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Abstract: This paper investigates soliton solutions to a two-component complex short pulse (c-SP)
equation. Based on the known Lax pair representation of this equation, we verify the integrability
of a two-component c-SP equation and find an equivalent convenient Lax pair through hodograph
transformation. The classical Darboux transformation (DT) is utilized to construct multi-soliton
solutions for the two-component c-SP equation as an ordinary determinant. Furthermore, the details of
one-soliton and two-soliton solutions are presented and generalized for N-fold soliton solutions. We
also derive exact soliton solutions in explicit form using suitable reduction constraints from various
“seed” solutions and explore them via graphs.
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1. Introduction

In fiber-optic transmission systems, solitons are ideal information carriers due to their inherent
stability over long distances. The nonlinear and linear effects of fiber optics produce optical solitons
that are unique to fiber optics [1]. Firstly, optical solitons were originated by Garmire in 1964 when
he observed self-focusing optical rays on super-lattice waveguides, and the first optical soliton was
predicted in 1973 by Hasegawa and Tappert [2]. In nonlinear optics, several fundamental physical
models can be used to describe the dynamic characteristics of the systems. The Nonlinear Schrödinger
(NLS) equation is an important model for understanding the propagation of wide-range pulses or waves
with slowly varying envelopes [3, 4]. It is used to describe the transmission characteristics of optical
solitons in fiber-optic systems due to its ability to accurately represent the associated dynamics. In
strongly nonlocal nonlinear media, the NLS equation is augmented with nonlocal terms which allow
researchers to study the propagation dynamics of various transmission characteristics, such as tripole
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breathers [5]. These tripole breathers are special waves that travel in nonlocal nonlinear media without
dispersion or distortion even over long distances, making them ideal candidates for transmission in
fiber optics [6]. Furthermore, the NLS equation can be used to study the stability, nonlocality, and
wave interaction aspects of nonlinear media [7]. However, the accuracy of the NLS equation decreases
at wavelengths in the femtosecond range when ultra-short pulses are used [8, 9]. Therefore, in order
to accurately represent ultra-short processes using the NLS equation, it is necessary to modify existing
model to reflect the details of ultra-short processes. Schäfer-Wayne developed a new modified model,
an alternative to the NLS equation to approximate the evolution of very short optical pulses, known as
the short pulse (SP) equation [10]. The proposed SP equation plays a vital role in the study of nonlinear
optical fibers [11]. In numerical analysis, it was found that the SP equation has a better approximation
to Maxwell’s equation as the pulse length shorten than NLS equation [12].

The ideal model of the SP equation has the following form

∂x∂t p = p +
1
6
∂2

x(p3), (1.1)

where the dynamical real-valued function p = p(x, t) represents the electric pulse’s magnitude and
the subscripts indicate space-time partial derivatives. In addition to the nonlinear optical context, the
SP equation is also extracted from the integrable differential equation with respect to pseudo-spherical
surfaces [13]. In their studies, S. Sakovich and A. Sakovich examined the integrability of the SP
equation from different perspectives and demonstrated that the SP equation is an integrable nonlinear
equation [14]. The SP Eq (1.1) has integrable properties like the Lax pair (corresponding to linear
combination), representation of zero-curvature, infinitely many conservation laws, and so on. An
implicit transformation is applied to transform the SP Eq (1.1) into the Sine-Gordon (SG) equation,
which is called the hodograph transformation [15]. The connection generated by the hodograph
transformation between the SP equation and the SG equation was utilized to obtain exact soliton
solutions of the SP equation [16]. Further, the N-soliton solutions involving multi-loop and multi-
breather solutions were obtained using the well-known Hirota bi-linear method [17]. In addition,
the SP equation is the basic version of a much more general equation, the Wadati-Konno-Ichikawa
(WKI) equation, which is defined on multiple dimensions and holds a much greater complexity when
compared to the SP equation [18]. This equation can be further generalized into the complex short pulse
(c-SP) equation which is used to describe nonlinear phenomena like solitary waves, rogue waves, and
other nonlinear structures [19].

In the present paper [20], the following c-SP equation is proposed and investigated

∂x∂t p = 1
2∂x(|p|2∂x p) + p, (1.2)

and its generalized two-component equations

∂x∂t p = 1
2∂x((|p|2 + |q|2)∂x p) + p, (1.3)

∂x∂tq = 1
2∂x((|p|2 + |q|2)∂xq) + q. (1.4)

As shown in current studies, the c-SP equation and its generalized two-component equations are
both integrable, as evidenced by the presence of the Lax pair and infinitely many conservation laws.
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Further, the integrability of the c-SP equation helps us to analyze interesting dynamical characteristics
in terms of multi-soliton, dark-bright soliton, loop soliton, and loop-breather soliton solutions [21].
The c-SP equation works better for manipulating multiple wave interactions than the SP equation due
to pulse waves’ complex representation. Specifically, the c-SP equation can better approximate the
dispersion, and nonlinearity. These effects are important to consider when modeling the behavior of
optical fibers and predicting the nonlinear dynamics of the system. The c-SP equation also incorporates
other factors such as higher order dispersion, which is not considered in the simple SP equation [22].
In the same way as other nonlinear physical models, the c-SP equation and its generalized two-
component equations also have N-soliton solutions that can be used to investigate dynamical features
graphically. We present DT technique to derive N-soliton solutions for the c-SP equation and its two-
component equations because the DT technique is widely used to construct multi-soliton solutions
of several fundamental physical models such as the generalized Korteweg-de Vries (KdV) equation,
NLS equation, and SP equation, etc [23]. This is a valuable technique that is not only effective for
providing soliton solutions but also for determining exact soliton solutions in explicit form [24]. The
DT originated by Jean Gaston Darboux in 1882 through the representation of the Darboux theorem.
Moreover, the book describing DT’s relationship with the theory of solitons belongs to Matveev and
Salle [25].

In this paper, the outline is classified as follows. In Section 2, we present a Lax pair representation
of the two-component c-SP equation, as well as a Lax integrability analysis of that equation. We also
introduce the hodograph transformation and deform the two-component c-SP equation into equivalent
nonlinear differential equations. This transformation provides a convenient Lax pair that will be used
to construct DT. The DT is then defined in Section 3, to compute generalized N-fold soliton solutions
for the two-component c-SP equation in the ratio of the ordinary determinant. The one-fold DT
is expressed in details, while the two-fold and generalized N-fold DT are presented explicitly. In
Section 4, we use derived soliton solutions to find exact soliton solutions in explicit form by choosing
suitable seed solutions. Furthermore, the dynamics of exact soliton solutions are also analyzed via
graphs using different parameters. In the final section, we summarize our conclusions and make a few
remarks.

2. Lax pair and integrability

The Lax pair for an integrable two-component SP equation is derived explicitly from a generalized
matrix of the SP equation using a zero-curvature representation [26]. In the present section, we
construct the Lax pair for a two-component c-SP equation with another generalized matrix of the
c-SP equation and show its integrability.

The linear matrix-valued system (Lax pair) associated with Eq (1.2) is

∂xΨ = UΨ, U =

(
1 0
0 −1

)
λ +

(
0 px

p∗x 0

)
λ, (2.1)

∂tΨ = VΨ, V = 1
2 |p|

2

(
1 px

p∗x −1

)
λ + 1

2

(
0 −p
p∗ 0

)
+ 1

4

(
1 0
0 −1

)
λ−1. (2.2)

The zero-curvature representation ∂tU−∂xV + [U,V] = 0 is the condition for compatibility of linear
matrix-valued system that gives Eq (1.2). Consider the following Lax pair for associated Eqs (1.3)

AIMS Mathematics Volume 8, Issue 4, 8811–8828.



8814

and (1.4)

∂xΨ = S Ψ, S =

(
I2 0
0 −I2

)
λ +

(
0 Px

Qx 0

)
λ, (2.3)

∂tΨ = TΨ, T = 1
2

(
PQ PQPx

QPQx −QP

)
λ + 1

2

(
0 −P
Q 0

)
+ 1

4

(
I2 0
0 −I2

)
λ−1, (2.4)

where I2×2 is the identity matrix and P, Q are defined as second-order 2-by-2 matrices

P =

(
p q
−q∗ p∗

)
, Q =

(
p∗ −q
q∗ p

)
.

Note that Q = P†, thus PQ = QP = (|p|2 + |q|2)I2.
The compatibility condition ∂x∂tΨ = ∂t∂xΨ gives zero-curvature equation S t − Tx + S T − TS = 0,

which provides a generalized two-component Eqs (1.3) and (1.4) of the c-SP equation, and shows the
complete integrability of these coupled equations. In spite of the inconvenient nature of the Lax pair
Eqs (2.3) and (2.4) for solving a c-SP equation, the hodograph transformation is commonly used as a
special coordinate transformation for solving some nonlinear multi-valued function equations [27,28].
Several novel nonlinear evolution equations can also be generated by it, such as the modified KdV
equation, dispersion-less Toda equation, and SG equation [29].

The conservation law associated with the c-SP equation has the following form

∂tω =
1
2
∂x(pp∗ω). (2.5)

The relation between the old variable p and the new variable ω is given by

ω =
√

1 + ∂x p∂x p∗. (2.6)

The induced hodograph transformation replaces the independent variables (x, t) into new ones (y, z)
by the following simultaneous equations

dy = ωdx + 1
2 pp∗ωdt, dz = dt. (2.7)

Now, the c-SP equation has transformed into an equivalent pair of equations with new variables

∂y∂zx = −
1
2
∂y(pp∗), (2.8)

∂y∂z p = p∂yx. (2.9)

We need to transform the Eqs (2.8) and (2.9) into matrix generalization, so

χyz = −
1
2

(PyQ + PQy), (2.10)

Pyz =
1
2

(χyP + Pχy), (2.11)
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where, the functions χ, Q, and P are 2-by-2 second-order matrices. The Lax pair (2.3) and (2.4) has
been transformed into a new compatible Lax pair using integrable Eqs (2.10) and (2.11) as

ϕy = L(y, z; λ)ϕ, (2.12)

ϕz = M(y, z; λ)ϕ. (2.13)

Here, L(y, z; λ) and M(y, z; λ) are 2-by-2 second-order matrix-valued functions which are equivalent to

L = λ∂yZ =
∂

∂y

(
χ P
Q −χ

)
λ, (2.14)

M = N +
1
λ

R =
1
2

(
0 −P
Q 0

)
+

1
4

(
I2 0
0 −I2

)
λ−1, (2.15)

and the matrices Z, N, and R are given by

Z =

(
χ P
Q −χ

)
, N =

1
2

(
0 −P
Q 0

)
, R =

1
4

(
I2 0
0 −I2

)
, χ =

(
x 0
0 x

)
.

It follows [30] that the new Lax pair has compatibility constraint ϕyz = ϕzy, which leads to zero-
curvature representation My(y, z, λ)− Lz(y, z, λ) + [M(y, z, λ), L(y, z, λ)] = 0, for the Lax pair Eqs (2.12)
and (2.13) and yield is equivalent to the Eqs (2.10) and (2.11). It is found that the first term of the
second-order matrix T in Eq (2.4) does not appear in Eq (2.15) when comparing the time spectrum of
the Lax pair before and after the hodograph transformation. This reduces our computational work in
the next section as well. Now, we are in a position to apply the well-known DT technique based on the
new Lax pair Eqs (2.12) and (2.13) for solving the two-component c-SP equation to get multi-soliton
solutions.

3. Darboux transformation

The DT is the most powerful and effective tool to generate soliton solutions to an integrable system
of equations. In this section, we derive scalar soliton solutions to the two-component c-SP equation
for the N-fold DT by choosing a suitable Darboux matrix [31]. Firstly, we define matrix-valued
solution ϕ[1] of co-variant Lax pair Eqs (2.12) and (2.13) for one-fold DT as

ϕ[1] = H[1]ϕ, (3.1)

where Darboux matrix H[1] is equal to

H[1] =

(
I2 0
0 I2

)
λ−1 +

(
A[1]

1 B[1]
1

C[1]
1 −D[1]

1

)
. (3.2)

Here, A[1]
1 , B[1]

1 , C[1]
1 , and D[1]

1 are matrix-valued functions associated with variables y and z. The
equivalent form of the Lax pair Eqs (2.12) and (2.13) is given by

ϕ[1]
y = L[1]ϕ[1], (3.3)
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ϕ[1]
z = M[1]ϕ[1]. (3.4)

At this point, the second-order functions L[1] and M[1] are equal to

L[1] = λ

 χ[1]
y P[1]

y

Q[1]
y −χ[1]

y

 , M[1] =

( 1
4λ I2 −1

2 P[1]

1
2 Q[1] − 1

4λ I2

)
. (3.5)

The compatibility condition ϕ[1]
yz = ϕ[1]

zy gives the governing equations

H[1]
y + H[1]L = L[1]H[1], H[1]

z + H[1]M = M[1]H[1]. (3.6)

We use pair of Eq (3.6) to find out the relationship between the newly proposed solution, the seed
solution, and elements of the Darboux matrix H[1]. Substituting the Darboux matrix of H[1] and other
corresponding values into pair of Eq (3.6) , then by comparing the coefficients of λ, we get the pair of
equations

B[1]
1 = P[1] − P, (3.7)

C[1]
1 = Q[1] − Q, (3.8)

and
A[1]

1 = χ[1] −χ, (3.9)

D[1]
1 = χ[1] −χ. (3.10)

Since Q = P† (the sign † named dagger of P), we obtain C[1]
1 = B†[1]

1 and A[1]
1 = D[1]

1 by equating
Eqs (3.7) and (3.8) as well as Eqs (3.9) and (3.10), then the Darboux matrix H[1] becomes the form

H[1](λ) =

(
I2 0
0 I2

)
λ−1 +

(
A[1]

1 B[1]
1

B†[1]
1 −A[1]

1

)
, (3.11)

where A[1]
1 and B[1]

1 are unknown matrix-valued functions as

A[1]
1 =

(
(a[1]

1 )11 (a[1]
1 )12

(a[1]
1 )21 (a[1]

1 )22

)
, B[1]

1 =

(
(b[1]

1 )11 (b[1]
1 )12

(b[1]
1 )21 (b[1]

1 )22

)
,

and the generated one-fold soliton solutions are

χ[1](y, z) = χ(y, z) + A[1]
1 , P[1](y, z) = P(y, z) + B[1]

1 . (3.12)

The next step is to compute the matrix-valued components of unknown matrix-valued functions A[1]
1

and B[1]
1 that will be interlinked with seed solutions. We use the following constraint H[1](λ)ϕ|λ=λi = 0,

with associated eigen-valued function ϕ = ϕi =
(

g(i)
11 g(i)

12 g(i)
13 g(i)

14

)T
, where i varies from 0 to 4. The

simultaneous governing equations are derived from this constraint and solved through the well-known
Cramer’s rule. Then we get

(a[1]
1 )11 =

(Λ[1]
1 )11

Θ1
=

det


−λ−1

1 g(1)
11 g(1)

12 g(1)
13 g(1)

14
−λ−1

2 g(2)
11 g(2)

12 g(2)
13 g(2)

14
−λ−1

3 g(3)
11 g(3)

12 g(3)
13 g(3)

14
−λ−1

4 g(4)
11 g(4)

12 g(4)
13 g(4)

14


det


g(1)

11 g(1)
12 g(1)

13 g(1)
14

g(2)
11 g(2)

12 g(2)
13 g(2)

14
g(3)

11 g(3)
12 g(3)

13 g(3)
14

g(4)
11 g(4)

12 g(4)
13 g(4)

14


, (3.13)
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(a[1]
1 )12 =

(Λ[1]
1 )12

Θ1
=

det


g(1)

11 −λ−1
1 g(1)

11 g(1)
13 g(1)

14
g(2)

11 −λ−1
2 g(2)

11 g(2)
13 g(2)

14
g(3)

11 −λ−1
3 g(3)

11 g(3)
13 g(3)

14
g(4)

11 −λ−1
4 g(4)

11 g(4)
13 g(4)

14


det


g(1)

11 g(1)
12 g(1)

13 g(1)
14

g(2)
11 g(2)

12 g(2)
13 g(2)

14
g(3)

11 g(3)
12 g(3)

13 g(3)
14

g(4)
11 g(4)

12 g(4)
13 g(4)

14


, (3.14)

(a[1]
1 )21 =

(Λ[1]
1 )21

Θ1
=

det


−λ−1

1 g(1)
12 g(1)

12 g(1)
13 g(1)

14
−λ−1

2 g(2)
12 g(2)

12 g(2)
13 g(2)

14
−λ−1

3 g(3)
12 g(3)

12 g(3)
13 g(3)

14
−λ−1

4 g(4)
12 g(4)

12 g(4)
13 g(4)

14


det


g(1)

11 g(1)
12 g(1)

13 g(1)
14

g(2)
11 g(2)

12 g(2)
13 g(2)

14
g(3)

11 g(3)
12 g(3)

13 g(3)
14

g(4)
11 g(4)

12 g(4)
13 g(4)

14


, (3.15)

(a[1]
1 )22 =

(Λ[1]
1 )22

Θ1
=

det


g(1)

11 −λ−1
1 g(1)

12 g(1)
13 g(1)

14
g(2)

11 −λ−1
2 g(2)

12 g(2)
13 g(2)

14
g(3)

11 −λ−1
3 g(3)

12 g(3)
13 g(3)

14
g(4)

11 −λ−1
4 g(4)

12 g(4)
13 g(4)

14


det


g(1)

11 g(1)
12 g(1)

13 g(1)
14

g(2)
11 g(2)

12 g(2)
13 g(2)

14
g(3)

11 g(3)
12 g(3)

13 g(3)
14

g(4)
11 g(4)

12 g(4)
13 g(4)

14


, (3.16)

also

(b[1]
1 )11 =

(∆[1]
1 )11

Θ1
=

det


g(1)

11 g(1)
12 −λ−1

1 g(1)
11 g(1)

14
g(2)

11 g(2)
12 −λ−1

2 g(2)
11 g(2)

14
g(3)

11 g(3)
12 −λ−1

3 g(3)
11 g(3)

14
g(4)

11 g(4)
12 −λ−1

4 g(4)
11 g(4)

14


det


g(1)

11 g(1)
12 g(1)

13 g(1)
14

g(2)
11 g(2)

12 g(2)
13 g(2)

14
g(3)

11 g(3)
12 g(3)

13 g(3)
14

g(4)
11 g(4)

12 g(4)
13 g(4)

14


, (3.17)
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(b[1]
1 )12 =

(∆[1]
1 )12

Θ1
=

det


g(1)

11 g(1)
12 g(1)

13 −λ−1
1 g(1)

11
g(2)

11 g(2)
12 g(2)

13 −λ−1
2 g(2)

11
g(3)

11 g(3)
12 g(3)

13 −λ−1
3 g(3)

11
g(4)

11 g(4)
12 g(4)

13 −λ−1
4 g(4)

11


det


g(1)

11 g(1)
12 g(1)

13 g(1)
14

g(2)
11 g(2)

12 g(2)
13 g(2)

14
g(3)

11 g(3)
12 g(3)

13 g(3)
14

g(4)
11 g(4)

12 g(4)
13 g(4)

14


, (3.18)

(b[1]
1 )21 =

(∆[1]
1 )21

Θ1
=

det


g(1)

11 g(1)
12 −λ−1

1 g(1)
12 g(1)

14
g(2)

11 g(2)
12 −λ−1

2 g(2)
12 g(2)

14
g(3)

11 g(3)
12 −λ−1

3 g(3)
12 g(3)

14
g(4)

11 g(4)
12 −λ−1

4 g(4)
12 g(4)

14


det


g(1)

11 g(1)
12 g(1)

13 g(1)
14

g(2)
11 g(2)

12 g(2)
13 g(2)

14
g(3)

11 g(3)
12 g(3)

13 g(3)
14

g(4)
11 g(4)

12 g(4)
13 g(4)

14


, (3.19)

(b[1]
1 )22 =

(∆[1]
1 )22

Θ1
=

det


g(1)

11 g(1)
12 g(1)

13 −λ−1
1 g(1)

12
g(2)

11 g(2)
12 g(2)

13 −λ−1
2 g(2)

12
g(3)

11 g(3)
12 g(3)

13 −λ−1
3 g(3)

12
g(4)

11 g(4)
12 g(4)

13 −λ−1
4 g(4)

12


det


g(1)

11 g(1)
12 g(1)

13 g(1)
14

g(2)
11 g(2)

12 g(2)
13 g(2)

14
g(3)

11 g(3)
12 g(3)

13 g(3)
14

g(4)
11 g(4)

12 g(4)
13 g(4)

14


. (3.20)

Using the set of Eqs (3.13)–(3.20) into pair of Eq (3.12), the one-fold DT on the scalar solutions of
the two-component c-SP equation is given as

x[1] = x +
1
2
{
(Λ[1]

1 )11

Θ1
+

(Λ[1]
1 )22

Θ1
}, p[1] = p +

(∆[1]
1 )11

Θ1
, q[1] = q +

(∆[1]
1 )12

Θ1
. (3.21)

In the second succession followed by the one-fold DT, the Darboux matrix H[2] for the two-
component c-SP equation is in the form

H[2](λ) =

(
I2 0
0 I2

)
λ−2 +

(
A[1]

2 B[1]
2

−B†[1]
2 A[1]

2

)
λ−1 +

(
A[2]

2 B[2]
2

B†[2]
2 −A[2]

2

)
, (3.22)

where we take

A[1]
2 =

(
(a[1]

2 )11 (a[1]
2 )12

(a[1]
2 )21 (a[1]

2 )22

)
, A[2]

2 =

(
(a[2]

2 )11 (a[2]
2 )12

(a[2]
2 )21 (a[2]

2 )22

)
,
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B[1]
2 =

(
(b[1]

2 )11 (b[1]
2 )12

(b[1]
2 )21 (b[1]

2 )22

)
, B[2]

2 =

(
(b[2]

2 )11 (b[2]
2 )12

(b[2]
2 )21 (b[2]

2 )22

)
,

and the generated corresponding novel solutions for two-fold DT are

χ[2](y, z) = χ(y, z) + A[1]
2 , P[2](y, z) = P(y, z) + B[1]

2 . (3.23)

Similarly, utilize the Cramer’s rule to solve the following constraint H[2](λ)ϕ|λ=λi = 0 for two-fold
DT, where i varies from 1 to 8. The linear governing system of equations gives

(a[1]
2 )11 =

(Λ[1]
2 )11

Θ2
, (a[1]

2 )12 =
(Λ[1]

2 )12

Θ2
, (3.24)

(a[1]
2 )21 =

(Λ[1]
2 )21

Θ2
, (a[1]

2 )22 =
(Λ[1]

2 )22

Θ2
, (3.25)

(b[1]
2 )11 =

(∆[1]
2 )11

Θ2
, (b[1]

2 )12 =
(∆[1]

2 )12

Θ2
, (3.26)

(b[1]
2 )21 =

(∆[1]
2 )21

Θ2
, (b[1]

2 )22 =
(∆[1]

2 )22

Θ2
, (3.27)

where

Θ2 = det
(
λ−1

i g(i)
11 g(i)

11 λ−1
i g(i)

12 g(i)
12 λ−1

i g(i)
13 g(i)

13 λ−1
i g(i)

14 g(i)
14

)
,

(Λ[1]
2 )11 = det

(
−λ−2

i g(i)
11 g(i)

11 λ−1
i g(i)

12 g(i)
12 λ−1

i g(i)
13 g(i)

13 λ−1
i g(i)

14 g(i)
14

)
,

(Λ[1]
2 )12 = det

(
λ−1

i g(i)
11 g(i)

11 −λ
−2
i g(i)

11 g(i)
12 λ−1

i g(i)
13 g(i)

13 λ−1
i g(i)

14 g(i)
14

)
,

(Λ[1]
2 )21 = det

(
−λ−2

i g(i)
12 g(i)

11 λ−1
i g(i)

12 g(i)
12 λ−1

i g(i)
13 g(i)

13 λ−1
i g(i)

14 g(i)
14

)
,

(Λ[1]
2 )22 = det

(
λ−1

i g(i)
11 g(i)

11 −λ
−2
i g(i)

12 g(i)
12 λ−1

i g(i)
13 g(i)

13 λ−1
i g(i)

14 g(i)
14

)
,

and

(∆[1]
2 )11 = det

(
λ−1

i g(i)
11 g(i)

11 λ−1
i g(i)

12 g(i)
12 −λ

−2
i g(i)

11 g(i)
13 λ−1

i g(i)
14 g(i)

14

)
,

(∆[1]
2 )12 = det

(
λ−1

i g(i)
11 g(i)

11 λ−1
i g(i)

12 g(i)
12 λ−1

i g(i)
13 g(i)

13 −λ
−2
i g(i)

11 g(i)
14

)
,

(∆[1]
2 )21 = det

(
λ−1

i g(i)
11 g(i)

11 λ−1
i g(i)

12 g(i)
12 −λ

−2
i g(i)

12 g(i)
13 λ−1

i g(i)
14 g(i)

14

)
,

(∆[1]
N )22 = det

(
λ−1

i g(i)
11 g(i)

11 λ−1
i g(i)

12 g(i)
12 λ−1

i g(i)
13 g(i)

13 −λ
−2
i g(i)

12 g(i)
14

)
.

Inserting the set of Eqs (3.24)–(3.27) into pair of Eq (3.23), it provides the scalar solutions of the
two-component c-SP equation for two-fold DT

x[2] = x +
1
2
{
(Λ[1]

2 )11

Θ2
+

(Λ[1]
2 )22

Θ2
}, p[2] = p +

(∆[1]
2 )11

Θ2
, q[2] = q +

(∆[1]
2 )12

Θ2
. (3.28)
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In this generalized step, we derive the N-fold DT of the two-component c-SP equation by following
one-fold and two-fold iterations. Consider the following generalized Darboux matrix

H[N](λ) =

(
I2 0
0 I2

)
λ−N +

( ∑N
i=1 λ

i−N A[i]
N

∑N
i=1 λ

i−N B[i]
N∑N

i=1 (−1)N−iλi−N B†[i]N −
∑N

i=1 (−1)N−iλi−N A[i]
N

)
, (3.29)

the unknown-valued functions are

A[i]
N =

(
(a[i]

N )11 (a[i]
N )12

(a[i]
N )21 (a[i]

N )22

)
, B[i]

N =

(
(b[i]

N )11 (b[i]
N )12

(b[i]
N )21 (b[i]

N )22

)
.

Similarly, under the action of the DT technique, the generalized N-fold soliton solutions are

χ[N](y, z) = χ(y, z) + A[1]
N , P[N](y, z) = P(y, z) + B[1]

N . (3.30)

The simultaneous algebraic equations H[N](λ)ϕ|λ=λi = 0, i = 1, 2, 3, 4, ....,N are solved through
Cramer’s rule for N-fold DT. We get the following yields

(a[1]
N )11 =

(Λ[1]
N )11

ΘN
, (a[1]

N )12 =
(Λ[1]

N )12

ΘN
, (3.31)

(a[1]
N )21 =

(Λ[1]
N )21

ΘN
, (a[1]

N )22 =
(Λ[1]

N )22

ΘN
, (3.32)

(b[1]
N )11 =

(∆[1]
N )11

ΘN
, (b[1]

N )12 =
(∆[1]

N )12

ΘN
, (3.33)

(b[1]
N )21 =

(∆[1]
N )21

ΘN
, (b[1]

N )22 =
(∆[1]

N )22

ΘN
, (3.34)

with

ΘN = det
(
λ1−N

1 g(i)
11 λ1−N

i g(i)
12 λ1−N

i g(i)
13 ... g(i)

12 λ−1
1 g(i)

13 g(i)
13 λ−1

i g(i)
14 g(i)

14

)
,

(Λ[1]
N )11 = det

(
−λ−N

i g(i)
11 λ1−N

i g(i)
12 λ1−N

i g(i)
13 ... g(i)

12 λ−1
i g(i)

13 g(i)
13 λ−1

i g(i)
14 g(i)

14

)
,

(Λ[1]
N )12 = det

(
λ1−N

i g(i)
11 −λ

−N
i g(i)

11 λ1−N
i g(i)

13 ... g(i)
12 λ−1

i g(i)
13 g(i)

13 λ−1
i g(i)

14 g(i)
14

)
,

(Λ[1]
N )21 = det

(
−λ−N

i g(i)
12 λ1−N

i g(i)
12 λ1−N

i g(i)
13 ... g(i)

12 λ−1
i g(i)

13 g(i)
13 λ−1

i g(i)
14 g(i)

14

)
,

(Λ[1]
N )22 = det

(
λ1−N

i g(i)
11 −λ

−N
i g(i)

12 λ1−N
i g(i)

13 ... g(i)
12 λ−1

i g(i)
13 g(i)

13 λ−1
i g(i)

14 g(i)
14

)
,

and

(∆[1]
N )11 = det

(
λ1−N

i g(i)
11 λ1−N

i g(i)
12 −λ

−N
i g(i)

11 ... g(i)
12 λig

(i)
13 g(i)

13 λig
(i)
14 g(i)

14

)
,

(∆[1]
N )12 = det

(
λ1−N

i g(i)
11 λ1−N

i g(i)
12 λ1−N

i g(i)
13 −λ

−N
i g(i)

11 ... g(i)
13 λ−1

i g(i)
14 g(i)

14

)
,
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(∆[1]
N )21 = det

(
λ1−N

i g(i)
11 λ1−N

i g(i)
12 −λ

−N
i g(i)

12 ... g(i)
12 λ−1

i g(i)
13 g(i)

13 λ−1
i g(i)

14 g(i)
14

)
,

(∆[1]
N )22 = det

(
λ1−N

i g(i)
11 λ1−N

i g(i)
12 λ1−N

i g(i)
13 −λ

−N
i g(i)

12 ... g(i)
13 λ−1

i g(i)
14 g(i)

14

)
.

The scalar solutions of the c-SP equation for generalized N-fold DT are obtained using bunch of
Eqs (3.31)–(3.34) into a pair of Eq (3.30). The results are given as

x[N] = x +
1
2
{
(Λ[1]

N )11

ΘN
+

(Λ[1]
N )22

ΘN
}, p[N] = p +

(∆[1]
N )11

ΘN
, q[N] = q +

(∆[1]
N )12

ΘN
. (3.35)

In the next section, we will use the above-determined scalar solutions for N-fold DT to find exact
soliton solutions in explicit form.

4. Exact soliton solutions

In this section, the exact soliton solutions of the two-component c-SP equation are computed for
multi-soliton solutions by taking two different seed solutions and analyzing them via graphs [32]. Note
that we can only choose suitable seed solutions that satisfy the transformed linear system of Eqs (2.12)
and (2.13).
Case I. In the first case, let us take a seed solutionχy = I2×2 and P = O2×2 that is true for the hodograph
transformation of the c-SP equation. The resulting Lax pair Eqs (2.12) and (2.13) becomes

ϕy =

(
λI2 O2

O2 −λI2

)
ϕ, ϕz =

( 1
4λ I2 O2

O2 − 1
4λ I2

)
ϕ, (4.1)

where ϕ =
(

g11 g12 g13 g14

)T
, I2, and O2 simultaneously represent the eigenfunction, 2-by-2

identity matrix, and second-order null matrix. The integral solution to Eq (4.1) gives

g11 = g12 = c1 exp(λy + 0.25λ−1z), (4.2)

g13 = g14 = c3 exp(−λy − 0.25λ−1z). (4.3)

Here, c1 and c3 are constants. At λ = λi, the particular solutions are defined as follows

g(i)
11 = g(i)

12 = c1 exp(λiy + 0.25λ−1
i z), (4.4)

g(i)
13 = g(i)

14 = c3 exp(−λiy − 0.25λ−1
i z). (4.5)

The particular solution is in complex conjugate form

g∗(i)11 = g∗(i)12 = c1 exp(λ∗i y + 0.25λ−1∗
i z), (4.6)

g∗(i)13 = g∗(i)14 = c3 exp(−λ∗i y − 0.25λ−1∗
i z). (4.7)
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The following reduction requirements for a one-fold soliton solution are satisfied for the two-
component c-SP equation

g(2)
11 = −g∗(1)

12 , g(2)
12 = g∗(1)

11 , g(2)
13 = −g∗(1)

14 , g(2)
14 = g∗(1)

13 , λ2 = −λ∗1, (4.8)

g(4)
11 = −g∗(3)

12 , g(4)
12 = g∗(3)

11 , g(4)
13 = −g∗(3)

14 , g(4)
14 = g∗(3)

13 , λ4 = −λ∗3. (4.9)

Put N=1 in a pair of Eq (3.35) and using reduction constraints from Eqs (4.8) and (4.9), the components
of one-fold soliton solutions give exact soliton solutions in the following form

x[1] = x +
1
2



∣∣∣∣∣∣∣∣∣∣∣∣
−λ−1

1 g(1)
11 g(1)

12 g(1)
13 g(1)

14
−λ−1∗

1 g∗(1)
12 g∗(1)

11 −g∗(1)
14 g∗(1)

13
−λ−1

3 g(3)
11 g(3)

12 g(3)
13 g(3)

14
−λ−1∗

3 g∗(3)
12 g∗(3)

11 −g∗(3)
14 g∗(3)

13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
g(1)

11 g(1)
12 g(1)

13 g(1)
14

−g∗(1)
12 g∗(1)

11 −g∗(1)
14 g∗(1)

13
g(3)

11 g(3)
12 g(3)

13 g(3)
14

−g∗(3)
12 g∗(3)

11 −g∗(3)
14 g∗(3)

13

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣
g(1)

11 −λ−1
1 g(1)

12 g(1)
13 g(1)

14
−g∗(1)

12 λ−1∗
1 g∗(1)

11 −g∗(1)
14 g∗(1)

13
g(3)

11 −λ−1
3 g(3)

12 g(3)
13 g(3)

14
−g∗(3)

12 λ−1∗
3 g∗(3)

11 −g∗(3)
14 g∗(3)

13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
g(1)

11 g(1)
12 g(1)

13 g(1)
14

−g∗(1)
12 g∗(1)

11 −g∗(1)
14 g∗(1)

13
g(3)

11 g(3)
12 g(3)

13 g(3)
14

−g∗(3)
12 g∗(3)

11 −g∗(3)
14 g∗(3)

13

∣∣∣∣∣∣∣∣∣∣∣∣


, (4.10)

p[1] =

∣∣∣∣∣∣∣∣∣∣∣∣
g(1)

11 g(1)
12 −λ−1

1 g(1)
11 g(1)

14
−g∗(1)

12 g∗(1)
11 −λ−1∗

1 g∗(1)
12 g∗(1)

13
g(3)

11 g(3)
12 −λ−1

3 g(3)
11 g(3)

14
−g∗(3)

12 g∗(3)
11 −λ−1∗

3 g∗(3)
12 g∗(3)

13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
g(1)

11 g(1)
12 g(1)

13 g(1)
14

−g∗(1)
12 g∗(1)

11 −g∗(1)
14 g∗(1)

13
g(3)

11 g(3)
12 g(3)

13 g(3)
14

−g∗(3)
12 g∗(3)

11 −g∗(3)
14 g∗(3)

13

∣∣∣∣∣∣∣∣∣∣∣∣
, q[1] =

∣∣∣∣∣∣∣∣∣∣∣∣
g(1)

11 g(1)
12 g(1)

13 −λ−1
1 g(1)

11
−g∗(1)

12 g∗(1)
11 −g∗(1)

14 −λ−1∗
1 g∗(1)

12
g(3)

11 g(3)
12 g(3)

13 −λ−1
3 g(3)

11
−g∗(3)

12 g∗(3)
11 −g∗(3)

14 −λ−1∗
3 g∗(3)

12

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
g(1)

11 g(1)
12 g(1)

13 g(1)
14

−g∗(1)
12 g∗(1)

11 −g∗(1)
14 g∗(1)

13
g(3)

11 g(3)
12 g(3)

13 g(3)
14

−g∗(3)
12 g∗(3)

11 −g∗(3)
14 g∗(3)

13

∣∣∣∣∣∣∣∣∣∣∣∣
. (4.11)

Using particular column solutions and their complex conjugates from Eqs (4.4)–(4.7) into Eqs (4.10)
and (4.11), we get the exact soliton solutions in the explicit form shown in Figure 1. There are also
dynamic characteristics associated with the computed single-soliton solutions such as dark solitons and
dark-bright solitons with single peaks.

x[1] = x +
κ1(λ∗3|λ1|

2 − λ1|λ3|
2) + κ2(λ3|λ1|

2 − λ∗3|λ1|
2) + λ1|λ3|

2κ3 − λ3|λ1|
2κ4

2|λ1|
2|λ3|

2Γ1Γ2
, (4.12)

p[1] =
c1

(
κ5(λ∗1|λ3|

2 − λ∗3|λ1|
2) + κ6(λ∗3|λ1|

2 − λ∗1|λ3|
2)
)

2c3|λ1|
2|λ3|

2Γ1Γ2

+
c1

(
κ7(λ1|λ3|

2 − λ3|λ1|
2) + κ8(λ3|λ1|

2 − λ1|λ3|
2)
)

2c3|λ1|
2|λ3|

2Γ1Γ2
,

(4.13)
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q[1] =
c1

(
κ5(λ∗1|λ3|

2 − λ∗3|λ1|
2) + κ6(λ∗3|λ1|

2 − λ∗1|λ3|
2)
)

2c3|λ1|
2|λ3|

2Γ1Γ2

+
c1

(
κ7(λ3|λ1|

2 − λ1|λ3|
2) + κ8(λ1|λ3|

2 − λ3|λ1|
2)
)

2c3|λ1|
2|λ3|

2Γ1Γ2
,

(4.14)

where

Γ1 = exp (2λ1y + 0.5λ−1
1 z) − exp (2λ3y + 0.5λ−1

3 z),
Γ2 = exp (2λ∗1y + 0.5λ∗−1

1 z) − exp (2λ∗3y + 0.5λ∗−1
3 z),

and

κ1 = exp (2λ3y + 0.5λ−1
3 z) exp (2λ∗1y + 0.5λ∗−1

1 z),
κ2 = exp (2λ3y + 0.5λ−1

3 z) exp (2λ∗3y + 0.5λ∗−1
3 z),

κ3 = exp (2λ1y + 0.5λ−1
1 z) exp (2λ∗1y + 0.5λ∗−1

1 z),
κ4 = exp (2λ1y + 0.5λ−1

1 z) exp (2λ∗3y + 0.5λ∗−1
3 z),

κ5 = exp (2λ1y + 0.5λ−1
1 z) exp (2λ3y + 0.5λ−1

3 z) exp (2λ∗1y + 0.5λ∗−1
1 z),

κ6 = exp (2λ1y + 0.5λ−1
1 z) exp (2λ3y + 0.5λ−1

3 z) exp (2λ∗3y + 0.5λ∗−1
3 z),

κ7 = exp (2λ3y + 0.5λ−1
3 z) exp (2λ∗1y + 0.5λ∗−1

1 z) exp (2λ∗3y + 0.5λ∗−1
3 z),

κ8 = exp (2λ1y + 0.5λ−1
1 z) exp (2λ∗1y + 0.5λ∗−1

1 z) exp (2λ∗3y + 0.5λ∗−1
3 z).
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Figure 1. Single soliton solutions having seed solution χy = I2×2 and P = O2×2 with
parameters; (a) dark soliton: λ1 = 4i, λ3 = 3.5i, c1 = 4.5 and c3 = 2.5; (b) dark-bright
soliton: λ1 = −4 − 2.4i, λ3 = 3 + 2.6i, c1 = 2.5 and c3 = 3.5; (c) dark-bright soliton:
λ1 = −4 − 5.6i, λ3 = 2 + 5.5i, c1 = 2.5 and c3 = 3.5.

Similarly, the reduction requirements for N = 2 will also be realized for the two-component c-SP
equation as

g(2)
11 = −g∗(1)

12 , g(2)
12 = g∗(1)

11 , g(2)
13 = −g∗(1)

14 g(2)
14 = g∗(1)

13 , λ2 = −λ∗1, (4.15)
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g(4)
11 = −g∗(3)

12 , g(4)
12 = g∗(3)

11 , g(4)
13 = −g∗(3)

14 , g(4)
14 = g∗(3)

13 , λ4 = −λ∗3, (4.16)

g(6)
11 = −g∗(5)

12 , g(6)
12 = g∗(5)

11 , g(6)
13 = −g∗(5)

14 , g(6)
14 = g∗(5)

13 , λ6 = −λ∗5, (4.17)

g(8)
11 = −g∗(7)

12 , g(8)
12 = g∗(7)

11 , g(8)
13 = −g∗(7)

14 , g(8)
14 = g∗(7)

13 , λ8 = −λ∗7. (4.18)

Using the reduction constraints from the Eqs (4.20)–(4.23) into pair of Eq (3.35) for N = 2 leads us
to find the exact soliton solutions for two-fold DT. The dynamics of double soliton solutions associated
with seed solution χy = I2×2 and P = O2×2 are shown in Figure 2. In explicit form, the exact double
soliton solutions have double peaks with the same dynamic characteristics. Thus, when we compare
single-soliton and double-soliton solutions graphically, both show symmetrical behavior.
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Figure 2. Double soliton solutions having seed solution χ = I2×2 and P = O2×2 with
parameters; (a) dark soliton: λ1 = 4.2i, λ3 = 3.5i, c1 = 4.5 and c3 = 2.5; (b) dark-bright
soliton: λ1 = 5−4.5i, λ3 = 2+5i, c1 = 2.5 and c3 = 3.5; (c) dark-bright soliton: λ1 = 3+4.2i,
λ3 = 10.5i, c1 = 2.5 and c3 = 3.5.

Case II. In the second case, the seed solution χ = I2siny and P = O2×2 satisfy the corresponding Lax
pair Eqs (2.12) and (2.13), then the particular column solution becomes

g(i)
11 = c1 exp(λisiny + 0.25λ−1

i z), g(i)
12 = c2 exp(λisiny − 0.25λ−1

i z), (4.19)

g(i)
13 = c3 exp(−λisiny + 0.25λ−1

i ), g(i)
14 = c4 exp(−λisiny − 0.25λ−1

i z). (4.20)

Similarly, for N=1 and using the particular column solutions from the Eqs (4.15) and (4.16) into
pair of Eq (3.35), the exact soliton solutions of c-SP component for one-fold DT in the explicit form
are

x[1] = x +
η1(λ∗3|λ1|

2 − λ1|λ3|
2) + η2(λ3|λ1|

2 − λ∗3|λ1|
2) + λ1|λ3|

2η3 − λ3|λ1|
2η4

2|λ1|
2|λ3|

2Υ1Υ2
, (4.21)
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p[1] =
c1

(
η5(λ∗1|λ3|

2 − λ∗3|λ1|
2) + η6(λ∗3|λ1|

2 − λ∗1|λ3|
2)
)

2c3|λ1|
2|λ3|

2Υ1Υ2

+
c1

(
η7(λ1|λ3|

2 − λ3|λ1|
2) + η8(λ3|λ1|

2 − λ1|λ3|
2)
)

2c3|λ1|
2|λ3|

2Υ1Υ2
,

(4.22)

q[1] =
c1

(
η5(λ∗1|λ3|

2 − λ∗3|λ1|
2) + η6(λ∗3|λ1|

2 − λ∗1|λ3|
2)
)

2c3|λ1|
2|λ3|

2Υ1Υ2

+
c1

(
η7(λ3|λ1|

2 − λ1|λ3|
2) + η8(λ1|λ3|

2 − λ3|λ1|
2)
)

2c3|λ1|
2|λ3|

2Υ1Υ2
,

(4.23)

where

Υ1 = exp (2λ1siny + 0.5λ−1
1 z) − exp (2λ3siny + 0.5λ−1

3 z),
Υ2 = exp (2λ∗1siny + 0.5λ∗−1

1 z) − exp (2λ∗3siny + 0.5λ∗−1
3 z),

and
η1 = exp (2λ3siny + 0.5λ−1

3 z) exp (2λ∗1siny + 0.5λ∗−1
1 z),

η2 = exp (2λ3siny + 0.5λ−1
3 z) exp (2λ∗3siny + 0.5λ∗−1

3 z),
η3 = exp (2λ1siny + 0.5λ−1

1 z) exp (2λ∗1siny + 0.5λ∗−1
1 z),

η4 = exp (2λ1siny + 0.5λ−1
1 z) exp (2λ∗3siny + 0.5λ∗−1

3 z),
η5 = exp (2λ1siny + 0.5λ−1

1 z) exp (2λ3siny + 0.5λ−1
3 z) exp (2λ∗1siny + 0.5λ∗−1

1 z),
η6 = exp (2λ1siny + 0.5λ−1

1 z) exp (2λ3siny + 0.5λ−1
3 z) exp (2λ∗3siny + 0.5λ∗−1

3 z),
η7 = exp (2λ3siny + 0.5λ−1

3 z) exp (2λ∗1siny + 0.5λ∗−1
1 z) exp (2λ∗3siny + 0.5λ∗−1

3 z),
η8 = exp (2λ1siny + 0.5λ−1

1 z) exp (2λ∗1siny + 0.5λ∗−1
1 z) exp (2λ∗3siny + 0.5λ∗−1

3 z).

The interesting dynamical phenomena of loop soliton, and loop-breather soliton solutions are shown
in Figure 3.
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Figure 3. Single soliton solutions having seed solution χ = I2siny and P = O2×2 with
parameters; (a) loop soliton: λ1 = −4i, λ3 = −3i, c1 = 4.5 and c3 = 2.5; (b) loop-breather
soliton: λ1 = 3− 4i, λ3 = 2.5i, c1 = 2.5 and c3 = 3.5; (c) loop-breather soliton: λ1 = 3− 4.5i,
λ3 = 5i, c1 = 2.5 and c3 = 3.5.
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As a result, loop-soliton solutions can easily be found whenever exponential functions exist.
Meanwhile, a breather solution is a bound state soliton and anti-soliton solution within a particular
parameter domain. The existence of breather solutions in a particular equation depends on the
specific form of the equation and the nonlinearity it contains. In general, breather solutions can
exist in equations that have a balance between dispersion and nonlinearity. In addition, we have
analyzed graphically that the two-component c-SP equation has diverse dynamical characteristics and
interactional properties. The exact soliton solutions for one-fold DT with seed solution give peak
soliton solutions as well when we change the parameters from λ1 = 4i, λ3 = 3.5i, c1 = 4.5, c3 = 2.5
to λ1 = 3.5i, λ3 = 2.5i, c1 = 8.5, c3 = 8.5. We can also figure out and analyze up to Nth-order exact
soliton solutions in terms of explicit expression using the above iterative scheme.

5. Concluding remarks

In the present paper, the classical DT is employed to analyze the two-component c-SP equation.
Initially, we have shown the Lax integrability of the two-component c-SP equation and have found a
convenient Lax pair in the form of matrix generalization using the existing Lax pair. In addition, the
multi-soliton solutions for one-fold DT have been thoroughly evaluated in terms of a ratio of ordinary
determinants using DT and generalized for N-fold DT, as well as their corresponding scalar solutions.
In order to find exact soliton solutions, we have tested and chosen suitable seed solutions that verify
the transformed two-component c-SP equation. The particular column solutions are determined via
integral calculations, and after that appropriate reduction constraints have been taken into consideration
for constructing multi-soliton exact solutions in explicit form. Lastly, the one-soliton and two-soliton
solutions have also been investigated via graphs, which have shown many interesting properties. This
work might be helpful to formulate soliton solutions for multi-component c-SP equations in the future.
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