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1. Introduction

It is significant that the World Health Organization (WHO) has identified the infection of
COVID-19 as a global epidemic. This viral infection is dangerous and has symptoms that range from
those of an ordinary cold to disastrous respiratory disorders. It is also reported that the coronavirus
infection principally affects blood pressure. The central nervous system, skin, pregnancy, urinary
system, gastrointestinal tract, endocrine system, peripheral nervous system, cardiovascular system and
immunological system are all affected by this virus [1]. The acute respiratory syndrome
(SARS-Cov-2) is caused by the COVID-19 virus, which targets the respiratory system. These are
viruses that affect the respiratory system. In December, it was introduced for the first time in China.
In January 2020, the WHO proclaimed SARS-Cov-2 to be pandemic [2]. Mathematical modeling is
the ideal instrument for studying and understanding this complicated and demanding undertaking in
order to cope with the epidemic. Because of the spreading characteristics of such occurrences,
mathematical modeling has received a lot of interest. Many researchers have developed numerous
models to investigate the temporal dynamics of communicable illness. Infectious diseases are the
second-leading source of death on the planet [3, 4]. The authors in [3] considered an epidemic model
with nonlinear incidence and relapse while the authors in [4] focused on the analysis and multi-model
selection of COVID-19 infection.

Mathematical modeling is critical for studying disease management and dynamics, especially when
the illness is in its early stages or there is no vaccine. The study of biological models of infectious
illnesses has received a lot of interest in recent research articles. Stability theory and current system
solutions are best described by mathematical language in optimizing epidemiological systems [5, 6].
In the case of COVID-19, numerous studies have been carried out to conceptualize different aspects of
this viral infection. The virus might resurface if social separation is relaxed [7]. An effective, safe and
widely used vaccine would eliminate the need for social isolation, but creating a COVID-19 vaccine is
fraught with difficulties [8], and one is unlikely to be ready until spring 2021 at the earliest [9]. Until
then, non-pharmaceutical measures such as social distancing, diagnostic testing, contact tracing and
patient isolation will be used to successfully control COVID-19 [10]. In [11], the authors introduced
the dynamics of COVID-19 and simulate the disease’s phase-based transmissibility, moreover, they
determine the threshold parameter and examine the system. Khan and Atangana [12] presented a
mathematical model for the coronavirus infection and evaluated the disease’s dynamical characteristics
by detailing the interactions between bats and unknown hosts in brief detail [13, 14]. In [15], an
epidemic model is presented for the investigation of the effectiveness of control policies through the
use of a genetic algorithm. A novel approach has been used by the researchers for the investigation of
the approximate solution of the dynamics of COVID-19 infection [16]. Here, we formulate the intricate
dynamics of COVID-19 with treatment, reinfection and vaccination to study the intricate phenomena
of this viral infection.

Fractional calculus is an extended version of classical calculus. Non-integer operators can be
utilized to better comprehend physical phenomena and provide insight into mathematical models. The
fractional-order derivatives are utilized to better understand the nonlocal behavior and memory. The
highest levels of precision and measurement are likewise provided by fractional-order derivative
models [17, 18]. It is reported that the dynamics of infection can be better understood by utilizing
fractional derivatives [19, 20]. A number of fractional operators with non-singular and singular
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kernels have been identified in recent investigations; moreover, these operators are successfully
applied to different problems [21, 22]. In [23], the researchers formulated an epidemic model through
the use of non-integer derivatives and showed that the results of fractional calculus are more accurate
than ordinary systems. The stochastic dynamics of COVID-19 infection has been studied through the
use of a fractional operator in a recent study [24]. The researchers in [25] examined the dynamics of
COVID-19 by using of stochastic and deterministic model by applying a non-integer framework with
optimized vaccination. They considered the real data of Saudi Arabia and inspected different
vaccination scenarios with the help of numerical schemes. Due to the reported extraordinary
properties of fractional operators, we have opted to represent the infection process of COVID-19
through the fractional framework.

The rest of the paper is organized follows. In Section 2, we present some concepts and definitions
about fractional theory that are used in this work. We formulate a COVID-19 model in Section 3 and
then represent the dynamics with the help of Caputo-Fabrizio (CF) derivatives. The basic reproduction
number is calculated, symbolized by R0 and equilibria are investigated in the same section. We carried
out numerical simulations to visualize the significance of the input factors to R0. In Section 4, by using
fixed-point theory, the uniqueness and existence of the solution is discussed. Finally, the research is
concluded in Section 5 of this article.

2. Fractional concepts

For the examination of our COVID-19 dynamics, we shall explain the principal notion and findings
of the CF fractional operator. Below are the definitions of these key ideas:

Definition 2.1. Let us take a function g ∈ H1(a, b); then, the CF fractional operator [26] with
normalityW(τ) is given by

Dℏt (g(t)) =
W(ℏ)
1 − ℏ

∫ t

a
g′(x) exp

[
−ℏ

t − x
1 − ℏ

]
dx, (2.1)

where b > a and ℏ ∈ [0, 1]. If g < H1(a, b), then we get

Dℏt (g(t)) =
ℏW(ℏ)
1 − ℏ

∫ t

a
(g(t) − g(x)) exp

[
−ℏ

t − x
1 − ℏ

]
dx. (2.2)

Remark 2.1. If σ = 1−ℏ
ℏ
∈ [0,∞) and ℏ = 1

1+σ ∈ [0, 1], then from (2.2), one can get

Dℏt (g(t)) =
M(σ)
σ

∫ t

a
g′(x)e[− t−x

σ ]dx; (2.3)

furthermore, the below is obtained:

lim
σ−→0

1
σ

exp
[
−

t − x
σ

]
= δ(x − t), (2.4)

where M(0) = M(∞) = 1.
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Definition 2.2. [27] The integral of the above fractional operator is defined as follows:

Iℏt (g(t)) =
2(1 − ℏ)

(2 − ℏ)W(ℏ)
g(t) +

2ℏ
(2 − ℏ)W(ℏ)

∫ t

0
g(u)du, t ≥ 0, (2.5)

where 0 < ℏ < 1 and indicates integral order:

Remark 2.2. The above Eq (2.2) yields the following:

2(1 − ℏ)
(2 − ℏ)W(ℏ)

+
2ℏ

(2 − ℏ)W(ℏ)
= 1, (2.6)

whereW(ℏ) = 2
2−ℏ . From [27], we have

Dℏt (g(t)) =
1

1 − ℏ

∫ t

0
g′(x) exp

[
ℏ

t − x
1 − ℏ

]
dx. (2.7)

3. Formulation of COVID-19 dynamics

We propose a mathematical model for the transmission of COVID-19 with treatment and
immunization in this portion of the study, where N(t) is the whole population and the population has
been divided into five classes: S(t) indicates the susceptible individuals,V(t) indicates the vaccinated
individuals, I(t) indicates the infected individuals, T (t) indicates the treated individuals and R(t)
denotes the recovered individuals at time t. Susceptible individuals are those who have not been
infected with COVID-19, whereas infected individuals are those who have been diagnosed with
COVID-19 and have transmitted the virus to the susceptible ones. People who have been treated for
the illness are known to have been treated; these assumptions leads us to the following:

dS
dt = ξ + β1R + β2V − ωIS − γS − µS,

dV
dt = γS − β2V − µV,
dI
dt = ωSI − ρI − αI − µI,

dT
dt = ρI − θT − ψT − µT ,
dR
dt = ψT − β1R − µR,

(3.1)

with

N(t) = S(t) +V(t) + I(t) + T (t) + R(t),

and

S(0) ≥ 0,V(0) ≥ 0,I(0) ≥ 0,T (0) ≥ 0,R(0) ≥ 0.

The initial values of the state variables and the values of parameters are listed in the following Table 1
for numerical purposes. The flow chart of the transmission phenomena of our model is illustrated in
Figure 1.
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Table 1. Parameter and state variable descriptions and values per day.

Parameter Description Value of parameter

S Susceptible individuals Assumed
T Treated individuals Assumed
ξ Recruitment rate of individuals 3.04500
ω Transmission rate from S to I 0.00143
ρ Treatment rate of individuals 0.0034
µ Natural death rate of individuals 0.016
γ Rate of vaccination of individuals 0.010
α Death resulting from COVID-19 0.0173
I Infected individuals Assumed
ψ Treated rate for recovering from COVID-19 0.003
β1 Immunity loss rate for recovered individuals 0.005
β2 Immunity loss rate for vaccination 0.052
V Vaccinated individuals Assumed
θ Death rate due to COVID-19 0.003
R Recovered individuals Assumed

Figure 1. Illustration of the flow of the transmission of COVID-19 for our model.

Mathematical biology is one of the many uses of fractional theory in technology and science.
Fractional frameworks have been shown to be more precious rather than traditional derivatives for
diseases. It is reported that the recently developed CF derivative describes the nonlocal behavior of
biological processes more accurately. Therefore, we represent our model of COVID-19 infection by
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using a CF fractional operator as follows

CF
0 DℏtS = ξ + β1R + β2V − ωIS − γS − µS,

CF
0 DℏtV = γS − β2V − µV,
CF
0 DℏtI = ωSI − ρI − αI − µI,

CF
0 DℏtT = ρI − θT − ψT − µT ,
CF
0 DℏtR = ψT − β1R − µR,

(3.2)

where ℏ is the CF fractional operator’s order. Next, we focus on the positive invariant region for our
fractional model of Covid1-19 infection which can be easily proven by applying analytic skills [28].

Theorem 3.1. Let us take Ξ = {(S,V,I,T ,R) ∈ R5
+ : 0 ≤ S +V + I + T + R ≤ M} whereM is a

positive constant; then, the set Ξ is positive-invariant for the above-mentioned system (9) of COVID-19.

Investigation of the model

Now we will focus on the analysis of the suggested COVID-19 model (9) including equilibria,
stability, reproduction parameter and sensitivity analysis. We indicate the disease-free equilibria by E0

and it is given by the following values

E0 = (S0,V0,I0,T 0,R0) =
(

ξ(µ + β2)
µ(µ + β2 + γ)

,
γξ

µ(µ + β2 + γ)
, 0, 0, 0

)
.

The reproduction parameter of the system can be determined by the methods mentioned in [29, 30] as
follows

F =
[
ω ξ(µ+β2)
µ(µ+β2+γ)

]
,

V =
[
ρ + α + µ

]
,

which implies that

FV−1 =
[

ωξ(µ+β2)
µ(µ+β2+γ)

] [ 1
ρ+α+µ

]
=

[ ωξ(µ+β2)
µ(µ+β2+γ)(ρ+α+µ)

]
.

Thus, the required reproduction number is given by

R0 =
ωξ(µ + β2)

µ(µ + β2 + γ)(ρ + α + µ)
.

Theorem 3.2. If R0 < 1, then the DFE E0(S0,V0,I0,T 0,R0) of the system (9) is stable in the local
domain and unstable in other cases.

Proof 3.2. In this case, we take the Jacobian matrix of our recommended system of COVID-19 as

J =


−(γ + µ) β2 −ωS0 0 β1

γ −(β2 + µ) 0 0 0
ωI0 0 ωS0 − (ρ + α + µ) 0 0

0 0 ρ −(θ + ψ + µ) 0
0 0 0 ψ −(β1 + µ)


; (3.3)
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simplifying the above Eq (3.3) at the disease-free equilibrium E0(S0,V0,I0,T 0,R0), we obtain

J =


−(γ + µ) β2 −

ωξ(µ+β2)
µ(µ+β2+γ) 0 β1

γ −(β2 + µ) 0 0 0
0 0 ωξ(µ+β2)

µ(µ+β2+γ) − (ρ + α + µ) 0 0
0 0 ρ −(θ + ψ + µ) 0
0 0 0 ψ −(β1 + µ)


. (3.4)

Now, we find the roots of (3.4) as follows:

J =


−(γ + µ) − λ β2 −

ωξ(µ+β2)
µ(µ+β2+γ) 0 β1

γ −(β2 + µ) − λ 0 0 0
0 0 ωξ(µ+β2)

µ(µ+β2+γ) − (ρ + α + µ) − λ 0 0
0 0 ρ −(θ + ψ + µ) − λ 0
0 0 0 ψ −(β1 + µ) − λ


.

(3.5)
Solving (3.5), we get[
−(γ + µ) − λ

] [
−(β2 + µ) − λ

] [ ωξ(µ + β2)
µ(µ + β2 + γ)

− (ρ + α + µ) − λ
] [
−(θ + ψ + µ) − λ

] [
−(β1 + µ) − λ

]
= 0.

Here, the eigenvalues −(γ+µ),−(β2+µ),−(β1+µ) and −(θ+ψ+µ) are negative. To fulfill the condition
of stability, we take

ωξ(µ + β2)
µ(µ + β2 + γ)

− (ρ + α + µ) − λ = 0,

which implies that

λ =
ωξ(µ + β2)
µ(µ + β2 + γ)

− (ρ + α + µ);

from the above, we have
λ = (ρ + α + µ)(R0 − 1),

which implies that the last eigenvalue λ is negative for R0 < 1. As a result of this, the DFE
E0(S0,V0,I0,T 0,R0) of the system (9) is stable in the local domain if R0 < 1.

Let the endemic state be denoted by E1 = (S∗,V∗,I∗,T ∗,R∗). E1 is obtained by setting all
equations of model (9) equal to zero and solving the model; we have the following:

S∗ =
ξ(µ + ψ + θ)(µ + γ)

ω(µ + ψ + θ)
,

V∗ =
γ(ξ(µ + ψ + θ) + β1ψρ)(µ + γ)

ω(µ + ψ + θ)(µ + β2)
,

I∗ =
µ + ψ + θ

(ξ(µ + ψ + θ) + β1ψρ)(µ + γ) − (µ + ψ + θ)(µ + ρ + α)
,

T ∗ =
ρ

(ξ(µ + ψ + θ) + β1ψρ)(µ + γ) − (µ + ψ + θ)(µ + ρ + α)
,

and
R∗ =

ψρ

(µ + β1)(ξ(µ + ψ + θ) + β1ψρ)(µ + γ) − (µ + ψ + θ)(µ + ρ + α)
.
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Theorem 3.3. In the case of R0 > 1, the endemic steady-state E1 of (9) is stable in the local domain at
E1 = (S∗,V∗,I∗,T ∗,R∗).

Proof 3.3. In this case, we use the Jacobian matrix at endemic steady state as

JE1 =


−(ωI∗ + γ + µ) β2 −ωS∗ 0 β1

γ −(β2 + µ) 0 0 0
ωI∗ 0 ωS∗ − (ρ + α + µ) 0 0

0 0 ρ −(θ + ψ + µ) 0
0 0 0 ψ −(β1 + µ)


. (3.6)

The fifth-order polynomial equation for JE1 is given as

P = λ5 +Z1λ
4 +Z2λ

3 +Z3λ
2 +Z4λ +Z5.

Here, we get
Z1 =W4 +W3 +W5 + (W5 +W4)W3 +W5W4 + γβ2,

Z2 = (W4 +W3 +W5)(1 +W2 +W1) +W1W2,

Z3 =W4W3W5+W3γβ2+(W2+W1)((W5+W4)W3+W4W5+γβ2)+W2W1(W4+W3+W5),

Z4 = (W2 +W1)(W4W3W5 +W3γβ2) +W2W1((W5 +W4)W3 +W4W5 + γβ2)

and
Z5 = (W2W1(W4W3W5 +W3γβ2) − β1ψρW5,

with the following assumptions:
W1 = µ + β1,

W2 = µ + ψ + θ,

W3 = ωS
′

− (µ + ρ + α),

W4 = ωI
′

+ µ + γ,

W5 = µ + β2.

Using the Routh-Hurwitz method we get the criteria for stability:

Wi > 0 f or i = 1, 2, 3, 4, 5,

W2W1W3 >W
2
3 +W

2
1W4,

W1W4 − (W1W2W3 −W
2
3 −W

2
1W4)W5 >W5(W1W2 −W3)2 +W1W

2
5.

As a result, the required proof is completed.
Next, we show the impact of the input factors on the reproduction number of the system R0 by

employing a partial ranked correlation coefficient method (PRCC). The outcomes of the PRCC
significance test is illustrated in Figure 2 with PRCC values of 0.7609,−0.8697, 0.3049, −0.3549,
−0.3940, −0.3499 and 0.8422 for the parameters ω, µ, β2, γ, ρ, α and ξ, respectively. This implies that
the parameters µ, ξ, ω and ρ are the most sensitive parameters of R0 followed by the other parameters.
We performed different simulations to check the results of R0. The outcomes of the reproduction
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number are checked against variation of the transmission rate, treatment rate, vaccination rate and
immunity loss rate, as can be seen in Figure 3.
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Figure 2. Illustration of the significance test results for the threshold parameter R0.
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Figure 3. Graphical view analysis of the basic reproduction/threshold value in the presence
of the fluctuation of various input values.
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4. Solution investigation

The examination of the solutions of our COVID-19 model is the subject of this study. The presence
of a solution will be investigated by using fixed-point theory (9). We will proceed as follows:

S(t) − S(0) = CF
0 Iℏt

{
ξ + β1R + β2V − ωIS − γS − µS

}
,

V(t) −V(0) = CF
0 Iℏt

{
γS − β2V − µV

}
,

I(t) − I(0) = CF
0 Iℏt

{
ωSI − ρI − αI − µT

}
,

T (t) − T (0) = CF
0 Iℏt

{
ρI − θT − ψT − µT

}
,

R(t) − R(0) = CF
0 Iℏt

{
ψT − β1R − µR

}
.

(4.1)

Using the result of [29], we have the below

S(t) − S(0) =
2ℏ

(2 − ℏ)W(ℏ)

∫ t

0

{
ξ + β1R + β2V − ωIS − γS − µS

}
dy

+
2(1 − ℏ)

(2 − ℏ)W(ℏ)

{
ξ + β1R + β2V − ωIS − γS − µS

}
,

V(t) −V(0) =
2(1 − ℏ)

(2 − ℏ)W(ℏ)

{
γS − β2V − µV

}
+

2ℏ
(2 − ℏ)W(ℏ)

∫ t

0

{
γS − β2V − µV

}
dy

I(t) − I(0) =
2(1 − ℏ)

(2 − ℏ)W(ℏ)

{
ωSI − ρI − αI − µT

}
+

2ℏ
(2 − ℏ)W(ℏ)

∫ t

0

{
ωSI − ρI − αI − µT

}
dy,

T (t) − T (0) =
2(1 − ℏ)

(2 − ℏ)W(ℏ)

{
ρI − θT − ψT − µT

}
+

2ℏ
(2 − ℏ)W(ℏ)

∫ t

0

{
ρI − θT − ψT − µT

}
dy,

R(t) − R(0) =
2(1 − ℏ)

(2 − ℏ)W(ℏ)

{
ψT − β1R − µR

}
+

2ℏ
(2 − ℏ)W(ℏ)

∫ t

0

{
ψT − β1R − µR

}
dy. (4.2)

Therefore, 

P1(t,S) = ξ + β1R + β2V − ωIS − γS − µS,

P2(t,V) = γS − β2V − µV,

P3(t,I) = ωSI − ρI − αI − µT ,

P4(t,T ) = ρI − θT − ψT − µT ,

P5(t,R) = ψT − β1R − µR.

(4.3)

AIMS Mathematics Volume 8, Issue 4, 8680–8701.



8690

Theorem 4.1. The kernels P1, P2, P3, P4 and P5 satisfy the contraction and Lipschitz condition if the
following is satisfied:

0 ≤ (ωM + γ + µ) < 1.

Proof. For the required result, we take S and S1 and proceed from P1 as follows

P1(t,S) − P1(t,S1) = −(ωI(S(t) − S(t)1) + γ(S(t) − S(t)1) + µ(S(t) − S(t)1)). (4.4)

On solving (4.4), we get that

∥P1(t,S) − P1(t,S1)∥ ≤ ∥ωI{S(t) − S(t)1}|| + ∥γ{S(t) − S(t)1}∥

+∥µ{S(t) − S(t)1}∥

≤ ∥ωM∥∥{S(t) − S(t)1}|| + γ∥{S(t) − S(t)1}∥

+µ∥{S(t) − S(t)1}∥

≤ ωM∥{S(t) − S(t)1}|| + γ∥{S(t) − S(t)1}∥

+µ∥{S(t) − S(t)1}∥

≤ (ωM + γ + µ)∥{S(t) − S(t)1}∥. (4.5)

Let Q1 = (ωM + γ + µ), where ∥I∥ ≤ M due to boundedness; we obtain

||P1(t,S) − P1(t,S1)|| ≤ Q1||S(t) − S(t)1||. (4.6)

As a consequence of this, we demonstrate the Lipschitz condition for P1, as well as the contraction
resulting from the condition 0 ≤ (ωM + γ+ µ) < 1. We may also determine the Lipschitz conditions in
the same way.

||P2(t,V) − P2(t,V1)|| ≤ Q2||V(t) −V(t)1||,

||P3(t,I) − P3(t,I1)|| ≤ Q3||I(t) − I(t)1||,

||P4(t,T ) − P4(t,T1)|| ≤ Q4||T (t) − T (t)1||,

||P5(t,R) − P5(t,R1)|| ≤ Q5||R(t) − R(t)1||. (4.7)

Further, solving (4.2) shows that

S(t) = S(0) + 2(1−ℏ)
(2−ℏ)W(ℏ) P1(t,S) + 2ℏ

(2−ℏ)W(ℏ)

∫ t

0
(P1(y,S))dy,

V(t) = V(0) + 2(1−ℏ)
(2−ℏ)W(ℏ) P2(t,C) + 2ℏ

(2−ℏ)W(ℏ)

∫ t

0
(P2(y,V))dy,

I(t) = I(0) + 2(1−ℏ)
(2−ℏ)W(ℏ) P3(t,I) + 2ℏ

(2−ℏ)(ℏ)

∫ t

0
(P3(y,I))dy,

T (t) = T (0) + 2(1−ℏ)
(2−ℏ)W(ℏ) P4(t,R) + 2ℏ

(2−ℏ)W(ℏ)

∫ t

0
(P4(y,T ))dy,

R(t) = R(0) + 2(1−ℏ)
(2−ℏ)W(ℏ) P5(t,V) + 2ℏ

(2−ℏ)W(ℏ)

∫ t

0
(P5(y,R))dy.

(4.8)
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Thus, the above equations yield

Sn(t) = 2 (1−ℏ)
(2−ℏ)W(ℏ) P1(t,S(n−1)) + 2 ℏ

(2−ℏ)W(ℏ)

∫ t

0
(P1(y,S(n−1)))dy,

Vn(t) = 2 (1−ℏ)
(2−ℏ)W(ℏ) P2(t,V(n−1)) + 2 ℏ

(2−ℏ)W(ℏ)

∫ t

0
(P2(y,V(n−1)))dy,

In(t) = 2 (1−ℏ)
(2−ℏ)W(ℏ) P3(t,I(n−1)) + 2 ℏ

(2−ℏ)W(ℏ)

∫ t

0
(P3(y,I(n−1)))dy,

Tn(t) = 2 (1−ℏ)
(2−ℏ)W(ℏ) P4(t,T(n−1)) + 2 ℏ

(2−ℏ)W(ℏ)

∫ t

0
(P4(y,T(n−1)))dy,

Rn(t) = 2 (1−ℏ)
(2−ℏ)W(ℏ) P5(t,R(n−1)) + 2 ℏ

(2−ℏ)W(ℏ)

∫ t

0
(P5(y,R(n−1)))dy,

(4.9)

It has the following initial conditions:

S0(t) = S(0),V0(t) = V(0),I0(t) = I(0),T 0(t) = T (0),R0(t) = R(0).

The difference terms are given by

ℓ1n(t) = Sn(t) − S(n−1)(t) =
2(1 − ℏ)

(2 − ℏ)W(ℏ)
(P1(t,S(n−1)) − P1(t,S(n−2)))

+2
ℏ

(2 − ℏ)W(ℏ)

∫ t

0
(P1(y,S(n−1)) − P1(y,S(n−2)))dy,

ℓ2n(t) = Vn(t) −V(n−1)(t) =
2(1 − ℏ)

(2 − ℏ)W(ℏ)
(P1(t,V(n−1)) − P1(t,V(n−2)))

+2
ℏ

(2 − ℏ)W(ℏ)

∫ t

0
(P1(y,V(n−1)) − P1(y,V(n−2)))dy,

ℓ3n(t) = In(t) − I(n−1)(t) =
2(1 − ℏ)

(2 − ℏ)W(ℏ)
(P1(t,I(n−1)) − P1(t,I(n−2)))

+2
ℏ

(2 − ℏ)W(ℏ)

∫ t

0
(P1(y,I(n−1)) − P1(y,I(n−2)))dy,

ℓ4n(t) = Tn(t) − T(n−1)(t) =
2(1 − ℏ)

(2 − ℏ)W(ℏ)
(P1(t,T(n−1)) − P1(t,T(n−2)))

+2
ℏ

(2 − ℏ)W(ℏ)

∫ t

0
(P1(y,T(n−1)) − P1(y,T(n−2)))dy,

ℓ5n(t) = Rn(t) − R(n−1)(t) =
2(1 − ℏ)

(2 − ℏ)W(ℏ)
(P1(t,R(n−1)) − P1(t,R(n−2)))

+2
ℏ

(2 − ℏ)W(ℏ)

∫ t

0
(P1(y,R(n−1)) − P1(y,R(n−2)))dy. (4.10)

Also, we have the following: 

Sn(t) =
∑n

j=1 ℓ1 j(t),
Vn(t) =

∑n
j=1 ℓ2 j(t),

In(t) =
∑n

j=1 ℓ3 j(t),
Tn(t) =

∑n
j=1 ℓ4 j(t),

Rn(t) =
∑n

j=1 ℓ5 j(t).

(4.11)
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Similarly, we get that

||ℓ1n(t)|| = ||Sn(t) − S(n−1)(t)|| =
∥∥∥∥∥2

(1 − ℏ)
(2 − ℏ)W(ℏ)

(P1(t,S(n−1)) − P1(t,S(n−2)))

+2
ℏ

(2 − ℏ)W(ℏ)

∫ t

0
(P1(y,S(n−1)) − P1(y,S(n−2)))dy

∥∥∥∥∥, (4.12)

∥Sn(t) − S(n−1)(t)∥ ≤ 2
(1 − ℏ)

(2 − ℏ)W(ℏ)
∥(P1(t,S(n−1)) − P1(t,S(n−2)))∥

+2
ℏ

(2 − ℏ)W(ℏ)

∥∥∥∥∥ ∫ t

0
(P1(y,S(n−1)) − P1(y,S(n−2)))dy

∥∥∥∥∥. (4.13)

In addition, solving the above Eq (4.13) leads to

∥Sn(t) − Sn−1(t)∥ ≤ 2
(1 − ℏ)

(2 − ℏ)W(ℏ)
Q1∥S(n−1) − S(n−2)∥ + 2

ℏ

(2 − ℏ)W(ℏ)
Q1

×

∫ t

0
∥S(n−1) − S(n−2)∥dy. (4.14)

Therefore,

∥ℓ1n(t)∥ ≤ 2
(1 − ℏ)

(2 − ℏ)W(ℏ)
Q1∥ℓ1(n−1)(t)∥ + 2

ℏ

(2 − ℏ)W(ℏ)
Q1

∫ t

0
∥ℓ1(n−1)(y)∥dy. (4.15)

Similarly, we get the results listed below.

∥ℓ2n(t)∥ ≤ 2
(1 − ℏ)

(2 − ℏ)W(ℏ)
Q2∥ℓ2(n−1)(t)∥ + 2

ℏ

(2 − ℏ)W(ℏ)
Q2

∫ t

0
∥ℓ2(n−1)(y)∥dy,

∥ℓ3n(t)∥ ≤ 2
(1 − ℏ)

(2 − ℏ)W(ℏ)
Q3∥ℓ3(n−1)(t)∥ + 2

ℏ

(2 − ℏ)W(ℏ)
Q3

∫ t

0
∥ℓ3(n−1)(y)∥dy,

∥ℓ4n(t)∥ ≤
2(1 − ℏ)

(2 − ℏ)W(ℏ)
Q4∥ℓ4(n−1)(t)∥ + 2

ℏ

(2 − ℏ)W(ℏ)
Q4

∫ t

0
∥ℓ4(n−1)(y)∥dy,

∥ℓ5n(t)∥ ≤ 2
(1 − ℏ)

(2 − ℏ)W(ℏ)
Q5∥ℓ5(n−1)(t)∥ + 2

ℏ

(2 − ℏ)W(ℏ)
Q5

∫ t

0
∥ℓ5(n−1)(y)∥dy. (4.16)

□

Theorem 4.2. In the case that the below holds true

2
(1 − ℏ)

(2 − ℏ)W(ℏ)
Q1 + 2

ℏ

(2 − ℏ)W(ℏ)
Q1t0 < 1,

then one can have the exact coupled solutions of the model (9) of COVID-19.

Proof. We observed that the Lipschitz condition is satisfied and the boundedness of S(t), V(t),
I(t),T (t) and R(t) are ensured. Thus, from Eqs (4.15) and (4.16), we get that

∥ℓ1n(t)∥ ≤ ||Sn(0)||
[(

2
(1 − ℏ)

(2 − ℏ)W(ℏ)
Q1

)
+

(
2

ℏ

(2 − ℏ)W(ℏ)
Q1t

)]n
,
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∥ℓ2n(t)∥ ≤ ||Vn(0)||
[(

2
(1 − ℏ)

(2 − ℏ)W(ℏ)
Q2

)
+

(
2

ℏ

(2 − ℏ)W(ℏ)
Q2t

)]n
,

∥ℓ3n(t)∥ ≤ ||In(0)||
[(

2
(1 − ℏ)

(2 − ℏ)W(ℏ)
Q3

)
+

(
2

ℏ

(2 − ℏ)W(ℏ)
Q3t

)]n
,

∥ℓ4n(t)∥ ≤ ||Tn(0)||
[(

2
(1 − ℏ)

(2 − ℏ)W(ℏ)
Q4

)
+

(
2

ℏ

(2 − ℏ)W(ℏ)
Q4t

)]n
,

∥ℓ5n(t)∥ ≤ ||Rn(0)||
[(

2
(1 − ℏ)

(2 − ℏ)W(ℏ)
Q5

)
+

(
2

ℏ

(2 − ℏ)W(ℏ)
Q5t

)]n
. (4.17)

From Eq (4.17), we get the existence and continuity of the solution. Now we have to prove Eq (4.17)
is a solution of system (9); we start the preceding as follows:

S(t) − S(0) = Sn(t) − N1n(t),

V(t) −V(0) = Vn(t) − N2n(t),

I(t) − I(0) = In(t) − N3n(t),

T (t) − T (0) = Tn(t) − N4n(t),

R(t) − R(0) = Rn(t) − N5n(t). (4.18)

Now, we take

∥N1n(t)∥ =
∣∣∣∣∣∣∣∣ 2(1 − ℏ)

(2 − ℏ)W(ℏ)
(P1(t,Sn) − P1(t,S(n−1))) +

2ℏ
(2 − ℏ)W(ℏ)

×∫ t

0
(P1(y,Sn) − P1(y,S(n−1)))dy

∣∣∣∣∣∣∣∣,
≤

2(1 − ℏ)
(2 − ℏ)W(ℏ)

∥(P1(t,Sn) − (P1(t,S(n−1)))∥ +
2ℏ

(2 − ℏ)W(ℏ)
×∫ t

0
||(P1(y,S) − P1(y,S(n−1)))||dy,

≤
2(1 − ℏ)

(2 − ℏ)W(ℏ)
Q1∥S − S(n−1)∥ +

2ℏ
(2 − ℏ)W(ℏ)

Q1∥S − S(n−1)∥t. (4.19)

Therefore,

∥N1n(t)∥ ≤
( 2(1 − ℏ)
(2 − ℏ)W(ℏ)

+
2ℏ

(2 − ℏ)W(ℏ)
t
)n+1

Qn+1
1 a. (4.20)

We attain the following result at time t0:

∥N1n(t)∥ ≤
( 2(1 − ℏ)
(2 − ℏ)W(ℏ)

+
2ℏ

(2 − ℏ)W(ℏ)
t0

)n+1
Qn+1

1 a. (4.21)
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Proceeding in a similar way and using (4.21), we obtain

∥N1n(t)∥ −→ 0, n→ ∞.

Similarly, we get that N2n(t),N3n(t),N4n(t) and N5n(t) approaches 0 as n approaches∞. □

To show that the solution of system (9) is unique, let (S1(t),V1(t), I1(t), T1(t), R1(t)) be any other
solution of system (9); then,

S(t) − S1(t) =
2(1 − ℏ)

(2 − ℏ)W(ℏ)
(P1(t,S) − P1(t,S1)) +

2ℏ
(2 − ℏ)W(ℏ)

×

∫ t

0
(P1(y,S) − P1(y,S1)) dy. (4.22)

Taking the norm on both sides of Eq (4.22), we get

∥S(t) − S1(t)∥ ≤
2(1 − ℏ)

(2 − ℏ)W(ℏ)
∥P1(t,S) − P1(t,S1)∥ +

2ℏ
(2 − ℏ)W(ℏ)

×

∫ t

0
∥P1(y, S h) − P1(y, S 1h)∥dy. (4.23)

Using the Lipschitz condition, we attain

∥S(t) − S1(t)∥ ≤
2(1 − ℏ)

(2 − ℏ)W(ℏ)
Q1∥Sh(t) − S1(t)∥ +

2ℏ
(2 − ℏ)W(ℏ)

×

∫ t

0
Q1t∥S(t) − S1(t)∥dy. (4.24)

Hence, we get that

∥S(t) − S1(t)∥
(
1 −

2(1 − ℏ)
(2 − ℏ)W(ℏ)

Q1 −
2ℏ

(2 − ℏ)W(ℏ)
Q1t

)
≤ 0. (4.25)

Theorem 4.3. If the following condition is satisfied:(
1 −

2(1 − ℓ)
(2 − ℓ)U(ℓ)

Q1 −
2ℓ

(2 − ℓ)U(ℓ)
Q1t

)
> 0, (4.26)

then the system (9) has a unique solution.

Proof. Let us suppose that Eq (4.26) holds; then, Eq (4.25) yields the following result:

∥S(t) − S1(t)∥ = 0, (4.27)

Which implies that

S(t) = S1(t). (4.28)

Similarly we obtain the below listed results

V(t) = V1(t),

I(t) = I1(t),

T (t) = T1(t),

R(t) = R1(t).

□
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To grasp the dynamical behavior of our COVID-19 model, we chose to run multiple simulations for
the suggested fractional system by changing the input parameter values. For simulation proposals, the
parameter values listed in Table 1 were utilized, with certain values being assumed in these simulations
S = 800,V = 50,I = 30,T = 100 and R = 20, which are the values of state variables.

We ran four distinct scenarios to see how different settings affect the system’s output. Our major
goal was to detect the level of infection and the volatility of these values, as well as to anticipate
appealing control measures for COVID-19 infection prevention. In the first instance, we show how
fractional order affects the system shown in Figures 4–5. In these simulations, we primarily focused
on the system’s variation in response to changes in the index of memory. We observed that this input
factor has a significant influence on the system and can effectively decrease the level of infection in
the community. In Figure 6, we varied the value of the transmission rate ω; thus, we can observe
the fluctuation of the dynamics in the second scenario. In the third and fourth scenarios respectively
presented in Figures 7 and 8, we show the dynamical behavior of the hypothesized model with the
variation in treatment and vaccination rates ρ and γ, respectively; we noticed the influence of each of
these parameters on the infected individuals in the COVID-19 model. In our results, we observed that
the vaccination rate has an attractive influence on the system in terms of its ability to reduce the level
of infection; thus, it can be used as a control parameter. Finally, regarding in the last scenario, the
efficacy loss rate of vaccination is illustrated in Figure 9 which shows that this factor is critical and can
increase the risk of infection.
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Figure 4. Tracking path analysis of (6) of COVID-19 infection with various values of ℏ, i.e.,
ℏ = 1.0, 0.9, 0.8.
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Figure 5. Tracking path behavior of (6) of COVID-19 infection with various values of ℏ, i.e.,
ℏ = 0.8, 0.7, 0.6.
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Figure 6. Representation of the time series of our model (6) of COVID-19 infection with the
variation of ω, i.e., ω = 0.0012, 0.0014, 0.0016.
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Figure 7. Representation of the time series of our model (6) of COVID-19 infection with
various values of the input parameter ρ, i.e., ρ = 0.0031, 0.0034, 0.0036.
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Figure 8. Graphical representation of the time series of (6) of COVID-19 infection with the
various values of the input parameter γ, i.e., γ = 0.025, 0.035, 0.045.
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Figure 9. Graphical representation of the time series of (6) of COVID-19 infection with
different values of vaccine loss efficacy β2, i.e., β2 = 0.05, 0.15, 0.25.

5. Conclusions

In the context of the CF derivative, we introduced a mathematical model for the COVID-19
transmission process incorporating vaccination and therapy components. For the examination of the
recommended dynamics, we represented the fundamental findings of fractional theory. We examined
the steady states of the system and the reproduction parameter R0 was calculated via a
next-generation matrix approach. The infection-free equilibrium of the suggested system has been
determined to be locally asymptotically stable if R0 < 1 and unstable in all other cases. It has been
proved that the endemic steady state is locally asymptotically stable for R0 > 1. The system’s
reproduction parameter has been quantitatively explored by varying various factors. In addition to
this, we established results for the existence and uniqueness of the solution for the proposed
COVID-19 infection model. The tracking path behavior of our model has been analyzed by using a
numerical method. Numerical simulations with different input parameters have been used to show the
system’s dynamical behavior. The influence of various factors of the system has been conceptualized
for the solution pathways. For infection control, the most significant scenario of the system has been
proposed to the public health. In the future work, the dynamics of COVID-19 infection will be
examined through the use of stochastic differential equations. Moreover, we will also apply real data
to the dynamics of COVID-19 infection for further predictions.
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