M3 > 0,M2 < 0,M1 < 0,M0 < 0;
(4) M4 > 0,M3 < 0,M2 < 0,M1 < 0,M0 < 0;
(5) M4 < 0,M3 < 0,M2 < 0,M1 < 0,M0 < 0.

Here, we give two figures as examples of the first two cases to verify the conclusion that there is only
one positive root (see Figure 2). We first give the assumption (H3): one of the conditions (1)–(5) is
true. Therefore, the following conclusion can be obtained.

(1) M4 > 0,M3 > 0,M2 > 0,M1 > 0,M0 < 0 (2) M4 > 0,M3 > 0,M2 > 0,M1 < 0,M0 < 0

Figure 2. Existence and uniqueness of the positive roots of f (P).

Theorem 2.1. Under the conditions (H1), (H2) and (H3), the model (2.1) has only one positive
equilibrium E∗(P∗,Z∗, F∗), which is determined by Eqs (2.3)–(2.5).

2.2. Stability of all equilibria

The stability of all equilibria will be analyzed in this part.
The Jacobian matrix of the model (2.1) is

A =


a11 a12 0
a21 a22 a23

0 a32 a33

 , (2.6)

where

a11 = 1 − 2P −
α1β1(1 − m)Z

[α1 + (1 − m)P]2 , a12 = −
β1(1 − m)P
α1 + (1 − m)P

,

a21 =
α1β2(1 − m)Z

[α1 + (1 − m)P]2 −
δα2Z

(α2 + P)2 , a23 = −
γ1bZ

(a + Z)(b + F)2 ,

a22 =
β2(1 − m)P
α1 + (1 − m)P

−
δP

α2 + P
−

γ1aF
(a + Z)2(b + F)

− g1,

a32 =
γ2aF

(a + Z)2(b + F)
, a33 =

γ2bZ
(a + Z)(b + F)2 − g2.
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The characteristic equation of the model (2.1) is

λ3 − (a11 + a22 + a33)λ2 + (a11a22 + a11a33 + a22a33)λ + a11a32a23 − a11a22a33 + a12a21a33 = 0. (2.7)

According to Eq (2.7), we have the following conclusions.

Theorem 2.2. The boundary equilibrium E0(0, 0, 0) of the model (2.1) is always unstable.

Proof. The characteristic equation of the model (2.1) at E0 is

(λ − 1)(λ + g1)(λ + g2) = 0.

It has three roots:
λ1 = 1 > 0, λ2 = −g1 < 0, λ3 = −g2 < 0.

Thus, the boundary equilibrium E0 is unstable. □

Theorem 2.3. If (H4) : β2(1−m)
α1+1−m −

δ
α2+1 − g1 < 0 holds, then the boundary equilibrium E1(1, 0, 0) of the

model (2.1) is locally asymptotically stable.

Proof. The characteristic equation of the model (2.1) at E1 is

(λ + 1)[λ − (
β2(1 − m)
α1 + (1 − m)

−
δ

α2 + 1
− g1)](λ + g2) = 0.

It has three roots:

λ1 = −1 < 0, λ2 =
β2(1 − m)
α1 + (1 − m)

−
δ

α2 + 1
− g1, λ3 = −g2 < 0.

When (H4) is true, then λ2 < 0. Therefore, the boundary equilibrium E1 is locally asymptotically stable
under the condition (H4). □

The characteristic equation of the model (2.1) at E2(P2,Z2, 0) is

(λ − s1)(λ2 + s2λ + s3) = 0,

where

s1 =
γ2(1 − P2)[α1 + (1 − m)P2]

abβ1(1 − m) + b(1 − P2)[α1 + (1 − m)P2]
− g2,

s2 =
α1 − β1(1 − m)Z2 + (1 − m)P2 − 2β2(1 − m)P2

α1 + (1 − m)P2
,

s3 = −
1

(α2 + P2)[α1 + (1 − m)P2]2 [(1 − 2P2)(α1 + (1 − m)P2)

− α1(1 − P2)][β2(1 − m)P2(α2 + P2) − (α1 + (1 − m)P2)((δ + g1)P2 + α2g1)]

+
α1P2(1 − (1 − m)P2)

[α1 + (1 − m)P2]2 −
δα2P2(1 − P2)

(α + P2)2 .

Assume that the condition (H5) : s1 < 0, s2
2 − 4s3 > 0, s2 < 0 and s3 > 0 are true; we can get the

following result.
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Theorem 2.4. Under the assumptions (H1) and (H5), the boundary equilibrium E2(P2,Z2, 0) of the
model (2.1) is locally asymptotically stable.

The characteristic equation of the model (2.1) at E∗(P∗,Z∗, F∗) is

λ3 + M6λ
2 + M7λ + M8 = 0, (2.8)

where

M6 = −(A11 + A22 + A33), M7 = A22A33 + A11A33 + A11A22 − A12A21 − A23A32,

M8 = A11A23A32 + A12A21A33 − A11A22A33,

A11 = −P∗ +
β1(1 − m)2Z∗

[α1 + (1 − m)P∗]2 , A12 = −
β1(1 − m)P∗
α1 + (1 − m)P∗

,

A21 =
α1β2(1 − m)Z∗

[α1 + (1 − m)P∗]2 −
δα2Z∗

(α2 + P∗)2 , A22 =
γ1F∗Z∗

(a + Z∗)2(b + F∗)
,

A23 = −
γ1bZ∗

(a + Z∗)(b + F∗)2 , A32 =
γ2aF∗

(a + Z∗)2(b + F∗)
, A33 = −

γ2F∗Z∗
(a + Z∗)(b + F∗)2 .

From the Routh-Hurwitz criterion [54], if M6 > 0, M7 > 0 and M6M7 −M8 > 0, then all solutions
of Eq (2.8) have negative real parts. When M6 > 0, M7 > 0 and M6M7 − M8 < 0, Eq (2.8) has one
negative root and a pair of complex roots with a positive real part. Assume that (H6) : M6 > 0, M7 > 0
and M6M7 − M8 > 0; then, the stability of the positive equilibrium E∗ will be obtained.

Theorem 2.5. Suppose that the conditions (H1)–(H3) are true. If the condition (H6) holds, then E∗ is
locally asymptotically stable. Further, E∗ loses stability when M6M7 − M8 passes through 0; in other
words, the model (2.1) undergoes a Hopf bifurcation at E∗ when M6M7 − M8 = 0.

Next, we will choose m as the bifurcation parameter to study the occurrence of Hopf bifurcation
of the model (2.1) at E∗. By using the results in Reference [55], the following result can be obtained.

Theorem 2.6. If the characteristic equation of the model (2.1) at E∗(P∗,Z∗, F∗) is

λ3 + M6(m)λ2 + M7(m)λ + M8(m) = 0,

where M6(m), T (m) = M6(m)M7(m)−M8(m) and M8(m) are the smooth functions of m and there exists
a positive number m∗ that satisfies

(1) M6(m∗) > 0, T (m∗) = 0 and M8(m∗) > 0;
(2) dT

dm |m=m∗ , 0,
then Hopf bifurcation occurs at E∗(P∗,Z∗, F∗) when m = m∗.

We used Matlab software for numerical simulations to obtain this result in Section 5. Meanwhile,
we can also choose δ as a bifurcation parameter to study the occurrence of Hopf bifurcation of the
model (2.1) at E∗(P∗,Z∗, F∗). Since the discussion process is similar, we will only give the bifurcation
diagram in Section 5.

Under some conditions, Hopf bifurcation may not take place. Thus, we will discuss the global
asymptotical stability of the positive equilibrium E∗ as follows.
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Theorem 2.7. Suppose that the conditions (H1)–(H3) are true. The positive equilibrium E∗ of the
model (2.1) is globally asymptotically stable if 1 − β1(1−m)2Z∗

α1[α1+(1−m)P∗]
− δ2

[α2+P∗]2 > 0 and [α1+(1−m)P∗]β1P∗δ
β2α1(α2+P∗)

− 2 −
β2

1(1−m)P∗γ2

α1g1ab > 0.

Proof. Let (P,Z, F) be any positive solution of the model (2.1). Define a Lyapunov function

V(t) = P − P∗ − P∗ln
P
P∗
+

[α1 + (1 − m)P∗]β1

β2α1
(Z − Z∗ − Z∗ln

Z
Z∗

) + F − F∗ − F∗ln
F
F∗
.

Calculating the derivative of V(t) along the solution of the model (2.1), then we have

dV(t)
dt
=(P − P∗){−(P − P∗) + β1(1 − m)

(1 − m)Z∗(P − P∗) − [α1 + (1 − m)P∗](Z − Z∗)
[α1 + (1 − m)P∗][α1 + (1 − m)P]

}

+
[α1 + (1 − m)P∗]β1

β2α1
(Z − Z∗){

β2(1 − m)α1

[α1 + (1 − m)P∗][α1 + (1 − m)P]
(P − P∗)

+
β2(1 − m)P∗

Z[α1 + (1 − m)P∗]
(Z − Z∗) −

δα2

(α2 + P)(α2 + P∗)
(P − P∗) −

P∗δ
α2 + P∗

(Z − Z∗)

−
γ1b

(a + Z)(b + F)(b + F∗)
(F − F∗) −

γ1aF∗
Z(a + Z)(a + Z∗)(b + F∗)

(Z − Z∗) −
g1

Z
(Z − Z∗)}

+ (F − F∗){
γ2a

(a + Z)(b + F)(a + Z∗)
(Z − Z∗) −

γ2Z∗
(b + F)(a + Z∗)(b + F∗)

(F − F∗)}

≤ −{1 −
β1(1 − m)2Z∗

[α1 + (1 − m)P][α1 + (1 − m)P∗]
−

δ2α2
2

[α2 + P]2[α2 + P∗]2 }(P − P∗)2

− {−2 −
β1(1 − m)P∗

α1Z
+

[α1 + (1 − m)P∗]β1P∗δ
β2α1(α2 + P∗)

+
γ1aF∗

Z(a + Z)(a + Z∗)(b + F∗)
+

g1

Z
}(Z − Z∗)2

− {
γ2Z∗

(b + F)(a + Z∗)(b + F∗)
+

γ2
2a2

(a + Z)2(b + F)2(a + Z∗)2 }(F − F∗)2

≤ −{1 −
β1(1 − m)2Z∗

α1[α1 + (1 − m)P∗]
−

δ2

[α2 + P∗]2 }(P − P∗)2

− {−2 −
β2

1(1 − m)P∗γ2

α1g1ab
+

[α1 + (1 − m)P∗]β1P∗δ
β2α1(α2 + P∗)

}(Z − Z∗)2

− {
γ2Z∗

(b + F)(a + Z∗)(b + F∗)
+

γ2
2a2

(a + Z)2(b + F)2(a + Z∗)2 }(F − F∗)2.

Here, it is obvious that γ2Z∗
(b+F)(a+Z∗)(b+F∗)

+
γ2

2a2

(a+Z)2(b+F)2(a+Z∗)2 > 0. If 1− β1(1−m)2Z∗
α1[α1+(1−m)P∗]

− δ2

[α2+P∗]2 > 0 and −2−
β2

1(1−m)P∗γ2

α1g1ab +
[α1+(1−m)P∗]β1P∗δ

β2α1(α2+P∗)
> 0 hold, then we have that the coefficients of (P − P∗)2, (Z − Z∗)2 and

(F − F∗)2 are always negative. Thus, dV(t)
dt is negative. This completes the proof. □
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3. Hopf bifurcation of DDE model

3.1. Existence of Hopf bifurcation

Here, under the conditions (H1)–(H3), we choose delay τ as the bifurcation parameter and study
its influence on the stability of the positive equilibrium E∗(P∗,Z∗, F∗). The model (2.1) is

dP
dt = P(1 − P) − β1(1−m)PZ

α1+(1−m)P ,
dZ
dt =

β2(1−m)PZ
α1+(1−m)P −

δP(t−τ)Z
α2+P(t−τ) −

γ1ZF
(a+Z)(b+F) − g1Z,

dF
dt =

γ2ZF
(a+Z)(b+F) − g2F.

(3.1)

Let u1(t) = P(t) − P∗, u2(t) = Z(t) − Z∗, u3(t) = F(t) − F∗ and u(t) = (u1(t), u2(t), u3(t))T ∈ R3. The
linearized system of the model (3.1) at E∗ is

du1(t)
dt = b11u1(t) + b12u2(t),

du2(t)
dt = b21u1(t) + b22u2(t) + b23u3(t) + cu1(t − τ),

du3(t)
dt = b32u2(t) + b33u3(t),

(3.2)

where

b11 = A11, b12 = A12, b21 =
α1β2Z∗(1 − m)

[α1 + P∗(1 − m)]2 ,

b22 = A22, b23 = A23, b32 = A32, b33 = A33, c = −
δα2Z∗

(α2 + P∗)2 .

Then, the model (3.2) can also be given by

du(t)
dt
= L1u(t) + L2u(t − τ), (3.3)

where

L1 =


b11 b12 0
b21 b22 b23

0 b32 b33

 , L2 =


0 0 0
c 0 0
0 0 0

 . (3.4)

Thus, O(0,0,0) is the zero equilibrium of the model (3.2). The characteristic equation of the model (3.2)
at O is

λ3 + D2λ
2 + D1λ + D0 + e−λτ(D3λ + D4) = 0, (3.5)

where

D2 = −(b11 + b22 + b33), D1 = b11b22 + b11b33 + b22b33 − b12b21 − b23b32,

D0 = b11b23b32 + b12b21b33 − b11b22b33, D3 = −cb12, D4 = cb12b33.

The roots of Eq (3.5) have been discussed above when τ = 0. Next, we will study the effect of
delay τ(τ > 0) on the model (3.2).

Suppose that λ = iω(ω > 0) is a pair of pure imaginary roots of Eq (3.5). Substituting it into
Eq (3.5), we can obtain

−iω3 − D2ω
3 + D1iω + D0 + (cosωτ − isinωτ)(iD3ω + D4) = 0. (3.6)
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Separating the real and imaginary parts of Eq (3.6), we can obtain{
ω3 − D1ω = D3ωcosωτ − D4sinωτ,
D2ω

2 − D0 = D3ωsinωτ + D4cosωτ.
(3.7)

From Eq (3.7), we can get

ω6 + ω4(D2
2 − 2D1) + ω2(D2

1 − 2D0D2 − D3
3) + D2

0 − D2
4 = 0. (3.8)

Let z = ω2, D5 = D2
2 − 2D1, D6 = D2

1 − 2D0D1 − D2
3 and D7 = D2

0 − D2
4. Then, Eq (3.8) can be

rewritten as
f (z) = z3 + D5z2 + D6z + D7 = 0, (3.9)

and we have
f ′(z) = 3z2 + 2D5z + D6 = 0. (3.10)

If Eq (3.9) has at least one positive root, then Hopf bifurcation takes place. Assume that (H7) :
∆1 = D2

5 − 3D6 ≤ 0 and (H8) : ∆1 = D2
5 − 3D6 > 0. By Lemmas 2.2 and 4.2 in Reference [56], we can

get the following results.
Since limz→+∞ f (z) = +∞, Eq (3.9) has at least one positive root when D7 < 0.
If (H7) holds, then f (z) is monotonically increasing for z ∈ [0,+∞); so, when D7 ≥ 0 and (H7)

hold, Eq (3.9) has no positive root for z ∈ [0,+∞).
When D7 ≥ 0 and (H8) hold, Eq (3.10) has two roots, that is, z∗1 and z∗2, where

z∗1 =
−D5 +

√
∆1

3
, z∗2 =

−D5 −
√
∆1

3
.

Furthermore, we have

f ′′(z∗1) = −2D5 + 2
√
∆1 + 2D5 = 2

√
∆1 > 0, f ′′(z∗2) = −2D5 − 2

√
∆1 + 2D5 = −2

√
∆1 < 0.

Therefore, we can obtain z∗1 and z∗2 as the local minimum and the local maximum of f (z), respectively.

Theorem 3.1. For Eq (3.9), the following conclusions are true.
(1) If D7 < 0, then Eq (3.9) has at least one positive root.
(2) If the condition (H7) holds and D7 ≥ 0, then Eq (3.9) has no positive root.
(3) If the condition (H8) holds and D7 ≥ 0, then Eq (3.9) has two positive roots when z∗1 > 0 and

f (z∗1) ≤ 0.

Without loss of generality, suppose that Eq (3.9) has three positive roots defined by z1, z2 and
z3, respectively. Thus, Eq (3.8) has three positive roots ω1 =

√
z1, ω2 =

√
z2 and ω3 =

√
z3. From

Eq (3.7), we can get

τ
j
k =

1
ωk

arccos[
D3ω

4
k + (D2D4 − D1D3)ω2

k − D0D4

D2
3ω

2
k + D2

4

] +
2 jπ
ωk

, k = 1, 2, 3, j = 0, 1, 2, · · · ; (3.11)

thus, ±iωk is a pair of purely imaginary roots of Eq (3.5) when τ = τ j
k.

Define
τ0 = min

k=1,2,3. j∈N0
{τ

j
k}, ω0 = ωk|τ=τ0 .

Let λ(τ) = α(τ) + iβ(τ) be the root of Eq (3.5) near τ = τ
j
k, and let it satisfy α(τ j

k) = 0 and
β(τ j

k) = ωk, j = 0, 1, 2, · · · , k = 1, 2, 3.
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Theorem 3.2. Assume that zk = ω
2
k and f ′(zk) , 0; then, dReλ(τ)

dτ |λ=iω0 , 0.

Proof. Differentiating Eq (3.5) for τ, we have(
dλ(τ)

dτ

)−1

=
(3λ2 + 2D2λ + D1)eλτ + D3

λ(D3λ + D4)
−
τ

λ
. (3.12)

Substituting λ(τ) = iω0 into Eq (3.12), we can get(
dλ(τ)

dτ

)−1

|λ=iω0 =
(−3ω2

0 + 2D2iω0 + D1)(cosω0τ + isinω0τ) + D3

iω0(D3iω0 + D4)
−

τ

iω0

=
(D3ω

2
0 + iω0D4)(3ω2

0 − D1 − 2D2ω0i)(cosω0τ + isinω0τ) + D3(D3ω
2
0 + iω0D4)

D2
3ω

4
0 + D2

4ω
2
0

+
τi
ω0
.

Therefore, we can get

Re
(
dλ(τ)

dτ

)−1

|λ=iω0 =
3ω6

0 + (2D2
2 − 4D1)ω4

0 + (D2
1 − 2D0D2 − D2

3)ω2
0

D2
3ω

4
0 + D2

4ω
2
0

=
zk

D2
3ω

4
0 + D2

4ω
2
0

[3z2
k + (2D2

2 − 4D1)zk + (D2
1 − 2D0D2 − D2

3)]

=
zk f ′(zk)

D2
3ω

4
0 + D2

4ω
2
0

.

Thus, we have

sign{
dλ(τ)

dτ
|λ=iω0} = sign{Re(

dλ(τ)
dτ

)−1|λ=iω0} = signf′(zk) , 0.

This ends the proof of Theorem 3.2. □

Theorem 3.3. Under the conditions (H1)–(H3), the dynamics of the model (3.1) at the positive
equilibrium E∗ can be obtained.

(i) If D7 ≥ 0 and the condition (H7) is true, then E∗ is locally asymptotically stable for all τ > 0.
(ii) If D7 < 0 or the condition (H8), D7 > 0, z∗1 > 0 and f (z∗1) ≤ 0 are true, then E∗ is locally

asymptotically stable when τ ∈ [0, τ0); but, E∗ is unstable when τ > τ0.
(iii) If the conditions in (ii) are all satisfied and f ′(zk) , 0 holds, then a Hopf bifurcation occurs

at E∗ when τ = τ0.

3.2. Properties of Hopf bifurcation

For τ = τ0, the existence of Hopf bifurcation has been discussed. The properties of the Hopf
bifurcation will be discussed in consideration of the work of Hassard et al. [57].

Let τ = τ0 + µ, µ ∈ R; we can obtain that µ = 0 is a Hopf bifurcation value of the model (3.1). Let
the phase space be C = C([−1, 0],R3) and t → t

τ
; then, the model (3.1) can be expressed as a functional

differential equation (FDE) in C as

u̇(t) = Lµ(ut) + F(µ, ut), (3.13)

where Lµ : C → R3 and F : R × C → R3.
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Define φ(θ) = (φ1(θ), φ2(θ), φ3(θ))T ∈ R3, θ ∈ [−1, 0] such that

Lµ(φ) = (τ0 + µ)L1φ(0) + (τ0 + µ)L2φ(−1) (3.14)

and

F(µ, φ) = (τ0 + µ)


F1(φ)
F2(φ)
F3(φ)

 , (3.15)

where L1 and L2 are defined in Eq (3.4), and

F1(φ) = C11φ
2
1(0) +C12φ1(0)φ2(0),

F2(φ) = C21φ
2
1(0) +C22φ

2
2(0) +C23φ

2
3(0) +C24φ1(0)φ2(0) +C25φ2(0)φ3(0)

+C26φ
2
1(−1) +C27φ1(−1)φ2(0),

F3(φ) = C31φ
2
2(0) +C32φ

2
3(0) +C33φ2(0)φ3(0),

C11 = −1 +
(1 − m)2α1β1Z∗

[α1 + P∗(1 − m)]3 , C12 = −
α1β1(1 − m)

[α1 + P∗(1 − m)]2 , C21 =
(1 − m)2α1β2Z∗

[α1 + P∗(1 − m)]3 ,

C22 =
γ1aF∗

(a + Z∗)3(b + F∗)
, C23 =

γ1bZ∗
(a + Z∗)(b + F∗)3 , C24 =

α1β2(1 − m)
[α1 + P∗(1 − m)]2 ,

C25 = −
γ1ab

(a + Z∗)2(b + F∗)2 , C26 =
δα2Z∗

(α2 + P∗)2 , C27 = −
δα2

(α2 + P∗)2 ,

C31 = −
γ2aF∗

(a + Z∗)3(b + F∗)
, C32 = −

γ2bZ∗
(a + Z∗)(b + F∗)3 , C33 =

γ2ab
(a + Z∗)2(b + F∗)2 .

From the Riesz representation theorem [58], there is a matrix function whose elements are
functions of bounded variation η(θ, µ) ∈ C([−1, 0], R3); also,

Lµ(φ) =
∫ 0

−1
dη(θ, µ)φ(θ), φ ∈ C. (3.16)

Let
η(θ, 0) = τ0L1δ(θ) − τ0L2δ(θ + 1),

where δ(θ) is a Dirac function, as follows:

δ(θ) =
{

0, θ , 0,
1, θ = 1.

For φ ∈ C = C([−1, 0],R3), we define that

A(µ)φ =

dφ(θ)
dθ , θ ∈ [−1, 0),∫ 0

−1
dη(µ, s)φ(s), θ = 0,

R(µ)φ =

0, θ ∈ [−1, 0),
F(µ, φ), θ = 0.

Therefore, Eq (3.13) becomes
u̇(t) = Aµ(ut) + Rµut. (3.17)
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For ψ ∈ C∗ = C([−1, 0],R3), let

A∗(µ)ψ(s) =

−dψ(s)
ds , s ∈ [0, 1),∫ 0

−1
ψ(−ξ)dη(ξ, 0), s = 0,

and establish the bilinear inner product

⟨ψ(s), φ(θ)⟩ = ψ̄(0)φ(0) −
∫ 0

−1

∫ θ

0
ψ̄(ξ − θ)dη(θ)φ(ξ)dξ, ψ(s) ∈ C∗, φ(θ) ∈ C,

where η(θ) = η(θ, 0). Then, A(0) and A∗(0) are adjoint operators. According to Theorem 3.3, we
can get that ±iω0τ0 are eigenvalues of A(0). Thus, they are also eigenvalues of A∗(0). Assume that
q(θ) = (1, q1, q2)T eiω0τ0θ is the eigenvector of A(0) corresponding to iω0τ0; then, A(0)q(θ) = iω0τ0q(θ).
By the definition above, we have

dq(θ)
dθ
= iωτ0q(θ), θ ∈ [−1, 0),

L0q(0) =
∫ 0

−1
dη(0)q(0) = A(0) = iωτ0q(0), θ = 0,

that is,

(τ0 + µ)


b11 − iω0 b12 0

b21 + ce−iω0τ0 b22 − iω0 b23

0 b32 b33 − iω0




1
q1

q2

 = 0.

Solving it, we can get 
1
q1

q2

 =


1
iω0−b11

b12
b32(iω0−b11)
b12(iω0−b33)

 .
Similarly, we assume that q∗(s) = D(1, q∗1, q

∗
2)e−iω0τ0 s is the eigenvector of A∗(0) corresponding to

−iω0τ0; then, A∗(0)q∗(s) = −iω0τ0q∗(s). By the definition above, we can get
1
q∗1
q∗2

 =


1
−

iω0+b11
b12+ceiω0τ0

b23(iω0+b11)
b12(iω0+b33)(b21+ceiω0τ0 )

 .
By Eq (3.2), ⟨q∗, q⟩ can be expressed as

⟨q∗, q⟩ = q̄∗(0)q(0) −
∫ 0

−1

∫ θ

0
q̄∗(ξ − θ)dη(θ)q(ξ)dξ

= D̄[(1, q∗1, q
∗
2)(1, q1, q2)T −

∫ 0

−1

∫ θ

0
(1, q̄∗1, q̄

∗
2)e−iω0(ξ−θ)τ0dη(θ)(1, q1, q2)T eiξω0τ0dξ]

= D̄[1 + q1q̄∗1 + q2q̄∗2 + τ0cq̄∗1eiω0τ0].

Thus, we can choose
D̄ = [1 + q1q̄∗1 + q2q̄∗2 + τ0cq̄∗1eiω0τ0]−1;
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then, ⟨q∗, q⟩ = 1.
Next, we adopt the ideas of Hassard et al. [57] to compute the coordinates describing the center

manifold C0 at µ = 0. We assume that ut is the solution of Eq (3.13) when µ = 0. Let

z(t) = ⟨q∗, ut⟩, W(t, θ) = ut(θ) − 2Re{z(t)q(θ)}. (3.18)

On the center manifold C0, we can get

W(t, θ) = W(z(t), z̄(t), θ),

where

W(z(t), z̄(t), θ) = W21(θ)
z2

2
+W11zz̄ +W02(θ)

z̄2

2
+ · · · ; (3.19)

z and z̄ express the local coordinates for the center manifold C0 in the direction of q∗ and q̄∗. We can
get that W is real when ut is real. For the real solution ut ∈ C0 of Eq (3.17), when µ = 0, we have

ż(t) = ⟨q∗, u̇(t)⟩ = ⟨q∗, A(0)ut + R(0)ut⟩ = ⟨A∗(0)q∗, ut⟩ + q̄∗(0)F(0, ut)
= iω0τ0z(t) + q̄∗(0)F(0,W(t, 0) + 2Re{z(t)q(0)})
= iω0τ0z(t) + q̄∗(0)F(0,W(z, z̄, 0) + 2Re{z(t)q(0)}
def
= iω0τ0z(t) + q̄∗(0)F0(z, z̄).

(3.20)

Eq (3.20) can also be written as

ż(t) = iω0τ0z(t) + g(z, z̄),

where

g(z, z̄) = q̄∗(0)F0(z, z̄) = g20(θ)
z2

2
+ g11(θ)zz̄ + g02(θ)

z̄2

2
+ g21

z2z̄
2
+ · · · . (3.21)

By Eq (3.18), we can get

Ẇ = u̇t − żq − ˙̄zq̄ =

AW − 2Re{q̄∗(0)F0q(θ)}, θ ∈ [−1, 0),
AW − 2Re{q̄∗(0)F0q(0)} + F0, θ = 0,

def
= AW + H(z, z̄, θ),

(3.22)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ H21

z2z̄
2
+ · · · . (3.23)

From Eqs (3.22) and (3.23), we obtain

(A − 2iω0τ0)W20(θ) = −H20(θ),
AW11(θ) = −H11(θ),

(A + 2iω0τ0)W02(θ) = −H02(θ).
(3.24)

By Eq (3.18), we have

ut(θ) =W(t, θ) + 2Re{z(t)q(θ)}

=W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ (1, q1, q2)T eiω0τ0θz + (1, q̄1, q̄2)T e−iω0τ0θz̄ + · · · .

(3.25)
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Then, we have

g(z, z̄) =q̄∗(0)F(0, ut) = D̄(1, q̄1
∗, q̄2

∗)τ0


F1(ut)
F2(ut)
F3(ut)


=D̄τ0[F1(ut) + q̄1

∗F2(ut) + q̄2
∗F3(ut)]

=
z2

2
[2D̄τ0(k11 + k21q̄1

∗ + k31q̄∗2)] + zz̄[D̄τ0(k12 + k22q̄1
∗ + k32q̄∗2)]

+
z̄2

2
[2D̄τ0(k13 + k23q̄1

∗ + k33q̄∗2)] +
z2z̄
2

[2D̄τ0(k14 + k24q̄1
∗ + k34q̄∗2)],

(3.26)

where

k11 = C11 +C12q1, k12 = 2C11 +C12(q̄1 + q1),
k21 = C21 +C22q2

1 +C23q2
2 +C24q1 +C25q1q2 +C26e−2iω0τ0 +C27q1e−iω0τ0 ,

k31 = C31q2
1 +C32q2

2 +C33q1q2, k33 = C31q̄2
1 +C32q̄2

2 +C33q̄1q̄2,

k22 = 2C21 + 2C22q1q̄1 + 2C23q2q̄2 +C24(q1 + q̄1) +C25(q1q̄2 + q̄1q2)
+ 2C26 +C27(q1eiω0τ0 + q̄1e−iω0τ0),

k32 = 2C31q1q̄1 + 2C32q2q̄2 +C33(q1q̄2 + q̄1q2), k13 = C11 +C12q̄1,

k23 = C21 +C22q̄2
1 +C23q̄2

2 +C24q̄1 +C25q̄1q̄2 +C26e2iω0τ0 +C27eiω0τ0 ,

k14 = C11(W (1)
20 (0) + 2W (1)

11 (0)) +C12(
1
2

W (1)
20 (0)q̄1 + q1W (1)

11 (0) +W (2)
11 (0) +

1
2

W (2)
20 (0)),

k24 = C21(W (1)
20 (0) + 2W (1)

11 (0)) +C22(W (2)
20 (0) + 2W (2)

11 (0)) +C23(W (3)
20 (0) + 2W (3)

11 (0))

+C24(
1
2

W (1)
20 (0)q̄1 + q1W (1)

11 (0) +W (2)
11 (0) +

1
2

W (2)
20 (0)) +C25(

1
2

W (2)
20 (0)q̄2 +W (1)

11 (0)q2

+ q1W (3)
11 (0) +

1
2

W (3)
20 (0)q̄1) +C26(eiω0τ0W (1)

20 (−1) + 2e−iω0τ0W (1)
11 (−1))

+C27(
1
2

q̄1W (1)
20 (−1) + q1W (1)

11 (−1) + e−iω0τ0W (2)
11 (0) +

1
2

eiω0τ0W (2)
20 (0)),

k34 = C31(W (2)
20 (0) + 2W (1)

11 (0)) +C33(
1
2

q̄2W (2)
11 (0) + q2W (2)

11 (0) + q1W (3)
11 (0) +

1
2

W (3)
20 (0)q̄1).

Comparing the coefficients of Eqs (3.21) and (3.26), we can get

g20 =2D̄τ0(k11 + q̄∗1k21 + q̄∗2k31),
g11 =D̄τ0(k12 + q̄∗1k22 + q̄∗2k32),
g02 =2D̄τ0(k13 + q̄∗1k23 + q̄∗2k33),
g21 =2D̄τ0(k14 + q̄∗1k24 + q̄∗2k34).

(3.27)

Since the expression of g21 contains W20(θ) and W11(θ), we must compute W20(θ) and W11(θ).
According to Eq (3.22), when θ ∈ [−1, 0), we get

H(z, z̄, θ) = − 2Re{q̄∗(0)F0(z, z̄)q(θ)} = −2Re{g(z, z̄)q(θ)}
= − g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ).

(3.28)
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Comparing the coefficients of Eqs (3.23) and (3.28), we can receive

H20(θ) = −g20q(θ) − ḡ02q̄(θ), H11(θ) = −g11q(θ) − ḡ11q̄(θ). (3.29)

By Eq (3.24), we have

Ẇ20(θ) = 2iω0τ0W20(θ) + g20q(θ) + ḡ02q̄(θ), Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ). (3.30)

Solving Eq (3.30), we can obtain

W20(θ) =
ig20q(0)
ω0τ0

eiω0τ0θ +
iḡ02q̄(0)
3ω0τ0

e−iω0τ0θ + E1e2iω0τ0θ,

W11(θ) = −
ig11q(0)
ω0τ0

eiω0τ0θ +
iḡ11q̄(0)
ω0τ0

e−iω0τ0θ + E2,

(3.31)

where Ei = (E(1)
i , E(2)

i , E(3)
i ) ∈ R3 (i = 1, 2) is a constant vector.

For θ = 0, from Eq (3.22), we have

H(z, z̄, 0) = −2Re{q̄∗(0)F0(z, z̄)q(0)} + F0.

From Eq (3.23), we can get

H20(0) = − g20q(0) − ḡ02q̄(0) + 2τ0


k11

k21

k31

 ,
H11(0) = − g11q(0) − ḡ11q̄(0) + τ0


k12

k22

k32

 .
(3.32)

According to the meaning of A(0) and Eq (3.24), we have∫ 0

−1
dη(θ)W20(θ) = 2iω0τ0W20 − H20(0),

∫ 0

−1
dη(θ)W11(θ) = −H11(0), (3.33)

where η(θ) = η(θ, 0).
From Eqs (3.14), (3.16) and (3.33), we can get

τ0L1W20(0) + τ0L2W20(−1) = 2iω0τ0 − H20(0), τ0L1W11(0) + τ0L2W11(−1) = H11(0). (3.34)

Substituting Eqs (3.31) and (3.32) into Eq (3.34), we have

E1 = 2


2iω0 − b11 −b12 0

−ce−2iω0τ0 − b21 2iω0 − b22 −b23

0 −b32 2iω0 − b33


−1 

k11

k21

k31

 ,

E2 =


−b11 −b12 0
−c − b21 −b22 −b23

0 −b32 −b33


−1 

k11

k21

k31

 .
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Thus, all expressions of gi j can be represented in full. Also, we have
c1(0) = i

2ω0τ0
(g11g20 − 2|g11|

2 −
|g02 |

2

3 ) + g21
2 ,

µ1 = −
Re{c1(0)}
Re{λ′(τ0)} ,

µ2 = 2Re{c1(0)},
T1 = −

Im{c1(0)}+µ1Im{λ′(τ0)}
ω0τ0

,

(3.35)

which determine the direction of Hopf bifurcation and the stability of bifurcating periodic solutions on
the center manifold at τ = τ0.

Theorem 3.4. From Eq (3.35), we have the following conclusions.
(i) µ1 determines the direction of Hopf bifurcation: if µ1 > 0, then the Hopf bifurcation is

supercritical; if µ1 < 0, then the Hopf bifurcation is subcritical and the bifurcating periodic solutions
exist when τ > τ0;

(ii) µ2 determines the stability of the bifurcating periodic solutions: if µ2 < 0, then the bifurcating
periodic solutions are stable; if µ2 > 0, then the bifurcating periodic solutions are unstable;

(iii) T1 determines the period of the bifurcating periodic solutions: if T1 > 0, then the period
increases; if T1 < 0, then the period decreases.

4. Hopf bifurcation of PDE model

4.1. Existence of Hopf bifurcation

Next, we will analyze the existence and properties of Hopf bifurcation of the model (1.6). The
model (1.6) is linearized at the positive equilibrium E∗ in the phase space C = C([−τ, 0],R3):

du(t)
dt
= D∆u(t) + L1u(t) + L2u(t − τ), (4.1)

where D = diag{d1, d2, d3} and L1 and L2 are defined in Eq (3.4).
We know that ∆ has the eigenvalues −(n

l )2 and n ∈ N0 under Neumann boundary conditions in
[0, lπ]. Then, the characteristic equation of the model (4.1) is

λ3 + q2nλ
2 + q1nλ + q0n + e−λτ(q3nλ + q4n) = 0, (4.2)

where

q2n =(d1 + d2 + d3)(
n
l
)2 − (b11 + b22 + b33),

q1n =(d1d2 + d2d3 + d1d3)(
n
l
)4 − (d1b22 + d2b11 + d2b33 + d3b22 + d3b11

+ d1b33)(
n
l
)2 + (b11b22 + b22b33 + b11b33 − b12b21 − b23b32),

q0n =d1d2d3(
n
l
)6 − (d1d2b33 + d1d3b22 + d2d3b11)(

n
l
)4

+ (d1b22b33 + d2b11b33 + d3b11b22)(
n
l
)2 + b11b23b32 + b12b21b33 − b11b22b33,

q3n = − cb12, q4n = −d3cb12(
n
l
)2 + cb12b33.
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When τ = 0, Eq (4.2) can be rewritten as

λ3 + q2nλ
2 + (q1n + q3n)λ + (q0n + q4n) = 0. (4.3)

Furthermore, we have

q0n + q4n = − d3cb12(
n
l
)2 + cb12b33 + d1d2d3(

n
l
)6 − (d1d2b33 + d1d3b22 + d2d3b11)(

n
l
)4

+ (d1b22b33 + d2b11b33 + d3b11b22)(
n
l
)2 + b11b23b32 + b12b21b33 − b11b22b33,

q2n(q1n + q3n) − (q0n + q4n) = [(d1 + d2 + d3)(d1d2 + d2d3 + d1d3) − d1d2d3](
n
l
)6

− [(d1 + d2 + d3)(d1b22 + d2b11 + d2b33 + d3b22 + d3b11 + d1b33)

+ (b11 + b22 + b33)(d1d2 + d2d3 + d1d3) − (d1d2b33 + d1d3b22 + d2d3b11)](
n
l
)4

+ [(d1 + d2 + d3)(b11b22 + b22b33 + b11b33 − b12b21 − b23b32 − cb12)
+ (b11 + b22 + b33)(d1b22 + d2b11 + d2b33 + d3b22 + d3b11 + d1b33)

− (d1b22b33 + d2b11b33 + d3b11b22) + d3cb12](
n
l
)2

+ (b11 + b22 + b33)(cb12 − b11b22 − b22b33 − b11b33 + b12b21 + b23b32)
− (b11b23b32 + b12b21b33 − b11b22b33) − cb12b33.

Assume that the following condition holds true: (H9): q2n > 0, q2n(q1n + q3n) − (q0n + q4n) > 0,
q0n + q4n > 0, n ∈ N0. Using the Routh-Hurwitz criterion [54], we can obtain the next conclusion.

Theorem 4.1. If the conditions (H1)–(H3) and (H9) hold, then all roots of Eq (4.3) have negative real
parts, that is, the positive equilibrium E∗ of the model (1.6) is locally asymptotically stable when τ = 0.

When τ , 0, the time delay may have some effect on the model (1.6). Therefore, we will analyze
the effect of delay τ on the positive equilibrium E∗. Let λ = iω2(ω2 > 0) be the solution of Eq (4.2);
we can get

−iω3
2 − ω

2
2q2n + iω2q1n + q0n + e−iω2τ(iω2q3n + q4n) = 0. (4.4)

Separating the real and imaginary parts of Eq (4.4), we can receive{
ω3

2 − q1nω2 = q3nω2cosω2τ − q4nsinω2τ,

q2nω
2
2 − q0n = q3nω3nsinω2τ + q4ncosω2τ,

(4.5)

which follows that

ω6
2 + (q2

2n − 2q1n)ω4
2 + (q2

1n − 2q0nq2n − q2
3n)ω2

2 + (q2
0n − q2

4n) = 0. (4.6)

Let p2n = q2
2n − 2q1n, p1n = q2

1n − 2q0nq2n − q2
3n, p0n = q2

0n − q2
4n and ω2

2 = y; we can obtain

y3 + p2ny2 + p1ny + p0n = 0. (4.7)

Further, if f (y) = y3 + p2ny2 + p1ny + p0n, then f ′(y) = 3y2 + 2p2ny + p1n. Assume that (H10) : ∆2 =

p2
2n − 3p1n ≤ 0 and (H11) : ∆2 = p2

2n − 3p1n > 0 are true, here y∗1 =
−p1n+

√
∆2

3 and y∗2 =
−p1n−

√
∆2

3 are
the local minimum and the local maximum of Eq (4.7), respectively. Similarly, we have the following
conclusion by Lemmas 2.2 and 4.2 in [56].
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Theorem 4.2. For Eq (4.7), the following results are true.
(1) If p0n < 0, then Eq (4.7) has at least one positive root.
(2) If p0n ≥ 0 and the condition (H10) holds, then Eq (4.7) has no positive root.
(3) If p0n ≥ 0 and the condition (H11) holds, then Eq (4.7) has positive roots when y∗1 > 0 and

f (y∗1) ≤ 0.

Without loss of generality, we suppose that it has three positive roots defined by y1n, y2 and y3n.
So, Eq (4.6) has three positive roots:

ω1
2 = y1n, ω2

2 = y2n, ω3
2 = y3n.

Substituting ωk
2(k = 1, 2, 3) into Eq (4.5), we can get

τ
j
kn =

1
ωk

2

arccos[
q3n(ωk

2)4 + (q2nq4n − q1nq3n)(ωk
2)2 − q0nq4n

q2
3n(ωk

2)2 + q2
4n

] +
2 jπ
ωk

2

, k = 1, 2, 3, j = 0, 1, 2, · · · . (4.8)

Thus, when τ = τ j
kn, we get that λ = ±iωk

2 is a pair of purely imaginary roots of Eq (4.2). Define

τn0 = min
k=1,2,3. j∈N0

{τ
j
kn}, ωn0 = ω

k
2|τ=τkn0 .

Assume that λ(τ) = ε1(τ)+iε2(τ) is the root of Eq (4.2) near τ = τ j
kn, and that it satisfies ε1(τ j

kn) = 0
and ε2(τ j

kn) = ωk
2, k = 1, 2, 3, j ∈ N0, n ∈ N0.

Theorem 4.3. If ykn = (ωk
2)2 and f ′(ykn) , 0, then we have that dReλ(τ)

dτ |λ=iωn0 , 0.

Proof. Differentiating Eq (4.2) for τ, we can get

(
dλ(τ)

dτ
)−1 =

(3λ2 + 2q2nλ + q1n)eλτ + q3n

λ(q3nλ + q4n)
−
τ

λ
. (4.9)

Substituting λ = iωn0 into Eq (4.9), we have

(
dλ(τ)

dτ
)−1|λ=iωn0 =

(−3ω2
n0 + 2q2niωn0 + q1n)(cosωn0τ + isinωn0τ) + q3n

−q3nω
2
n0 + iωn0q4n

+
τ

iωn0
;

then,

Re(
dλ(τ)

dτ
)−1|λ=iωn0 =

xkny′(xkn)
[q3n(ω2

n)]
2 + (ωn0q4n)2

, 0.

Thus, we can get

sign{
dReλ(τ)

dτ
|λ=iωn0} = sign{Re(

dλ(τ)
dτ

)−1|λ=iωn0} , 0.

The proof of Theorem 4.3 is completed. □

By computing as shown above, we have the following conclusion.

Theorem 4.4. Under the conditions (H1)–(H3), for the the positive equilibrium E∗ of the model (1.6),
we have the following:

(i) if the condition (H10) is true and p0n ≥ 0, then E∗ is locally asymptotically stable for all τ > 0;
(ii) if p0n < 0 or p0n ≥ 0, y∗1 > 0, f (y∗1) ≤ 0 and the condition (H11) holds, then E∗ is locally

asymptotically stable when τ ∈ [0, τn0); but, E∗ is unstable when τ > τn0;
(iii) if the conditions in (ii) are all satisfied and f ′(ykn) , 0, then the spatially homogeneous Hopf

bifurcation occurs at E∗ when τ = τ0 and n = 0; and, the spatially inhomogeneous Hopf bifurcation
occurs at E∗ when τ = τn0 and n > 0.
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4.2. Direction and stability of Hopf bifurcation

Let τn = τ
j
kn, ωn = ω

k
2n and τ = τn + µn, µn ∈ R. Thus, µn = 0 is a Hopf bifurcation value of the

model (1.6). Let t → t
τ
; then, the model (1.6) can be expressed as an FDE in C = C([−1, 0],R3), as

follows:
u̇(t) = τnD∆u(t) + L(τn)ut + Fn(µn, ut), (4.10)

where L(θ) : C → X, Fn(µn, ut) : C → X satisfies

L(θ)(φ) = θ


b11φ1(0) + b12φ2(0)

b21φ1(0) + b22φ2(0) + b23φ3(0) + cφ1(−1)
b32φ2(0) + b33φ3(0)


and

Fn(µn, φ) = µnD∆φ(0) + L(µn)φ + F(µn, φ), (4.11)

where F(µn, φ) is defined in Eq (3.15), L1 and L2 are defined in Eq (3.4) and φ = (φ1, φ2, φ3)T ∈ C.

The linear equation of Eq (4.10) at O(0,0,0) is

u̇(t) = τnD∆u(t) + L(τn)ut. (4.12)

Let Λ = {iωnτn,−iωnτn} and zt(θ) ∈ C = C([−1, 0],R3); we consider the following FDE:

ż(t) = L(τn)(zt). (4.13)

On the basis of the Riesz representation theorem, there exists a 3 × 3 matrix function ηn(θ, µ)
(−1 ≤ θ ≤ 0) ∈ C([−1, 0],R3), and it satisfies

L(τn)(φ) =
∫ 0

−1
dηn(θ, µn)φ(θ), φ ∈ C([−1, 0],R3).

Let
ηn(θ, µn) = (τn + µn)L1δ(θ) − (τn + µn)L2δ(θ + 1),

where δ(θ) is the Dirac delta function.
We set C∗ = C([0, 1],R3∗), and R3∗ is the three-dimensional vector space of row vectors. The

bilinear inner product is

(ψ(s), φ(θ)) = ψ(0)φ(0) −
∫ 0

−1

∫ θ

0
ψ(ξ − θ)dηn(θ)φ(ξ)dξ, ψ(s) ∈ C∗, φ(θ) ∈ C. (4.14)

An(τn) describes the infinitesimal generator of the semigroup induced by the solutions of Eq (4.13),
and A∗n(τn) denotes the formal adjoint generator of An(τn) satisfying Eq (4.14). Let V and V∗ denote
the center spaces of the generators An(τn) and A∗n(τn) corresponding to Λ, respectively. Therefore, V∗

is the adjoint space of V , dimV = dimV∗.

Lemma 4.1. Let

V1 =
iωn − b11

b12
, V2 =

b32(iωn − b11)
b12(iωn − b33)

,

V∗1 =
iωn − b11

b21 + ce−iωnτn
, V∗2 =

b23(iωn − b11)
(iωn − b33)(b21 + ce−iωnτn)

;

then, p1(θ) = (1,V1,V2)T eiωnτnθ and p2(θ) = p1(θ), −1 ≤ θ ≤ 0 form the basis of V associated with Λ;
p∗1(s) = (1,V∗1 ,V

∗
2)e−iωnτn s and p∗2(s) = p∗1(s), 0 ≤ s ≤ 1 form the basis of V∗ associated with Λ.
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Denote Φ = (Φ1,Φ2) and Ψ∗ = (Ψ∗1,Ψ
∗
2)T , where

Φ1(θ) =
p1(θ) + p2(θ)

2
= (Re{eiωnτnθ},Re{V1eiωnτnθ},Re{V2eiωnτnθ})T , θ ∈ [−1, 0],

Φ2(θ) =
p1(θ) − p2(θ)

2i
= (Im{eiωnτnθ}, Im{V1eiωnτnθ}, Im{V2eiωnτnθ})T , θ ∈ [−1, 0],

Ψ1(s) =
p∗1(s) + p∗2(s)

2
= (Re{e−iωnτn s},Re{V∗1e−iωnτn s},Re{V∗2e−iωnτn s}), s ∈ [0, 1],

Ψ2(s) =
p∗1(s) − p∗2(s)

2i
= (Im{e−iωnτn s}, Im{V∗1e−iωnτn s}, Im{V∗2e−iωnτn s}), s ∈ [0, 1].

Suppose that (Ψ∗,Φ) = (Ψ∗i ,Φ j)(i, j = 1, 2.) is the basis Ψ of V∗, which satisfies

Ψ = (Ψ1,Ψ2)T = (Ψ∗,Φ)−1Ψ∗.

Thus, we have that (Ψ,Φ) = I2×2.
Let fn = (ξ1

n, ξ
2
n, ξ

3
n), where ξ1

n = (cos n
l x, 0, 0)T , ξ2

n = (0, cosn
l x, 0)T and ξ3

n = (0, 0, cosn
l x)T .

ξ
j
n ( j = 1, 2, 3) denotes the eigenfunctions on R3 of the eigenvalues −( n

l )2, n = 0, 1, 2 · · · . Define
cn · fn = c1ξ

1
n + c2ξ

2
n + c3ξ

3
n, cn = (c1, c2, c3)T , c j ∈ R, j = 1, 2, 3, and the center space of Eq (4.12) is

written as
PCNφ = Φ(Ψ, ⟨φ, fn⟩) · fn,

where φ ∈ C, C = PCNC ⊕ PsC and PsC expresses the complementary subspace of PCNC.
According to [57] and [59], the center space of the linear model of (4.10) with µn = 0 is expressed

as PCNC, where

PCNC = {
1
2

(p1(θ)z + p2(θ)z̄) · fn, z ∈ C}.

Thus, the solution of the model (4.10) can be written as

ut =
1
2

(p1(θ)z + p2(θ)z̄) · fn + Q(z(t), z̄(t))(θ),

where Q(z(t), z̄(t))(θ) = W( z+z̄
2 , i

z−z̄
2 , 0), z = x1 − ix2.

By Wu [59], z satisfies
ż = iωnτnz + gn(z, z̄), (4.15)

where
gn(z, z̄) = (Ψ1(0) − iΨ2(0))⟨Fn(0, ut), f n⟩,Ψ(0) = (Ψ1(0),Ψ2(0))T .

Let

Q(z, z̄) = Q20(θ)
z2

2
+ Q11(θ)zz̄ + Q02(θ)

z̄2

2
+ · · · , (4.16)

gn(z, z̄) = g̃20(θ)
z2

2
+ g̃11(θ)zz̄ + g̃02(θ)

z̄2

2
+ g̃21

z2z̄
2
+ · · ·

and
Ψ1(0) − iΨ2(0) = (ψ1, ψ2, ψ3).
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By computing and comparing the coefficients, we have

g̃20 =
τn

2
⟨[(C11 +C12V1)ψ1 + (C21 +C22V2

1 +C23V2
2 +C24V1 +C25V1V2 +C26e−2iωnτn

+C27V1e−iωnτn)ψ2 + (C31V2
1 +C32V2

2 +C33V1V2)ψ3]cos2(
n
l
)x, cos(

n
l
)x⟩,

g̃11 =
τn

4
⟨[(2C11 +C12(V1 + V̄1))ψ1 + (2C21 + 2C22V1V̄1 + 2C23V2V̄2 +C24(V1 + V̄1)

+C25(V1V̄2 + V̄1V2) + 2C26 +C27(V1eiωnτn + V̄1e−iωnτn))ψ2

+ (2C31V1V̄1 + 2C32V2V̄2 +C33(V1V̄2 + V̄1V2))ψ3]cos2(
n
l
)x, cos(

n
l
)x⟩,

g̃21 =τn{⟨[C11(Q(1)
20 (0) + 2Q(1)

11 (0)) +C12(
1
2

Q(1)
20 (0)V̄1 + V1Q(1)

11 (0) + Q(2)
11 (0)

+
1
2

Q(2)
20 (0))]cos(

n
l
)x, cos(

n
l
)x⟩ψ1 + ⟨[C21(Q(1)

20 (0) + 2Q(1)
11 (0)) +C22(Q(2)

20 (0)

+ 2Q(2)
11 (0)) +C23(Q(3)

20 (0) + 2Q(3)
11 (0)) +C24(

1
2

Q(1)
20 (0)V̄1 + V1Q(1)

11 (0) + Q(2)
11 (0)

+
1
2

Q(2)
20 (0)) +C25(

1
2

Q(2)
20 (0)V̄2 + Q(1)

11 (0)V2 + V1Q(3)
11 (0) +

1
2

Q(3)
20 (0)V̄1)

+C26(eiωnτn Q(1)
20 (−1) + 2e−iωnτn Q(1)

11 (−1)) +C27(
1
2

V̄1Q(1)
20 (−1) + V1Q(1)

11 (−1)

+ e−iωnτn Q(2)
11 (0) +

1
2

eiωnτn Q(2)
20 (0))]cos(

n
l
)x, cos(

n
l
)x⟩ψ2 + ⟨[C31(Q(2)

20 (0) + 2Q(1)
11 (0))

+C33(
1
2

V̄2Q(2)
11 (0) + V2Q(2)

11 (0) + V1Q(3)
11 (0) +

1
2

Q(3)
20 (0)V̄1)]cos(

n
l
)x, cos(

n
l
)x⟩ψ3}.

We know that
∫ π

0
cos3( n

l )xdx = 0 and g̃02 = g̃20. Therefore, we can get that g̃20 = g̃11 = g̃02 = 0
when n = 1, 2, 3 · · · . When n = 0, we have

g̃20 =
τn

2
[(C11 +C12V1)ψ1 + (C21 +C22V2

1 +C23V2
2 +C24V1 +C25 p1V2 +C26e−2iωnτn

+C27V1e−iωnτn)ψ2 + (C31V2
1 +C32V2

2 +C33V1V2)ψ3],

g̃11 =
τn

4
[(2C11 +C12(V1 + V̄1))ψ1 + (2C21 + 2C22V1V̄1 + 2C23V2V̄2 +C24(V1 + V̄1)

+C25(V1V̄2 + V̄1V2) + 2C26 +C27(V1eiωnτn + V̄1e−iωnτn))ψ2

+ (2C31V1V̄1 + 2C32V2V̄2 +C33(V1V̄2 + V̄1V2))ψ3].

(4.17)

Considering the expression of g̃21, it contains Q20(θ) and Q11(θ), so we must compute Q20(θ) and
Q11(θ). Seeking the derivative on both sides of Eq (4.16), we have

Q̇(z, z̄) = Q20z + Q11żz̄ + Q11z˙̄z + Q02 ˙̄zz̄ + · · · , (4.18)

Aτn Q(z, z̄) = Aτn Q20
z2

2
+ Aτn Q11zz̄ + Aτn Q02

z̄2

2
+ · · · . (4.19)

From Wu [59], Q(z, z̄) satisfies
Q̇(z, z̄) = Aτn Q(z, z̄) + S (z, z̄), (4.20)
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where

S (z, z̄) = S 20
z2

2
+ S 11zz̄ + S 02

z̄2

2
+ · · · = X0Fn(ut, 0) − Φ(Ψ, ⟨X0Fn(ut, 0), fn⟩) · fn,

and

X0(θ) =

I, θ = 0,
0, −1 ≤ θ < 0,

S i j ∈ PS C, i + j = 2.

From Eq (4.15) and Eqs (4.17)–(4.20), we can get(2iωnτn − Aτn)Q20 = S 20,

−Aτn Q11 = S 11.

Because Aτn has only two characteristic roots with a zero real part, i.e., ±iωnτn, Eq (4.20) has a
unique solution Qi j(i + j = 2) in PS C, which satisfiesQ20 = (2iωnτn − Aτn)

−1S 20,

Q11 = −A−1
τn

S 11.
(4.21)

From Eq (4.20), we can get that, for θ ∈ [−1, 0),

S (z, z̄) = −Φ(θ)Ψ(0)⟨Fn(ut, 0), fn⟩ · fn

= −
τn

2
[(p1(θ)g̃20 + g̃02 p2(θ)) · fn ·

z2

2
+ (p1(θ)g̃11 + g̃11 p2(θ)) · fn · zz̄

+ (p1(θ)g̃02 + g̃20 p2(θ)) · fn ·
z̄2

2
] + · · · .

(4.22)

Comparing the coefficients in Eqs (4.20) and (4.22), when θ ∈ [−1, 0), we can receive

S 20(θ) = −
τn

2
(p1(θ)g̃20 + g̃02 p2(θ))cos(

n
l
)x,

S 11(θ) = −
τn

2
(p1(θ)g̃11 + g̃11 p2(θ))cos(

n
l
)x.

(4.23)

When θ = 0, we have

S 20(0) =
τn

2


C11 +C12 p1

C21 +C22 p2
1 +C23 p2

2 +C24 p1 +C25 p1 p2 +C26e−2iωnτn

+C27 p1e−iωnτn

C31 p2
1 +C32 p2

2 +C33 p1 p2

 cos2(
n
l
)x

−
τn

2
(p1(θ)g̃20 + g̃02 p2(θ))cos(

n
l
)x,

(4.24)

S 11(0) =
τn

4


2C11 +C12(p1 + p̄1)

2C21 + 2C22 p1 p̄1 + 2C23 p2 p̄2 +C24(p1 + p̄1) +C25(p1 p̄2 + p̄1 p2)
+2C26 +C27(p1eiωnτn + p̄1e−iωnτn)

2C31 p1 p̄1 + 2C32 p2 p̄2 +C33(p1 p̄2 + p̄1 p2)

 cos2(
n
l
)x

−
τn

2
(p1(θ)g̃11 + g̃11 p2(θ))cos(

n
l
)x.

(4.25)

AIMS Mathematics Volume 8, Issue 4, 8867–8901.



8892

Using Eqs (4.24) and (4.25), we can get Q20(0), Q11(0), Q20(−1) and Q11(−1). Because p1(θ) =
p1(0)eiωnτnθ, θ ∈ [−1, 0), from Eqs (4.21)–(4.25), we have

Q20(θ) =
i
2

[ g̃20

ωnτn
p1(0)eiωnτnθ +

g̃02

3ωnτn
p1(0)e−iωnτnθ

]
+ e2iωnτnθE3,

Q11(θ) =
i
2

[ g̃11

ωnτn
p1(0)eiωnτnθ −

g̃11

ωnτn
p1(0)e−iωnτnθ

]
+ E4,

where E3 = (E(1)
3 , E(2)

3 , E(3)
3 ) ∈ R3 and E4 = (E(1)

4 , E(2)
4 , E(3)

4 ) ∈ R3 satisfy

E3 =
1
2


2iωn − b11 −b12 0

−ce−2iωnτn − b21 2iωn − b22 −b23

0 −b32 2iωn − b33


−1

×


C11 +C12V1

C21 +C22V2
1 +C23V2

2 +C24V1 +C25V1V2 +C26e−2iωnτn

+C27V1e−iωnτn

C31V2
1 +C32V2

2 +C33V1V2

 cos2(
n
l
)x,

E4 =


−b11 −b12 0
−c − b21 −b22 −b23

0 −b32 −b33


−1

×


2C11 +C12(V1 + V̄1)

2C21 + 2C22V1V̄1 + 2C23V2V̄2 +C24(V1 + V̄1) +C25(V1V̄2 + V̄1V2)
+2C26 +C27(V1eiωnτn + V̄1e−iωnτn)

2C31V1V̄1 + 2C32V2V̄2 +C33(V1V̄2 + V̄1V2)

 cos2(
n
l
)x.

Therefore, we can get the following values:
c2(0) = i

2ωnτn
(g̃11g̃20 − 2|g̃11|

2 −
|g̃02 |

2

3 ) + g̃21
2 ,

µ3 = −
Re{c2(0)}
Re{λ′(τn)} ,

µ4 = 2Re{c2(0)},
T2 = −

Im{c2(0)}+µ3Im{λ′(τn)}
ωnτn

,

(4.26)

which determine the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions
on the center manifold at τ = τn.

Theorem 4.5. According to Eq (4.26), we have the following conclusions.
(i) µ3 determines the direction of Hopf bifurcation: if µ3 > 0, then the Hopf bifurcation is

supercritical; if µ3 < 0, then the Hopf bifurcation is subcritical and the bifurcating periodic solutions
exist when τ > τn;

(ii) µ4 determines the stability of the bifurcating periodic solutions: if µ4 > 0, then the bifurcating
periodic solutions are unstable; if µ4 < 0, then the bifurcating periodic solutions are stable;

(iii) T2 determines the period of the bifurcating periodic solutions: if T2 > 0, then the bifurcating
periodic solutions increase; if T2 < 0, then the bifurcating periodic solutions decrease.
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5. Numerical simulation

With the help of Matlab software, the stability of the positive equilibrium E∗(P∗,Z∗, F∗) was
simulated with the given values of all parameters in order to confirm the previous theoretical results.

First, we assume that P(0) = 0.8, Z(0) = 40 and F(0) = 0.1 for the model (2.1). And, we take the
values of all other parameters as follows: β1 = 0.016, β2 = 0.7, γ1 = 0.0875, γ2 = 0.075, α1 = 0.1,
α2 = 0.2, a = 0.5, b = 0.25, g1 = 0.1, g2 = 0.2, m = 0.8 and δ = 0.35. According to Theorem 2.1, we
can know that the model (2.1) has one unique positive equilibrium E∗(0.5043, 31.1137, 0.1191). From
Theorem 2.5, E∗ is locally asymptotically stable (see Figure 3).
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Figure 3. Positive equilibrium E∗(0.5043, 31.1137, 0.1191) of the model (2.1) is locally
asymptotically stable when τ = 0. (a) P(t), (b) Z(t), (c) F(t).

In the second section, we obtained Theorem 2.6 by referring to [55]. Now, we will verify some
conclusions by taking m as the bifurcation parameter. When δ = 0.2, the critical value is m∗ = 0.82,
which satisfies M6(m∗) > 0, T (m∗) = 0, M8(m∗) > 0 and dT

ds |m=m∗ , 0. That is, all conditions in
Theorem 2.6 are satisfied. Therefore, Hopf bifurcation occurs at E∗ when m = m∗. Meanwhile, we can
obtain that P(t) reaches a maximum value and Z(t) and F(t) are always 0 when m ≥ 0.94. Therefore,
we can get the bifurcation diagram as m changes (see Figure 4). If we choose δ as the bifurcation
parameter when m = 0.75, we can get the critical value δ∗ = 0.33. Therefore, Hopf bifurcation occurs
at E∗ when δ = δ∗. We can obtain that P(t) reaches a maximum value of 1 and Z(t) and F(t) are always
0 when δ ≥ 0.49. Therefore, we can get the bifurcation diagram as δ changes (see Figure 5). From
Figure 5, when other parameter values are fixed, the density of zooplankton and fish will decrease to
0 whether the refuge capacity of phytoplankton or the probability of toxin release of phytoplankton-
produced toxic substances increase to some certain value. Properly increasing the shelter capacity of
phytoplankton and the rate of toxin release of by phytoplankton can stabilize the population and reach
a stable state. Then, the plankton and fish populations will always exist.

For the model (3.1), we assume that P(0) = 0.5, Z(0) = 30 and F(0) = 0.115. When m = 0.8 and
δ = 0.25, we have that τ0 = 4.9397, and the model (2.1) has one unique positive equilibrium
E∗(0.2671, 35.1379, 0.1197) according to Theorem 2.1. From Theorem 3.3, E∗ is locally
asymptotically stable when τ ∈ [0, 4.9397], but Hopf bifurcation occurs when τ ∈ [4.9397,+∞).
From Eq (3.35), we can know that c1(0) = −512.86 − 540.47i < 0, µ1 = 1457 > 0, µ2 = −1025.7 < 0
and T1 = 153.5416 > 0. Thus, the Hopf bifurcation is supercritical, the bifurcating periodic solution
is stable and the period of the bifurcating periodic solutions is increasing, which can be seen in
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Figure 6 (τ = 1) and Figure 7 (τ = 10). Here, we give the delay bifurcation diagram (see Figure 8).
This means that, if the mature delay exceeds the critical value, the model transitions to unstable from
stable. At this moment, the model has a Hopf bifurcation near the equilibrium and unstable behavior
occurs among populations. In other words, the presence of the mature delay can destabilize the
plankton-fish population.
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Figure 4. When m ∈ (0, 1), the dynamical behavior of the model (2.1) changes. (a) P(t), (b)
Z(t), (c) F(t).
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Figure 5. When δ ∈ (0, 1), the dynamical behavior of the model (2.1) changes. (a) P(t), (b)
Z(t), (c) F(t).
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Figure 6. Positive equilibrium E∗(0.2671, 35.1379, 0.1197) of the model (2.1) is locally
asymptotically stable when τ = 1 < τ0 = 4.9397. (a) P(t), (b) Z(t), (c) F(t).
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Figure 7. Hopf bifurcation occurs at the positive equilibrium when τ = 10 > τ0 = 4.9397.
(a) P(t), (b) Z(t), (c) F(t).

Figure 8. Bifurcation diagrams of the model (2.1) with respect to τ.

For the model (1.6), we choose l = 1, that is, x ∈ (0, π). The values of other parameters as
follows: d1 = 0.2, d2 = 0.5, d3 = 0.1, m = 0.84 and δ = 0.25. The positive equilibrium is
E∗(0.3794, 38.9575, 0.1202). From Eq (4.8), we have that τn0 = 6.2832. Based on Theorem 4.1, E∗ is
also locally asymptotically stable when τ = 0 (see Figure 9), and E∗ is locally asymptotically stable
when τ = 3.5 < τn0 = 6.2832 (see Figure 10). But, E∗ is unstable when τ = 25 > τn0 = 6.2832 (see
Figure 11). And, we can compute that c2(0) = −1141.6 − 2543.9i < 0, µ3 = 7257.8 > 0,
µ4 = −2283.3 < 0 and T2 = 646.8790 > 0. From Theorem 4.5, the Hopf bifurcation is supercritical,
the bifurcating periodic solution is stable and the period of the bifurcating periodic solutions is
increasing. For the reaction-diffusion model, we can know that the model will transitions to unstable
from stable if the mature delay exceeds the critical value. At this moment, the model has a spatially
homogeneous Hopf bifurcation or spatially inhomogeneous Hopf bifurcation near the equilibrium and
unstable behavior occurs between the populations. At this time, the presence of the mature delay can
destabilize the plankton-fish population.

By the theoretical conclusions and numerical simulation, we not only find that the existence of
delay will deteriorate the system stability under some conditions, but also that the refuge of the prey
and the release of toxins will cause the stability of system be damaged in a reaction-diffusion model
with delay, even causing Hopf bifurcation to occur at the positive equilibrium E∗.
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(a) P(t) (b) Z(t) (c) F(t)

Figure 9. Positive equilibrium E∗(0.3794, 38.9575, 0.1202) of the model (1.6) is locally
asymptotically stable when τ = 0. (a) P(t), (b) Z(t), (c) F(t).

(a) P(t) (b) Z(t) (c) F(t)

Figure 10. Positive equilibrium E∗(0.3794, 38.9575, 0.1202) of the model (1.6) is locally
asymptotically stable when τ = 3.5 < τn0 = 6.2832. (a) P(t), (b) Z(t), (c) F(t).

(a) P(t) (b) Z(t) (c) F(t)

Figure 11. Positive equilibrium E∗(0.3794, 38.9575, 0.1202) of the model (1.6) is unstable
and Hopf bifurcation occurs when τ = 25 > τn0 = 6.2832. (a) P(t), (b) Z(t), (c) F(t).

6. Conclusions

In our paper, we establish a phytoplankton-zooplankton-fish model with mature delay and
population diffusion by considering the refuge of phytoplankton, C-M functional response and
Holling II functional response. In [18], the authors found that the refuge affects the stability of the
positive equilibrium. However, in our paper, we not only analyzed the effect of refuge, but also
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studied the effects of diffusion and delay on the model; we obtained that the stability of the system
may be destroyed due to the existence of delay. In [19], the authors analyzed Hopf bifurcation caused
by delay. However, in our paper, we not only obtained the properties of Hopf bifurcation induced by
delay, but also the influence of prey refuge on the population. We determined that the existence of
prey refuge can also lead to Hopf bifurcation.

After the parameters in the model were selected, the existence and stability of the equilibrium were
analyzed. First, we chose m as a bifurcation parameter to study the dynamical behavior as m changes
in the model (2.1). Meanwhile, we consider the effect of the parameter δ on the positive equilibrium
in the model (2.1). Through analysis, it could be obtained that the model undergoes a Hopf bifurcation
when m = m∗ or δ = δ∗. We found that, when other parameter values are fixed, the densities of
zooplankton and fish will decrease to 0 regardless whether the refuge capacity of phytoplankton or the
probability of toxin release of phytoplankton-produced toxic substances increase to a certain value.
And, we chose the time delay τ as the bifurcation parameter and discussed the dynamical behavior
of the model without diffusion, or with diffusion, respectively. We give the direction of the Hopf
bifurcation and the stability of the bifurcating periodic solution by the center manifold theorem and
normal form theory. We found that the model transitions to unstable from stable when the mature delay
exceeds the critical value. At this moment, the model has a spatially homogeneous Hopf bifurcation or
spatially inhomogeneous Hopf bifurcation near the positive equilibrium and unstable behavior occurs
between the populations. In a word, the existence of time delay has a great influence on such a model.
Meanwhile, we used Matlab software for numerical simulation to prove our theoretical results.

In this paper, we have discussed the influence of factors such as prey refuge, the disturbance
between predators, time delay and diffusion on the model. However, in nature, there are external factors
to influence the model, such as changing temperature, environmental pollution, human activities and
noise. We did not take these influencing factors into account. Therefore, in the future work, we will
introduce the influence of environmental pollution on the model and analyze the dynamical behavior
of the phytoplankton-zooplankton model under the influence of environmental pollution. The model is


∂P
∂t = d1∆P + r1P(1 − P

K1
) − β1(1−m)PZ

1+a1(1−m)P+cZ − m1P3, x ∈ Ω, t > 0,
∂Z
∂t = d2∆Z + r2Z(1 − Z

K2
) + β2(1−m)PZ

1+a1(1−m)P+cZ −
δP(t−τ)Z

a2+P(t−τ) − m2Z2 − gZ, x ∈ Ω, t > 0,

Px(x, t) = Zx(x, t) = 0, x ∈ ∂Ω, t > 0,
P(x, t) > 0,Z(x, t) > 0, x ∈ Ω, t ∈ [−τ, 0],

where m1 and m2 are the effects of environmental pollution on phytoplankton and zooplankton,
respectively. We leave this work for the future.
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