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Abstract: In the present paper, we study the following Kirchhoff-Schrodinger-Poisson system with
logarithmic and critical nonlinearity:

1
~(a+b f Vuldx)Au + V(x)u - 5uA(uz) +du = Aul2ulnfuf + ul*u, xe€Q,
Q

—A¢:l/t2, XEQ,
u=¢ =0, x € 0Q,

where A,b > 0,a > i, 4 < g < 6, V(x) is a smooth potential function and Q is a bounded domain in R?
with Lipschitz boundary. Combining constraint variational method and perturbation method, we prove
that the above problem has a least energy sign-changing solution u, which has precisely two nodal
domains. Moreover, we show that the energy of uy is strictly larger than twice the ground state energy.
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1. Introduction and main results

In this paper, we consider the existence of a least energy sign-changing solution of the following
quasilinear Kirchhoff-Schrédinger-Poisson type system:

1
~(a+b f Vul*dx)Au + V(x)u - EuA(uZ) +du = Aul2ulnfuf + ul*u, x€Q,
Q

—A¢p =12, xeqQ, (1.1
u=q¢=0, x € 0Q,
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where A,b > 0,a > ; 4 < g < 6, V(x) is a smooth potential function and Q is a bounded domain
in R? with Lipschitz boundary After the pioneer work of Lions [17], some researchers began to pay
attention to the following Kirchhoff Dirichlet problem:

_(a + bL |VM|2dX)AM = f(x’ l/t), X € Q’ (12)

ulao = 0.

Problem (1.2) is related to a model firstly proposed by Kirchhoff [13] as an existension of the classical
D’ Alembert’s wave equations for free vibration of elastic strings, which is related to the stationary

analogue of the equation:
u Po
=0,
Por ™ f ' ax2

where p, Py, h, E, L are constants. Because problem (1.2) has nonlocal term ( fg |Vul>dx)Au, there are
some difficulties in the study of the nonlocal problems by means of variational method.

In recent years, many interesting results on the existence of positive solutions, multiple solutions,
bound state solutions, semiclassical state solutions and sign-changing solutions for (1.2) can be found
in [1,2,4,6,7,22,24] and the references therein.

By using the constraint variational method and the quantitative deformation lemma, Wang [26]
obtained the existence of a least energy sign-changing solution for the following Kirchhoff-type
equation with critical growth:

- (a +b f |Vu|2dx) Au = |ul*u + Af(x,u), inQ,
Q
u=20, on 0€,

(1.3)

where A is large enough and f satisfies suitable conditions. Lately, Li and Wang [14] studied ground
state sign-changing solutions for Kirchhoft equations with logarithmic nonlinearity:

- (a +b f |Vu|2dx) Au+ V(u = |l 2ulnu?, inQ,
Q
u=20, on 092,

(1.4)

where 4 < p < 2%, they used constraint variational method, topological degree theory and some new
energy estimate inequalities to prove the existence of ground state solutions and ground state sign-
changing solutions. Recently, Liang and Radulescu [16] got a more general result about problem (1.4)
with critical growth.

Nevertheless, there are relatively few studies on quasilinear Schrodinger-Poisson system. Illner [12]
first studied quasilinear Schrodinger-Poisson system. This quasilinear version of the nonlinear
Schrédinger equation arises in several models of different physical phenomena, such as superfluid
films, plasma physics, condensed matter theory, etc. (see [21,23]). For quasilinear problem, by using
the methods of perturbation and the Mountain Pass theorem, Feng [8] proved the existence of non-
trivial solution to the following quasilinear Schrodinger-Poisson equation:

1
—Au+ V(x)u + du — EuA(zf) = f(x,u), inR>,

(1.5)
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where V € C (R3, R) ,limye V(x) = 00 and V(x) > m > 0 for some constant m to overcome the lack
of compactness. Lately, under suitable condition of f, Chen and Tang [5] applied some new analytical
techniques and non-Nehari manifold method investigated the existence of ground state sign-changing
solutions for the following quasilinear Schrodinger equations with a Kirchhoff-type perturbation:

(1 + bf g% ()| Vul? dx) [— div (gz(u)Vu) + g(u)g’(u)qulZ]
R3

+V(x)u = K(x)f(u).

(1.6)

Figueiredo and Siciliano in [9, 10] paid close attention to two different critical systems with 4-
Laplacian operator in R* and a bounded domain in R2, they obtained the existence and asymptotic
behavior of nontrivial solutions. In [19], Massar studied a nonlocal Schrédinger-Poisson system with
critical exponent, Wang [27] investigated nontrivial solutions of quasilinear Schrédinger-Kirchhoff-
type equation with radial potentials. Fu and Zhu [15] considered the multiple solutions to a class of
generalized quasilinear Schrodinger equations with a Kirchhoff-type perturbation. However, there are
relatively few achievements on the so called quasilinear Kirchhoff-Schrédinger-Poisson type systems
with critical growth, furthermore, few studies have included logarithmic terms about quasilinear
problem. It is quite natural to ask: What is going to happen with logarithmic nonlinear terms for
the critical quasilinear Kirchhoft Schrodinger-Poisson system? In this paper, we will show that there
exists a least energy sign-changing solution.

According to the Lax-Milgram Theorem, for u € Hé (Q), there is a unique ¢, € D(l)’z(Q) that satisfies

—~Ap, = 1’

Therefore, (u, $) € H}(Q) x H}(Q) is a solution of (1.1) if, and only if, ¢ = ¢, and u € H}(Q) is a weak
solution of the nonlocal problem

1
~(a+b f |Vuldx)Au + V(x)u - 5uA(uz) + dutt = Al 2uln fuf® + ul*u, inQ,
Q
u=0, on 0Q.

Let H}, (Q) := {u € H)(Q) | fQ V(x)u*dx < +oo}, and V € C(Q,R), V(x) > m > 0 for some constant .
So, the functional associated with system (1.1) can be defined by

2
INu) = % f (alVul® + V(xu?) dx + 5 ( f |Vu|2dx) +; f VuluPdx

fd)u 2dx+—fvlulqu——fVlulqlnlul dx— - flul dx.

It is easy to see that I}'(u) € C'(H}(Q), R). Moreover, for any u, ¢ € Hy(Q), we have
((I,f)’(u), Q) = faVquodx + bf |Vul*dx f VuVedx + f V(x)updx + fqﬁuucpdx
Q Q Q Q Q
+ f(qulzugo + Iulequo)dx - /lf Iulq_zugo In |u*dx — f |u|4ug0dx.
Q Q Q
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There are some difficulties in applying variational method directly to the problem (1.1) because of
the quasilinear term fQ u*|Vu|*dx. It appears that finding a suitable space where the matching functional
has both smoothness and compactness qualities is unattainable. On the other hand, it is difficult to
apply the dual approach since problem (1.1) exists nonlocal term. In order to overcome the lack of
compactness caused by the critical term, we would employ the method from [3, 18]. In fact, we will
use the approximation method by adding a 4-Laplacian operator, i.e., we consider the sign-changing
critical point of the perturbed functional:

I (u) = Ij(u) + % fQ (IVu|4 + u4) dx, (1.7)

where p € (0, 1]. Then by using the approximation technique, we get the existence of sign-changing
solution of problem (1.1).
We first try to seek a minimizer of energy functional I[f’y over the following constraint:

M, = {u € Hy(Q),u* #0 and (I} ) ), u") = ((I;,) (u),u”) = O},
and consider a minimization problem of / g,ﬂ on Mg,ﬂ, here
u(x) = u"(x) + u (x), u*(x)=max{u(x), 0} and u (x) = min{u(x), 0}.

We will prove that the minimizer is a critical point of 1/1# and obtain the convergence property as
u — 0, thus we get the least energy sign-changing solution of problem (1.1). Since problem (1.1)
has nonlocal term and logarithmic nonlinearity, it is difficult to prove Mg,# # (. Inspired by [26],
we combine modified Miranda’s theorem [20], quantitative lemma, topological degree theory and
perturbation method to prove that the minimizer of the constrained problem is also a least energy
sign-changing solution.

Our main results of this paper are as follows:

Theorem 1.1. Suppose that V € C (Q,R), V(x) > m > 0 for some constant m. Then there exists A* > 0
such that, for all A > A%, problem (1.1) possesses one least energy sign-changing solution uy which has
precisely two nodal domains.

Theorem 1.2. Suppose that V € C (Q,R), V(x) > m > 0 for some constant m. Then there exists 1" > (0
such that, for all A > max{1*, 1"}, ¢* := inf N} I}f(u) > 0 is achieved either by a positive or a negative
function and Il’}(uo) > 2¢*, where N,f ={u € H‘l,(Q)\{O}I((Ilf)’(u), uy = 0} and uy is the least energy
sign-changing solution obtained in Theorem 1.1.

2. Framework

In this section, we introduce the variational framework associated with problem (1.1). We ﬁrst

describe the working space. Let L” (€2) be the usual Lebesgue space with the norm ||u]|, = ( fg Iulpdx)
and Hé (€2) be the completion of C’(€2) with respect to the norm:

2 2
iy = [ (9 1) .
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Moreover, we denote the completion of C? (Q2) with respect to the norm:

ol o= ez g = fg [Vudsx.
In order to use perturbation method, we will use the space
E=W"Q)nH,Q)),
where

H)(Q) = {u € Hy(Q) : f V(x)utdx < oo},
Q

which is a Hilbert space endowed with the norm:
ll® = f (@Vul + V(xu?)dx,
Q

and W'*(Q) endowed with the norm:

Bl—

luellw ::( fg |Vu|4+u4dx) .

Moreover, according to Holder inequality

1 1
f Vulutdx <( f Vuf*dx)’( f jul*dx)” < full,.
Q Q Q

The norm of E is denoted by

1
2 2\2
lelle = (lleely + Nee?)°

Since I[f’y(u) =) +% fQ (IVu|4 + u4) dx, we can easily get I[f# € CY(E,R) forall ¢ € E and

(I3 (), ) = 1 f (IVul’VuVe + lufup) dx + f aVuVedx + b f IVulPdx f VuVedx
Q Q Q Q

+fV(x)u(pdx+f¢uugodx+f(IVu|2ug0+|u|2VuV(p)dx
Q Q Q

—/lflulq_zugolnlulzdx—flul“ugodx.
Q Q

It is noticed that if u* # 0, we have

b _ 1 1 _
By = 1,00 + 1 ) + Sl I + 5 fQ G Vdx + 5 fg G (™,

(3, @0,y = () @t + bl eI + f b (0 )dx,

Iy, (), u™)y =y ) ), u”) + bllut Il 17 + fg s (0 dx.

AIMS Mathematics

Volume 8, Issue 4, 8580-8609.



8585

Our goal in this paper is to seek the least energy sign-changing solutions of problem (1.1).

Now, fixed u € E with u* # 0, we denote ¢, : [0, 0) X [0,00) — R and mapping T, : [0, c0) X
[0, 0) — R? by

V(. B) = I (au” + Bu"), (2.1)

and

To(a,B) =((I},) (u” +Bu), ™y, (I}, (au” + Bu), Bu”)). (2.2)
At last of this section, we give some properties of ¢,.
Lemma 2.1. ([25]) For any u € H)(Q), we have

(1) there exist C > 0 such that

fg puu*dx < Cllullf, Yu € HY(Q);

(2) ¢ >0, Yu € H)(Q);
(3) ¢ru = by, Y7 > 0and u € H)(Q);
(4) If u, — uin H)(Q), then ¢,, — ¢, in D}*(Q).

3. Some technical lemmas
In this section, we give some useful lemmas as which are critical to the proof of Theorem 1.1.

Lemma 3.1. For any u € E with u* # 0, then there exists a unique maximum point pair («,, 3,) of the
function v, such that a,u™ + S,u" € Mgu.

Proof. Our proof will be divided into three steps.

Step 1: For any u € E with u* # 0, in the following, we will prove the existence of @, and 3,. From
sample computation, we have

q-1 1 2 q-1 1 2
fim AT and i AT G.1)
7—0 |T| T—00 |T|r_1
for all r € (g, 6). Then for any & > 0, there exists C, > 0 such that
It In o < elt] + Colr| ™. (3.2)

AIMS Mathematics Volume 8, Issue 4, 8580-8609.
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Since 4 < g < 6, it follows from (3.2) and the Sobolev embedding theorem that
() (au™ + pur), au™)

— 2 2 2
= pallutlly, + llutIP + batllu*lI} + ba?Bllut IFllu I} + 2 f IVu' [l dx
Q

+at f b (u)?dx + 2B f b (u)?dx — 2 f lau™|? In |au™Pdx — a® f u*|®dx
Q Q Q Q

— 2 2 2
> &l + b lut |} + b Bl Il + 2 f IV [*lu*"dx
Q

+a4f¢u+(u+)2dx+a2ﬁ2f¢u(u+)2dx—/la28f|u+|2dx
Q Q Q

—/nga’qu+|’dx—a6f|u+|6dx
Q Q

> &llut|l” + batlut|l} — APeC ||lut||* = ACa Collu™||” — C3a°||u*||®

= (1 = 2eCHP|lut|* + ba*|lut|l} — AC" Collu*|I” — C3a®llut|l°,
where Cy, C,, C; are positive constants. Choosing € > 0 such that 1 — 2eC; > 0. Since 4 < r < 6, we
have ((Ilf’#)’(cufr + Bu”),au™) > 0 for @ small enough and all 5 > 0.

Similarly, we obtain that ((I;iﬂ)’(au* + Bu~),Bu”) > 0 for S small enough and all @ > 0.
Therefore, there exists a; > 0 such that

((I,f#)'(alqu +Bu),au’) >0, ((I;},#)’(azfr +au ), au)>0 (3.3)

for all @, B > 0.

On the other hand, since u* # 0, there exists a constant § > 0 such that meas{x € Q,u* > 6} > 0.
Since g > 4, we deduce that, for any M > 1, there exists 7 > 0 such that 'T'qi—’j“'z > MforallT>T.
Therefore, for @ > L, we have

/lf laut|? In |autPdx > Mo f (u)*dx.
Q (u+>6)
We can choose a = a; > a;, if B € [a;, ;] and «; is large enough, it follows that

((I,f#)’(a;u* +Bu”), ayut)

< p(@3)* llutlly, + (@)t 11> + blay)*llut I + blas)*B |l I}
+2(a3)* f Ve Plut Pdx + (a3)? f G+ (ut)dx
Q Q

(uh)*dx - (a3)° f |u*|Pdx

Q

+ (a3)*B* f G- () dx — M(a3)*
Q

{u*>6}

<0.

Similarly, we get
<(1ﬁ’y)/(au+ +asu), au) < 0.

AIMS Mathematics Volume 8, Issue 4, 8580-8609.
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Let a, > aj be large enough, we obtain that, for all @, € [a@;, a;], we have
(I} ) (@au® + u), aou™y < 0, (L) (au” + aru”), anu”) < 0. (3.4)

Combining (3.3) and (3.4) with Miranda’s theorem, there exist (@,,5,) € (0, +c0) X (0, +c0) such that
T.(a,,B.) =(0,0),ie., au" +L,u € Mfw.

Step 2: In this step, we will prove the uniqueness of the pair (a,, 5,).

Case 1: ue M; .

Ifue Mgﬂ, we have

4 2 4 211,112 2 2
pllee ™|l + eI + Bl 7 + bllea™ Iy eIl +2f|Vu+| " dx
Q

+ f G (u) dx + f - (u) dx (3.5)
Q Q

=2 f [t]? In |u*|Pdx + f lut|dx
Q Q

and

4 ) —pj4 20— 112 —121,,-12
pll |y + Nl 117 + Dl [} + bl |71 |13 +2f|Vu |"lu”"dx
Q

+f¢u(u_)2dx+f¢u+(u_)2dx (36)
Q Q

=1 f | In |u~|dx + f lu~|®dx.
Q Q

In the following we show that (a,,8,) = (1, 1).

Let (a,,,) be a pair of numbers such that a,u* + S,u” € Mg u with 0 < @, < B,. Hence, one has
that

(@) ullee* Iy + (@)l 1P + ba) N I} + ble)* Bl Il 117

+2(a,)* f IVa Pl Pdx + ()’ f b (u*)*dx + (@) (B’ f - (") dx
o o o (3.7

=2 f |l u* |9 In |a,ut Pdx + f |, u*|0dx
Q Q

and
Bl Iy + Bl 1P + 6B 1T + b)) B N Il I}

+2(B,)" f IVuPluPdx + (B.)° f b ()2 dx + () (Ba)’ f by (1) dux
Q a o (3.8)
= f But” |7 In |Bu” Pdx + f 1But™|0dx.
Q Q

AIMS Mathematics Volume 8, Issue 4, 8580-8609.
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According to 0 < @, < 8, and (3.8), we have that

-112
4 ”u ” -4 211,,—112
pllu Iy + —== + bllu” [l + bl [l Iy

u

+2 f Vi [lu[*dx + f G- () dx + f ¢ (™) dx (3.9)
Q Q Q

Bu11n |B,u”? g
> A fg R dx + (B.)° fQ |u”|°dx.

If B, > 1, by (3.6) and (3.9), one has that

1 _
( Gr il

-1 e 2

> 1 f[wou PO BE o n Pl + (8)° - 1)f ufodx.
Q (ﬁu) Q

The left side of above inequality is negative, which is a contradiction because the right side is positive.

Therefore, we conclude that 0 < o, <5, < 1.

Similarly, by (3.5), (3.7) and O < «, < B,, we have that

1 +112
( o )17l
+4 ] +2
< /lf[kyuu | n[?uu | —|M+|q1n|u+|2]dx+((au)2_ 1)f|u+|6d.x.
Q (a'u) Q

This fact implies that @, > 1. Consequently, o, = 5, = 1.
Case2: u ¢ M; .

Suppose that there exists (@1, 1), (@2, /3;) such that
u = qut +Bu € Mﬁu and u, = Gou* + Pou” € Mgﬂ.

Hence

@ B ~ @ B,
ur = (2t + B = (it + iy e M,
a 1 a 1
By u; € Mﬁ’ﬂ, one has that
@ _B_ 1
@ B .
HCIICC, b?l = az, E] = Ez.
Step 3: In this step we will prove that («,, 8,) is the unique maximum point of i, on [0, +00) X [0, +00).
Firstly, it is easy to see that

207 — gp?In|p|* < 2 forall p € (0, o). (3.10)

Let Q" ={xe Q:u(x)>0}and Q = {x € Q: u(x) < 0},u € H with u* # 0, we have
f lou™ + Bu| In|au” + Bu*dx = f (lau+|q In|aut* + |Bu"|? In |ﬁu-|2)dx. (3.11)
Q Q

AIMS Mathematics Volume 8, Issue 4, 8580-8609.
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Combining (3.10) and (3.11), we get

c = Iﬁﬂ(au* +u)

4 4 2
pa st B B
= —|| Iy + —|| Il + ?llu I” + IIM I” + bllu I + —bllu It

2:82 4 +121,,+12 ﬁ4 —-121,,—12
+—b||u Pl ||1+—f|Vu Plu |dx+—f|Vu PluPdx
2 Ja 2 Ja
202 212
A f b (Y 2dx + 2P f b (uYdx+ 2P f B 2dx + = f o (" )2dx
4 Jq 4 Jo 4 Jg 4

Pl A
+ = f 2lau*|? - glau*|? Injau*P)dx + = f QlBu17 = g|Bu |7 In |Bu|*)dx
q- Ja q- Ja

6 6
e ﬁ— - [6dux
6
Q Q

2
+||2 ﬁ

4 2 o
pa 4 @ 2, 4 B 4
< Tl|u+|l + Tllu Iy + —||M ||u I~ + 1 —Dbllu™|l] + —bllu II;

2ﬁ2 + 2 4 +12 ﬁ4 2
blluc* (1711w ||+7f|Vu||u|dx+ fqulluldx

22 22
+—f¢u+(u Ydx + — @B f¢u(u Ydx + — @B f¢u+(u)dx+ﬂ quu (u)dx

+—|Q|——f| 6dx——f|u|dx

which implies that limy, g) - Yu(@,5) = —oco. So it is sufficient to check that a maximum point can
not be achieved on the boundary of [0, +oc0) X [0, +c0). By contradiction, we suppose that (0,8,) is a
maximum point of ¢, (a,8) with 8, > 0. Then, we have

i)
4 4
|| Uy + 28 + || P+ (ﬁ” 1P + bl +

2 2 4
(B.) b||u+||%||u-||%+— f |w+|2|u+|2dx+@ f VPl
2 2, 2 Jo

4 4 2 2
+ & f ¢u+(u+)2dx+@ f ¢u-(u_)2dx+a 6. f G- (u)dx
4 Jo 4 Jo 4 Q

Cvz(ﬁu)2

(ﬁu)4

bllu Iy

A
f¢u+(u_)2dx + —2 f(2|a/u+|q — glau™|?1n Jaut*)dx

+ —f(2lﬁuu 1~ qlBu|" n|Buu”)dx — — flu °dax — 6.1 flu_|6dX-
Q
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Therefore, it is obvious that

3 4 2 3 4 211,112 3 2 2
W@, B, = pellu’lly + allu™I” + b’ llu ] + baBullu™ Il |l + 2¢ fIbel lu*[Pdx

Q

2 2
+a3f¢u+(u+)2dx+@f¢u-(u+)2dx+@fgbm(u_)zdx
Q Q Q

—a? ' f lut|? In jau*Pdx — @ f lut|dx
Q Q
> 0,

if @ is small enough, that is, ¢, is an increasing function with respect to « if @ is small enough.
This yields the contradiction. Similarly, ¢, can not achieve its global maximum point at («,, 0) with

a, > 0.

O

Lemma 3.2. For any u € E with u* # 0, such that ((Ilf’ﬂ)’(u), u*) < 0, then the unique maximum point

of Y, in [0, +00) X [0, +00) satisfies 0 < a,, B, < 1.

Proof. If a, = 0 or B, = 0, according to Lemma 3.1, ¢, can not achieve maximum. Without loss of

generality, let @, > 8, > 0. On the one hand, by o, u* + S,u" € Mg’ﬂ, we have
() ullu |1, + (@)1t I + (a1 + bla)* B Nt 1l I
+2(a,)’ fQ Va* Plu* Pdx + () f(; b ()2 dx + (@) (B’ fg ¢ (u*)dx
=1 f | u | In |eu Pdx + (@,)° f lu*|°dx.
Q Q
On the other hand, by ((Ilf’#)’(u), u*) < 0, we obtain

w115, + Nt 112 + bllet |} + bl |l |3
+ 2f IVu PlutPdx + f¢u+(u+)2dx + fqﬁu- (u")*dx
Q Q Q

<A f lut|? In utPdx + f lut|®dx.
Q Q

So, it follows from (3.12) and (3.13), we get

( — Dllu*|?

w)?

Since g > 4, we conclude that 0 < 8, < @, < 1,500 < @, 8, < 1.

Lemma 3.3. Let ¢, , = inf,cpq ;) (u), then we get lim,o, ¢, , = 0.

AIMS Mathematics Volume 8, Issue 4,

(@
> 1 f [()? *ut|? In|a,u|* = [ut|? In|ut*]dx + (@) = 1) f |u*|°dx.
Q Q

(3.12)

(3.13)

(3.14)
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Proof. Forany u € Mﬁ#,

pll* 115, + | + Bllu|I} + bllaa* | lea |17
+2 f IVut Pl Pdx + f b (uF)>dx + f G (uF)>dx
Q Q Q

=1 f It In |utPdx + f |l |°dx.
Q Q

Then by (3.2) and the Sobolev inequalities, we get
) < /lf || In |utPdx + f lut®dx < AeCy||u®|? + AC.Collu®|” + Csllu||°.
Q Q

Thus
(1 = 2£Cllu|* < Collu||” + Csllu|l°.

Choosing & small enough such that 1 — 1eC; > 0, since r > 4, there exists p > 0 such that
lut)|*> > p forall u € Mﬁ’#.

Thanks to u € Mg’ﬂ, we have ((lﬁ,y)’(u), u) = 0. Then

1
0 = 1,0 = () @,
11, 1 1., 1 1., 1 1 f -
=u(= - - + (= = Ml + (= = Dbl +2(= = =) | [VulPluPd
/1(4 q)llullw (2 q)llull (4 q) luell} (4 q) Q| ul"lul"dx

11 24 11
+(———)f¢uu2dx+—2f|u|qu+(———)f|u|6dx
4 q Ja q- Jo g 6 Ja

11,
> (= — —
> (2 q)llull ,

thus Iﬁ’ﬂ(u) is bounded below on M. "

(3.15)

For any u € E with u* # 0, by using Lemma 3.1, for each 4 > 0, there exist {a,,3,} such that

aut + P € Mg#, we have

0 < Cz,l = inflg’#(u) < Iiﬂ(am* + Bu")

u L b o2 )
< ZHCUMJr +Bau” |l + 5”%qu + B + Z”lef + Bau”|[} + ? lau” + B |?dx
Q

4

< %(CYA)4||M+||;V + g(ﬁ/l)‘l”u_”év + @)1+ B 1P + 2bCa) Iy

1 1
+3 f V(o ut + B ) Plaut + B |Pdx + f Bor+p-(Qau™ + B ) dx
Q Q

+2b(,6’a)4||u_||‘1‘+(a4)4f|Vu+|2|u+|2dX+(Bﬂ)4fIVu_Izlu_Izdx
Q Q

B 21 21 _
+ 2C(a) w1t + 2CB) u I} + e f laut|9dx + e f 18w |%dxx.
Q Q
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Next we will prove that @y — 0 and 8; — 0 as 4 — co.
Let G, = {(a4,82) € [0, +00) X [0, +00) : T,,(aq,8,) = (0,0), 2 > 0}, we can calculate that

(aa)6f|u °dx + (8)° flu °dx

+ Aay)? f lut]? In |aut Pdx + (B f |7 In |8, |*dx
Q Q
= pllaau® + Bau” |l + llaaut + Bau |IP + bllau™ + B[} + 2(y)* f |Vu* PlutPdx
Q

+2(8)* fQ IV [Plu”Pdx + fQ Bourspu- (@au™ + ) dx
< 2u(a) Iy, + 2u@B) a1y, + 20wt

+ 2B M1 + 4b(a ) lu (I + 4bB)* |l

+2(ay)? fg Vit PlutPdx + 2(8)* fg IV [*lu”|Pdx

+ 2C(a) lut |l + 2CBY* 1l

Hence G, is bounded. Let {1,} C (0, o) such that A, — oo as n — oo. Then there exist @, and 3, such
that(e,,,81,) — (@o,fo) as n — oo.

Now, we claim @y = By = 0. Suppose, by contradiction, if ¢y > 0or Sy > 0, by a, u"+6,,u" € M;ﬂ
for any n € N, we have

plly,ut + Ba,u”lly, + llaa,u* + Bau|P + bllay,ut + Ba,u”ll}

+ f IV(a,ut +Ba,u)Plag,ut +Ba,u Pdx + f‘pm wripy u- (@, U+ B u”)*dx.
o n n n n Q An n n n (3.16)

= /lnfla,lnbﬁ +B,u | In|a,,ut +ﬁ4nu_|2dx+f|cmnu+ +ﬁ,1nu_|6dx.
Q Q

Thanks to a, u* — aou’ and S, u- — Pou” in E, (3.2) and the Lebesgue dominated convergence
theorem, we get

f o, ut + By u | Infa, ut + By uPdx — f laou™ + Bou |7 In |aou™ + Bou |*dx > 0
Q Q

as n — oo. It follows from 4, — oo and the boundness of {a, u* + B, u"} in E that we have a
contradiction with equality (3.16). Hence, a(y = 8y = 0, we conclude that lim,_,, cﬁ’# =0. O

Lemma 3.4. There exists A* > 0 such that for all A > A*, the infimum cg# is achieved.

Proof. By the definition of cgﬂ =inf,. M Iﬁy(u), there exists a sequence {u,} C Mgﬂ such that
: b, .

limgse £, (1) = ¢},

Obviously, {u,} is bounded in E. Then, up to subsequence, still denoted by {u,}, there exists u € E such
that u,, — u. Since the embedding £ — L”(€2) is compact for all p € [2,6), we have

u, —> u in LP(Q)andu, - u a.e. x € Q.
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Hence

u,* — u* in E,
— u* in L/(Q),
u,* - u* ina.e. x € Q.

By Lemma 3.1, we have
Iﬁ’ﬂ(au; +Bu;) < Ilf’#(u,,)

for all @, 8 > 0. On the one hand, the Vitali convergence theorem yields that

limf|un|qln|un|2dx—>qul"lnluIzdx. (3.17)
Q Q

n—oo

Then, by (3.17), Brézis-Lieb lemma [28] and the weak semicontinuity of norm, we get

liminf / ﬁ’“(auf + Bu,”)
n—oo

o=+ el
n U W+ u W

i~ )+ i

4 n—o0

o
AT (
Z py m

2 2
a .. 2 2 ) —112

+ — lim (|, — " |I” + [l"|]) + =, — u”|I” + ]
2 noco 2

ba*, . N2 bBt

2
+ ——([tim [y = I + e I51) + == ([lim [l — oI + [ I7])
4 n—oo n n—oo

4
4
2ﬁ2

lim ¢u () Ydx + hm f Gur (u, )de+ — hm f ¢u-(u, Ydx

4 n—oo

6
- — hm |u ut|odx + f lu*°dx) — —( lim f |, — u”|°dx + f |u”°dx
6 n—o0 Q ) 6(n—>oo Q Q )

A _ _
+ 7 f lau, + Bu,|’dx — — f lowt + Bu, | In |au + Bu;, |*dx
o

pot up ba* ba* , a°
> I/I (CYM +l8u ) + TAI + TAQ + ?A3 + TASHM ”1 4 AS - FBI
0 ﬁ4 B b 4 ﬁ6
At ?Aéllu I+ TAE 6

;(u;)zdx

—B,,

where

A= |12

Az = 11m||u —u

, Ay = lim [l — |
n—oo

n—00

+16

As = lim ||un —u'|?, Ag = lim ||u, — u‘||2, By = lim |uy —u*|, B, = lim |u, — u‘|g
n—oo n—oo n—oo n—-oo

forall@ > 0 and 8 > 0. So,

uat 4 bat bat
Ch = B o + )+ 4y +“f Ay + ?A3 + T Asll | +

a® 2 I b ,86
— — B +=—A, +—A2 _2+—A2——B
6 1 3 4 3 6||M ||1 4 6 2-

A3
(3.18)
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Ll
(o) 3

Denote o := %S 2, where § = inf,.eqn\(0) . According to Lemma 3.3, there is A* > 0 such that

c[’j# <o forall 1 > A%
Step 1: we prove that u™ # 0. By contradiction, we suppose u™ = 0 (u~ = 0 is similar).

Case1: B, = 0.If A, = A3 = 0, thatis, u;, — u" in E. According to (3.15), we obtain |[u*|| > O,
which contradicts u* = 0. If A} > 0, A3 > 0, by (3.18), we get "72A3 < cg’ﬂ for all @ > 0, which is a
contradiction.

Case 2: B, > 0. According to the definition of S, we get o :=

%S 1< %( 4 )%, by direct calculation,

1 2 (B3
we obtain
1 A3 % (}{2 a/6 /J(l4 (}’2 ba/4 ba4 i a6
- _ a, < pa o ba' ba' s 0y
3((31);) r2>o{2A3 5 Bl} Igfgi{ 1 A+ 2A3+ 5 Asllu” ||1 1 Al - Bl}

Since cﬁ# — 0 as A — oo, there exists 1* > 0,C > 0 such that for all 1 > A%, cﬁ’# < C. Then, without
loss of generality, we can assume cﬁ’# < 0, choose 8 = 0, it follows from (3.18) that

a? a® uat o’ ba* ba* , a°
o< 1'2133({?143 - FB]} < I’Llf.g({TAl + 7143 + 7145”14 ||1 TAS - gB]} < 0.
It is a contradiction, then we obtain u™ # 0. Similarly, we obtain u~ # 0.

Step 2: we prove that B = 0, B, = 0. We just prove B; = 0. By contradiction, we suppose that

B, > 0.
Case 1: B, > 0. Let a; and B satisfy
p(ay)? (@))* b(a,)* Lo b@)t , (@)®
A+ Az + A + Az — B
4 1 5 3 > sllu ||1 4 5 6 1
a? a? ba* ba* a®
- IB%({#TAI + A+ Aslu I + TA2 - B,
and
pBY B @D bB) > B
A, + Ay + Agllu™|? + A% — B
4 2 ) 4 ) ollu ||1 4 6 6 2
IJ,B4 b134 -2 bﬁ4 2 ,36
- %on{—Az +3 A4 - AdlhTIff + == A7 - E132}.

According to [0,@;] X [0,31] is compact, there exists (a,.8,) € [0,@;] X [0,8;] such that y,(a,.3,) =
MaXx ., 50z 1x107] Ve B). -
In the following, we will prove (a,,8,) € (0,@;) X (0, 3;). Obviously, if 8 small enough, we have

v (a,0) < Ilf#(a/qu) + Iﬁﬂ(ﬁu‘) < Ilf,ﬂ(mﬁ +Bu”) =y, (a,B), Y a € [0,a].

Hence, there exists By € [O,El] such that ¥, (a,0) < ¥, (a,Bp) for all @ € [0,a;]. That is, (a,,B,) ¢
[0, @] x {0}. By similar discussion, we conclude that (a,,3,) € {0} X [0,5:].
Obviously, we get

2 4 6

uat ba* ba a —
TA] + ?Ag + 7A5||u+||% + TA% - FB] >0, a e (0, a1, (319)
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b 6
‘?AQ + EA4 + [234A6||u-||§ + ?Aé - '%Bg >0, B € (0,51 (3.20)

Then, for all @ € (0,@,]and S € (0,51, we get

@)’ (@) b(a)* b(a)* (@)°
< “i‘ Ar+ 25 Ay + TS Al + AT - By
Wt B OB DB B
+ 4A2+2A4 2A6||u Iy + 4A 632
and
4 2 4 4 6
ua a ba ba a
o< TAl + ?A3 + TA%”M_F”% + TAg — EBl
— -~ —~ 4 —~ 4 —~ 6
/J(ﬁl)4 181 b(ﬁl) -2 b(ﬁl) 2 (,31)
Ay + —A A AL — B
+ ) 2+2 4t 3 ollu|l} + 1 6 6

Together with (3.18), we obtain lﬂu(a’,ﬁl) <0, l//u@l,ﬁ) <Oforall @ € [0,a;] and B € [O,El]. That is,
(@, Bu) € [0, @1] X {61} and (@, B,) ¢ {0, @} X [0,5:].

In conclusion, we get (a,, B,) € (0, @) X (O,El). Hence, a,u* +B,u" € Mﬁ’#. So, combining (3.18),
(3.19) with (3.20), we have that

)t (@)’ ba)* o bla)t

cﬁ,ﬂ > Ilf’“(a/ou“ +Buu") + 2 A+ > Az + > Asllu™|l; + 2 Al
(au)6 ,u(,Bu)4 ﬁu b”’),u)4 2 b(8u)4 ) (ﬁu)é
- B, + Ay + A + AL —
6 4 2 2 olle Iy 4 6 6 2

2 - 1
> I,w(auu+ +B.u7) > Chu

Therefore, we have a contradiction.

Case 2: B, = 0. In this case, we can maximize in (0, @) X (0, o). Indeed, it is possible to show that
there exists By € [0, co] such that Il’}’#(afbfr + Bu~) < 0 for all (a,B) € [0,a;] X [By, ). Hence, there
exists (a,,B,) € [0, @;] X [0, o) such that

wu(au’ﬁu) = max wu(aaﬁ)-

a€[0,a1]x[0,00)

Following, we prove that (a,,8,) € [0, @] X [0, o).
Since ¥, (a,0) < ¥, (a,B) for @ € [0,a;] and B is small enough, we have (a,,8,) & {0} X [0, ). On
the other hand, for all 8 € [0, ), it is obvious that

4 2 b 4 b 4 6
< ll@l) A+ @1) As + @1) A5||u+||% + @1) A% _ (51) B
4 2 2 4 6
b
" @Az " 5A4 ¥ %’AAén I + 54

Hence, we have that ,(a;,8) < 0 for all 8 € [0, ). Thus, (a,,8.) € {a;} X [0, o), and so (a,,B.) €
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[0, @] X [0, 00). That is, a,u™ + B,u" € Mg’#, therefore, according to (3.19), we have

- () ()’ b(a,)! b(a,)*
el ZI;,#(auu++ﬁuu)+ﬂ4 Ar+ Ay T A I+ TS A
()" u(B.)* (B.)’ b(B.)" - b(B.)"
- Bt = A DA = Agllu™ ||} + 1 A?

> I (au’ +Bau7) 2 ¢
which is a contradiction.
Therefore, from above discussion, we have B; = B, = 0.
Lastly, we prove that cg,ﬂ is achieved.
Since u* # 0, by Lemma 3.1, there exist «,, 3, > 0 such that

u=au" +pu € Mﬁ#.
Furthermore, the norm in E is lower semicontinuous, it is easy to see that
() (w),u*) < 0.

By Lemma 3.2, we obtain «,,8, < 1.
From u,, € Mﬁ’ﬂ, according to Lemma 3.1, we get

A — A — 1
Ih,ﬂ(auu; + Buu,) < Ib#(u;; +u,) = Ib#(u,,).

Thanks to B; = B, = 0, we obtain
1 ,
Chy < Iy, ) = 5«@) @), )

11 11 11 11
= G = Il + G = I + (G = Il + (5 - o) [ 1V T ax

(———)f¢—'ﬁ2dx+—fﬂqu+(———)fﬂ6dx

= (— - —)Ilauu + B Iy + (— - —)Ilcvuu + B | + (— - —)Ilauu + B I}
q q q
1 1 1 1
+( — )N f G Uu)Pdx + (5 — =) (@) (B’ f - (u*)?dx
q Q 4 q Q

1 1 1 1
+ (_ - _)(au)z(ﬁu)2 f ¢u+(u_)2dx + (_ - _)(ﬂu)4 f ¢u‘(u_)2dx
4 q Q 4 q Q

24 11
+ | f v u*|9dox + f B dx| + (= = )| f | u*(0dix + f B [*dx|
q Q Q qg 61%Jq Q

I 1 I 1 I 1 I 1
< (5 = llally + G = DMl + (5 = llaell} + (5 - —)f Vul® |uf® dx
4 ¢ 2 ¢ 4 ¢ 2 g Jg

11 2. 11
# G [ dedre 2 [iaxe -0 [ s
4 q Ja q Jao q 6 Jo
1
< iminf[ 3, () = (I3, (). )
n—oo k q k

— — A 3 : — ot - A
Therefore, a, = 8, = 1 and Cpy 18 achieved by u;,, = u* +u” € Mb#.

O
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4. Proof of Theorems

In order to obtain a sign-changing solution of problem (1.1), we firstly prove that u,, is a sign-
changing critical point of / lf’#.

Lemma4.1. Ifu;,, € Mfw and Ilfﬂ (ub,ﬂ) = cgﬂfor,u € (0, 11, then uy,, is a sign-changing critical point
of I lf#. Moreover, u,, has exactly two nodal domains.

Proof. Since uy,,, € Mg#, for (a,8) € R* x R*)\(1, 1), we have
Iﬁ’#(au;’# + ﬁu;’y) < I,f’#(u;,# + u;’#) = cg’ﬂ. 4.1)
Arguing by contradiction, we assume that (/; If’ﬂ)’(ub,ﬂ) # 0, then there exist 6 > 0 and 7 > 0 such that
||(Il;”#)’(v)|| > 7 forall [[v —u |l > 30.

Choose 7 € (0, min{3, \FZH(S 1), let
Up

D=(Q-n,1+)x(1-71+71)
and
gla,p) = au;’# +pu,,, forall (@,pB) € D.
According to (4.1), we have that
cpi= n;gx(l,f’#) og< cg’ﬂ. (4.2)

Let ¢ := min{cfw — gt and S5 = B(upy,6), according to Lemma 2.3 in [28], there exists a

deformation 7 € C([0, 1] X D, D) such that
(@) n(l,v)=vifve €, ) '(c,, - 2&,¢,, +2e] N Say),

(b) n(1, (I} Y™ (1 Sg) € (I} Y™
nu, bou k 20 b k »

(c) I[f#(n(l, V) < Ilf,“(v) forall v e H.
Firstly, from (b) and Lemma 3.1, it is easy to see that

I,iﬂ(g(a,ﬁ)) < cg’# < cg,ﬂ +e.

That is,
A ct +e
g(a.B) € (I}, ).
On the other hand, we have
lg(a@.B) — up,ll® = @ = D, + (B = Du, I

< 20 = 12l IP + (8 = 1)l IP]
< 27|y, 1> < 6.

Hence, by (b), we have
L ((l,g(@.p) <cp —e<c,, (4.3)
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Next, we prove that n(1, g(D)) N Mg’# # (0, which contradicts the definition of cg’ﬂ. Let y(a,pB) =

n(1, g(a,B)) and

Wo(a. B =(UL ) (gle. ). uf, ). (L) (8(. B)). )

and

Yi(a.p) :

=((I2 Y (@, + By o1l ) (UL ) (e}, + By ).y )

=(¢M(e. B). 2(@. B))

1

ﬁ«lﬁ,ﬂ)'(y(a,ﬁ)), ¥(@.f))).

1
= (a<(1§,ﬂ)'(7(a,ﬁ)), (@ B,

Since uy,, € Mgﬂ, by the direct calculation, we have

3903,(0,,3)‘
da o

and

Similarly,

Ipa(@. )
o lan

AIMS Mathematics

Blluf Iy + Nl P + 3bllugy I + bllagy [l I
+ 21,,+ 12 + 32 + 32
+2 j; Vuy, Pluy, Pdx + 3 fg ¢y () "dx + fg by (Uy,)"dx

-Ag-1 f |u;#|q1n|u;#|2dx—2a f lup |%dx -5 f |u;#|6dx
Q Q Q

= (4= Plluy [y + 2 = llus P + b4 = Pl I} + 2 = @bl I} lees 117

+ (2 - Q) f ¢u;ﬂ (MZ,#)zdx + (4 — q) f ¢u;}'ﬂ (uz’#)zdx
Q ’ o 4’
+ (4 -2q9) fQ IVuZ,,J|2|u;’M|2dx -2 fg |u;’#|qu —6-q) fg Iu;ﬂl6dx,
doi(a,B) )
T lan 2b1u | ITlle I +2 L%;,,,(ul,u)zdx.
= 3””1:”“”?/1/ + ||ul:’ﬂ||2 + 3b||u;,ﬂ”‘1‘ + b”uz—#”%”u;’ﬂ”%
2 fg Vit dx +3 fQ b (tp,Vdx + fg by (1, Vdx

~Ag-1) f iy~ |7 In Jugy,, [*dx — 22 f luy, |%dx -5 f Ju;,, |°dx
Q Q Q

= (4 - @l Iy + @ = @l IP + b4 = Pl It + 2~ @bl Il |
+2-9) f bup (1, ) 'dx + (4 - g) f buy (7, dx
Q ’ Q ’

+(4-2¢g) f Vi, Pluy,, [Pdx — 24 f |y~ 17dx = (6 — q) f ud,°dx,
Q Q Q
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and )
6()0u(a’ﬂ) + 2 112 - \2
T‘(m = 2blluj, M7 lletp. " Iy +2fg¢u,;ﬂ(ub,ﬂ) dx.
Let
wl,(a,ﬂ)| . wﬁ(aﬁ)l .
M= ,s 0 o) o
9B | 9B lc1.1)
Since g > 4, then,
et — (9903,(04,@‘ Loeap))  dp@py | dg@p)
da o oB  lan oB lay o lan =

Since Wo(a,B) is a C! function and (1,1) is the unique isolated zero point of ¥y, by using the degree
theory, we deduce that deg(‘ty, D,0) = 1.
Hence, combining (4.3) and (a), we obtain

g(a,B) = y(a,B) on dD.

Consequently, we obtain deg(V,, D, 0) = 1. Therefore, ¥, (o, 8y) = 0 for some (ay,By) € D such that

n(1, g(ao, Bo)) = y(a@o,Po) € Mﬁﬁﬂ,

which is contradicted to (4.3).
Finally, we prove that u;, has exactly two nodal domains. To this end, we assume by contradiction
that
Upy = UL + Uz + U3

with
u; # 0,u; > 0,u, < 0 and suppt(y;) N suppt(u;) =0, fori # j, i,j=1,2,3

and
<(1£,,,)/(ub,y), uy =0,fori=1,2,3.

Setting v := u; + u,, we see that vi = u; and v~ = up,i.e., v* # 0. Then, there exists a unique pair of
positive numbers («,, 5,) such that
a,uy + Bouy € Mg’ﬂ.

Hence

I, (@ui +Bou) 2 ¢, .

Moreover, using the fact ((I;}’H)’(ub’ﬂ), u;y = 0, we obtain

(L) (), = —bllv* [ - fg b, (75)2dx < 0.

From Lemma 3.2, we get
(a,,B,) € (0,11 x (0, 1].
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On the other hand, we obatin
1 ,
0 = () (o). us)

b b
4 2 2 2 2
||u3|| —||u3|| —||u1|| lluslly + ||M2|| lluslly + IVu3| |us|"dx

||u3||4 f%(us)zdx——flusl dx——fluzlqlnluzl dx
< Iﬁ,,l(us)+ —||u1||?||u3||?+ —||uz||?||u3||?+ _f¢u1(u3)2dx+ —f¢u2(u3)2dx.
4 4 4 Jg 4 Jg

Hence

A
cb”u < I[/,l’#(a/vul +ﬁvu2)

1
= Il;l,p(avul +18Vu2) - Z((Il;l,,u),(avul +:8vu2), U +ﬁvu2>

1 A
= Z (ol + 1B.0lP) + 5] f a1 7dx + f B *dx |
q Q Q

1 1
+ (_ - _)/l[f |a'vul|q In |a'vu1|2dx + f Iﬁvu2|q In Iﬁvu2|2dx]
4 gq Q o)

5l f iy °dx + f B2/ dx |
Q Q

1 A
< Ul + llual) + 5| f g 7dlx + f sl dlx|
7*' Ja Q

1
+(———)/1[ f Jua| 1 Juey Pl x + f Jual? In | dx
4 q Q Q

— iy |Odx + f |uo|dx
z[fgl el

1 ’
= I (uy + u) — Z«Ig’“) (ur + up), uy + )
b
< Ty () + I () + I (u3) + Z(H”z”% + (sl |1}

b 2 2 2, b 2 2 2
7 Ul + lluslleally + 7 Cleealfy + a1 oes Iy

1 1 1
+ZL¢u1(u3)2d)€+ZL%Z(M)ZdX‘FZfg%](uz)de

1 1 1
+ng;¢u3(u2)2dx+ZL¢M2(“1)2dx+Zf(;(pug(ul)zdx

9 1
= Ib#(u) = Cphyp
which is a contradiction, that is, u3 = 0 and u,, has exactly two nodal domains. |

Lemma 4.2. Let y, — 0 and {u,,} C E be a sequence of critical points of sz,un’ and there exists C

independent of n such that (sz,ﬂ,l)/ (u,l) =0and Ib{#n (u,l) < C. Then up to a subsequence u,, — uy in
E as n — oo and u is a critical point of I}f.
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Proof. We prove the lemma in three parts:
Claim 1. {u,,} is bounded in E.

1 ’
C 2 Il/},/,l(uﬂn) - &<(I£,lu) (u/ly,)’ u,un>

11 11 11 11
=y - c—])lluﬂnllév +(5 - c—])lluu,,ll2 +(7 - C—I)blluﬂ,llli1 +2(7 - 5) fg Vi, Plu, [Pdx

1 1 21 1 1
+(———)f¢,%u2 dx+—f|u nl"dx+(———)f|un|6dx
4 g Jg Hr @ Jo " g 6 Jo "

(A RS TS B
> (- — — +(=—— .
2 ,u(4 q)lluﬂ,lllw (2 q)lluﬂnll

This means that {u,ln} is bounded in E. Then up to a subsequence, we may suppose u,, — uo in E as
n — oo,

Claim 2. {uﬂn} is bounded in L*. We will use the Moser iteration to accomplish this. Because {uﬂn}

satisfies the equation <(Il/},u,,), (uﬂ") , cp> =0, for any ¢ € E, we have

Hn f (|V’/‘un|2 Vu, Vo + |”‘ﬂn ’
Q

+b(f IVuﬂnlzdx)(f Vuﬂ"V(pdx)+fV(x)u#ngodx+f¢uﬂnuﬂngodx 4.4)
Q Q Q Q

u#ngo) dx + f(a + Iuﬂnlz)Vuﬂano + IVu#nlzu#ngodx
Q

) 2 4
:/lfg;luynlq Uy, 1nuy, | dx+fg;|u#n| U, pdx.

Now for any T > 0, we take ¢ = |u/f |2k uy,, as test functions in (4.4) with k > kj for some ky > 0, where

T | = =T;if |uﬂ | > T. By (4.4) and the Sobolev embedding, for & € (0, 1),

|u
we have

f (a + uﬂnz) Vu, I* |”Zn|2k dx+ 2k + 1) (“ + “ﬂn2) Vu, |”Zn|2k dx
T<|uy,|}

{luay,, I1<T}
2. 2| T |%* 2
+ | Vuy,|u,, |uﬂn| dx+ | V(x0uy,,
Q Q

6|, T |* 21, T |2
< f | [l | dx + A f Iy, |10, 10 oty o, [ dix.
Q Q

Then there exists C > 0 such that
6|.T de 1 9 21,7 124
Q|uﬂ,,| |l | dx + Q|u#n| 1y, In Juy, Pl [P dx

6|,T |* 2| T %k
szlu,,nl |u!, | dx+C8f|uun| |l |~ dx.
Q Q

Hence, it follows from the above estimates and the Sobolev imbedding theorem, we can obtain that

2 |7k 6 ; K\
S (f (u#n uﬂn| ) dx) Sf V(uﬁ |u§| )| dx
Q Q

2
< C(k +2)* f I (uﬁn |“Zn|k) dx.
Q

2k
U, | dx

4.5)

(4.6)
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Since |u,, > € L* (Q) for some s C (2, 3), then we have

i [, 4.7)

Hn

2 T
|(u n M,Un

6 \3
k)2|L3 = (f (”/21,1 |u§n|k) dx) <C(k+ 2)2|u#n|%s|(u2n
Q

where s’ = == < 3. Assume u,, € L**?¥ Let T — +oo in (4.7), by the above estimate we have
u,, € L4293 and

1
|l/tﬂn|L(4+2k)3 <C(k+ 2)m|u#n|L(4+2k>s' .

Hence, Moser’s iteration implies [u,, | < C.
Claim 3. uy € E N L™ (Q) is a solution of problem (1.1). By Claim 1, we may assume {uﬂn} converges
to up weakly in E. Taking ¢ = e~ , where ¢ € C°(L2), ¢ > 0, we have

[n f (IVuun
Q

+ b( f Vi, [7dx)( f Vit (Ve — eV, ) dx
Q Q

2 _ -
Vu,, (W/e i — e ”“"Vuﬂn) + |u,,n

2 -
uy, e ) dx

+f(a+ |uﬂn|2)Vuﬂn (Vwe_”“" —we_““"Vu#n)dx+fV(x)u#ntpe_““"dx
Q Q
+ f |Vu,1”|2 uy, e "ndx + f q’),,“nuﬂngbe_”“"dx
Q Q
—/lfluynlqzu#n;l/e”"" In Iuynlzdx—f|uﬂn
Q Q
<ty fg (R T o P e fg (a+ i ) Vg, T
+ b( f |V, |*dx)( f Vu,, (Vige ™) dx + f V(x)u, ye " dx
Q Q Q
—f(a+ |uﬂn|2 - uﬂn)|Vuﬂn|2 Ye mdx + fgbuﬂnu#nwe_”“"dx
Q Q

— — 4 _
= 4| 1w e In gy, [Pdx — f |”u| uy, e rdx.
Q Q

4 -
Uy, e "mdx

Since a > 3, then a + u, — u,, > 0 and

f (a |u“"|2 u“)| ; ”ﬂn|2 e "ndx
o)
f‘(a + |”/J,,|2 M/Jn)(’ y (Myn MQ)'Z 2 ulln o — |Vl/l0|2)l//€_u“"d
Q +2Vu, V X
> f (a + |uu,,|2 - uﬂn) (2Vuﬂn Vug — |Vu0|2) e dx.
Q

Letv > 0,v € C7 (€2) . We choose a sequence of nonnegative functions {¢,} C C7’ (€2) such that ,, —
ve' in E, ,(x) — ve'(x) a.e. x € Q and {¢,,} is uniformly bounded in L* (). By approximations,
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we may obtain for all v > 0, v € C° (€2), we have

0< f (aVuOVv + V(x)uov)dx+ b f \Vito|? Vg Vvdax + f (|Vu0|2uov + |uo? Vrov)dx

f(ﬁuouovdx /lfluolq 2y 1n uol*dx — fluol uovdax.

Take ¢ = ye"# in (4.4),

0> f (aVuOVv+V(x)u0v)dx+b f \Vito|* Vg Vvdx + f (|Vu0|2uov+|u0|2 Vrov)dx

f¢u0u0vdx /lfluolq 2y 1n Jul*dx — fluol ugvdx.

Therefore, for all v € C° (QQ), we get

f (aVuOVv + V(x)uov dx +b f \Vito? Vg Vvdax
Q

f|VM0| u0v+|u0| VuOVvdx+f¢u0uovdx

—/lfluolq 2vlnlbtol2d9c+f‘|u0| uovdax.

Therefore, uy is a critical point of /;'. The proof is completed. O

Proof of Theorem 1.1. By Lemma 3.4, we choose a sequence u, — 0, there exists {u,, } C E satisfies
I (w,)=c}, and (I} ) (u,)=0.
Claim 1. Problem (1.1) possesses one sign-changing solution uy.

Assume ¢ € C;'(Q2) with ¢* # 0, there is a pair of positive numbers (ay, 8y) independent of n such
that

Iy, (@og™ + Bog"), aog™) < (I | (@o9™ + Bow ), aop™) < 0,
and

(I, (@0@™ + Bog ), Bow™) < (I (ao@™ + Bog™), Bog™) < 0.

Let o1 = agp™ + By, according to Lemma 3.1 that there exists a unique pair of positive numbers
(@ns Bn) € (0,1] X (0, 1] such that a7 + Bag; € Mg#n, we have that
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Chyn ST (] + Bopy) = ((lﬁ,ﬂn)' (np +But) » 0l +Bupy)
1
=2 ((an)2 et + B ||<p1‘||2) t 0 f ((an)6 lot|" + B¢ |901‘|6)dx
Q
b A 11
+ fg angil'dx + - fg Breil'dr-+ (3 =) j; (lwe 1 In a7 ) dx
11
+(3-) f 1B 1710 8,7 ) dx
1
< (Il heil?)+ 35 [ (il + 1o )dx+ A [ +teias
+ [ G- DleilnigPar+ [ G- Dl Inlgi s

1
=l () = 7 (@) (@) ).

Therefore, { Cho } is bounded, according to Lemma 4.2, there exists a critical point uy of I such that
u,, — upin E.
Now we prove ug # 0. Since u,, € Mﬁ Ly WE have that

4 2 2
+ + + + +
il + RN AR

+ f U f buz, u;fn dx (4.8)
Q Q
= f | d + af | | 1n Jue [Pdix.
Q n Q n n
So, for u, — 0 and (3.2), we have that
lluo*|I* < f lug|®dx + A f |uZ]? In ug|*dox
Q Q
< +AeC|lug|? + ACCollug I Cllug |1°.
Thus, we get
4112
(1= 2eC) |jug|| < Cs
Choosing & small enough such that (1 — ueCy) > 0, since r > 4, there exists 1, such that
llug*II> = p > 0.
Therefore, uy* # 0. Then we obtain that i is a sign-changing solution of (1.1).
Claim 2. y has also exactly two nodal domains.
Since uy is a nonzero critical point of I, we have that
f(aquol2 + V(x)luol dx +b f Vol dx) + 2f IVuto| |uo]* dx
4.9)

fcpuo Iuol dx — /lfluolqlnluol dx — fluol dx=0
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On the other hand, ((I[f,#n)’ (u#n) ,u,,) = 0 implies that
M f (|Vuﬂn|4 + |u#n 4)dx + f(a |Vuﬂn|2 + V(x) |uﬂn|2)dx + b(f |Vu#n ? dx)2
Q Q Q

+2f|Vuﬂn|2 |uﬂn2dx+f¢u,un |M/Jn2dx_/lf|uﬂn|q1n|uun|2dx_f|l/llln
Q Q o o

According to (3.2), we have

dx = 0.

lim A f (It 19) 1, Pdx — 2 f (lutol*) In JuoPdx. (4.10)
n—-oo 0

Q

Moreover, according to the proof in Lemma 3.4 that B; = B, = 0, we have

limf|u,1n|6dx:fluol(’dx:O. @4.11)

Then, combining (4.8)—(4.11) and using Fatou’s lemma and weak semicontinuity of norm, up to a
subsequence, we get

fg (a1Vatol? + V) o) + b fg Vatol? d)

< tim [ (alVi, 2+ V) f, [F)dx + f Vi, [ dx)’
Q Q

n—oo

= lim (/l f . 19 1n Ju,, [Pdox + f | dx = 2 f Vit | || dx - f B, |uﬂn2dx)
n—=eo Q Q Q Q

2
= f (@lVuol + V(x) luol)dx + b f Vuol® dx) +2 f IVato|? |uto|* dix + f B, lito|* dx
Q Q Q Q

— lim (2[ |Vu,JW|2 |uﬂn|2 dx — fqﬁ,% |uﬂn 2dx)
oo Q Q

2
< f (a|Vuo|> + V(x) |u0|2)dx+b( f |Vu0|2dx).
Q Q

2
| Uy,

So lim,,_, e ||u,1 = llutol . According to Brézis-Lieb lemma that u,, — ug strongly in E as n — oo. It
means that u, has also exactly two nodal domains.
Claim 3. i is a least-energy sign-changing solution.

By Lemma 3.1 it is easy to see that there exists a unique pair (a/#n, ,8#,1) € (0, 00) X (0, o) such that
@y, Uy + By, Uty € M, . Then we have

sl + i, s+ b, Ny + e 5, s I o
Hn@,, uO||W+aﬂ)1 o +ba//1n o 1+ba/1nﬁﬂn Uolly 1%olly

4 +2| +|2 4 +|2 2 2
+2aﬂnL|Vu0| uy| dx + Q¢M8 uy| dx+ag B, Q¢M6

2 6 6
=/1f|aﬂn”8|q In {a, uol dX+aﬂnf|ua—| dx,
o Q

2
uy | dx (4.12)
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and
wBs, Nl + B I + 83, sy + bt 82, s | [l
g fg Vi i ax+ 8 fg b o dx + 02 52 fg b
:/lflﬁﬂnualqlnwﬂoualzdx +,B,u,l6f|u6|6dx.
Q Q

_12
| dx (4.13)

According to y, — 0 asn — oo, {aﬂn} and {ﬁﬂn} are bounded. Up to a subsequence, suppose that
@,, — ao and B, — fo, then it follows from (4.12) and (4.13) that

21|, +1? 21|, +[14 20211, +112 |1,,~1I?
@ ||”0|| + baj ||”0||1 +baylB, ||”0||1 ||”0||1
w20} | [Vug ] dox+ o 5P dx + 3B
@ ug| ug| dx+ag | Gusjug| dx+ By | Gug
Q Q Q

6
:/lfIaouglqlnlcyouglzdx+a8f|ug| dx
Q Q

2
g dx (4.14)

and
B Juall” + 683 Ny + b o I Nl
#2655 [ [Vl ol ave st [ o bl aveaisi [ o
Q Q Q
=1 fg (1Botg]?) In |B, 5 Pdlx + B8 fg lug|° dx.

12
| dx (4.15)

Because uy is a sign-changing solution of problem (1.1), there hold

2 4 2 2
+ + + -
s 1" + & s [y + & Nl

w2 [l P [aghal e [ o
Q Q Q

:/lf(luglq)lnlu8|2dx+f|u(+)|6dx
Q Q

2
uj|” dx (4.16)

and

_112 4 INTEATIRIE
|+ & sy + &l [ s

+2f|Vu5|2|u5|2dx+f¢uo u5|2dx+f¢u3
Q Q Q
-1 f (lug]?) In Jug Pdx + f lug|° d.

Q Q

Hence, in view of (4.12)—(4.17), we can easily obtain that (@, Sy) = (1, 1).

_12
| dx 4.17)
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According to Fatou’s lemma and weak semicontinuity of norm, we get

1
I} (uo) — 7 <(I;f)' (uo) , M0>

1 1 1 24
=—lluoll* + — luol} + (= - —)/lf luto|? In uo|*dx + — f luol?dx
q Q q- Jao

11 21
Z+(———)/lf|un|qln|un|2dx+—Zflunlqu
4 q Q 9 Ja

<timinf [1;#" (1) =+ (1) >]

n—oo

<+ 5 [
—4 Hn 12 Mn

—liminf A TSN
=liminf I, | (u,,n) =limc, , = ¢
n—o00

n—oo

Moreover,
A 1 g A S A + -\ — JA (,,*+ -\ — g4
Cpo = liminf Ij () < liminf [ | (e,ug + By,ug) = 1, (ug + ug) = I (uo).
’ n—o0 oHn n—oo o
So I}(up) = liminf, Ilf#n (uy,) = ¢}, The proof is completed. m|

We get a least-energy sign-changing solution u, of issue using Theorem 1.1. Following that, we
show that the energy of u is strictly greater than twice the ground state energy.

Proof of Theorem 1.2. Similar to the proof of Lemma 3.4, there exists 4** > 0 such that for all 1 > A**
and when p — 0, there is v, € N} such that IZ‘# (vﬂ) = ¢* > 0. The critical points of the functional Ig’y
in N}! are critical points of Ig# in E are determined using conventional reasoning (see Corollary 2.13
in [11]).

For all 4 > A%, according to Theorem 1.1, for each u — 0, we know that the problem (1.1) has a
least-energy sign-changing solution uy which changes sign only once. Let 1, = max {1, **}. Suppose
that uy = u* +u~. As the proof of Lemma 3.1, there exist a,+,8,~ € (0, 1) such that a,+u™ € N ,f, Bu-u" €
N, If. Therefore, in view of Lemma 3.1, we have that

5 o Tien s 1 + 1 -
2c" < hrﬂn_}glf [Ib’# (@pu®) + 1, (Buu )]
< liminf I} (@ u” + B,-u") < liminf I} (u™ +u”) = I} (uy) .
u—0 H u—0 o

which shows that I} (u9) > 2¢* and ¢* > 0 cannot be achieved by a sign-changing function in E. O
5. Conclusions

This manuscript has studied the Kirchhoff-Schrodinger-Poisson system with logarithmic and
critical nonlinearity. Combining constraint variational method and perturbation method, we prove

that the above problem has a least energy sign-changing solution u, which has precisely two nodal
domains. Moreover, we show that the energy of uy is strictly larger than twice the ground state energy.
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