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Abstract: In this paper, we present a discrete unified gas kinetic scheme (DUGKS) on unstructured
grids for high-speed viscid compressible flows on the basis of double distribution function (the density
and the total energy distribution functions) Boltzmann-BGK equations. In the DUGKS, the discrete
equilibrium distribution functions are constructed based on a D2Q17 circular function. In order to
accelerate the simulation, we also illustrate a corresponding parallel algorithm. The DUGKS is
validated by two benchmark problems, i.e., flows around the NACA0012 airfoil and flows past a
circular cylinder with the Mach numbers range from 0.5 to 2.5. Good agreements with the referenced
results are observed from the numerical results. The results of parallel test indicate that the DUGKS is
highly parallel scalable, in which the parallel efficiency achieves 93.88% on a supercomputer using up
to 4800 processors. The proposed method can be utilized for high-resolution numerical simulation of
complex and high Mach number flows.
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1. Introduction

Compressible flows exist in many practical engineering, such as aerophysics, astrophysics,
aeroacoustics, combustion, explosion physics, etc, which is generally illustrated by the Navier-Stokes
equations (NSEs) [1–4]. In the conventional computational fluid dynamics (CFD), the discrete method,
for example, finite difference (FD) [5], finite volume (FV) [6], finite element methods [7, 8] are
employed to discretize the NSEs. Instead of solving compressible NSEs, the kinetic schemes, such
as the lattice Boltzmann method (LBM) [9], the gas kinetic scheme (GKS) [10], the lattice Boltzmann
flux solver [11], the discrete velocity or discrete ordinate methods [12] and the (discrete) unified gas
kinetic scheme [13,14], are derived from the Boltzmann equation to evolve the gas distribution function
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and calculate the conservative variables by the gas distribution function.
The conventional LBM is a special FD discretization of the Boltzmann equation, in which the

fluid domain is discretized into lattices coinciding with the uniform Cartesian grids, and the motion
of particles is described by the evolution of particle distribution functions named as “collision” and
“stream”. The macroscopic variables are calculated by accumulating the particle distribution functions.
It has been an alternative method to simulate low-speed incompressible flows. Owing to the restriction
of uniform Cartesian grid, the conventional LBM is difficult for simulating the flow problems with
strong local gradients or defined on geometrically complex domains. In recent years, a few off-lattice
Boltzmann methods were proposed to avoid the Cartesian grid restriction, for example, finite difference
LBMs [15–17], finite element LBMs [18, 19], FV-LBMs [20–22], and so on. In the conventional
LBM, the equilibrium distribution function (EDF) is obtained by expanded the Maxwellian function
by Taylor-series in terms of the Mach number, which can be only used for low Mach number
incompressible flows. To simulate high Mach number compressible flows, an alternative method is to
replace the Maxwellian function with a simple function avoiding the taylor-series expansion. Sun et al.
proposed a locally adaptive LBM, in whic a simplified EDF (δ function) is used to substitute the
Maxwellian function [23]. A D2Q13L2 lattice model for inviscid high-speed compressible flows is
presented by Qu et al. Instead of the Maxwellian function, a circular function is employed. The EDF is
constructred by a polynomial and a FV method with second-order total variation diminishing formular
is employed to solve the lattice Boltzmann equation [24]. A LBM for high-speed viscid compressible
flows based on D2Q17 circular function is proposed by Qu et al. [25, 26], in which the first to fourth
order constraints of the density equilibrium function in the heat flux and the energy dynamics are
considered [27]. Based on previous works, we presented a FV-LBM on unstructured grids for high
Mach number compressible flows [22, 28].

Recently, the discrete unified gas kinetic scheme (DUGKS), a FV-based mesoscopic CFD method,
has attracted more and more attention. The numerical flux in the DUGKS is constructed by the
distribution function at a half time-step, in which a numerical characteristic solution of the Boltzmann
equation is used. It has been widely studied in multiscale flows [29, 30], thermal incompressible
flows [31, 32], thermal compressible flows [33], moving boundaries [34], gas mixture flows [35],
and nonlinear convection diffusion equations [36]. Lately, a simplified DUGKS for incompressible
flows is proposed, in which a whole time-step is applied to constructed the numerical flux at the cell
interface [37], which is applied in this paper. Subsequently, they devised a simplified DUGKS for
compressible flows [38], in which, the D2Q13 circular distribution function is used to substitute the
Maxwellian function. In this paper, the D2Q17 circular function is employed instead of D2Q13 circular
function in order to consider the first to fourth order constraints of distribution function.

In this paper, in order to finish the simulation in a short time, a parallel version of the proposed
DUGKS on unstructured grids is implemented. In this paper, an open source package ParMETIS
is used to partition the unstructured grid into irregular subdomains [39], which ensure the minimum
of communication among subdomains and promises the load balance among processor cores. The
parallel algorithm implemented by PETSc (portable, extensible toolkit for scientific computation) [40]
is presented, and parallel performance is investigated on a supercomputer.

The remainder of the paper is organized as follows. DUGKS for viscid compressible flows as well
as the parallel algorithm is presented in Section 2. Next, numerical results and the parallel performance
are given in Section 3. Finally, some conclusions are made in Section 4.
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2. Parallel DUGKS for viscid compressible flows

2.1. Kinetic model equations

The Boltzmann-BGK model for viscid compressible flows includes the density and the total energy
distribution function. For the density distribution function, the discrete Boltzmann-BGK equation is
written as

∂ f
∂t

+ ξ · ∇ f = −
1
τ f

( f − f eq) , (2.1)

where f represents the density distribution function with velocity ξ at the position x and time t, µ the
viscosity, p the pressure, τ f = µ/p the particle relaxation time, and f eq the local Maxwellian function
expressed as [27, 41]

f eq =
ρ

2(2πRT )D/2 exp
(
−

(ξ − u)2

2RT

)
,

where ρ denotes the density, T the temperature, u the fluid velocity, R the gas constant and D the spatial
dimension.

To recover the compressible Navier-Stokes equations, for the total energy distribution function, the
governing equation is introduced in the following form

∂h
∂t

+ ξ · ∇h = −
1
τh

[h − heq] +
1
τh f

(ξ · u) ( f − f eq) , (2.2)

where h represents the total EDF, τh the total energy relaxation time, τh f = τ fτh/(τ f − τh), the Prandtl
number Pr is computed by τ f /τh, the total energy EDF heq is written as

heq =
ρ(ξ2 + (b − D)RT )

2(2πRT )D/2 exp
(
−

(ξ − u)2

2RT

)
,

where b is associated with the specific-heat ratio γ by γ = (b + 2)/b. The macroscopic variables are
the moments of the distribution function,

W =


ρ

ρu
ρE

 =



∫
f dξ∫
ξ f dξ∫
hdξ


,

where E = u2/2 + e denotes the total energy, e the internal energy. f eq and heq have to meet the
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following velocity moment condition to recover the compressible NSEs:

∫
f eqdξ = ρ,∫
f eqξidξ = ρui,∫
f eqξiξ jdξ = ρuiu j + pδi j,∫
f eqξiξ jξkdξ = ρuiu juk + p(ukδi j + u jδik + uiδ jk),∫
f eqξ2ξiξ jdξ = ρu2uiu j + p

[
(D + 2)RTδi j + (D + 4)uiu j + u2δi j

]
,∫

heqdξ = ρE,∫
heqξidξ = (ρE + p)ui,∫
heqξiξ jdξ = (ρE + 2p)uiui + p(E + RT )δi j,

(2.3)

where p = (γ − 1)ρe represents the pressure, δi j, δik and δ jk the Kronecker delta functions, i, j, and k
the components along the x, y and z directions.

To simulate the high Mach number compressible flows, the local Maxwellian EDF f eq is substituted
by a circular function. All the needed statistical relations in (2.3) has to be satisfied with the circular
function. A D2Q13 circular function is introduced into DUGKS for high Mach number compressible
flows by Zhong et al. [38]. In fact, f eq deduced from the D2Q13 circular function satisfies all the 7
equations in (2.3) except the 5th one. Note that A D2Q17 circular function is also proposed by Qu et al.
in [26], which fulfills all the equations in (2.3). The D2Q17 circular function can be written as

f eq =


ρ

4πc
if ‖ξ − u‖ = c,

ρ

2
if ξ = u,

(2.4)

where c = 2
√

RT denotes the radius of the circle. To discrete the continuous EDF, a fourth-order
17-node Lagrangian interpolating polynomial called assigning function is constructed, which has the
following form

φp(x, y) = ap,0 + ap,1x + ap,2y + ap,3x2 + ap,4xy + ap,5y2 + ap,6x3 + ap,7x2y + ap,8xy2

+ap,9y3 + ap,10x4 + ap,11x3y + ap,12x2y2 + ap,13xy3 + ap,14y4 + ap,15x5 + ap,16y5.
(2.5)

Here p = 0, 1, 2, · · · , 16. The corresponding discrete velocity shown in Figure 1 is expressed by
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Figure 1. D2Q17 discrete velocity model.

Owing to the δ property of the Lagrangian plynomial, we get

φp(ξx,q, ξy,q) = δp,q, (2.6)

where q = 0, 1, · · · , 16, ξx,q and ξy,q represent the x and y components of the particle velocity in the qth
direction. The coefficient ap,q can be determined by substituting the discrete velocity into (2.6). The
density EDF is then calculated by

f eq
q =

ρ

4π

∫ 2π

0
φq(u1 + ccosθ, u2 + csinθ)dθ +

ρ

2
φq(u1, u2). (2.7)

Finally, we have

f eq
0 = ρ(

69
256

c4 +
69
64

c2u2
1 +

69
64

c2u2
2 +

3
8

u4
1 +

33
16

u2
1u2

2 +
3
8

u4
2 −

7
8

c2 −
7
4

u2
1 −

7
4

u2
2 + 1),

f eq
1 = ρ(

27
40

u1 +
27
40

u2 +
9

16
u2

1 −
27
64

u3
1 +

9
16

u2
2 −

27
64

u3
2 −

9
64

u4
1 +

81
1280

u5
2 −

9
64

u4
2 +

81
1280

u5
1 −

117
1024

c4

+
9

32
c2 −

63
64

u2
1u2

2 −
99

256
c2u2 −

27
64

u1u3
2 −

117
256

c2u2
2 −

99
256

c2 ∗ u1 +
243

4096
c4u2 +

81
512

c2u3
1

+
81

512
c2u3

2 −
117
256

c2u2
1 −

27
64

u3
1u2 −

9
32

u2
1u2 −

9
32

u1u2
2 +

15
16

u1u2 +
243

4096
c4u1 −

81
128

c2u1u2),

f eq
5 = ρ(

81
512

c2u1u2 +
45
256

c2u2
1 +

9
512

c2u2
2 +

45
1024

c2u1 +
27

128
c2u2 −

243
4096

c4u2 +
81

2048
c2u3

1

−
81

512
c2u3

2 −
3

32
u1u2 +

9
32

u1u2
2 +

9
32

u2
1 ∗ u2

2 +
27

128
u1u3

2 +
243

16384
c4u1 −

9
256

c2 −
9
80

u1 −
9

256
u4

2

−
9

80
u2 −

9
32

u2
1 +

9
64

u2
2 −

9
256

u3
1 +

81
5120

u5
1 +

9
32

u3
2 +

9
128

u4
1 +

99
4096

c4 −
81

1280
u5

2),

f eq
13 = ρ(

243
8192

c4u1 +
81

1024
c2u3

1 +
81

2560
u5

1 −
3

2048
c4 +

3
64

c2u2
1 −

15
256

c2u2
2 +

3
64

u4
1 −

3
32

u2
1u2

2

−
3

128
u4

2 −
27
512

c2u1 −
9

128
u3

1 +
1

128
c2 −

1
16

u2
1 +

3
32

u2
2 +

1
40

u1),
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f eq
2 (u1, u2) = f eq

1 (−u1, u2), f eq
3 (u1, u2) = f eq

1 (−u1,−u2), f eq
4 (u1, u2) = f eq

1 (u1,−u2),
f eq
6 (u1, u2) = f eq

5 (u2, u1), f eq
7 (u1, u2) = f eq

5 (u2,−u1), f eq
8 (u1, u2) = f eq

5 (−u1, u2),
f eq
9 (u1, u2) = f eq

5 (−u1,−u2), f eq
10 (u1, u2) = f eq

5 (−u2,−u1), f eq
11 (u1, u2) = f eq

5 (−u2, u1),
f eq
12 (u1, u2) = f eq

5 (u1,−u2), f eq
14 (u1, u2) = f eq

13 (u2, u1), f eq
15 (u1, u2) = f eq

13 (−u1, u2),
f eq
16 (u1, u2) = f eq

13 (−u2, u1).

The total energy EDF heq
q can be computed by

heq
q =

[
(E + (ξq − u) · u

]
f eq
q +$q

p
c̃2 RT,

where Tc denotes the characteristic temperature, c̃ =
√

RTc. $0 = 0, $1−4 = −17/56, $5−12 = −1/8,
and $13−16 = −3/56.

2.2. DUGKS for the velocity and total energy distribution functions

we first discrete the Boltzmann-BGK equation for the density distribution function by DUGKS.
Integrating (2.1) over a control volume (CV) V j located at the cell center x j from time tn to tn+1, we get
the following equation [37]

f n+1
j − f n

j +
∆t
|V j|

Fn+1
j,meso = −

∆t
τ f

( f n+1
j − f eq,n+1

j ), (2.8)

where Fn+1
j,meso represents the flux of the density distribution function across the cell interface defined as

Fn+1
j,meso =

∫
∂V j

(ξ · n) f (xb, ξ, tn+1)dS ,

∂V j and |V j| are the surface and volume of CV V j, f j the cell-averaged value of the density distribution
function, n the outward unit normal of the cell interface. (2.8) is simplified as

f n+1
j =

(
f n

j −
∆t
|V j|

Fn+1
j,meso +

∆t
τ f

f eq,n+1
j

)
/

(
1 +

∆t
τ

)
. (2.9)

Note that Fn+1
j,meso is implicit. To compute Fn+1

j,meso, f at the cell interface xb and time tn+1 are needed. We
discrete and integrate the kinetic equations (2.1) along the particle velocity characteristic lines in one
time step ∆t, and employ the trapezoidal rule, we obtain

f̄ (xb, ξ, tn + ∆t) = f̄ +(xb − ξ∆t, ξ, tn), (2.10)

where f̄ + = f + ∆t
2 Ω f , f̄ = f − ∆t

2 Ω f , Ω f = − 1
τ f

( f − f eq). f̄ +(xb − ξ∆t, ξ, tn) is evaluated by

f̄ +(xb − ξ∆t, ξ, tn) =

{
f̄ +(x j, ξ, tn) + (xb − ξ∆t − x j) · L[ f̄ +(x, ξ, t), x j]∇ f̄ +(x j, ξ, tn), if ξ · n ≥ 0,
f̄ +(xi, ξ, tn) + (xb − ξ∆t − xi) · L[ f̄ +(x, ξ, t), xi]∇ f̄ +(xi, ξ, tn), otherwise,

where xi is the cell center of x j’s neighbor cell. L the Venkatakrishnan limiter function [42].
DUGKS for (2.1) can also be applied similarly for (2.2). Integrating over CV V j from tn to tn+1, one

can get the following updating equation for h j for the total energy distribution function

hn+1
j =

[
hn

j −
∆t
|V j|

Hn+1
j,meso +

∆t
τh f

(ξ · u)( f n+1
j − f eq,n+1

j )
]
/(1 +

∆t
τh

), (2.11)
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where
Hn+1

j,meso =

∫
∂V j

(ξ · n)h(xb, ξ, tn+1)dS

is also implicit. To obtain h(xb, ξ, t), we integrate (2.2) within one time step in a similar way and get

h̄(xb, ξ, tn + ∆t) = h̄+(xb − ξ∆t, ξ, tn), (2.12)

where h̄ = f − ∆t
2 Ωh, h̄+ = h + ∆t

2 Ωh, Ωh = − 1
τh

(h − heq) + 1
τh f

(ξ · u)( f − f eq). h̄+(xb − ξ∆t, ξ, tn) is also
calculated by

h̄+(xb − ξ∆t, ξ, tn) =

{
h̄+(x j, ξ, tn) + (xb − ξ∆t − x j) · L[h̄+(x, ξ, t), x j]∇h̄+(x j, ξ, tn), if ξ · n ≥ 0,
h̄+(xi, ξ, tn) + (xb − ξ∆t − xi) · L[h̄+(x, ξ, t), xi]∇h̄+(xi, ξ, tn), otherwise.

Next, the macroscopic variables at xb are calculated with f̄ (xb, ξ, tn + ∆t) and h̄(xb, ξ, tn + ∆t) in the
following form

W =


ρ

ρu
ρE

 =



∫
f̄ dξ∫
ξ f̄ dξ∫
h̄dξ


.

Thus, we can obtain the EDFs at the cell interface xb based on the computed macroscopic variables.
The calculation of Fn+1

j,meso and Hn+1
j,meso needs f (xb, ξ, tn+1) and h(xb, ξ, tn+1), which are got from

f̄ (xb, ξ, tn+1) and h̄b(x, ξ, tn+1) by

f (xb, ξ, tn+1) =
2τ f

2τ f + ∆t
f̄ (xb, ξ, tn+1) +

∆t
2τ f + ∆t

f eq(xb, ξ, tn+1),

h(xb, ξ, tn+1) =
2τh

2τh + ∆t
h̄(xb, ξ, tn+1) +

∆t
2τh + ∆t

heq(xb, ξ, tn+1)

+
τh∆t

τh f (2τh + ∆t)
(ξ · u)

[
f (xb, ξ, tn+1) − f eq(xb, ξ, tn+1)

]
.

In (2.8) and (2.11), f eq,n+1
j and heq,n+1

j are unknown. To solve this, the macroscopic variables at the
cell center V j has to be computed. The macroscopic variables can be deduced from the moments of the
Boltzmann equation, which can be written as

Wn+1
j = Wn

j −
∆t
|V j|

F j,macro,

where

F j,macro =



∮
∂V j

(ξ · n) f (xb, ξ, tn)dξdS ,∮
∂V j

(ξ · n) f (xb, ξ, tn)ξdξdS ,∮
∂V j

(ξ · n)h(xb, ξ, tn)dξdS .
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Now, the update of f and h can be executed in accordance with (2.8) and (2.11).
The CFL condition determines the time step size ∆t in the following form

∆t = η∆xmin/C,

where C is the maximal discrete velocity, ∆xmin the minimum grid spacing, and η the CFL number. The
treatment of the boundary condition is implemented by the ghost cell method and the non-equilibrium
extrapolation scheme [43]. More details can be found in [22].

2.3. Parallel implementation of DUGKS

To imrpove the computational time, parallel algorithm is required. To do the parallel computing, the
first thing is to decompose the unstructured grid into irregular subdomains. In our work, we partition
the unstructured grid into irregular subdomains by an open source package ParMETIS [39], which
ensures the minimum of the parallel communication among subdomains and promises the load balance
among processor cores. An example of an unstructured grid and its partition into 16 subdomains
using ParMETIS is shown in Figure 2. Each subdomain is distributed to one processor core after
decomposition, and the calculations on subdomains are done concurrently. In the DUGKS. most
operations are local. Only the density distribution functions and total energy distribution functions
of the outmost cells in a subdomain are required by neighboring processor cores, where the parallel
communication occurs. We implement the parallel algorithm based on PETSc from Argonne National
Laboratory [40]. Further reading about the parallel strategy for the DUGKS can be found [20].

Figure 2. Partition of an unstructured grid. Different color represents different subdomains.

3. Numerical simulations

In this section, we validate our method by two numerical siulations, including flows over the
NACA0012 airfoil and flows past a circular cylinder. All computations are executed on the Tianhe-2A
supercomputer at the National Supercomputer Center in Guangzhou, China. Each node consists of
two 12-core Intel Ivy Bridge Xeon CPUs and 64 GB memory. The specific heat ratio γ is 1.4, and the
Prandtl number Pr 0.71 in the simulations.

AIMS Mathematics Volume 8, Issue 4, 8829–8846.
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3.1. Flows around the NACA0012 airfoil

The first benchmark test is the flow around the NACA0012 airfoil with two different configurations.
For the first configuration, the Mach number at farfield M∞ = 0.5, the angle of attack (AoA) α = 0◦.
The Reynolds number is set to Re = 5000. The Mach number at farfield for the second configuration
isM∞ = 2.0, AoA α = 10◦, and Re = 1000. We adopt an unstructured grid with 2.87×105 quadrangular
cells in these two numerial simulations. Figure 3 illustrates the computational domain and boundary
configurations. A nonslip boundary condition is imposed on the airfoil surface, the non-equilibrium
extrapolation method is employed at the inlet and outlet.

Figure 3. The computational domain and boundary configurations for flows around the
NACA0012 airfoil.

The Mach number contours around the airfoil for the first simulation is shown in Figure 4(a), which
is inaccrodance with the Mach number contours in [44]. Figure 5(a) gives the comparision of the
calculated pressure coefficient with the one in [44], which shows that the results agree well with the
reference data. The Mach number contours and pressure coefficients for the second simulation are
given in Figures 4(b) and 5(b), respectively, which indicate that the simulated results are in good
accordance with the results in [45].

(a) (b)

Figure 4. Mach number contours of the flow around the NACA0012 airfoil, (a) α = 0◦,
M∞ = 0.5, Re = 5000, (b) α = 10◦, M∞ = 2, Re = 1000.
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Figure 5. Pressure coefficient around the NACA0012 airfoil, (a) α = 0◦, M∞ = 0.5, Re =

5000, (b) α = 10◦, M∞ = 2, Re = 1000.

3.2. Flows past a circular cylinder

In this subsection, two simulations are performed to compute supersonic flows past a circular
cylinder [46] including (1) M∞ = 1.7 and (2) M∞ = 2.5. The Reynolds number is 2 × 105. The
computational domain is a square [0, 1] × [0, 1] on the ξ-η plane. The boundary on the x-y plane is
produced by (as shown in Figure 6)


x = −

(
Rx − (Rx − 1)

1
a

tanh(dη)
)

cos
(
π

2
ξ
)
,

y =

(
Ry −

(
Ry − 1

) 1
a

tanh(dη)
)

sin
(
π

2
ξ
)
.

Here Rx = 4, Ry = 10, a = tanh(d), and d = 2.3. We employ an unstructured grid with 32, 188
quadrangular cells in these two simulations. The inflow boundary is imposed at η = 0, where the
distribution functions are fixed at their equilibrium states, the outflow boundary and the symmetric
boundary are used at ξ = 1 and ξ = 0, repsectively, where the nonequilibrium extrapolation method is
applied [43], the nonslip boundary is imposed at the cylinder surface η = 1.

The Mach number and pressure contours for M∞ = 1.7 and M∞ = 2.5 are illustrated in Figures 7
and 8, respectively. A bow shock located at x = −3 and x = −1.9 is formed at the upstream. The
pressure coefficients Cp for the two cases along the surface of the cylinder compared with the ones
in [38, 46, 47] are shown in Figure 9. In [47], an immersed boundary method is adopted on Cartesian-
grid. The results in [46] are computed by a FD LBM. A GKS is used to compute the pressure coefficient
in [38], which are different from our DUGKS. It can be seen that our results agree well with the ones
in the literature.
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Figure 6. The setup of the flows past a circular cylinder on the x-y plane.

(a) (b)

Figure 7. Mach number contours (a) and pressure contours (b) of the flow past a circular
cylinder, M∞ = 1.7.
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(a) (b)

Figure 8. Mach number contours (a) and pressure contours (b) of the flow past a circular
cylinder, M∞ = 2.5.
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Figure 9. Pressure coefficient along the circular cylinder surface (a) M∞ = 1.7, (b) M∞ = 2.5.

3.3. Parallel scalability

The parallel performance of the proposed scheme is evaluated on the Tianhe-2A
supercomputer [48]. In the test of parallel performance, a flow around the NACA0012 airfoil
with two different grid sizes is used. The compute time and parallel efficiency of the scheme is shown
in Table 1, in which the first 100 iterations are used to count the compute time. In the table, “Nodes”
represent the number of compute nodes, “Cores” the number of processor cores, “Time” the compute
time, and “Efficiency” the parallel efficiency, respectively. The speedup and parallel efficiency is
illustrated in Figure 10. The larger the grid size is, the higher the speedup and parallel efficiency
achieved.
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Table 1. The strong scalability results for a flow around the NACA0012 airfoil with two
different grid sizes. Grid 1 consists of 6.42 × 107 triangle cells, and grid 2 has 1.22 × 108

triangle cells.

Nodes Cores
Grid 2 Grid 1

Time (s) Efficiency Time (s) Efficiency
40 960 225.60 100.0% 122.46 100.0%
60 1440 152.85 98.40% 83.52 97.75%
80 1920 116.12 97.14% 62.77 97.55%
100 2400 94.72 95.27% 51.33 95.43%
120 2880 79.15 95.00% 43.81 93.18%
140 3360 68.12 94.62% 37.63 92.98%
160 3840 59.64 94.56% 33.37 91.75%
180 4320 53.25 94.15% 29.94 90.91%
200 4800 48.06 93.88% 27.22 89.97%
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Figure 10. The speedup (a) and efficiency (b) for a flow past the NACA0012 airfoil with
6.42 × 107 (Grid 1) and 1.22 × 108 (Grid 2) triangle cells. Here, “Ideal” refers to the ideal
speedup.

4. Conclusions

In this paper, we presented a discrete unified gas kinetic scheme on unstructured grids and its
parallel algorithm to simulate high Mach number viscous compressible flows, which is validated by two
benchmark fluid problems. The validation indicates that the shock waves of high Mach number viscous
compressible flows can be accurately captured. The parallel performance of the scheme investigated
on the Tianhe-2A supercomputer shows that the parallel algorithm has good scalability on thousands of
processor cores, which is suitable to perform high-resolution simulations of high Mach number viscid
compressible flows. Based on our presented method, other discrete velocity models and equilibrium
distribution functions for compressible flows are also be able to incorporate with our solver, and a
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similar scalability can be expected. It is convenient to move to three-dimensional compressble flows,
we just replace the discrete velocity model and its corresponding equilibrium distribution functions. We
expect that our numerical methods can be used for solving some related inverse problems of practical
importance [1, 2]; see also [49–53] for more related background discussion on inverse problems.

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant
No. 2018YFE0198400), the Shenzhen grant (Grant Nos. RCYX20200714114735074,
JCYJ20220531100611025 and JCYJ20200109115422828), and the NSFC (Grant Nos. 62161160312,
12071461 and 12101588).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. Y. Deng, J. Li, H. Liu, On identifying magnetized anomalies using geomagnetic monitoring, Arch.
Rational Mech. Anal., 231 (2019), 153–187. https://doi.org/10.1007/s00205-018-1276-7

2. Y. Deng, J. Li, H. Liu, On identifying magnetized anomalies using geomagnetic monitoring
within a magnetohydrodynamic model, Arch. Rational Mech. Anal., 235 (2020), 691–721.
https://doi.org/10.1007/s00205-019-01429-x

3. Y. Deng, H. Liu, W.-Y. Tsui, Identifying varying magnetic anomalies using
geomagnetic monitoring, Discrete Contin. Dyn. Syst., 40 (2020), 6411–6440.
https://doi.org/10.3934/dcds.2020285

4. Y. Deng, Y. Gao, J. Li, H. Liu, R. Chen, Locating multiple magnetized anomalies by geomagnetic
monitoring, unpublished work.

5. W. Li, S. Liu, S. Osher, Controlling conservation laws II: Compressible Navier-Stokes equations,
J. Comput. Phys., 463 (2022), 111264. https://doi.org/10.1016/j.jcp.2022.111264

6. M. Natarajan, R. Grout, W. Zhang, M. Day, A moving embedded boundary approach for the
compressible Navier-Stokes equations in a block-structured adaptive refinement framework, J.
Comput. Phys., 465 (2022), 111315. https://doi.org/10.1016/j.jcp.2022.111315

7. G. Ju, C. Chen, R. Chen, J. Li, K. Li, S. Zhang, Numerical simulation for 3D flow in flow channel
of aeroengine turbine fan based on dimension splitting method, Electron. Res. Arch., 28 (2020),
837–851. https://doi.org/10.3934/era.2020043

8. M. E. Danis, J. Yan, A new direct discontinuous Galerkin method with interface correction for
two-dimensional compressible Navier-Stokes equations, J. Comput. Phys., 452 (2022), 110904.
https://doi.org/10.1016/j.jcp.2021.110904

9. Z. Qiao, X. Yang, A multiple-relaxation-time lattice Boltzmann method with Beam-Warming
scheme for a coupled chemotaxis-fluid model, Electron. Res. Arch., 28 (2020), 1207–1225.
https://doi.org/10.3934/era.2020066

AIMS Mathematics Volume 8, Issue 4, 8829–8846.

http://dx.doi.org/https://doi.org/10.1007/s00205-018-1276-7
http://dx.doi.org/https://doi.org/10.1007/s00205-019-01429-x
http://dx.doi.org/https://doi.org/10.3934/dcds.2020285
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2022.111264
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2022.111315
http://dx.doi.org/https://doi.org/10.3934/era.2020043
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2021.110904
http://dx.doi.org/https://doi.org/10.3934/era.2020066


8843

10. K. Xu, A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection
with artificial dissipation and Godunov method, J. Comput. Phys., 171 (2001), 289–335.
https://doi.org/10.1006/jcph.2001.6790

11. C. Shu, Y. Wang, C. J. Teo, J. Wu, Development of lattice Boltzmann flux solver
for simulation of incompressible flows, Adv. Appl. Math. Mech., 6 (2014), 436–460.
https://doi.org/10.4208/aamm.2014.4.s2

12. Z. H. Li, H. X. Zhang, Gas-kinetic numerical studies of three-dimensional
complex flows on spacecraft re-entry, J. Comput. Phys., 228 (2009), 1116–1138.
https://doi.org/10.1016/j.jcp.2008.10.013

13. K. Xu, J. C. Huang, A unified gas-kinetic scheme for continuum and rarefied flows, J. Comput.
Phys., 229 (2010), 7747–7764. https://doi.org/10.1016/j.jcp.2010.06.032

14. Z. Guo, K. Xu, R. Wang, Discrete unified gas kinetic scheme for all Knudsen
number flows: low-speed isothermal case, Phys. Rev. E, 88 (2013), 033305.
https://doi.org/10.1103/PhysRevE.88.033305

15. A. U. Shirsat, S. G. Nayak, D. V. Patil, Simulation of high-Mach-number inviscid flows using a
third-order Runge-Kutta and fifth-order WENO-based finite-difference lattice Boltzmann method,
Phys. Rev. E, 106 (2022), 025314. https://doi.org/10.1103/PhysRevE.106.025314

16. J. Huang, X.-C. Cai, C. Yang, A fully implicit method for lattice Boltzmann equations, SIAM J.
Sci. Comput., 37 (2015), S291–S313. https://doi.org/10.1137/140975346

17. J. Huang, C. Yao, X.-C. Cai, A nonlinearly preconditioned inexact Newton algorithm for
steady state lattice Boltzmann equations, SIAM J. Sci. Comput., 38 (2015), A1701–A1724.
https://doi.org/10.1137/15M1028078

18. R. Matin, M. K. Misztal, A. Hernandez-Garcia, J. Mathiesen, Finite element lattice
Boltzmann simulations of contact line dynamics, Phys. Rev. E, 97 (2018), 013307.
https://doi.org/10.1103/PhysRevE.97.013307

19. J. Wu, M. Shen, C. Liu, Study of flow over object problems by a nodal discontinuous Galerkin-
lattice Boltzmann method, Phys. Fluids, 30 (2018), 040903. https://doi.org/10.1063/1.5010964

20. L. Xu, J. Li, R. Chen, A scalable parallel unstructured finite volume lattice Boltzmann method
for three-dimensional incompressible flow simulations, Int. J. Numer. Methods Fluids, 93 (2021),
2744–2762. https://doi.org/10.1002/fld.4996

21. L. Xu, R. Chen, Scalable parallel finite volume lattice Boltzmann method for thermal
incompressible flows on unstructured grids, Int. J. Heat Mass Tran., 160 (2020), 120156.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120156

22. L. Xu, R. Chen, X.-C. Cai, Parallel finite-volume discrete Boltzmann method for
inviscid compressible flows on unstructured grids, Phys. Rev. E, 103 (2021), 023306.
https://doi.org/10.1103/PhysRevE.103.023306

23. C. Sun, A. T. Hsu, Three-dimensional lattice Boltzmann model for compressible flows, Phys. Rev.
E, 68 (2003), 016303. https://doi.org/10.1103/PhysRevE.68.016303

AIMS Mathematics Volume 8, Issue 4, 8829–8846.

http://dx.doi.org/https://doi.org/10.1006/jcph.2001.6790
http://dx.doi.org/https://doi.org/10.4208/aamm.2014.4.s2
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2008.10.013
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2010.06.032
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.88.033305
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.106.025314
http://dx.doi.org/https://doi.org/10.1137/140975346
http://dx.doi.org/https://doi.org/10.1137/15M1028078
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.97.013307
http://dx.doi.org/https://doi.org/10.1063/1.5010964
http://dx.doi.org/https://doi.org/10.1002/fld.4996
http://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2020.120156
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.103.023306
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.68.016303


8844

24. K. Qu, C. Shu, Y. T. Chew, Alternative method to construct equilibrium distribution functions in
lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number, Phys.
Rev. E, 75 (2007), 036706. https://doi.org/10.1103/PhysRevE.75.036706

25. K. Li, C. Zhong, A lattice Boltzmann model for simulation of compressible flows, Int. J. Numer.
Methods Fluids, 77 (2015), 334–357. https://doi.org/10.1002/fld.3984

26. K. Qu, Development of lattice Boltzmann method for compressible flows, Ph.D thesis, National
University of Singapore, Singapore, 2008.

27. R.-F. Qiu, C.-X. Zhu, R.-Q. Chen, J.-F. Zhu, Y.-C. You, A double-distribution-function lattice
Boltzmann model for high-speed compressible viscous flows, Comput. Fluids, 166 (2018), 24–31.
https://doi.org/10.1016/j.compfluid.2018.01.039

28. Z. Liu, R. Chen, L. Xu, Parallel unstructured finite volume lattice Boltzmann method for high-
speed viscid compressible flows, International Journal of Modern Physics C, 33 (2022), 2250066.
https://doi.org/10.1142/S0129183122500668

29. L. Zhu, S. Chen, Z. Guo, dugksFoam: An open source OpenFOAM solver for
the Boltzmann model equation, Comput. Phys. Commun., 213 (2017), 155–164.
https://doi.org/10.1016/j.cpc.2016.11.010

30. Z. Guo, K. Xu, Discrete unified gas kinetic scheme for multiscale heat transfer based on
the phonon Boltzmann transport equation, Int. J. Heat Mass Tran., 102 (2016), 944–958.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.088

31. P. Wang, S. Tao, Z. Guo, A coupled discrete unified gas-kinetic scheme for Boussinesq flows,
Comput. Fluids, 120 (2015), 70–81. https://doi.org/10.1016/j.compfluid.2015.07.012

32. P. Wang, Y. Zhang, Z. Guo, Numerical study of three-dimensional natural convection in a
cubical cavity at high Rayleigh numbers, Int. J. Heat Mass Tran., 113 (2017), 217–228.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.057

33. H. Liu, M. Kong, Q. Chen, L. Zheng, Y. Cao, Coupled discrete unified gas kinetic scheme for
the thermal compressible flows in all Knudsen number regimes, Phys. Rev. E, 98 (2018), 053310.
https://doi.org/10.1103/PhysRevE.98.053310

34. Y. Wang, C. Zhong, S. Liu, Arbitrary Lagrangian-Eulerian-type discrete unified gas kinetic scheme
for low-speed continuum and rarefied flow simulations with moving boundaries, Phys. Rev. E, 100
(2019), 063310. https://doi.org/10.1103/PhysRevE.100.063310

35. Y. Zhang, L. Zhu, P. Wang, Z. Guo, Discrete unified gas kinetic scheme for flows of
binary gas mixture based on the McCormark model, Phys. Fluids, 31 (2019), 017101.
https://doi.org/10.1063/1.5063846

36. J. Shang, Z. Chai, H. Wang, B. Shi, Discrete unified gas kinetic scheme for
nonlinear convection-diffusion equations, Phys. Rev. E, 101 (2020), 023306.
https://doi.org/10.1103/PhysRevE.101.023306

37. M. Zhong, S. Zou, D. Pan, C. Zhuo, C. Zhong, A simplified discrete unified gas kinetic scheme for
incompressible flow, Phys. Fluids, 32 (2020), 093601. https://doi.org/10.1063/5.0021332

38. M. Zhong, S. Zou, D. Pan, C. Zhuo, C. Zhong, A simplified discrete unified gas–kinetic scheme
for compressible flow, Phys. Fluids, 33 (2021), 036103. https://doi.org/10.1063/5.0033911

AIMS Mathematics Volume 8, Issue 4, 8829–8846.

http://dx.doi.org/https://doi.org/10.1103/PhysRevE.75.036706
http://dx.doi.org/https://doi.org/10.1002/fld.3984
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2018.01.039
http://dx.doi.org/https://doi.org/10.1142/S0129183122500668
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2016.11.010
http://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.088
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2015.07.012
http://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.057
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.98.053310
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.100.063310
http://dx.doi.org/https://doi.org/10.1063/1.5063846
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.101.023306
http://dx.doi.org/https://doi.org/10.1063/5.0021332
http://dx.doi.org/https://doi.org/10.1063/5.0033911


8845

39. G. Karypis, K. Schloegel, PARMETIS: Parallel graph partitioning and sparse matrix ordering
library version 4.0, Technical Report, 97-060.

40. S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, et al., PETSc/TAO users
manual, Argonne National Laboratory, ANL-21/39 - Revision 3.17, 2022. Available from: https:
//petsc.org/

41. Z. Guo, C. Zheng, B. Shi, T. S. Zhao, Thermal lattice Boltzmann equation for
low Mach number flows: decoupling model, Phys. Rev. E, 75 (2007), 036704.
https://doi.org/10.1103/PhysRevE.75.036704

42. V. Venkatakrishnan, Convergence to steady-state solutions of the Euler equations
on unstructured grids with limiters, J. Comput. Phys., 118 (1995), 120–130.
https://doi.org/10.1006/jcph.1995.1084

43. Z. Guo, C. Zheng, B. Shi, Non-equilibrium extrapolation method for velocity and pressure
boundary conditions in the lattice Boltzmann method, Chinese Phys., 11 (2002), 366–375.
https://doi.org/10.1088/1009-1963/11/4/310

44. F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical
solution of the compressible Navier–Stokes equations, J. Comput. Phys., 131 (1997), 267–279.
https://doi.org/10.1006/jcph.1996.5572

45. P. A. Forsyth, H. Jiang, Nonlinear iteration methods for high speed laminar compressible
Navier-Stokes equations, Comput. Fluids, 26 (1997), 249–279. https://doi.org/10.1016/S0045-
7930(96)00041-2

46. Q. Li, Y. L. He, Y. J. Gao, Implementation of finite-difference lattice Boltzmann method on general
body-fitted curvilinear coordinates, International Journal of Modern Physics C, 19 (2008), 1581–
1595. https://doi.org/10.1142/S0129183108013126

47. M. D. De Tullio, P. De Palma, G. Iaccarino, G. Pascazio, M. Napolitano, An immersed boundary
method for compressible flows using local grid refinement, J. Comput. Phys., 225 (2007), 2098–
2117. https://doi.org/10.1016/j.jcp.2007.03.008

48. X. Liao, L. Xiao, C. Yang, Y. Lu, MilkyWay-2 supercomputer: system and application, Front.
Comput. Sci., 8 (2014), 345–356. https://doi.org/10.1007/s11704-014-3501-3

49. Y. T. Chow, Y. Deng, Y. He, H. Liu, X. Wang, Surface-localized transmission eigenstates, super-
resolution imaging, and pseudo surface plasmon modes, SIAM J. Imaging Sci., 14 (2021), 946–975.
https://doi.org/10.1137/20M1388498

50. Z. Bai, H. Diao, H. Liu, Q. Meng, Stable determination of an elastic medium scatterer by a single
far-field measurement and beyond, Calc. Var., 61 (2022), 170. https://doi.org/10.1007/s00526-022-
02278-5

51. H. Liu, On local and global structures of transmission eigenfunctions and beyond, J. Inverse Ill-
Posed Probl., 30 (2022), 287–305. https://doi.org/10.1515/jiip-2020-0099

52. Y. Gao, H. Liu, X. Wang, K. Zhang, On an artificial neural network for inverse scattering problems,
J. Comput. Phys., 448 (2022), 110771. https://doi.org/10.1016/j.jcp.2021.110771

AIMS Mathematics Volume 8, Issue 4, 8829–8846.

https://petsc.org/
https://petsc.org/
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.75.036704
http://dx.doi.org/https://doi.org/10.1006/jcph.1995.1084
http://dx.doi.org/https://doi.org/10.1088/1009-1963/11/4/310
http://dx.doi.org/https://doi.org/10.1006/jcph.1996.5572
http://dx.doi.org/https://doi.org/10.1016/S0045-7930(96)00041-2
http://dx.doi.org/https://doi.org/10.1016/S0045-7930(96)00041-2
http://dx.doi.org/https://doi.org/10.1142/S0129183108013126
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2007.03.008
http://dx.doi.org/https://doi.org/10.1007/s11704-014-3501-3
http://dx.doi.org/https://doi.org/10.1137/20M1388498
http://dx.doi.org/https://doi.org/10.1007/s00526-022-02278-5
http://dx.doi.org/https://doi.org/10.1007/s00526-022-02278-5
http://dx.doi.org/https://doi.org/10.1515/jiip-2020-0099
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2021.110771


8846

53. E. L. K. Blasten, H. Liu, Scattering by curvatures, radiationless sources, transmission
eigenfunctions, and inverse scattering problems, SIAM J. Math. Anal., 53 (2021), 3801–3837.
https://doi.org/10.1137/20M1384002

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 4, 8829–8846.

http://dx.doi.org/https://doi.org/10.1137/20M1384002
http://creativecommons.org/licenses/by/4.0

	Introduction
	Parallel DUGKS for viscid compressible flows
	Kinetic model equations
	DUGKS for the velocity and total energy distribution functions
	Parallel implementation of DUGKS

	Numerical simulations
	Flows around the NACA0012 airfoil
	Flows past a circular cylinder
	Parallel scalability

	Conclusions

