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Abstract: It has been shown that a self-mapping with exactly one removable or jumping discontinuity
may have a C1 smooth iterate of the second-order. However, some examples show that a self-mapping
with exactly one oscillating discontinuity may also have a C1 smooth iterate of the second-order,
indicating that iteration can turn a self-mapping with exactly one oscillating discontinuity into a C1

smooth one. In this paper, we study piecewise C1 self-mappings on the open interval (0, 1) having
only one oscillating discontinuity. We give necessary and sufficient conditions for those self-mappings
whose second-order iterates are C1 smooth.
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1. Introduction

The n-th iterate f n of a mapping f : E → E is defined by f n(x) = f ( f n−1(x)) and f 0(x) = x for all
x ∈ E inductively, where E is a nonempty set and n is a positive integer. The research on the iteration of
mappings can be traced back more than one hundred years ago at least ( [1,2,7]). The iterative operation
is much more complicated than the general algebraic operation, especially the iteration of nonlinear
functions, so the research work is very difficult and tortuous. Iteration is a common phenomenon in
nature, which has become the focus of many disciplines. Under such circumstances, dynamical system
theory has developed rapidly.

It is often thought that iteration turns a bad function into a worse one. For example, the function
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and its iterate

f (x) =


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It is easy to see that f has exactly one discontinuity at 1
2 (see Figure 1), but its iterate f 2 has exactly

three discontinuities at 3
10 , 1

2 and 3
4 (see Figure 2). However, a discontinuous function may have a

continuous second-order iterate as shown in [3] and [5], which shows that iteration can also convert a
“bad” function to a “good” one. This encourages efforts to study of such a converting. In [3] and [5]
all self-mappings on a compact interval with exactly one discontinuity and more than one but finitely
many discontinuities of the same type were classified for such a converting respectively. In [4] all
continuous self-mappings with exactly one nonsmooth point were classified for the converting to C1

iterates. Recently, we investigated the C1 smoothness iterate of the second-order for self-mappings
with exactly one removable or jumping discontinuity, we obtained necessary and sufficient conditions
for those self-mappings whose second-order iterates are C1 smooth in [6]. For a continuation, we
are also interested in C1 smoothness iterate of the second-order for self-mappings with exactly one
oscillatory discontinuity, the remaining case of discontinuity.

Figure 1. f is not C0 at 1
2 .
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Figure 2. f 2 is not C0 at 3
10 ,

1
2 and 3

4 .

It is possible to find an example with exactly one oscillatory discontinuity which is C1 smooth by
its iteration. The function and its iterate

f (x) =


1
4 , 0 < x ≤ 1

4 ,
1
8 + 1

8 sin2 π
4−8x ,

1
4 < x < 1

2 ,
1
8 , x = 1

2 ,

−2(x − 3
4 )2 + 3

8 ,
1
2 < x < 1,

f 2(x) =

 1
4 , 0 < x ≤ 1

2 ,
1
8 + 1

8 sin2 π

1+16(x− 3
4 )2 ,

1
2 < x < 1.

One can see that f has exactly one oscillatory discontinuity at 1
2 (see Figure 3), but its iterate f 2 is C1

smooth on the whole interval (0, 1)(see Figure 4).

Figure 3. f is discontinuous at 1
2 .
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Figure 4. f 2 is C1 smooth on (0, 1).

Let I := (0, 1) and Vo(I, I) consist of all C1 self-mappings on I with exactly one oscillatory
discontinuity. Each f ∈ Vo(I, I) can be presented as

f (x) =


f1(x), x ∈ I1 := (0, x0),
c, x = x0,

f2(x), x ∈ I2 := (x0, 1),
(1.1)

where x0 ∈ (0, 1) is the unique oscillatory discontinuity, fi is C1 smooth on Ii for each i ∈ {1, 2} and
c ∈ (0, 1) is a constant.

In this paper we continue the work of [6], investigating the second-order C1 smoothness of mappings
in Vo(I, I). By the definition of oscillating discontinuities, either limx→x0−0 f1(x) or limx→x0+0 f2(x) does
not exist but both f1 and f2 are bounded. Thus, each mapping f in Vo(I, I) has 3 possibilities:

Vo+(I, I) := { f ∈ Vo(I, I) | y1 := lim
x→x0−0

f1(x) exists but lim
x→x0+0

f2(x) does not exist},

Vo−(I, I) := { f ∈ Vo(I, I) | y2 := lim
x→x0+0

f2(x) exists but lim
x→x0−0

f1(x) does not exist},

Vo∗(I, I) := { f ∈ Vo(I, I) | neither lim
x→x0−0

f1(x) nor lim
x→x0+0

f2(x) exists}.

In order to investigate C1 smoothness of the second-order iterates of mappings in Vo(I, I), we also need
to consider three subclasses for Vo+(I, I) and Vo−(I, I) respectively, i.e., Vo+(I, I) = VE

o+(I, I)∪VO
o+(I, I)∪

V∞o+(I, I) and Vo−(I, I) = VE
o−(I, I) ∪ VO

o−(I, I) ∪ V∞o−(I, I), where

VE
o+(I, I) := { f ∈ Vo+(I, I) | ỹ1 := lim

x→x0−0
f ′1(x) exists},

VO
o+(I, I) := { f ∈ Vo+(I, I) | lim

x→x0−0
f ′1(x) does not exist but f ′1 is bounded},

V∞o+(I, I) := { f ∈ Vo+(I, I) | lim
x→x0−0

f ′1(x) does not exist but f ′1 is unbounded},

VE
o−(I, I) := { f ∈ Vo−(I, I) | ỹ2 := lim

x→x0+0
f ′2(x) exists},
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VO
o−(I, I) := { f ∈ Vo−(I, I) | lim

x→x0+0
f ′2(x) does not exist but f ′2 is bounded},

V∞o−(I, I) := { f ∈ Vo−(I, I) | lim
x→x0+0

f ′2(x) does not exist but f ′2 is unbounded}.

Then Vo(I, I) = VE
o+(I, I) ∪ VO

o+(I, I) ∪ V∞o+(I, I) ∪ VE
o−(I, I) ∪ VO

o−(I, I) ∪ V∞o−(I, I) ∪ Vo∗(I, I).
In this paper, we discuss C1 smoothness of the second-order iterates of mapping f in

Vo(I, I)\V∞o−(I, I) ∪ V∞o+(I, I). We give necessary and sufficient conditions for C1 smooth f 2. We obtain
necessary conditions and remark the difficulties in finding sufficient conditions for those self-mappings
in V∞o−(I, I) and V∞o+(I, I) to have a C1 smooth iterate of the second-order respectively. Moreover, we
give sufficient conditions for those self-mappings in V(I, I) whose second-order iterates are not C1

smooth, where V(I, I) consists of all C1 self-mappings on I having only one discontinuity. Finally, we
use examples to demonstrate our theorems.

For convenience, let I0 := {x0}, then I = I1 ∪ I0 ∪ I2. For i, j = 0, 1, 2 we use the notations

∆−i := {α ∈ I | f (U−α ) ⊂ Ii},

∆+
j := {α ∈ I | f (U+

α ) ⊂ I j},

∆i j := {α ∈ I | f (U−α ) ⊂ Ii and f (U+
α ) ⊂ I j},

where U−α and U+
α denote a sufficiently small left-half and right-half neighborhood of α respectively.

We use D− f and D+ f to denote the left derivative of f and the right derivative of f respectively.

2. Iteration for Vo(I, I)

In this section, we consider C1 smoothness of the second-order iterates of f ∈ Vo(I, I) to be defined
as in (1.1). In order to discuss C1 smoothness of the second-order iterates of mappings in Vo(I, I), we
need to consider constantization of a mapping near the boundary of the domain, as shown in the Fourth
part of [3]. Assume that h1 : H1 := (c, d)→ H2 and h2 : H2 → H3 are continuous mapping, where Hi s
(i = 1, 2, 3) are all nonempty intervals. h1 is said to be constantized by h2 near c (or d) if there exist a
closed interval L ⊆ H2 and a vicinity (hollow neighborhood) U ⊆ H1 of c (or d) such that h1(U) ⊆ L
and h2 is identical to a constant on L. For convenience, let θ(h1, h2) denote the constant. Moreover, we
also need to define two mappings f10 : I10 := I1 ∪ I0 → I and f20 : I20 := I0 ∪ I2 → I such that

f10(x) =

{
f1(x), x ∈ I1,

c, x = x0,

f20(x) =

{
c, x = x0,

f2(x), x ∈ I2,

where x0 ∈ (0, 1) is the unique oscillatory discontinuity. For convenience, for i ∈ {1, 2, 10, 20}, m, j ∈
{1, 2}, τ ∈ {E,O,∞}, λ ∈ {−,+}, l ∈ {1, 2}\{m}, µ ∈ {O,∞} and ξ j ∈ f −1(I0) ∩ I j let

{Emi j
oλ (I, I) := { f ∈ VE

oλ(I, I) | θ( fm, fi) = f j(yl) = f (c) and f ′j (yl)ỹl = 0},

{µmi j
oλ (I, I) := { f ∈ Vµ

oλ(I, I) | θ( fm, fi) = f j(yl) = f (c) and f ′j (yl) = 0},

{̂Emi
oλ (I, I) := { f ∈ VE

oλ(I, I) | θ( fm, fi) = c = f (c)},

{̃Emi
oλ (I, I) := { f ∈ VE

oλ(I, I) | θ( fm, fi) = yl = f (c) and ỹl = 0},
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{̄τm j
oλ (I, I) := { f ∈ Vτ

oλ(I, I) | ym = c and f ′j (ξ j) = 0},

{ j
0∗(I, I) := { f ∈ Vo∗(I, I) | θ( f1, f j) = θ( f2, f j) = f (c)(c , x0)}.

Theorem 2.1. Suppose that f ∈ Vo(I, I)\V∞o+(I, I) ∪ V∞o−(I, I) with the unique oscillatory discontinuity
x0 ∈ (0, 1) and that ξ j ∈ f −1(I0) ∩ I j for j = 1 or 2. Let y1 := limx→x0−0 f1(x) and y2 := limx→x0+0 f2(x).
The following results hold:
(o-) In the case that f ∈ Vτ

o−(I, I) for τ ∈ {E,O}, f 2 is C1 smooth on I if and only if there is i ∈ {1, 2, 20}
such that f1 is constantized by fi near x0 and for j ∈ {1, 2} the following two conditions are both
fulfilled:
(o-1) f ∈ {τ1i j

o− (I, I) if y2 ∈ I j, either f ∈ {̂E1i
o− (I, I) as x0 ∈ ∆+

0 or f ∈ {̃E1i
o− (I, I) as x0 ∈ ∆+

2 if y2 = x0.
(o-2) ξ j ∈ ∆00 ∪ ∆22 ∪ ∆20 ∪ ∆02 and f ∈ {̄τ2 j

o− (I, I) if ξ j ∈ ∆22 ∪ ∆20 ∪ ∆02.
(o+) In the case that f ∈ Vλ

o+(I, I) for λ ∈ {E,O}, f 2 is C1 smooth on I if and only if there is k ∈ {1, 2, 10}
such that f2 is constantized by fk near x0 and for j ∈ {1, 2} the following two conditions are both
fulfilled:
(o+1) f ∈ {λ2k j

o+ (I, I) if y1 ∈ I j, either f ∈ {̂E2k
o+ (I, I) as x0 ∈ ∆−0 or f ∈ {̃E2k

o+ (I, I) as x0 ∈ ∆−1 if y1 = x0.
(o+2) ξ j ∈ ∆00 ∪ ∆11 ∪ ∆10 ∪ ∆01 and f ∈ {̄λ1 j

o+ (I, I) if ξ j ∈ ∆11 ∪ ∆10 ∪ ∆01.
(o*) In the case that f ∈ Vo∗(I, I), f 2 is C1 smooth on I if and only if both f1 and f2 are constantized by
f j near x0, f (I1 ∪ I2) ⊆ I j holds and f ∈ { j

0∗(I, I) for j = 1 or 2.

Proof. Since f ∈ Vo(I, I)\V∞o−(I, I)∪V∞o+(I, I) and Vo(I, I) = VE
o−(I, I)∪VO

o−(I, I)∪V∞o−(I, I)∪VE
o+(I, I)∪

VO
o+(I, I) ∪ V∞o+(I, I) ∪ Vo∗(I, I). Then there are five cases to be discussed: f ∈ VE

o−(I, I), f ∈ VO
o−(I, I),

f ∈ VE
o+(I, I), f ∈ VO

o+(I, I) and f ∈ Vo∗(I, I).
For (o-), i.e., f ∈ Vτ

o−(I, I) for τ ∈ {E,O}, it implies that y2 := limx→x0+0 f2(x) exists but
limx→x0−0 f1(x) does not exist.

Sufficiency of (o-). Since we have assumed that there is i ∈ {1, 2, 20} such that f1 is constantized
by fi near x0. In the following, we only discuss the situation that f1 is constantized by f1 near x0 since
the other situations can be discussed similarly. Under condition (o-1), we prove that f 2 is C1 smooth
at x0. In fact, if y2 ∈ I1, by the definition that f1 is constantized by f1 near x0 and the continuity of f2

on I2, there exist a sufficiently small left-half neighborhood U−x0
of x0 and a sufficiently small right-half

neighborhood U+
x0

of x0 such that

f 2(x) =


θ( f1, f1), x ∈ U−x0

,

f (c), x = x0,

f1( f2(x)), x ∈ U+
x0
.

(2.1)

It follows from (2.1) that

lim
x→x0−0

f 2(x) = θ( f1, f1), (2.2)

lim
x→x0+0

f 2(x) = lim
x→x0+0

f1( f2(x)) = f1(y2). (2.3)

Since we assumed that f ∈ {τ111
o− (I, I) for τ ∈ {E,O}. Thus, we need to discuss in two situations: f ∈

{E111
o− (I, I) and f ∈ {O111

o− (I, I). In the first situation that f ∈ {E111
o− (I, I), by the definition of {E111

o− (I, I)
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we see that f ∈ VE
o−(I, I), it implies that ỹ2 := limx→x0+0 f ′2(x) exists. Note that limx→x0+0 f2(x) = y2.

From (2.1) we get that

D− f 2(x0) = 0, (2.4)
D+ f 2(x0) = lim

x→x0+0
f ′1( f2(x)) f ′2(x) = f ′1(y2)ỹ2. (2.5)

By our assumption that f ∈ {E111
o− (I, I) and the definition of {E111

o− (I, I), we get from (2.2)–(2.5) that
limx→x0−0 f 2(x) = limx→x0+0 f 2(x) = f 2(x0) and D− f 2(x0) = D+ f 2(x0) = 0. It implies that f 2 is C1

smooth at x0. In the second situation that f ∈ {O111
o− (I, I), by the definition of {O111

o− (I, I) we see that
f ∈ VO

o−(I, I), it implies that limx→x0+0 f ′2(x) does not exist but f ′2 is bounded. From (2.1) we get that

D− f 2(x0) = 0, (2.6)
D+ f 2(x0) = lim

x→x0+0
f ′1( f2(x)) f ′2(x). (2.7)

By our assumption that f ∈ {O111
o− (I, I) and the definition of {O111

o− (I, I), we get from (2.2) and (2.3)
that limx→x0−0 f 2(x) = limx→x0+0 f 2(x) = f 2(x0). Moreover, from (2.6) and (2.7) we obtain D− f 2(x0) =

D+ f 2(x0) = 0 since limx→x0+0 f ′1( f2(x)) = f ′1(y2) = 0 and f ′2 is bounded. It implies that f 2 is C1 smooth
at x0. The proof of y2 ∈ I2 is similar to the proof of y2 ∈ I1. Next, we consider that y2 = x0, we have

f 2(x) =


θ( f1, f1), x ∈ U−x0

,

f (c), x = x0,

c, x ∈ U+
x0
,

(2.8)

when x0 ∈ ∆+
0 . It follows from (2.8) that

lim
x→x0−0

f 2(x) = θ( f1, f1), (2.9)

lim
x→x0+0

f 2(x) = c, (2.10)

D− f 2(x0) = D+ f 2(x0) = 0. (2.11)

By our assumption that f ∈ {̂E11
o− (I, I) and the definition of {̂E11

o− (I, I), we get from (2.9)–(2.11) that
limx→x0−0 f 2(x) = limx→x0+0 f 2(x) = f 2(x0) and D− f 2(x0) = D+ f 2(x0) = 0. It implies that f 2 is C1

smooth at x0. Moreover, we have

f 2(x) =


θ( f1, f1), x ∈ U−x0

,

f (c), x = x0,

f2( f2(x)), x ∈ U+
x0
,

(2.12)

when x0 ∈ ∆+
2 . By our assumption that f ∈ {̃E11

o− (I, I), we see that f ∈ VE
o−(I, I), it implies that

ỹ2 := limx→x0+0 f ′2(x) exists. Note that f2(x)→ x0 + 0 as x→ x0 + 0. From (2.12) we get that

lim
x→x0−0

f 2(x) = θ( f1, f1), (2.13)

lim
x→x0+0

f 2(x) = lim
x→x0+0

f2( f2(x)) = lim
y→x0+0

f2(y) = y2, (2.14)
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D− f 2(x0) = 0, (2.15)
D+ f 2(x0) = lim

x→x0+0
f ′2( f2(x)) f ′2(x) = ỹ2

2. (2.16)

By the assumption that f ∈ {̃E11
o− (I, I) and the definition of {̃E11

o− (I, I), we get from (2.13)–(2.16) that
limx→x0−0 f 2(x) = limx→x0+0 f 2(x) = f 2(x0) and D− f 2(x0) = D+ f 2(x0) = 0. It implies that f 2 is C1

smooth at x0. Similarly to the proof of the condition (ii) of the sufficiency in Theorem 3 in [6], one can
prove that f 2 is C1 smooth at ξ j under condition (o-2), where ξ j ∈ f −1(I0)∩ I j for j = 1 or 2. Condition
(o-1) and condition (o-2) imply that f 2 is C1 smooth on the whole domain I. Therefore, the proof of
sufficiency of (o-) is completed.

Necessity of (o-). Since f ∈ Vτ
o−(I, I) for τ ∈ {E,O}, by the definition of Vτ

o−(I, I), implying that
f ∈ Vo−(I, I). Then we obtain from the definition of Vo−(I, I) that limx→x0−0 f1(x) does not exist but
y2 := limx→x0+0 f2(x) exists. From the location of y2, we need to consider two possibilities: either
y2 ∈ I j for j = 1 or 2, or y2 = x0. Assume that f 2 is C1 smooth on I, it implies that f 2 is continuous on
I. By (i) of Theorem 3 in reference [3], one sees that there is i ∈ {1, 2, 20} such that f1 is constantized
by fi near x0. In what follows, we only consider the situation that f1 is constantized by f1 near x0 since
the other situations can be considered similarly. Note that f ∈ Vτ

o−(I, I) for τ ∈ {E,O}. Thus, we need to
discuss in two situations: f ∈ VE

o−(I, I) and f ∈ VO
o−(I, I). If y2 ∈ I1, one sees that (2.1) holds. It follows

that (2.2) and (2.3) hold. In the first situation that f ∈ VE
o−(I, I), it implies from the definition of VE

o−(I, I)
that ỹ2 := limx→x0+0 f ′2(x) exists. It follows that (2.4) and (2.5) hold. Because we have assumed that f 2

is C1 smooth on I, we have limx→x0−0 f 2(x) = limx→x0+0 f 2(x) = f 2(x0) and D− f 2(x0) = D+ f 2(x0). Then
we get from (2.2)–(2.5) that θ( f1, f1) = f1(y2) = f (c) and f ′1(y2)ỹ2 = 0. It implies from the definition of
{E111

o− (I, I) that f ∈ {E111
o− (I, I). In the second situation that f ∈ VO

o−(I, I), it implies from the definition
of VO

o−(I, I) that limx→x0+0 f ′2(x) does not exist but f ′2 is bounded. From (2.1) we obtain (2.6) and (2.7).
Since f 2 is C1 smooth on I, we see that D+ f 2(x0) exists. Note that limx→x0+0 f ′1( f2(x)) = f ′1(y2). We
claim that

f ′1(y2) = 0. (2.17)

In fact, if f ′1(y2) , 0, It follows from (2.7) that limx→x0+0 f ′2(x) exists since

lim
x→x0+0

f ′2(x) = lim
x→x0+0

f ′1( f2(x)) f ′2(x)
f ′1( f2(x))

=
D+ f 2(x0)

f ′1(y2)
,

which contradicts to our assumption that limx→x0+0 f ′2(x) does not exist. Thus, the claim that (2.17)
is proved. On the other hand, by the smoothness of f 2 on I we see that f 2 is continuous on I, then
we have limx→x0−0 f 2(x) = limx→x0+0 f 2(x) = f 2(x0). It follows from (2.2) and (2.3) that θ( f1, f1) =

f1(y2) = f (c). It implies from (2.17) and the definition of {O111
o− (I, I) that f ∈ {O111

o− (I, I). We use a
similar discussion to the proof of the situation y2 ∈ I1, One can get that f ∈ {τ112

o− (I, I) for τ ∈ {E,O}
when y2 ∈ I2. Finally, if y2 = x0, by the continuity of f2 on I2, we see that

x0 ∈ ∆+
1 ∪ ∆+

0 ∪ ∆+
2 . (2.18)

In the first situation that f ∈ VE
o−(I, I), we claim that

x0 ∈ ∆+
0 ∪ ∆+

2 . (2.19)
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By (2.18) we need to deny the case x0 ∈ ∆+
1 . In fact, if x0 ∈ ∆+

1 , from the definition of ∆+
1 , we have

f 2(x) = f1( f2(x)), ∀x ∈ U+
x0

. Note that f ∈ VE
o−(I, I) and f2(x) → x0 − 0 as x → x0 + 0. It follows

that limx→x0+0 f 2(x) = limx→x0+0 f1( f2(x)) = limy→x0−0 f1(y) does not exist, which implies that f 2 is not
continuous at x0, it follows that f 2 is not C1 smooth on I, a contradiction to our assumption. This proves
the claimed (2.19). By (2.19), we need to discuss the two cases x0 ∈ ∆+

0 and x0 ∈ ∆+
2 . For the case

x0 ∈ ∆+
0 , we see that (2.8) holds. It follows from (2.8) that (2.9) and (2.10) hold. Since we have assumed

that f 2 is C1 smooth on I, we have limx→x0−0 f 2(x) = limx→x0+0 f 2(x) = f 2(x0). Then we get from (2.9)
and (2.10) that θ( f1, f1) = c = f (c). It implies from the definition of {̂E11

o− (I, I) that f ∈ {̂E11
o− (I, I).

For the case x0 ∈ ∆+
2 , we see that (2.12) holds. It follows from (2.12) that (2.13-2.16) hold. Since

we have assumed that f 2 is C1 smooth on I, we have limx→x0−0 f 2(x) = limx→x0+0 f 2(x) = f 2(x0) and
D− f 2(x0) = D+ f 2(x0). Then we get from (2.13-2.16) that θ( f1, f1) = y2 = f (c) and ỹ2 = 0. It implies
from the definition of {̃E11

o− (I, I) that f ∈ {̃E11
o− (I, I). Thus, condition (o-1) holds.

Remark that condition (o-1) does not give the results of the second situation that f ∈ VO
o−(I, I) when

y2 = x0. In fact, by (2.18), if x0 ∈ ∆+
1 , using a similar discussion to the proof of the first situation

that f ∈ VE
o−(I, I), we can get that limx→x0+0 f 2(x) does not exist, a contradiction to our assumption.

If x0 ∈ ∆+
0 , from the definition of ∆+

0 , there exists a sufficiently small right-half neighborhood U+
x0

of
x0 such that that f2(x) = x0 for ∀x ∈ U+

x0
. It implies that limx→x0+0 f ′2(x) = 0, which contradicts the

fact that f ∈ VO
o−(I, I). If x0 ∈ ∆+

2 , from (2.12) we have D+ f 2(x0) = limx→x0+0 f ′2( f2(x)) f ′2(x). Note
that limx→x0+0 f ′2( f2(x)) = limy→x0+0 f ′2(y) and f ∈ VO

o−(I, I), i.e., limx→x0+0 f ′2(x) does not exist but f ′2 is
bounded. Thus, it is hard to determine the existence of the limit D+ f 2(x0) = limx→x0+0 f ′2( f2(x)) f ′2(x).

We use a similar discussion to the proof of the condition (ii) of the necessity in Theorem 3 in [6],
one can prove that condition (o-2) holds. Thus, the proof of result (o-) is completed.

Result (o+) can be discussed totally in a similar way to result (o-). In what follows, we consider
result (o*).

We first prove necessity of (o*). Suppose that f 2 is C1 smooth on I, it follows that f 2 is continuous
on I. By (iii) of Theorem 3 in reference [3], we see that both f1 and f2 are constantized by f j near x0,
f (I1 ∪ I2) ⊆ I j holds and f ∈ { j

0∗(I, I) for j = 1 or 2. Hence, the proof of necessity is completed.
Next, we prove sufficiency of (o*), we assumed that both f1 and f2 are constantized by f1 near

x0, f (I1 ∪ I2) ⊆ I1 holds and f ∈ {1
0∗(I, I). By (iii) of Theorem 3 in reference [3], we see that

f 2 is continuous on I. By the definition of constantization, there exist a sufficiently small left-half
neighborhood U−x0

of x0 and a sufficiently small right-half neighborhood U+
x0

of x0 such that

f 2(x) =


θ( f1, f1), x ∈ U−x0

,

f (c), x = x0,

θ( f2, f1), x ∈ U+
x0
.

(2.20)

we get from (2.20) that

D− f 2(x0) = D+ f 2(x0) = 0.

Thus, the derivative of f 2 is continuous at x0. It follows that f 2 is C1 on I because f1 and f2 are C1 on
I1 and I2 respectively. Similarly, we can prove that f 2 is C1 on I if both f1 and f2 are constantized by
f2 near x0, f (I1 ∪ I2) ⊆ I2 holds and f ∈ {2

0∗(I, I). Therefore, the proof of sufficiency is completed and
the theorem is proved. �
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Theorem 2.2. Suppose that f ∈ V∞o−(I, I)∪V∞o+(I, I) with the unique oscillatory discontinuity x0 ∈ (0, 1)
and that ξ j ∈ f −1(I0) ∩ I j for j = 1 or 2. Let y1 := limx→x0−0 f1(x) and y2 := limx→x0+0 f2(x). The
following results hold:
(o-∞) In the case that f ∈ V∞o−(I, I), assume that f 2 is C1 smooth on I, then y2 , x0 and there exists
i ∈ {1, 2, 20} such that f1 is constantized by fi near x0 and for j ∈ {1, 2} the following two conditions
are both fulfilled:
(o-∞1) f ∈ {∞1i j

o− (I, I) if y2 ∈ I j;
(o-∞2) ξ j ∈ ∆00 ∪ ∆22 ∪ ∆20 ∪ ∆02 and f ∈ {̄∞2 j

o− (I, I) if ξ j ∈ ∆22 ∪ ∆20 ∪ ∆02.
(o+∞) In the case that f ∈ V∞o+(I, I), assume that f 2 is C1 smooth on I, then y1 , x0 and there is
k ∈ {1, 2, 10} such that f2 is constantized by fk near x0 and for j ∈ {1, 2} the following two conditions
are both fulfilled:
(o+∞1) f ∈ {∞2k j

o+ (I, I) if y1 ∈ I j;
(o+∞2) ξ j ∈ ∆00 ∪ ∆11 ∪ ∆10 ∪ ∆01 and f ∈ {̄∞1 j

o+ (I, I) if ξ j ∈ ∆11 ∪ ∆10 ∪ ∆01.

Proof. For (o-∞), i.e., f ∈ V∞o−(I, I), by the definition of V∞o−(I, I), implying that f ∈ Vo−(I, I). It
follows from the definition of Vo−(I, I) that limx→x0−0 f1(x) does not exist but y2 := limx→x0+0 f2(x)
exists. Moreover, we have limx→x0+0 f ′2(x) = ∞. By the C1 smoothness of f 2 on I, We claim that
y2 , x0. In fact, if y2 = x0, by the continuity of f2 on I2, we see that (2.18) holds. From (2.18)
we need to discuss in three situations: x0 ∈ ∆+

1 , x0 ∈ ∆+
0 and x0 ∈ ∆+

2 . In the first situation that
x0 ∈ ∆+

1 , from the definition of ∆+
1 , we have f 2(x) = f1( f2(x)), ∀x ∈ U+

x0
. Note that f2(x) → x0 − 0 as

x→ x0 + 0. It follows that limx→x0+0 f 2(x) = limx→x0+0 f1( f2(x)) = limy→x0−0 f1(y) does not exist, which
implies that f 2 is not continuous at x0, it follows that f 2 is not C1 smooth at x0, which contradicts to
our assumption that f 2 is C1 smooth on I. In the second situation that x0 ∈ ∆+

0 , from the definition
of ∆+

0 , we have f2(x) = x0, ∀x ∈ U+
x0

. It follows that limx→x0+0 f ′2(x) = 0, which contradicts to our
assumption that limx→x0+0 f ′2(x) = ∞. Finally, in the third situation that x0 ∈ ∆+

2 , from the definition of
∆+

2 , we have f 2(x) = f2( f2(x)), ∀x ∈ U+
x0

. It follows that D+ f 2(x0) = limx→x0+0 f ′2( f2(x)) f ′2(x). Note that
limx→x0+0 f ′2( f2(x)) = limy→x0+0 f ′2(y) = ∞. Thus, we obtain D+ f 2(x0) = ∞. It implies that f 2 is not C1

smooth on I, a contradiction to our assumption. Therefore, the claim that y2 , x0 is proved. We use a
similar discussion to the proof of the situation f ∈ VO

o−(I, I) of the necessity in Theorem 2.1, one can
get that there exists i ∈ {1, 2, 20} such that f1 is constantized by fi near x0 and both condition (o-∞1)
and condition (o-∞2) hold.

Case (o+∞) can be discussed totally in a similar way to case (o-∞). Therefore, the theorem is
proved. �

Remark that the above Theorem 2.2 does not give sufficient conditions of f 2 to be C1 because it is
hard to determine the existence of either limx→x0−0 f ′i ( f1(x)) f ′1(x) or limx→x0+0 f ′i ( f2(x)) f ′2(x) for i = 1
or 2. In fact, if f ∈ V∞o−(I, I), it follows from the definition of V∞o−(I, I) that limx→x0−0 f1(x) does not
exist but y2 := limx→x0+0 f2(x) exists. Moreover, we have limx→x0+0 f ′2(x) = ∞. We assume that f1 is
constantized by f1 near x0 and f ∈ {∞111

o− (I, I). A similar discussion to the proof in Theorem 2.1, we
can get that

D+ f 2(x0) = lim
x→x0+0

f ′1( f2(x)) f ′2(x). (2.21)

By the definition of {∞111
o− (I, I), we have limx→x0+0 f ′1( f2(x)) = f ′1(y2) = 0. Note that limx→x0+0 f ′2(x) =

∞. It follows from (2.21) that limx→x0+0 f ′1( f2(x)) f ′2(x) is of 0 · ∞ type. Thus, it is hard to judge the
existence of the right derivative D+ f 2(x0). We similarly see difficulty in other cases.
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The following theorem gives conditions for f 2 not to be C1. For convenience, for i = 1 or 2 we use
the notation

lim f ′i (x) :=
{

limx→x0−0 f ′1(x), i = 1,
limx→x0+0 f ′2(x), i = 2.

Theorem 2.3. Let f ∈ V(I, I) and x0 ∈ (0, 1) be the unique discontinuity. Suppose that y1 :=
limx→x0−0 f1(x) and y2 := limx→x0+0 f2(x). Then f 2 is not C1 on I if for i = 1 or 2 and j ∈ {1, 2}\{i}
either
(i)yi = x0, f (Ii) ⊆ Ii ∪ I0 in the case that lim f ′i (x) = ∞, or
(ii)yi = x0, f (Ii) ⊆ I j ∪ I0 in the case that ỹi := lim f ′i (x) exists and ỹi , 0 but lim f ′j (x) does not exist,
or
(iii)yi = x0 in the case that lim f ′i (x) = ∞ and lim f ′j (x) = ∞, or
(iv)yi ∈ Ii in the case that lim f ′i (x) does not exist and f ′i (yi) , 0, or
(v)yi ∈ I j in the case that lim f ′i (x) does not exist and f ′j (yi) , 0.

Proof. we only prove the situation that i = 1 because the situation that i = 2 can be proved similarly.
For (i), we have y1 = x0 and f (I1) ⊆ I1 ∪ I0. By limx→x0−0 f ′1(x) = ∞ and the continuity of f1 on I1,

there exists a sufficiently small left-half neighborhood U−x0
of x0 such that f1(x) < x0 for all x ∈ U−x0

⊂ I1,
which implies that f 2(x) = f1( f1(x)) for all x ∈ U−x0

. It follows that D− f 2(x0) = limx→x0−0 f ′1( f1(x)) f ′1(x).
Note that f1(x)→ x0−0 as x→ x0−0. Then we have limx→x0−0 f ′1( f1(x)) = limy→x0−0 f ′1(y) = ∞. Thus,
D− f 2(x0) = limx→x0−0 f ′1( f1(x)) f ′1(x) = ∞. This implies that f 2 is not C1 on I.

For (ii), we have y1 = x0 and f (I1) ⊆ I2 ∪ I0. By ỹ1 = limx→x0−0 f ′1(x) exists and ỹ1 , 0, there exists
a sufficiently small left-half neighborhood U−x0

of x0 such that f1(x) > x0 for all x ∈ U−x0
⊂ I1, which

implies f 2(x) = f2( f1(x)) for all x ∈ U−x0
. It follows that D− f 2(x0) = limx→x0−0 f ′2( f1(x)) f ′1(x). Note that

f1(x) → x0 + 0 as x → x0 − 0 and limx→x0+0 f ′2(x) does not exist. Then we have limx→x0−0 f ′2( f1(x)) =

limy→x0+0 f ′2(y) does not exist. We claim that D− f 2(x0) does not exists. In fact, assume that D− f 2(x0) =

limx→x0−0 f ′2( f1(x)) f ′1(x) exists, then

lim
x→x0+0

f ′2(x) = lim
x→x0−0

f ′2( f1(x)) = lim
x→x0−0

f ′2( f1(x)) f ′1(x)
f ′1(x)

=
D− f 2(x0)

ỹ1

exists since ỹ1 = limx→x0−0 f ′1(x) exists and ỹ1 , 0. However, this contradicts the fact that
limx→x0+0 f ′2(x) does not exist. This implies that f 2 is not C1 on I.

For (iii), we have both limx→x0−0 f ′1(x) = ∞ and limx→x0+0 f ′2(x) = ∞. By limx→x0−0 f ′1(x) = ∞

and y1 = x0, one sees that there exists a sufficiently small left-half neighborhood U−x0
of x0 such that

either f1(x) < x0 or f1(x) > x0 for all x ∈ U−x0
⊂ I1. If f1(x) < x0 for all x ∈ U−x0

, one can prove
that f 2 is not C1 on I with a similar discussion to the proof of case (i). If f1(x) > x0 for all x ∈ U−x0

,
we have f 2(x) = f2( f1(x)) for all x ∈ U−x0

. It follows that D− f 2(x0) = limx→x0−0 f ′2( f1(x)) f ′1(x). Note
that limx→x0−0 f ′1(x) = ∞ and limx→x0−0 f ′2( f1(x)) = limy→x0+0 f ′2(y) = ∞. It follows that D− f 2(x0) =

limx→x0−0 f ′2( f1(x)) f ′1(x) = ∞. This implies that f 2 is not C1 on I.
For (iv), we have y1 ∈ I1. By the continuity of f1 on I1, there exists a sufficiently small left-half

neighborhood U−x0
of x0 such that f1(x) < x0 for all x ∈ U−x0

⊂ I1. Then we get that f 2(x) = f1( f1(x))
for all x ∈ U−x0

. It follows that D− f 2(x0) = limx→x0−0 f ′1( f1(x)) f ′1(x). Note that limx→x0−0 f ′1( f1(x)) =
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f ′1(y1) , 0. We claim that D− f 2(x0) does not exists. In fact, assume that D− f 2(x0) exists, then

lim
x→x0−0

f ′1(x) = lim
x→x0−0

f ′1( f1(x)) f ′1(x)
f ′1( f1(x))

=
D− f 2(x0)

f ′1(y1)

exists. However, this contradicts the fact that limx→x0−0 f ′1(x) does not exist. This implies that f 2 is not
C1 on I.

For (v), we have y1 ∈ I2. By the continuity of f1 on I1, there exists a sufficiently small left-half
neighborhood U−x0

of x0 such that f1(x) > x0 for all x ∈ U−x0
⊂ I1. Then we get that f 2(x) = f2( f1(x))

for all x ∈ U−x0
. It follows that D− f 2(x0) = limx→x0−0 f ′2( f1(x)) f ′1(x). Note that limx→x0−0 f ′2( f1(x)) =

f ′2(y1) , 0. Similarly to the above (iv), we can also get that D− f 2(x0) does not exists. It implies that f 2

is not C1 on I. Therefore, this completes the proof. �

3. Examples

We demonstrate our theorems with some examples.
Example 3.1. Consider the mapping F1 : (0, 1)→ (0, 1) (see Figure 5) defined by

F1(x) =


1
4 , 0 < x ≤ 1

4 ,
1
4 + 1

4 sin2 π
x ,

1
4 < x < 1

2 ,
1
4 , x = 1

2 ,
1
8 + 1

16 cos2 π

x− 1
2
, 1

2 < x < 1,

which has a unique oscillating discontinuous point x0 = 1
2 since y1 = lim

x→ 1
2−0

F1(x) = 1
4 exists but

lim
x→ 1

2 +0
F1(x) does not exist, i.e., F1 ∈ Vo+(I, I). Moreover, ỹ1 = limx→ 1

2−0 F′1(x) = 0 exists. It implies

that F1 ∈ VE
o+(I, I). Note that I1 = (0, 1

2 ), I2 = ( 1
2 , 1) and y1 = c = 1

4 ∈ I1. It is easy to check that f2 is
constantized by f1 near x0, θ( f2, f1) = f1(y1) = f1(c) = 1

4 and f ′1(y1)ỹ1 = 0, i.e., F1 ∈ {
E211
o+ (I, I), where

f1(x) =

{ 1
4 , 0 < x ≤ 1

4 ,
1
4 + 1

4 sin2 π
x ,

1
4 < x < 1

2 ,
f2(x) =

1
8

+
1

16
cos2 π

x − 1
2

.

It implies that the assumption (o+1) of (o+) in Theorem 2.1 is satisfied. Furthermore, we can check
that 2

7 ∈ F−1
1 (I0) ∩ I1 and 2

5 ∈ F−1
1 (I0) ∩ I1 since { 27 ,

2
5 } ⊂ I1 and F1( 2

7 ) = F1( 2
5 ) = x0 = 1

2 . Moreover, one
can also check that 2

7 ∈ ∆11,
2
5 ∈ ∆11, y1 = c = 1

4 and f ′1( 2
7 ) = f ′1(2

5 ) = 0, i.e., F1 ∈ {̄
E11
o+ (I, I). It implies

that the assumption (o+2) of (o+) in Theorem 2.1 is satisfied. On the other hand, one can compute

F2
1(x) =


1
4 , 0 < x ≤ 1

4 ,
1
4 + 1

4 sin2 4π
1+sin2 π

x
, 1

4 < x < 1
2 ,

1
4 ,

1
2 ≤ x < 1,

which is C1 smooth on (0, 1) as shown in Figure 6.
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Figure 5. F1 ∈ {
E211
o+ (I, I) ∩ {̄E11

o+ (I, I).

Figure 6. F2
1 is C1 on (0, 1).

Example 3.2. Consider the mapping F2 : (0, 1)→ (0, 1) (see Figure 7) defined by

F2(x) =


1
9 , 0 < x ≤ 1

6 ,
1

18 + 1
18 cos2 π

1
3−x
, 1

6 < x < 1
3 ,

1
18 , x = 1

3 ,
1

36 + 1
18 sin2 π

x− 1
3
, 1

3 < x < 1,

which has a unique oscillating discontinuous point x0 = 1
3 since neither limx→ 1

3−0 F2(x) nor
limx→ 1

3 +0 F2(x) exists, i.e., F2 ∈ Vo∗(I, I). Note that I1 = (0, 1
3 ), I2 = (1

3 , 1), c = 1
18 ∈ I1. One can check
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that both f1 and f2 are constantized by f1 near x0, F2(I1 ∪ I2) ⊆ I1 and θ( f1, f1) = θ( f2, f1) = f1(c) = 1
9 ,

i.e., F2 ∈ {
1
o∗(I, I), where

f1(x) =

 1
9 , 0 < x ≤ 1

6 ,
1

18 + 1
18 cos2 π

1
3−x
, 1

6 < x < 1
3 ,

f2(x) =
1

36
+

1
18

sin2 π

x − 1
3

.

It implies that the assumptions of (o*) in Theorem 2.1 are satisfied. Actually, one can compute

F2
2(x) =

1
9
, ∀ x ∈ (0, 1),

which is C1 smooth on (0, 1) as shown in Figure 8.

Figure 7. F2 ∈ {
1
o∗(I, I).

Figure 8. F2
2 is C1 on (0, 1).
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Example 3.3. Consider the mapping F3 : (0, 1)→ (0, 1) (see Figure 9) defined by

F3(x) =


1
4 , 0 < x ≤ 1

4 ,

8(x − 1
4 )3 + 1

4 ,
1
4 < x < 1

2 ,
1
8 , x = 1

2 ,
1
8 + 1

16 sin2 π

x− 1
2
, 1

2 < x < 1,

which has a unique oscillating discontinuous point x0 = 1
2 since y1 = lim

x→ 1
2−0

F3(x) = 3
8 exists but

lim
x→ 1

2 +0
F3(x) does not exist, i.e., F3 ∈ Vo+(I, I). Moreover, ỹ1 = limx→ 1

2−0 F′3(x) = 3
2 exists. It implies

that F3 ∈ VE
o+(I, I). Note that I1 = (0, 1

2 ), I2 = (1
2 , 1), c = 1

8 ∈ I1 and y1 = 3
8 ∈ I1. It is easy to check that

f2 is constantized by f1 near x0, θ( f2, f1) = 1
4 , f1(y1) = 17

64 , i.e., F3 < {
E211
o+ (I, I), where

f1(x) =

{ 1
4 , 0 < x ≤ 1

4 ,

8(x − 1
4 )3 + 1

4 ,
1
4 < x < 1

2 ,
f2(x) =

1
8

+
1

16
sin2 π

x − 1
2

.

It implies that the assumptions of (o+) in Theorem 2.1 are not satisfied. Actually, one can compute

F2
3(x) =


1
4 , 0 < x ≤ 1

4 ,

84(x − 1
4 )9 + 1

4 ,
1
4 < x < 1

2 ,
1
4 ,

1
2 ≤ x < 1,

which is not C1 smooth on (0, 1) with nonsmooth point 1
2 as shown in Figure 10.

Figure 9. F3 < {
E211
o+ (I, I).
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Figure 10. F2
3 is not C1 on (0, 1).

Example 3.4. Consider the mapping F4 : (0, 1)→ (0, 1) (see Figure 11) defined by

F4(x) =

{
1
2 −

1
4

√
1 − 2x, 0 < x < 1

2 ,

4(x − 3
4 )2 + 1

2 ,
1
2 ≤ x < 1,

which has a unique jumping discontinuous point x0 = 1
2 since

y1 = lim
x→ 1

2−0
F6(x) =

1
2
, lim

x→ 1
2 +0

F6(x) =
3
4

= y2.

Note that

f1(x) =
1
2
−

1
4

√
1 − 2x, 0 < x < 1

2

and

f2(x) = 4(x −
3
4

)2 +
1
2
, 1

2 < x < 1.

Moreover, y1 = 1
2 = x0, limx→ 1

2−0 f ′1(x) = ∞ and f1(I1) ⊆ I1, i.e., the assumption (i) in Theorem 2.3 is
satisfied. Actually, one can compute

F2
4(x) =


1
2 −

√
2

8
4√1 − 2x, 0 < x < 1

2 ,
1
2 , x = 1

2 ,

4[4(x − 3
4 )2 − 1

4 ]2 + 1
2 ,

1
2 < x < 1,

which is not C1 smooth on (0, 1) with nonsmooth point 1
2 as shown in Figure 12.
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Figure 11. F4 ∈ V(I, I).

Figure 12. F2
4 is not C1 on (0, 1).

4. Conclusions

Difference from [6], where the function has exactly a removable or a jumping discontinuity, in this
paper, we show how a function with exactly one oscillating discontinuity may have a C1 smooth iterate
of second-order.
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