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Abstract: The picture hesitant fuzzy sets (PHFSs), which consider neutral membership degree as
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to evaluate criteria values in complex multi-criteria decision-making (MCDM) situations. However,
existing MCDM approaches based on PHFSs still have some drawbacks in both evaluation information
expression and criteria values fusion. In this paper, our aim is to overcome these shortcomings
by proposing new decision-making methods. To achieve this purpose, a new fuzzy information
representation tool, called probabilistic picture hesitant fuzzy sets (P-PHFSs), is first introduced by
capturing the probability of each element in PHFSs. The characteristic of P-PHFSs is that they provide
more freedom to DMs so that criterion values of each alternative can be adequately described. To
facilitate the use of P-PHFSs, we define the basic operational rules and comparison method of P-
PHFSs. Then we also propose some aggregation operators for P-PHFSs and provide information fusion
process. Furthermore, some desirable properties of these operators is discussed, and the relationship
between the developed operators and the existing ones is investigated. Based on the proposed operators,
two MCDM methods are developed under probabilistic picture hesitant fuzzy environment. Finally,
two numerical examples are given to show the application of the developed methods, and a comparison
analysis is conducted to demonstrate the effectiveness of the proposed approaches.
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1. Introduction

Multi-criteria decision-making (MCDM), whose main goal is to rank alternatives based on
experts’ opinions and some principles, has recently attracted much attention as a promising research
topic [1, 2]. In spite of, the uncertainty and vagueness in decision-making process have made it
difficult and complicated for decision makers (DMs) to evaluate the performance of all possible
alternatives and to select the most suitable one in MCDM problems. For more convenient expressions
of evaluation information, there has been a lot of interest and effort in fuzzy sets (FSs) [3] and their
classical extensions such as interval-valued FSs (IVFSs) [4], intuitionsitic FSs (IFSs) [5],
interval-valued IFSs [6], type-2 FSs (T2FSs) [7] and picture FSs (PFSs) [8]. However, these
extensions cannot deal with the situation in which the membership degree of an element of a set is
difficult to determine due to ambiguity among several different values. That is, the difficulty in
establishing the membership degree of an element to a set does not arise from a margin of error (as in
IFS or IVFS or PFS) or a specified distribution of the possible values (as in T2FS) but arises from our
hesitancy among a few different values. To handle such cases, Narukawa and Torra [9, 10] introduced
the concept of hesitant fuzzy sets (HFSs) which allow the membership degree of an element to a set to
be represented by a set of possible values. Therefore, HFS is an effective tool for expressing DM’s
preference for alternatives and is used in practical problems such as decision-making, risk evaluation,
and pattern recognition, but it still has its own some drawbacks [11–21]. With the help of IFSs, Zhu et
al. [22, 23] proposed an extension of HFSs, dual hesitant fuzzy sets (DHFSs), which consist of two
parts: the membership hesitancy function and non-membership hesitancy function. The advantages of
DHFSs are reflected in two aspects, that is, they interpret fuzzy information from both positive and
negative points, and effectively express DMs’ hesitancy. Furthermore, Zeng et al. [24] introduced the
concept of weighted DHFSs (WDHFSs), whose main characteristic is that both the possible
membership degree and non-membership degree are distributed with different weights. Thus, MCDM
methods based on information measures and aggregation operators of DHFSs, as well as extensions
of classical decision-making methods into dual hesitant fuzzy environment, have become an active
research topic. Meanwhile, to avoid the hesitant fuzzy information loss in decision-making process,
Xu and Zhou [25] combined probabilistic information with HFSs, and proposed the probabilistic
hesitant fuzzy sets (P-HFSs), which consist of several possible membership values with their
corresponding probabilities. So far, the issue of hesitant fuzzy information loss is challenging and
attracting researchers’ attention. To prevent the defect of DHFSs, Hao et al. [26] proposed the
probabilistic DHFSs (P-DHFSs) by adding corresponding probability of each member in DHFSs, and
investigated the operations, comparison method, and aggregation operators of P-DHFSs as well as a
novel decision method for practical multi-attribute decision-making (MADM) problems. As a
fascinating extension of DHFSs, P-DHFSs can explain DM’s evaluation values more accurately and
comprehensively because they represent not only the membership and non-membership degrees, but
also the corresponding probabilistic information.

Recently, Wang and Liu [27] proposed another extension of HFSs, picture hesitant fuzzy sets
(PHFSs), which consist of three parts: the positive membership hesitancy, neutral membership
hesitancy, and negative membership hesitancy functions. Due to the advantages of PHFSs, which
interpret fuzzy information from the neutral aspect along with the positive and negative aspects, DM’s
preference is effectively expressed in the decision-making process. Since then, many researchers have

AIMS Mathematics Volume 8, Issue 4, 8522–8559.



8524

recently investigated and studied PHFSs in various areas. However, although existing MCDM
methods using PHFS have recently presented some improved decision-making approaches, it is worth
pointing out that there are still limited drawbacks in use in solving practical MCMD problems. In
other words, the existing methods have two shortcomings. First, PHFSs have drawbacks in presenting
complex DMs’ evaluation information, so there exist many situations that cannot properly handled by
PHFSs. For instance, the limitation of PHFSs requires that the elements of each membership
hesitancy degree have the same weight, and if those elements have different weights, PHFSs are
powerless. The second drawback is that the existing methods of information fusion fail to handle
complicated situations, such as wherein attributes are correlated. Therefore, aiming at the drawbacks
of PHFSs, we extend PHFSs to probabilistic picture hesitant fuzzy sets (P-PHFSs) by taking the
probability of each member in picture hesitant fuzzy element (PHFE) into consideration. The
P-PHFSs are more powerful and useful, as they have the ability of denoting positive membership
degrees, neutral membership degrees, negative membership degrees as well as their probabilities
simultaneously. To circumvent the second defect of Wang and Liu’s [12] method, we provide a series
of compound aggregation operators of probabilistic picture hesitant fuzzy elements (P-PHFEs). The
novelties and contributions of this paper are presented as follows.

(1) A new information representation tool, called P-PHFSs, is proposed. This contribution makes it
easier and more convenient to depict DMs’ complex and fuzzy assessment information in
decision-making problems.

(2) The operations, score function, accuracy function and comparison method of P-PHFSs are
presented and discussed.

(3) Novel efficient aggregation operators are put forward, which effectively aggregate integrate
evaluation values under P-PHFEs.

(4) Two new MCDM methods under P-PHFSs are developed to judge the best alternative.
(5) Some practical MCDM examples are provided to show the effectiveness of our new methods.

The structure of the rest of this paper is as follows. Section 2 reviews the relevant research. Section 3
recalls basic concepts. Section 4 proposes the P-PHFSs and introduces their related notions, such as
operational rules, comparison method, etc. Section 5 presents some aggregation operators of P-PHFEs
and discusses their properties. Section 6 presents two new MCDM methods under P-PHFSs. Section 7
conducts numerical experiments to show the performance of the new MCDM methods. Conclusions
are provided in Section 8.

2. Literature review

To further illustrate the motivations of our proposal, this section reviews the relevant research. For
better explanation and explanation, we perform literature reviews in two aspects: P-HFSs and PHFSs.

2.1. P-HFSs

After Xu and Zhou [25] proposed P-HFSs to overcome hesitant fuzzy information loss in the
decision-making process, researchers became very interested in the fuzzy information loss problem.
Zhang et al. [28] further discussed the operations and integrations of probabilistic hesitation fuzzy
information, and proposed a method to rank probabilistic hesitant fuzzy elements (P-HFEs) based on
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the score and deviation values, whose comparison technique only reflects the absolute priority of
P-HFEs. After that, Song et al. [29] overcame the defect of Zhang et al.’s method [28] by developing
a new comparison technique for P-HFEs based on the possibility degree formula. Song et al.’s
formula has the advantage of realizing optimal alignment of P-HFEs and effectively reducing
computational complexity. Wang and Li [30] proposed the correlation coefficients of P-HFEs, and
applied them to evaluate alternatives in practical decision-making process. Song et al. [31] developed
two correlation coefficient formulas to measure the relationship between P-HFSs, and applied them in
cluster analysis with probabilistic hesitant fuzzy information. Su et al. [32] proposed two kinds of
entropy measures for P-HFEs, the membership degree-based entropy and distance-based entropy, and
applied them to decision-making case for investment. Liu et al. [33] proposed a MADM method
based on probabilistic hesitant fuzzy entropy. Farhadinia et al. [34] constructed an axiomatic
framework for entropy measures for P-HFEs, taking into account two aspects of uncertainty:
fuzziness and non-specificity, and proposed decision-making methods based on P-HFE entropy and
P-HFE entropy-based distance measures. Zhu and Xu [35] developed probability hesitant fuzzy
preference relations (PHFPRs) and a consensus index to measure the consensus degrees of PHFPRs.
Li and Wang [36] further investigated the consensus building among DMs on PHFPRs with expected
additional consistency. Zhou and Xu [37] introduced the concept of uncertain P-HFEs, extended them
to uncertain PHFPRs (UPHFPRs), and then provided a group decision-making process under
UPHFPR environment. Li and Wang [38] and Zang et al. [39], respectively, extended the classical
QUALIFLEX and TODIM methods for decision-making to probabilistic hesitant fuzzy environment.
Furthermore, Tian et al. [40] utilized TODIM method with probabilistic hesitant fuzzy information to
simulate the perceptions of DMs in prospect theory. Song and Chen [41] proposed a new MADM
method based on distance and COMPRAS method under probabilistic hesitant fuzzy environment.

As an extension of DHFSs and P-HFSs, the P-DHFSs proposed by Hao et al. [26] can explain DMs’
evaluation values more accurately and comprehensively, so many researchers have since studied P-
DHFSs. Ren et al. [42] proposed the revised score functions and equiprobability distance measures of
probabilistic dual hesitant elements (P-DHFEs), and utilized them to develop an MCDM model based
on extended TODIM method. In [43], they also developed an integrated VIKOR and AHP method to
solve group MCDM (MCGDM) problems under probabilistic dual hesitant fuzzy environment. Garg
and Kaur [44] presented several aggregation operators to fuse P-DHFEs by using Einstein operations,
and applied them to construct an MCDM method. They, in [45], also defined the correlation coefficients
for P-DHFSs and developed an MCDM method based on them. Zhao et al. [46] proposed the BASD-
based PROMETHEE-II method for solving group MCDM problem with probabilistic dual hesitant
fuzzy preference information. Song et al. [47] discussed group decision-making (GDM) methods
based on incomplete probabilistic double hesitation fuzzy preferences (PDHFPRs) and also, in [48],
investigated consensus-based GDM methods with PDHFPRs. Shao and Zhang [49] presented uncertain
probabilistic dual hesitant fuzzy numbers, which includes six types of DHFS, and developed goal
programming models based on uncertain PDHFPRs. However, PDHFSs have drawbacks in presenting
complex DMs’ evaluation information and there exist many situations in which cannot be adequately
handled by PDHFSs.
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2.2. PHFSs

The PHFSs proposed by Wang and Liu [27], another extension of HFSs, have been investigated
and studied in various areas by many researchers due to their advantages in interpreting fuzzy
information in positive, negative, and neutral aspects. Ullah et al. [50] presented some picture hesitant
fuzzy aggregation operators for MADM methods. Yang et al. [51] introduced picture hesitant fuzzy
entropy and similarity measurements and utilized them to make MCGDM method for end-of-life
vehicle management. Jan et al. [52] proposed some distance measures for PHFSs and utilized them to
solve for pattern recognition and MADM problems. Ali and Mahmood [53] presented generalized
dice similarity measures (GDSMs) for PHFSs and investigated the GDSM based pattern recognition
models with picture hesitant fuzzy information. They [54] further proposed MCDM method based on
picture hesitant fuzzy cross-entropy. Mahmood et al. [55] applied the picture hesitant fuzzy
Bonferroni mean operator and picture hesitant fuzzy geometric Bonferroni mean operator to
aggregate picture hesitant fuzzy information. Ali et al. [56] proposed some new similarity measures
for PHFSs and applied to medical diagnosis. Mahmood et al. [57] developed TOPSIS method based
on correlation coefficient and entropy measure to solve MADM problem under picture hesitant
environment. Ambrin et al. [58] extended TOPSIS method for supplier selection under picture
hesitant fuzzy environment. However, as mentioned in the previous section, although the MCDM
methods using PHFSs present improved decision-making approaches, there are still limited
drawbacks to being used to solve practical MCMD problems.

Based on the above review analysis, our goals are to make up for the aforementioned shortcomings
by proposing new MCDM methods. That is, we propose a new representation tool and technique to
overcome the shortcomings of PHFSs in representing fuzzy decision information.

3. Preliminaries

In this section, the concepts of P-HFSs, P-DHFSs, PHFSs and prioritized averaging (PA) operator
[59] are briefly reviewed, which are the theoretical basis of the proposed method. We extend PHFSs
to P-PHFSs by taking probabilities into consideration and develop some new aggregation operators by
applying PA operator to P-PHFSs in the following Sections 3 and 4, respectively.

3.1. Basic definitions

To avoid the loss of hesitant fuzzy information in decision making process, Xu and Zhou [25]
brought probability to the concept of HFS and introduced P-HFS.

Definition 3.1. [25] Let X be a non-empty and finite set, a probabilistic hesitant fuzzy set (P-HFS) P
on X is given as

P̃ =
{
〈x, h̃(x)|p(x)|x ∈ X〉

}
, (3.1)

where the set h(x)|p(x) contains several elements, h(x) denotes the membership degree of x in X to
the set P̃ and p(x) is its associated probabilistic information. For simplicity, h̃(x)|p(x) is called a
probabilistic hesitant fuzzy element (P-HFE), denoted as h̃|p and is given as

h̃|p =
{
γi|pi|i = 1, 2, . . . , #h̃

}
, (3.2)
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where pi satisfying
∑#h̃

i=1 pi ≤ 1, is probability of the possible value γi and #h̃ is the number of all γi|pi.

To fully explain the limited information provided by experts and reduce uncertainty as much as
possible, Hao et al. [26] proposed P-DHFS as follows.

Definition 3.2. [26] Let X be a non-empty and finite set, a probabilistic dual hesitant fuzzy set (P-
DHFS) D̃ on X is defined by

D̃ = {〈x, µ̃(x)|p(x), ν̃(x)|q(x)〉|x ∈ X} , (3.3)

where the sets µ̃(x)|p(x) and ν̃(x)|q(x) contain several elements, µ̃(x) and ν̃(x) denote the membership
and non-membership degrees of x ∈ X to the set D̃, respectively, and p(x) and q(x) are their associated
probabilistic information. In addition, µ̃(x)|p(x), ν̃(x)|q(x), p(x), and q(x) satisfy the following
conditions:

0 ≤ α, β ≤ 1, 0 ≤ α+ + β+ ≤ 1, (3.4)

and

pi ∈ [0, 1], q j ∈ [0, 1],
#µ̃∑
i=1

pi = 1,
#ν̃∑
j=1

q j = 1, (3.5)

where α ∈ µ̃(x), β ∈ ν̃(x), α+ = ∪α∈µ̃(x) max{α}, β+ = ∪β∈ν̃(x) max{β}, pi ∈ p(x), and q j ∈ q(x). The
symbol #µ̃, and #ν̃ represent the total numbers of elements in µ̃(x)|p(x), and ν̃(x)|q(x), respectively. For
convenience, we call d̃ = (µ̃(x)|p(x), ν̃(x)|q(x)) a probabilistic dual hesitant fuzzy element (P-DHFE),
which can be denoted by d̃ = (µ̃|p, ν̃|q) for simplicity.

Wang and Li [27] proposed PHFS to describe the hesitation for all three of he following: positive
membership degree, neutral membership degree, and negative membership degree.

Definition 3.3. [27] Let X be a non-empty and finite set, a picture hesitant fuzzy set (PHFS) N on X
is defined by

N = {〈x, µ̄(x), η̄(x), ν̄(x)〉|x ∈ X} , (3.6)

where µ̄(x) = {α|α ∈ µ̄(x)}, η̄(x) = {β|β ∈ η̄(x)}, and ν̄(x) = {γ|γ ∈ ν̄(x)} are three sets of several values
in [0, 1], representing the potential positive, neutral, and negative membership degrees. The degrees
above satisfy the condition of 0 ≤ α+ + η+ + γ+ ≤ 1, where α+ = ∪α∈µ̄(x) max{α}, β+ = ∪β∈η̄(x) max{β},
and γ+ = ∪γ∈ν̄(x) max{γ}. For convenience, we call n̄ = (µ̄(x), η̄(x), ν̄(x)) is a picture hesitant fuzzy
element (PHFE), denoted by n̄ = (µ̄, η̄, ν̄).

Wang and Li [27] also provided some operations of PHFEs as follows: for three PHFEs n̄ = (µ̄, η̄, ν̄),
n̄1 = (µ̄1, η̄1, ν̄1) and n̄2 = (µ̄2, η̄2, ν̄2),

(1) n̄c = (ν̄, η̄, µ̄) = ∪α∈µ̄,β∈η̄,γ∈ν̄ ({γ}, {β}, {α});
(2) n̄1 ⊕ n̄2 = ∪ α1∈µ̄1 ,β1∈η̄1 ,γ1∈ν̄1 ,

α2∈µ̄2 ,β2∈η̄2 ,γ2∈ν̄2
({α1 + α2 − α1α2}, {β1β2}, {γ1γ2});

(3) n̄1 ⊗ n̄2 = ∪ α1∈µ̄1 ,β1∈η̄1 ,γ1∈ν̄1 ,
α2∈µ̄2 ,β2∈η̄2 ,γ2∈ν̄2

({α1α2}, {β1 + β2 − β1β2}, {γ1 + γ2 − γ1γ2});

(4) λn̄ = ∪α∈µ̄,β∈η̄,γ∈ν̄
(
{1 − (1 − α)λ}, {βλ}, {γλ}

)
, λ > 0;

(5) n̄λ = ∪α∈µ̄,β∈η̄,γ∈ν̄
(
{αλ}, {1 − (1 − β)λ}, {1 − (1 − γ)λ}

)
, λ > 0.
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3.2. Prioritized operator

The prioritized operators play also an important role in solving many MCDM problems. The
prioritized averaging (PA) operator, introduced by Yager [59], is defined in the following manner:

Definition 3.4. [59] Let C = {C1,C2, . . . ,Cn} be a collection of criteria and that there is a prioritization
between the criteria expressed by the linear ordering C1 > C2 > · · · > Cn, indicate criteria C j has a
higher priority than Ck if j < k. The value C j(x) is the performance of any alternative x under criteria
C j, and satisfies C j(x) ∈ [0, 1]. Then PA operator is expressed by

PA(C1(x),C2(x), . . . ,Cn(x)) =

n∑
j=1

w jC j(x), (3.7)

where w j =
T j∑n
j=1 T j

, T j =
∏ j−1

k=1 CK(x) ( j = 2, . . . n), and T1 = 1.

4. Probabilistic picture hesitant fuzzy sets

In this section, we propose the concept of P-PHFSs. To do this, we first briefly introduce the
motivations of proposing P-PHFSs and explain why we need P-PHFSs. Then the definition, operational
rules and comparison method of P-PHFSs are further introduced.

4.1. Motivation of proposing P-PHFSs

In practical MCDM problems, it is very necessary to comprehensively express DMs’ evaluation
information before determining the optimal alternative(s). In other words, it is a prerequisite to
accurately and appropriately describe DMs’ evaluation values, which makes the final decision-making
result reliable and reasonable. Since fuzziness and vagueness exist extensively in realistic
decision-making problems, DMs generally express their evaluation with the help of various fuzzy
sets. In addition, sometimes it is necessary to consider the probability of the fuzzy values to more
accurately represent the evaluation values provided by the DMs. The following example is provided
to better illustrate this phenomenon.

Example 4.1. A university’s department plans to purchase liberal arts books related to majors. The
department invites three decision-making experts to evaluate the performance of potential book sellers
based on the on the criterion “reputation”. Each DM is required to use several values to represent
positive membership, neutral membership, and negative membership of his/her evaluation value. The
evaluation information provided by the three DMs is listed in Table 1.

Table 1. The evaluation information provided by three DMs.

Possible positive Possible neutral Possible negative
membership degrees membership degrees membership degrees

The first DM 0.3, 0.4, 0.5 0.05,0,1, 0,15 0.2,0.25,0.3
The second DM 0.3, 0.5, 0.55 0.1, 0,15 0.15,0.2
The third DM 0.25, 0.45 0.15, 0,2, 0,25 0.1,0.15,0.3
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If we integrate each DM’s evaluation values in the form of PHFEs, it can be expressed as
{{0.25, 0.3, 0.4, 0.45, 0.5, 0.55}, {0.05, 0.1, 0.15, 0.2, 0.25}, {0.1, 0.15, 0.2, 0.25, 0.3}}. However, it
indicates that multiple appearances of the positive membership degrees 0.3 and 0.5, neutral
membership degrees 0.1 and 0.15, and negative membership degrees 0.15, 0.2, and 0.3 are ignored,
which means that some basic information is lost. Hence, in order to overcome this shortcoming and to
describe group’s evaluation opinions more accurately, it is necessary to propose a new fuzzy
information representation tool. Motivated by the PHFSs and P-HFSs, we extend PHFSs to P-PHFSs,
which consider both the multiple positive membership degrees, neutral membership degrees and
negative membership degrees, and their probabilistic information. The definition as well as some
related notions of P-PHFSs are presented in the following subsections.

4.2. The definition of P-PHFSs

Motivated by P-HFSs, P-DHFSs and PHFSs, we present the definition of P-PHFSs.

Definition 4.2. Let X be a non-empty and finite set, a probabilistic picture hesitant fuzzy set (P-PHFS)
Ñ on X is defined by

Ñ = {〈x, µ̃(x)|p(x), η̃(x)|q(x), ν̃(x)|r(x)〉|x ∈ X} , (4.1)

where the sets µ̃(x)|p(x), η̃(x)|q(x), and ν̃(x)|r(x) contains several elements, µ̃(x), η̃(x), and ν̃(x) denote
the potential positive membership degrees, neutral membership degrees, and negative membership
degrees of x ∈ X to the set Ñ, respectively, and p(x), q(x), and r(x) are their associated probabilistic
information. In addition, µ̃(x)|p(x), η̃(x)|q(x), ν̃(x)|r(x), p(x), q(x), and r(x) satisfy the following
conditions:

0 ≤ α, β, γ ≤ 1, 0 ≤ α+ + β+ + γ+ ≤ 1, (4.2)

and

pi ∈ [0, 1], q j ∈ [0, 1], rk ∈ [0, 1],
#µ̃∑
i=1

pi = 1,
#η̃∑
j=1

q j = 1,
#ν̃∑

k=1

rk = 1, (4.3)

where α ∈ µ̃(x), β ∈ η̃(x), γ ∈ ν̃(x), α+ = ∪α∈µ̃(x) max{α}, β+ = ∪β∈η̃(x) max{β}, γ+ = ∪γ∈ν̃(x) max{γ},
pi ∈ p(x), q j ∈ q(x), and rk ∈ r(x). The symbol #µ̃, #η̃, and #ν̃ represent the total numbers of elements
in µ̃(x)|p(x), η̃(x)|q(x), and ν̃(x)|r(x), respectively. For convenience, we call
ñ = (µ̃(x)|p(x), η̃(x)|q(x), ν̃(x)|r(x)) a probabilistic picture hesitant fuzzy element (P-PHFE), which can
be denoted by ñ = (µ̃|p, η̃|q, ν̃|r) for simplicity.

Now, we define the score and accuracy functions of P-PHFEs because the ranking of P-PHFEs is
required in the application process to the practical MCDM problems.

Definition 4.3. Let ñ = (µ̃|p, η̃|q, ν̃|r) be a P-PHFE, then the score function is defined by

s(ñ) =

1 +
1

#µ̃

#µ̃∑
i=1

αi · pi −
1
#η̃

#η̃∑
j=1

β j · q j −
1
#ν̃

#ν̃∑
k=1

γk · rk

 /2, s(ñ) ∈ [0, 1], (4.4)
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the accuracy function is defined by

h(ñ) =
1

#µ̃

#µ̃∑
i=1

αi · pi +
1
#η̃

#η̃∑
j=1

β j · q j +
1
#ν̃

#ν̃∑
k=1

γk · rk, h(ñ) ∈ [0, 1]. (4.5)

Based on the score and accuracy values of P-PHFEs, the order relation between two P-PHFEs is
defined as follows.

Definition 4.4. Let ñ1 = (µ̃1|p1, η̃1|q1, ν̃1|r1) and ñ2 = (µ̃2|p2, η̃2|q2, ν̃2|r2) be two P-PHFEs, then
(1) If s(ñ1) > s(ñ2), then ñ1 is superior to ñ2, denoted by ñ1 > ñ2;
(2) If s(ñ1) = s(ñ2), then

(a) If h(ñ1) > h(ñ2), then ñ1 is superior to ñ2, denoted by ñ1 > ñ2;
(b) If h(ñ1) = h(ñ2), then ñ1 is indifferent to ñ2, denoted by ñ1 = ñ2;
(c) If h(ñ1) < h(ñ2), then ñ1 is inferior to ñ2, denoted by ñ1 < ñ2.

For example, let ñ1 = ({0.2|1}, {0.3|0.4, 0.4|0.6}, {0.3|0.6, 0.35|0.4}) and ñ2 = ({0.3|0.4,
0.4|0.6}, {0.2|1}, {0.2|0.6, 0.3|0.4}) and be two P-PHFEs, from Definition 4.4, we have
s(ñ1) = s(ñ2) = 0.43, h(ñ1) = 0.54, and h(ñ2) = 0.5, then ñ1 > ñ2.

Remark 4.5. If the values in neutral membership degrees are all zero, i.e., β = 0 ∀β ∈ η̃, then P-PHFE
reduces to P-DHFE; if the values in positive membership degrees, neutral membership degrees, and
negative membership degrees each have the same probability, i.e., pi = 1

#µ̃ , q j = 1
#η̃ , rk = 1

#ν̃ , then
P-PHFE reduces to PHFE. It presents the generalized property of the proposed P-PHFE. Furthermore,
in this case, the score function of P-PHFE is consistent with that of PHFE or P-DHFE.

The following example demonstrates the difference between P-PHFE and PHFE.

Example 4.6. A DM provides two PHFEs, ({0.2, 0.25, 0.3}, {0.1, 0.15}, {0.15, 0.2}) and ({0.1, 0.3},
{0.05, 0.2}, {0.1, 0.2}), to evaluate the purchase of Car-1 and Car-2. It is easy found that Car-1 is more
affordable than Car-2 for this DM based on his/her PHFE representation. However, if the DM thinks
that PHFE information with probabilities is more suitable, and presents an evaluation of the purchase
of both cars as ñ1 = ({0.2|p1, 0.25|p2, 0.3|p3}, {0.1|q1, 0.15|q2}, {0.15|r1, 0.2|r2}) and
ñ2 = ({0.1|p4, 0.3|p5}, {0.15|q3, 0.2|q4}, {0.2|r3, 0.3|r4}), then (1) if p1 = p2 = p3, q1 = q2, r1 = r2,
p4 = p5, q3 = q4 and r3 = r4, then the result is the same as that with the PHFEs; and (2) if
p1 = 0.4,p2 = 0.3,p3 = 0.3, q1 = 0.4, q2 = 0.6, r1 = 0.4, r2 = 0.6, p4 = 0.2, p5 = 0.8, q3 = 0.6,
q4 = 0.4, r3 = 0.6 and r4 = 0.4, then we have s(ñ2) > s(ñ1), and Car-2 is more affordable than Car-1.

Example 4.6 shows that the compared results based on PHFEs and P-PHFEs respectively can be
different, and that P-PHFEs can be used to provide the same result as PHFEs. Thus, the proposed
P-PHFEs are generalized PHFEs and can be used to describe picture hesitant fuzzy information with
probabilities.

4.3. Basic operational rules of P-PHFEs

Based on the operations of P-HFEs and PHFEs, we define some basic operations of P-PHFEs and
discuss their properties.
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Definition 4.7. Let ñ =
(
µ̃|pµ̃, η̃|qη̃, ν̃|rν̃

)
, ñ1 =

(
µ̃1|pµ̃1 , η̃1|qη̃1 , ν̃1|rν̃1

)
, and ñ2 =

(
µ̃2|pµ̃2 , η̃2|qη̃2 , ν̃2|rν̃2

)
be

three P-PHFEs, λ > 0, then ñc is the complement of ñ, and the operations of P-PHFEs are defined as
(1) ñc =

(
ν̃|rν̃, η̃|qη̃, µ̃|pµ̃

)
= ∪α∈µ̃,β∈η̃,γ∈ν̃

(
{γ|rγ}, {β|qβ}, {α|pα}

)
;

(2) ñ1 ⊕ ñ2 = ∪ α1∈µ̃1 ,β1∈η̃1 ,γ1∈ν̃1 ,
α2∈µ̃2 ,β2∈η̃2 ,γ2∈ν̃2

(
{α1 + α2 − α1α2|pα1 pα2}, {β1β2|qβ1qβ2}, {γ1γ2|rγ1rγ2}

)
;

(3) ñ1 ⊗ ñ2 = ∪ α1∈µ̃1 ,β1∈η̃1 ,γ1∈ν̃1 ,
α2∈µ̃2 ,β2∈η̃2 ,γ2∈ν̃2

(
{α1α2|pα1 pα2}, {β1 + β2 − β1β2|qβ1qβ2}, {γ1 + γ2 − γ1γ2|rγ1rγ2}

)
;

(4) λñ = ∪α∈µ̃,β∈η̃,γ∈ν̃
(
{1 − (1 − α)λ|pα}, {βλ|qβ}, {γλ|rγ}

)
;

(5) ñλ = ∪α∈µ̃,β∈η̃,γ∈ν̃
(
{αλ|pα}, {1 − (1 − β)λ|qβ}, {1 − (1 − γ)λ|rγ}

)
.

For example, let ñ1 = ({0.3|0.4, 0.4|0.6}, {0.2|1}, {0.2|0.6, 0.3|0.4}) and ñ2 = ({0.3|1}, {0.2|0.4,
0.3|0.6}, {0.1|0.6, 0.2|0.4}) be two P-PHFEs, λ = 2, then

(1) ñc
1 = ({0.2|0.6, 0.3|0.4}, {0.2|1}, {0.3|0.4, 0.4|0.6}), ñc

2 = ({0.1|0.6, 0.2|0.4}, {0.2|0.4, 0.3|0.6},
{0.3|1});

(2) ñ1 ⊕ ñ2 = ({0.51|0.4, 0.58|0.6}, {0.04|0.4, 0.06|0.6}, {0.02|0.36, 0.03|0.24, 0.04|0.24, 0.06|0.16});
(3) ñ1 ⊗ ñ2 = ({0.09|0.4, 0.12|0.6}, {0.36|0.4, 0.44|0.6}, {0.28|0.36, 0.36|0.24, 0.37|0.24, 0.44|0.16});
(4) λñ1 = ({0.51|0.4, 0.64|0.6}, {0.04|1}, {0.04|0.6, 0.09|0.4}), λñ2 = ({0.51|1}, {0.04|0.4,

0.09|0.6}, {0.01|0.6, 0.04|0.4});
(5) ñλ1 = ({0.09|0.4, 0.16|0.6}, {0.36|1}, {0.36|0.6, 0.51|0.4}), ñλ2 = ({0.09|1}, {0.36|0.4, 0.51|0.6},

{0.19|0.6, 0.36|0.4}).

Based on Definition 4.7, we can obtain the following theorem.

Theorem 4.8. Let ñ =
(
µ̃|pµ̃, η̃|qη̃, ν̃|rν̃

)
, ñ1 =

(
µ̃1|pµ̃1 , η̃1|qη̃1 , ν̃1|rν̃1

)
, and ñ2 =

(
µ̃2|pµ̃2 , η̃2|qη̃2 , ν̃2|rν̃2

)
be

three P-PHFEs, λ, λ1, λ2 > 0, then
(1) ñ1 ⊕ ñ2 = ñ2 ⊕ ñ1;
(2) ñ1 ⊗ ñ2 = ñ2 ⊗ ñ1;
(3) ñ ⊕ (ñ1 ⊕ ñ2) = (ñ ⊕ ñ1) ⊕ ñ2;
(4) ñ ⊗ (ñ1 ⊗ ñ2) = (ñ ⊗ ñ1) ⊗ ñ2;
(5) λ(ñ1 ⊕ ñ2) = λñ1 ⊕ λñ2;
(6) (ñ1 ⊗ ñ2)λ = ñλ1 ⊗ ñλ2;
(7) (ñλ1)λ2 = ñλ1λ2 .

Proof. See Appendix A.

5. Generalized probabilistic picture hesitant fuzzy aggregation operators

In this section, some generalized probabilistic picture hesitant fuzzy weighted aggregation operators
are defined by using the operations of P-PHFEs. For it, let Ω be the set of all P-PHFEs.

5.1. Generalized probabilistic picture hesitant fuzzy weighted average/geometric operators

Definition 5.1. Let ñi (i = 1, 2, . . . , n) be a collection of P-PHFEs and w = (w1,w2, . . . ,wn)T be the
weight vector of ñi (i = 1, 2, . . . , n) such that wi > 0 and

∑n
i=1 wi = 1. For λ > 0, a generalized

probabilistic picture hesitant fuzzy weighted average (GPPHFWA) operator is a function Ωn → Ω

such that

GPPHFWA(ñ1, ñ2, . . . , ñn) =
(
w1ñλ1 ⊕ w2ñλ2 ⊕ · · · ⊕ wnñλn

) 1
λ

=
(
⊕n

i=1wiñλi
) 1
λ
. (5.1)
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Based on Definition 5.1, we can obtain the following theorem.

Theorem 5.2. Let ñi =
(
µ̃i|pµ̃i , η̃i|qη̃i , ν̃i|rν̃i

)
(i = 1, 2, . . . , n) be a collection of P-PHFEs,

w = (w1,w2, . . . ,wn)T be the weight vector of ñi (i = 1, 2, . . . , n) such that wi > 0 and
∑n

i=1 wi = 1, and
λ > 0, then the aggregated value by GPPHFWA operator is also a P-PHFE, and

GPPHFWA(ñ1, ñ2, . . . , ñn)

= ∪αi∈µ̃i,βi∈η̃i,γi∈ν̃i



{(
1 −

∏n
i=1(1 − αλi )wi

) 1
λ
∣∣∣∏n

i=1 pαi

}
,{

1 −
(
1 −

∏n
i=1

(
1 − (1 − βi)λ

)wi
) 1
λ
∣∣∣∏n

i=1 qβi

}
,{

1 −
(
1 −

∏n
i=1

(
1 − (1 − γi)λ

)wi
) 1
λ
∣∣∣∏n

i=1 rγi

}

. (5.2)

Proof. See Appendix B.

Furthermore, based on Theorem 5.2, the proposed GPPHFWA operator satisfies the boundedness
and monotonicity as follows.

Theorem 5.3. Let ñi =
(
µ̃i|pµ̃i , η̃i|qη̃i , ν̃i|rν̃i

)
(i = 1, 2, . . . , n) be a collection of P-PHFEs,

w = (w1,w2, . . . ,wn)T be the weight vector of ñi (i = 1, 2, . . . , n) such that wi > 0 and
∑n

i=1 wi = 1, and
λ > 0, then we have the followings:

(1) Boundedness: If
ñ− =

(
min(µ̃i)|min(pµ̃i),max(η̃i)|max(qη̃i),max(ν̃i)|max(rν̃i)

)
= ({αmin|pmin}, {βmax|qmax}, {γmax|rmax})

and ñ+ =
(
max(µ̃i)|max(pµ̃i),min(η̃i)|min(qη̃i),

min(ν̃i)|min(rν̃i)
)

= ({αmax|pmax}, {βmin|qmin}, {γmin|rmin}), then

ñ− ≤ GPPHFWA(ñ1, ñ2, . . . , ñn) ≤ ñ+.

(2) Monotonicity: Let ñ′i =
(
µ̃′i |pµ̃′i , η̃

′
i |qη̃′i , ν̃

′
i |rν̃′i

)
(i = 1, 2, . . . , n) be a collection of P-PHFEs, if

w = (w1,w2, . . . ,wn)T is also the weight vector of ñ′i , αi ≤ α
′
i for each αi ∈ µ̃i and α′i ∈ µ̃

′
i , βi ≥ β

′
i for

each βi ∈ η̃i and β′i ∈ η̃
′
i , γi ≥ γ′i for each γi ∈ ν̃i and γ′i ∈ ν̃

′
i (i = 1, 2, . . . , n), and the probabilities

remain the same, i.e., pµ̃i = pµ̃′i , qη̃i = qη̃′i , rν̃i = rν̃′i , then

GPPHFWA(ñ1, ñ2, . . . , ñn) ≤ GPPHFWA(ñ′1, ñ
′
2, . . . , ñ

′
n).

Proof. See Appendix C.

However, the GPPHFWA operator does not satisfy the idempotency and commutativity, as
illustrated by the following example.

Example 5.4. Let ñ1 = ({0.3|0.25, 0.4|0.75}, {0.2|0.5, 0.3|0.5}, {0.2|0.4, 0.3|0.6}),
ñ2 = ({0.3|0.3, 0.35|0.7}, {0.2|0.45, 0.3|0.55}, {0.3|0.35, 0.4|0.65}) and ñ3 = ({0.3|0.25, 0.4|0.75},
{0.2|0.5, 0.3|0.5}, {0.2|0.4, 0.3|0.6}) be three P-PHFEs, w = (0.3, 0.5, 0.2)T be the weight vector of ñ1,

AIMS Mathematics Volume 8, Issue 4, 8522–8559.



8533

ñ2 and ñ3, λ = 2. Then by Theorem 5.2, we have

GPPHFWA(ñ1, ñ2, ñ3) =



{
0.300|0.019, 0.324|0.056, 0.324|0.044, 0.334|0.056,
0.345|0.131, 0.355|0.169, 0.355|0.131, 0.374|0.394

}
,{

0.200|0.113, 0.220|0.113, 0.225|0.113, 0.244|0.113,
0.244|0.137, 0.265|0.137, 0.276|0.137, 0.300|0.137

}
,{

0.244|0.056, 0.265|0.084, 0.276|0.084, 0.279|0.104,
0.300|0.126, 0.304|0.156, 0.317|0.156, 0.346|0.234

}


,

GPPHFWA(ñ2, ñ3, ñ1) =



{
0.300|0.019, 0.315|0.044, 0.323|0.056, 0.337|0.131,
0.355|0.056, 0.367|0.131, 0.374|0.169, 0.385|0.394

}
,{

0.200|0.113, 0.217|0.113, 0.225|0.137, 0.244|0.113,
0.244|0.137, 0.265|0.113, 0.276|0.137, 0.300|0.137

}
,{

0.225|0.056, 0.244|0.104, 0.244|0.084, 0.264|0.156,
0.276|0.084, 0.299|0.156, 0.300|0.126, 0.326|0.234

}


,

GPPHFWA(ñ1, ñ1, ñ1) =



{
0.300|0.015, 0.323|0.047, 0.334|0.047, 0.355|0.047,
0.355|0.141, 0.374|0.141, 0.383|0.141, 0.400|0.421

}
,{

0.200|0.125, 0.217|0.125, 0.225|0.125, 0.244|0.125,
0.245|0.125, 0.265|0.125, 0.276|0.125, 0.300|0.125

}
,{

0.200|0.064, 0.217|0.096, 0.225|0.096, 0.244|0.096,
0.245|0.144, 0.265|0.144, 0.276|0.144, 0.300|0.216

}


.

From Definition 4.3, we have s(ñ1) = 0.4663, s(ñ2) = 0, 4288, s(ñ3) = 0.5600,
s(GPPHFWA(ñ1, ñ2, ñ3)) = 0.4878, s(GPPHFWA(ñ2, ñ3, ñ1)) = 0.4441 and
s(GPPHFWA(ñ1, ñ1, ñ1)) = 0.4921. Then s(GPPHFWA(ñ1, ñ2, ñ3)) , s(GPPHFWA(ñ2, ñ3, ñ1)) and
hence GPPHFWA(ñ1, ñ2, ñ3) , GPPHFWA(ñ2, ñ3, ñ1), which implies that the GPPHFWA operator is
not commutative. Furthermore, since s(GPPHFWA(ñ1, ñ1, ñ1)) , s(ñ1), we have
GPPHFWA(ñ1, ñ1, ñ1) , ñ1, which implies that the GPPHFWA operator is not idempotent.

Under some restricted conditions, the reduced operators of the GPPHFWA operator are obtained as
follows.

Remark 5.5. (1) If λ = 1, then the GPPHFWA operator reduces to the probabilistic picture hesitant
fuzzy weighted average operator (PPHFWA) operator:

PPHFWA(ñ1, ñ2, . . . , ñn) = ⊕n
i=1wiñi

= ∪αi∈µ̃i,βi∈η̃i,γi∈ν̃i


{
1 −

∏n
i=1(1 − αi)wi

∣∣∣∏n
i=1 pαi

}
,{∏n

i=1 β
wi
i

∣∣∣∏n
i=1 qβi

}
,{∏n

i=1 γ
wi
i

∣∣∣∏n
i=1 rγi

}
 . (5.3)

(2) If the probabilities of positive membership values, the probabilities of neutral membership
values, and the probabilities of nonmembership values are respectively the same, i.e., pαi = 1

#µ̃i
,

qβi = 1
#η̃i

, rγi = 1
#ν̃i

, then the GPPHFWA operator reduces to the generalized picture hesitant fuzzy
weighted average (GPHFWA) operator [27]:

GPHFWA(ñ1, ñ2, . . . , ñn) =
(
⊕n

i=1wiñλi
) 1
λ
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= ∪αi∈µ̃i,βi∈η̃i,γi∈ν̃i



{(
1 −

∏n
i=1(1 − αλi )wi

) 1
λ

}
,{

1 −
(
1 −

∏n
i=1

(
1 − (1 − βi)λ

)wi
) 1
λ

}
,{

1 −
(
1 −

∏n
i=1

(
1 − (1 − γi)λ

)wi
) 1
λ

}

. (5.4)

Based on the generalized picture hesitant fuzzy weighted geometric operator [27], we also define
the generalized probabilistic picture hesitant fuzzy weighted geometric operator as follows.

Definition 5.6. Let ñi (i = 1, 2, . . . , n) be a collection of P-PHFEs and w = (w1,w2, . . . ,wn)T be the
weight vector of ñi (i = 1, 2, . . . , n) such that wi > 0 and

∑n
i=1 wi = 1. For λ > 0, a generalized

probabilistic picture hesitant fuzzy weighted average (GPPHFWG) operator is a function Ωn → Ω

such that

GPPHFWG(ñ1, ñ2, . . . , ñn) =
1
λ

(
λñw1

1 ⊗ λñw2
2 ⊗ · · · ⊗ λñwn

n

)
=

1
λ

(
⊗n

i=1λñwi
i

)
. (5.5)

Based on Definition 5.6, we obtain the following theorems for the GPPHFWG operator similar to
Theorems 5.2 and 5.3.

Theorem 5.7. Let ñi =
(
µ̃i|pµ̃i , η̃i|qη̃i , ν̃i|rν̃i

)
(i = 1, 2, . . . , n) be a collection of P-PHFEs,

w = (w1,w2, . . . ,wn)T be the weight vector of ñi (i = 1, 2, . . . , n) such that wi > 0 and
∑n

i=1 wi = 1, and
λ > 0, then the aggregated value by GPPHFWG operator is also a P-PHFE, and

GPPHFWG(ñ1, ñ2, . . . , ñn)

= ∪αi∈µ̃i,βi∈η̃i,γi∈ν̃i



{
1 −

(
1 −

∏n
i=1

(
1 − (1 − αi)λ

)wi
) 1
λ
∣∣∣∏n

i=1 pαi

}
,{(

1 −
∏n

i=1(1 − βλi )wi
) 1
λ
∣∣∣∏n

i=1 qβi

}
,{(

1 −
∏n

i=1(1 − γλi )wi
) 1
λ
∣∣∣∏n

i=1 rγi

}

. (5.6)

Theorem 5.8. Let ñi =
(
µ̃i|pµ̃i , η̃i|qη̃i , ν̃i|rν̃i

)
(i = 1, 2, . . . , n) be a collection of P-PHFEs,

w = (w1,w2, . . . ,wn)T be the weight vector of ñi (i = 1, 2, . . . , n) such that wi > 0 and
∑n

i=1 wi = 1, and
λ > 0, then we have the followings:

(1) Boundedness: If
ñ− =

(
min(µ̃i)|min(pµ̃i),max(η̃i)|max(qη̃i),max(ν̃i)|max(rν̃i)

)
= ({αmin|pmin}, {βmax|qmax}, {γmax|rmax})

and ñ+ =
(
max(µ̃i)|max(pµ̃i),min(η̃i)|min(qη̃i),min(ν̃i)|min(rν̃i)

)
= ({αmax|pmax}, {βmin|qmin}, {γmin|rmin}),

then

ñ− ≤ GPPHFWG(ñ1, ñ2, . . . , ñn) ≤ ñ+.

(2) Monotonicity: Let ñ′i =
(
µ̃′i |pµ̃′i , η̃

′
i |qη̃′i , ν̃

′
i |rν̃′i

)
(i = 1, 2, . . . , n) be a collection of P-PHFEs, if

w = (w1,w2, . . . ,wn)T is also the weight vector of ñ′i , αi ≤ α
′
i for each αi ∈ µ̃i and α′i ∈ µ̃

′
i , βi ≥ β

′
i for

each βi ∈ η̃i and β′i ∈ η̃
′
i , γi ≥ γ′i for each γi ∈ ν̃i and γ′i ∈ ν̃

′
i (i = 1, 2, . . . , n), and the probabilities

remain the same, i.e., pµ̃i = pµ̃′i , qη̃i = qη̃′i , rν̃i = rν̃′i , then

GPPHFWG(ñ1, ñ2, . . . , ñn) ≤ GPPHFWG(ñ′1, ñ
′
2, . . . , ñ

′
n).
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Several reduced operators of the GPPHFWG operator are presented as follows.

Remark 5.9. (1) If λ = 1, then the GPPHFWG operator reduces to the probabilistic picture hesitant
fuzzy weighted geometric operator (PPHFWG) operator:

PPHFWG(ñ1, ñ2, . . . , ñn) = ⊗n
i=1ñwi

i

= ∪αi∈µ̃i,βi∈η̃i,γi∈ν̃i


{∏n

i=1 α
wi
i

∣∣∣∏n
i=1 pαi

}
,{

1 −
∏n

i=1(1 − βi)wi
∣∣∣∏n

i=1 qβi

}
,{

1 −
∏n

i=1(1 − γi)wi
∣∣∣∏n

i=1 rγi

}
 . (5.7)

(2) If the probabilities of membership values, the probabilities of neutral membership values, and
the probabilities of nonmembership values are respectively the same, i.e., pαi = 1

#µ̃i
, qβi = 1

#η̃i
, rγi = 1

#ν̃i
,

then the GPPHFWG operator reduces to the generalized picture hesitant fuzzy weighted geometric
(GPHFWG) operator [27]:

GPHFWG(ñ1, ñ2, . . . , ñn) =
1
λ

(
⊗n

i=1λñwi
i

)

= ∪αi∈µ̃i,βi∈η̃i,γi∈ν̃i



{
1 −

(
1 −

∏n
i=1

(
1 − (1 − αi)λ

)wi
) 1
λ

}
,{(

1 −
∏n

i=1(1 − βλi )wi
) 1
λ

}
,{(

1 −
∏n

i=1(1 − γλi )wi
) 1
λ

}

. (5.8)

To demonstrate the relationship between the PPHFWA and PPHFWG operators, we first introduce
the following lemma.

Lemma 5.10. [60, 61] Let xi > 0, wi > 0, i = 1, 2, . . . , n, and
∑n

i=1 wi = 1, then
∏n

i=1 xwi
i ≤

∑n
i=1 wixi,

with equality if and only if x1 = x2 = · · · = xn.

Theorem 5.11. Let ñi =
(
µ̃i|pµ̃i , η̃i|qη̃i , ν̃i|rν̃i

)
(i = 1, 2, . . . , n) be a collection of P-PHFEs and w =

(w1,w2, . . . ,wn)T be the weight vector of ñi (i = 1, 2, . . . , n) such that wi > 0 and
∑n

i=1 wi = 1, then

PPHFWA(ñ1, ñ2, . . . , ñn) ≥ PPHFWG(ñ1, ñ2, . . . , ñn).

Proof. For αi ∈ µ̃i (i = 1, 2, . . . , n), we can obtain the following inequality from Lemma 5.10:

n∏
i=1

αwi
i ≤

n∑
i=1

wiαi = 1 −
n∑

i=1

wi(1 − αi) ≤ 1 −
n∏

i=1

(1 − αi)wi .

Also, from Lemma 5.10, for βi ∈ η̃i, γi ∈ ũi (i = 1, 2, . . . , n), we can obtain
1 −

∏n
i=1(1 − βi)wi ≥

∏n
i=1 β

wi
i and 1 −

∏n
i=1(1 − γi)wi ≥

∏n
i=1 γ

wi
i . According to score function

s(ñ) =
(
1 + 1

#µ̃

∑
α∈µ̃ αpα − 1

#η̃

∑
β∈η̃ βqβ − 1

#ν̃

∑
γ∈ν̃ γrγ

)
/2, we have

PPHFWA(ñ1, ñ2, . . . , ñn) ≥ PPHFWG(ñ1, ñ2, . . . , ñn).

Theorem 5.11 shows that the value aggregated by the PPHFWG operator are not larger than the
value obtained by the PPHFWA operator. That is to say, the PPHFWG operator reflects DM’s
pessimistic attitude than the PPHFWA operator in the aggregation process.
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5.2. Generalized probabilistic picture hesitant fuzzy prioritized weighted average/geometric
operators

In real life, people sometimes face attributes that have different priorities, for example, when
couples choose milk for their children, safety has a higher priority than price. The GPPHFWA and
GPPHFWG operatrors, introduced in the previous section, cannot handle this situation. So, based on
the PA operator [59], the generalized probabilistic picture hesitant fuzzy prioritized weighted
average/geometric (GPPHFPWA and GPPHFPWG) operators are developed.

Definition 5.12. Let ñi (i = 1, 2, . . . , n) be a collection of P-PHFEs and λ > 0, a generalized
probabilistic picture hesitant fuzzy prioritized weighted average (GPPHFPWA) operator is a function
Ωn → Ω such that

GPPHFPWA(ñ1, ñ2, . . . , ñn) =

(
T1∑n
j=1 T j

ñλ1 ⊕
T2∑n
j=1 T j

ñλ2 ⊕ · · · ⊕
Tn∑n
j=1 T j

ñλn

) 1
λ

=

(
⊕n

i=1
Ti∑n

j=1 T j
ñλi

) 1
λ

, (5.9)

where T j =
∏ j−1

k=1 s(ñk) ( j = 2, 3, . . . , n), T1 = 1, and s(ñk) is the score value of PPHFE ñk.

Based on Definition 5.12, we obtain the following theorem.

Theorem 5.13. Let ñi =
(
µ̃i|pµ̃i , η̃i|qη̃i , ν̃i|rν̃i

)
(i = 1, 2, . . . , n) be a collection of P-PHFEs and λ > 0,

then the aggregated value by GPPHFPWA operator is also a P-PHFE, and

GPPHFPWA(ñ1, ñ2, . . . , ñn)

= ∪αi∈µ̃i,βi∈η̃i,γi∈ν̃i




(
1 −

∏n
i=1(1 − αλi )

Ti∑n
j=1 T j

) 1
λ ∣∣∣∏n

i=1 pαi

 ,1 −
(
1 −

∏n
i=1

(
1 − (1 − βi)λ

) Ti∑n
j=1 T j

) 1
λ ∣∣∣∏n

i=1 qβi

 ,1 −
(
1 −

∏n
i=1

(
1 − (1 − γi)λ

) Ti∑n
j=1 T j

) 1
λ ∣∣∣∏n

i=1 rγi




. (5.10)

Theorem 5.14. Let ñi =
(
µ̃i|pµ̃i , η̃i|qη̃i , ν̃i|rν̃i

)
(i = 1, 2, . . . , n) be a collection of P-PHFEs and λ > 0,

then we have the followings:
(1) Boundedness: If

ñ− =
(
min(µ̃i)|min(pµ̃i),max(η̃i)|max(qη̃i),max(ν̃i)|max(rν̃i)

)
= ({αmin|pmin}, {βmax|qmax}, {γmax|rmax})

and ñ+ =
(
max(µ̃i)|max(pµ̃i),min(η̃i)|min(qη̃i),

min(ν̃i)|min(rν̃i)
)

= ({αmax|pmax}, {βmin|qmin}, {γmin|rmin}), then

ñ− ≤ GPPHFPWA(ñ1, ñ2, . . . , ñn) ≤ ñ+.

(2) Monotonicity: Let ñ′i =
(
µ̃′i |pµ̃′i , η̃

′
i |qη̃′i , ν̃

′
i |rν̃′i

)
(i = 1, 2, . . . , n) be a collection of P-PHFEs, if

αi ≤ α
′
i for each αi ∈ µ̃i and α′i ∈ µ̃

′
i , βi ≥ β

′
i for each βi ∈ η̃i and β′i ∈ η̃

′
i , γi ≥ γ

′
i for each γi ∈ ν̃i and

γ′i ∈ ν̃
′
i (i = 1, 2, . . . , n), and the probabilities remain the same, i.e., pµ̃i = pµ̃′i , qη̃i = qη̃′i , rν̃i = rν̃′i , then

GPPHFPWA(ñ1, ñ2, . . . , ñn) ≤ GPPHFPWA(ñ′1, ñ
′
2, . . . , ñ

′
n).
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Under some restricted conditions, the reduced operators of the GPPHFPWA operator are obtained.

Remark 5.15. (1) If λ = 1, then the GPPHFPWA operator reduces to the probabilistic picture hesitant
fuzzy prioritized weighted average operator (PPHFPWA) operator:

PPHFPWA(ñ1, ñ2, . . . , ñn) = ⊕n
i=1

Ti∑n
j=1 T j

ñi

= ∪αi∈µ̃i,βi∈η̃i,γi∈ν̃i



{
1 −

∏n
i=1(1 − αi)

Ti∑n
j=1 T j

∣∣∣∏n
i=1 pαi

}
,∏n

i=1 β

Ti∑n
j=1 T j

i

∣∣∣∏n
i=1 qβi

 ,∏n
i=1 γ

Ti∑n
j=1 T j

i

∣∣∣∏n
i=1 rγi




. (5.11)

(2) If the criteria are of the same priority, then the GPPHFPWA operator is reduced to the
GPPHFWA operator:

GPPHFWA(ñ1, ñ2, . . . , ñn) =
(
w1ñλ1 ⊕ w2ñλ2 ⊕ · · · ⊕ wnñλn

) 1
λ

=
(
⊕n

i=1wiñλi
) 1
λ
. (5.12)

(3) If the probabilities of membership values, the probabilities of neutral membership values, and
the probabilities of nonmembership values are respectively the same, i.e., pαi = 1

#µ̃i
, qβi = 1

#η̃i
, rγi = 1

#ν̃i
,

then the GPPHFWA operator reduces to the generalized picture hesitant fuzzy prioritized weighted
average (GPHFPWA) operator [27]:

GPHFPWA(ñ1, ñ2, . . . , ñn) =

(
⊕n

i=1
Ti∑n

j=1 T j
ñλi

) 1
λ

= ∪αi∈µ̃i,βi∈η̃i,γi∈ν̃i




(
1 −

∏n
i=1(1 − αλi )

Ti∑n
j=1 T j

) 1
λ

 ,1 −
(
1 −

∏n
i=1

(
1 − (1 − βi)λ

) Ti∑n
j=1 T j

) 1
λ

 ,1 −
(
1 −

∏n
i=1

(
1 − (1 − γi)λ

) Ti∑n
j=1 T j

) 1
λ




. (5.13)

Similar to the GPPHFPWA operator, we also define the generalized probabilistic picture hesitant
fuzzy prioritized weighted geometric (GPPHFPWG) operator as follows.

Definition 5.16. Let ñi (i = 1, 2, . . . , n) be a collection of P-PHFEs and λ > 0, a generalized
probabilistic picture hesitant fuzzy prioritized weighted geometric (GPPHPFWG) operator is a
function Ωn → Ω such that

GPPHFPWG(ñ1, ñ2, . . . , ñn) =
1
λ

λñ
Ti∑n

j=1 T j

1 ⊗ λñ
Ti∑n

j=1 T j

2 ⊗ · · · ⊗ λñ
Ti∑n

j=1 T j
n


=

1
λ

⊗n
i=1λñ

Ti∑n
j=1 T j

i

 , (5.14)

where T j =
∏ j−1

k=1 s(ñk) ( j = 2, 3, . . . , n), T1 = 1, and s(ñk) is the score value of P-PHFE ñk.
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Based on Definition 5.16, we obtain the following theorem for the GPPHFPWG operator.

Theorem 5.17. Let ñi =
(
µ̃i|pµ̃i , η̃i|qη̃i , ν̃i|rν̃i

)
(i = 1, 2, . . . , n) be a collection of P-PHFEs and λ > 0,

then the aggregated value by GPPHFPWG operator is also a P-PHFE, and

GPPHFPWG(ñ1, ñ2, . . . , ñn)

= ∪αi∈µ̃i,βi∈η̃i,γi∈ν̃i



1 −
(
1 −

∏n
i=1

(
1 − (1 − αi)λ

) Ti∑n
j=1 T j

) 1
λ ∣∣∣∏n

i=1 pαi

 ,
(
1 −

∏n
i=1(1 − βλi )

Ti∑n
j=1 T j

) 1
λ ∣∣∣∏n

i=1 qβi

 ,
(
1 −

∏n
i=1(1 − γλi )

Ti∑n
j=1 T j

) 1
λ ∣∣∣∏n

i=1 rγi




. (5.15)

The GPPHFPWG operator also has the properties as follows.

Theorem 5.18. Let ñi =
(
µ̃i|pµ̃i , η̃i|qη̃i , ν̃i|rν̃i

)
(i = 1, 2, . . . , n) be a collection of P-PHFEs and λ > 0,

then we have the followings:
(1) Boundedness: If

ñ− =
(
min(µ̃i)|min(pµ̃i),max(η̃i)|max(qη̃i),max(ν̃i)|max(rν̃i)

)
= ({αmin|pmin}, {βmax|qmax}, {γmax|rmax})

and ñ+ =
(
max(µ̃i)|max(pµ̃i),min(η̃i)|min(qη̃i),

min(ν̃i)|min(rν̃i)
)

= ({αmax|pmax}, {βmin|qmin}, {γmin|rmin}), then

ñ− ≤ GPPHFPWG(ñ1, ñ2, . . . , ñn) ≤ ñ+.

(2) Monotonicity: Let ñ′i =
(
µ̃′i |pµ̃′i , η̃

′
i |qη̃′i , ν̃

′
i |rν̃′i

)
(i = 1, 2, . . . , n) be a collection of P-PHFEs, if

αi ≤ α
′
i for each αi ∈ µ̃i and α′i ∈ µ̃

′
i , βi ≥ β

′
i for each βi ∈ η̃i and β′i ∈ η̃

′
i , γi ≥ γ

′
i for each γi ∈ ν̃i and

γ′i ∈ ν̃
′
i (i = 1, 2, . . . , n), and the probabilities remain the same, i.e., pµ̃i = pµ̃′i , qη̃i = qη̃′i , rν̃i = rν̃′i , then

GPPHFPWG(ñ1, ñ2, . . . , ñn) ≤ GPPHFPWG(ñ′1, ñ
′
2, . . . , ñ

′
n).

Several reduced operators of the GPPHFPWG operator can be obtained as follows.

Remark 5.19. (1) If λ = 1, then the GPPHFPWG operator reduces to the probabilistic picture hesitant
fuzzy weighted prioritized geometric operator (PPHFPWG) operator:

PPHFPWG(ñ1, ñ2, . . . , ñn) = ⊗n
i=1ñ

Ti∑n
j=1 T j

i

= ∪αi∈µ̃i,βi∈η̃i,γi∈ν̃i



∏n
i=1 α

Ti∑n
j=1 T j

i

∣∣∣∏n
i=1 pαi

 ,{
1 −

∏n
i=1(1 − βi)

Ti∑n
j=1 T j

∣∣∣∏n
i=1 qβi

}
,{

1 −
∏n

i=1(1 − γi)
Ti∑n

j=1 T j
∣∣∣∏n

i=1 rγi

}


. (5.16)

(2) If the criteria are of the same priority, then the GPPHFPWG operator is reduced to the
GPPHFWG operator:

GPPHFWG(ñ1, ñ2, . . . , ñn) =
1
λ

(
λñw1

1 ⊗ λñw2
2 ⊗ · · · ⊗ λñwn

n

)
=

1
λ

(
⊗n

i=1λñwi
i

)
. (5.17)
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(3) If the probabilities of membership values, the probabilities of neutral membership values, and
the probabilities of nonmembership values are respectively the same, i.e., pαi = 1

#µ̃i
, qβi = 1

#η̃i
, rγi = 1

#ν̃i
,

then the GPPHFPWG operator reduces to the generalized picture hesitant fuzzy prioritized weighted
geometric (GPHFPWG) operator [27]:

GPHFWG(ñ1, ñ2, . . . , ñn) =
1
λ

⊗n
i=1λñ

Ti∑n
j=1 T j

i



= ∪αi∈µ̃i,βi∈η̃i,γi∈ν̃i



1 −
(
1 −

∏n
i=1

(
1 − (1 − αi)λ

) Ti∑n
j=1 T j

) 1
λ

 ,
(
1 −

∏n
i=1(1 − βλi )

Ti∑n
j=1 T j

) 1
λ

 ,
(
1 −

∏n
i=1(1 − γλi )

Ti∑n
j=1 T j

) 1
λ




. (5.18)

Similar to Theorem 5.11, the PPHFPWA and PPHFPWG operators have the relationship as follows.

Theorem 5.20. Let ñi =
(
µ̃i|pµ̃i , η̃i|qη̃i , ν̃i|rν̃i

)
(i = 1, 2, . . . , n) be a collection of P-PHFEs, then

PPHFPWA(ñ1, ñ2, . . . , ñn) ≥ PPHFPWG(ñ1, ñ2, . . . , ñn).

6. MCDM methods under probabilistic picture hesitant fuzzy environment

In this section, we utilize the proposed aggregation operators to deal with different MCDM problems
under probabilistic picture hesitant fuzzy environment.

Let X = {x1, x2, . . . xn} be a set of n alternatives and C = {C1,C2, . . . ,Cm} be a set of m criteria.
Suppose that the group of DMs provides the evaluation value of the alternative x j ( j = 1, 2, . . . , n)
concerning the criterion Ci (i = 1, 2, . . . ,m) by using the P-PHFEs ñi j =

(
µ̃i j|pµ̃i j , η̃i j|qη̃i j , ν̃i j|rν̃i j

)
(i =

1, 2, . . . ,m; j = 1, 2, . . . , n). All these P-PHFEs are contained in the probabilistic picture hesitant fuzzy
decision matrix N =

(
ñi j

)
m×n

. In general, the criteria can be divided into two types: the cost criteria and
benefit criteria. So, the evaluation values concerning the cost criteria should be transformed into the
evaluation values concerning the benefit criteria to obtain the normalized probabilistic picture hesitant
fuzzy decision matrix N =

(
n̄i j

)
m×n

as

n̄i j =

{
ñi j, for benefit criterion;
ñc

i j, for cost criterion, (6.1)

where ñc
i j =

(
ν̃i j|rν̃i j , η̃i j|qη̃i j , µ̃i j|pµ̃i j

)
is the complement of ñi j.

According to the above-mentioned assumptions, when the criteria of a specific MCDM problem are
in same priority level and w = (w1,w2, . . . ,wm)T is the weight vector of the criteria, we can develop
a novel approach to solve it based on the GPPHFWA operator or the GPPHFWG operator, which
involved the following steps.

Approach 1:
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Step 1: Utilize Eq (6.1) to obtain the normalized probabilistic picture hesitant fuzzy decision matrix
N =

(
n̄i j

)
m×n

.
Step 2: Utilize the GPPHFWA operator (Eq (5.2))

n̄ j = GPPHFWA(n̄1 j, n̄2 j, . . . , n̄m j) =
(
⊕m

i=1win̄λi j

) 1
λ

= ∪αi j∈µ̃i j,βi j∈η̃i j,γi j∈ν̃i j



{(
1 −

∏m
i=1(1 − αλi j)

wi
) 1
λ
∣∣∣∏m

i=1 pαi j

}
,{

1 −
(
1 −

∏m
i=1

(
1 − (1 − βi j)λ

)wi
) 1
λ
∣∣∣∏m

i=1 qβi j

}
,{

1 −
(
1 −

∏m
i=1

(
1 − (1 − γi j)λ

)wi
) 1
λ
∣∣∣∏m

i=1 rγi j

}


(6.2)

or the GPPHFWG operator (Eq (5.6))

n̄ j = GPPHFWG(n̄1 j, n̄2 j, . . . , n̄m j) =
1
λ

(
⊗m

i=1λn̄wi
i j

)

= ∪αi j∈µ̃i j,βi j∈η̃i j,γi j∈ν̃i j



{
1 −

(
1 −

∏m
i=1

(
1 − (1 − αi j)λ

)wi
) 1
λ
∣∣∣∏n

i=1 pαi j

}
,{(

1 −
∏m

i=1(1 − βλi j)
wi
) 1
λ
∣∣∣∏m

i=1 qβi j

}
,{(

1 −
∏m

i=1(1 − γλi j)
wi
) 1
λ
∣∣∣∏m

i=1 rγi j

}


(6.3)

to aggregate all the evaluation values n̄i j (i = 1, 2, . . . ,m) of the jth column and get the overall rating
value n̄ j corresponding to the alternative x j ( j = 1, 2, . . . , n).

Step 3: Compute the score and accuracy values of each overall rating value n̄ j ( j = 1, 2, . . . , n) using
Definition 4.3.

Step 4: Use Definition 4.4 to rank the overall rating values n̄ j ( j = 1, 2, . . . , n) in descending order,
rank all the alternatives x j ( j = 1, 2, . . . , n) in accordance with n̄ j ( j = 1, 2, . . . , n), and finally select the
most desirable alternative(s).

Step 5: End.

When the criteria are in different priorities, we can develop another novel approach to solve the
MCDM problem based on the GPPHFPWA operator or the GPPHFPWG operator, which involved the
following steps.

Approach 2:
Step 1: Utilize Eq (6.1) to obtain the normalized probabilistic picture hesitant fuzzy decision matrix

N =
(
n̄i j

)
m×n

.
Step 2: Compute the values of Ti j (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) using the equation as

Ti j =

i−1∏
k=1

s(n̄i j), T1 j = 1, i = 1, 2, . . . ,m; j = 1, 2, . . . , n. (6.4)

Step 3: Utilize the GPPHFPWA operator (Eq (5.10))

n̄ j = GPPHFPWA(n̄1 j, n̄2 j, . . . , n̄m j) =

(
⊕m

i=1
Ti j∑m

i=1 Ti j
n̄λi j

) 1
λ
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= ∪αi j∈µ̃i j,βi j∈η̃i j,γi j∈ν̃i j




(
1 −

∏m
i=1(1 − αλi j)

Ti j∑m
i=1 Ti j

) 1
λ ∣∣∣∏m

i=1 pαi j

 ,1 −
(
1 −

∏m
i=1

(
1 − (1 − βi j)λ

) Ti j∑m
i=1 Ti j

) 1
λ ∣∣∣∏m

i=1 qβi j

 ,1 −
(
1 −

∏m
i=1

(
1 − (1 − γi j)λ

) Ti j∑m
i=1 Ti j

) 1
λ ∣∣∣∏m

i=1 rγi j




(6.5)

or the GPPHFPWG operator (Eq (5.15))

n̄ j = GPPHFPWA(n̄1 j, n̄2 j, . . . , n̄m j) =
1
λ

⊗m
i=1λn̄

Ti j∑m
i=1 Ti j

i



= ∪αi j∈µ̃i j,βi j∈η̃i j,γi j∈ν̃i j



1 −
(
1 −

∏m
i=1

(
1 − (1 − αi j)λ

) Ti j∑m
i=1 Ti j

) 1
λ ∣∣∣∏m

i=1 pαi j

 ,
(
1 −

∏m
i=1(1 − βλi j)

Ti j∑m
i=1 Ti j

) 1
λ ∣∣∣∏m

i=1 qβi j

 ,
(
1 −

∏m
i=1(1 − γλi j)

Ti j∑m
i=1 Ti j

) 1
λ ∣∣∣∏m

i=1 rγi j




(6.6)

to aggregate all the evaluation values n̄i j (1 = 1, 2, . . . ,m) of the jth column and get the overall rating
value n̄ j corresponding to the alternative x j ( j = 1, 2, . . . , n).

Step 4: Compute the score and accuracy values of each overall rating value n̄ j ( j = 1, 2, . . . , n) using
Definition 4.3.

Step 5: Use Definition 4.4 to rank the overall rating values n̄ j ( j = 1, 2, . . . , n) in descending order,
rank all the alternatives x j ( j = 1, 2, . . . , n) in accordance with n̄ j ( j = 1, 2, . . . , n), and finally select the
most desirable alternative(s).

Step 6: End.

7. Illustrative examples and analysis

For convenience of comparison, in this section we adopt the illustrative examples in [14, 27, 62].

7.1. Numerical examples

Example 7.1. Suppose that an organization wants to construct the enterprise resource planning (ERP)
system [27,62]. After investigating the existing suppliers of ERP systems on the market, it was decided
that five potential ERP systems x j ( j = 1, 2, 3, 4, 5) would be selected first. DMs utilize P-PHFEs
to evaluate the five alternatives x j ( j = 1, 2, 3, 4, 5) with respect to four criteria, namely, function
and technology (C1), strategic fitness (C2), ability of supplier (C3), and reputation of supplier (C4),
the corresponding weight vector is w = (0.2, 0.1, 0.3, 0.4)T , and construct their probabilistic picture
hesitant fuzzy decision matrix N = (ñi j)4×5 shown in Table 2.

Then we use the above proposed Approach 1 to choose the optimal EPR system which are presented
as below.
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Step 1: Since all of these criteria are benefit types, the normalized probabilistic picture hesitant
fuzzy decision matrix N̄ is as the same as the probabilistic picture hesitant fuzzy decision matrix N.

Step 2: Utilize the GPPHFWA operator (λ = 1) (Eq (6.2)) to aggregate all the evaluation values n̄i j

(i = 1, 2, 3, 4) of the jth column and get the overall rating value n̄ j corresponding to the alternative x j

( j = 1, 2, 3, 4, 5):

ñ1 =


{0.3636|0.15, 0.3877|0.35, 0.4113|0.15, 0.4336|0.35},
{0.3862|0.16, 0.4048|0.24, 0.4136|0.24, 0.4335|0.36},
{0.0444|0.24, 0.0482|0.36, 0.0502|0.16, 0.0544|0.24}

 ,

ñ2 =


{0.4061|0.21, 0.4401|028, 0.4684|0.28, 0.5023|0.09, 0.5308|0.12, 0.5545|0.12},{

0.2563|0.14, 0.2612|0.10, 0.2612|0.10, 0.2659|0.22,
0.2662|0.06, 0.2709|0.14, 0.2709|0.14, 0.2761|0.10,

}
,

{0.0891|0.36, 0.0942|0.24, 0.0964|0.24, 0.1019|0.16}

 ,

ñ3 =


{0.4014|0.21, 0.4789|0.28, 0.5180|0.09, 0.5230|0.21, 0.5804|0.12, 0.6159|0.09},

0.1627|0.11, 0.1677|0.08, 0.1725|0.17, 0.1763|0.08,
0.1779|0.13, 0.1870|0.13, 0.1884|0.05, 0.1943|0.04,
0.1999|0.07, 0.2042|0.04, 0.2061|0.05, 0.2166|0.05

 ,
{0.0448|0.70, 0.0551|0.30}


,

ñ4 =


{0.3549|0.30, 0.3738|0.20, 0.4077|0.30, 0.4251|0.20},{

0.3834|0.14, 0.3989|0.21, 0.4028|0.05, 0.4181|0.07,
0.4248|0.17, 0.4420|0.25, 0.4452|0.07, 0.5632|0.11

}
,

{0.0576|1}

 ,

ñ5 =


{0.3468|0.60, 0.4038|0.20, 0.4756|0.20, },
{0.3321|0.24, 0.3444|0.16, 0.3516|0.36, 0.3647|0.24},
{0.0612|0.60, 0.0642|0.40}

 .
Step 3: Compute the score values of each overall rating value ñ j ( j = 1, 2, 3, 4, 5) using

Definition 4.3:

s(ñ1) = 0.4925, s(ñ2) = 0.5090, s(ñ3) = 0.5277, s(ñ4) = 0.4915, s(ñ5) = 0.5116.

Step 4: Utilize Definition 4.4 to rank the overall rating values ñ j ( j = 1, 2, 3, 4, 5) in descending
order: ñ3 > ñ5 > ñ2 > ñ1 > ñ4. Then we rank all the alternatives x j ( j = 1, 2, 3, 4, 5) in accordance with
ñ j ( j = 1, 2, 3, 4, 5) as follows:

x3 � x5 � x2 � x1 � x4.

Thus, the best alternative is x3.

If the GPPHFWA operator is replaced by the GPPHFWG operator in the above Step 2, the procedure
for selecting the best alternative(s) is as follows.

Step 1’: see Step 1.
Step 2’: Utilize the GPPHFWG operator (λ = 1) (Eq (6.3)) to aggregate all the evaluation values n̄i j

(i = 1, 2, 3, 4) of the jth column and get the overall rating value n̄ j corresponding to the alternative x j
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( j = 1, 2, 3, 4, 5):

ñ1 =


{0.2307|0.15, 0.2343|0.35, 0.2405|0.15, 0.2443|0.35},
{0.5365|0.16, 0.5380|0.24, 0.6663|0.24, 0.6673|0.36},
{0.0600|0.24, 0.0661|0.36, 0.0797|0.16, 0.0856|0.24}

 ,

ñ2 =


{0.2017|0.21, 0.2101|0.09, 0.2151|0.28, 0.2212|0.12, 0.2304|0.21, 0.2358|0.09},{

0.4526|0.14, 0.4550|0.10, 0.4670|0.10, 0.46939|0.06,
0.4914|0.22, 0.4936|0.14, 0.5047|0.14, 0.5070|0.10

}
,

{0.0901|0.36, 0.0993|0.24, 0.0999|0.24, 0.1090|0.16}

 ,

ñ3 =


{0.1986|0.21, 0.2057|0.09, 0.2081|0.28, 0.2342|0.12, 0.2427|0.21, 0.2454|0.09},

0.3334|0.11, 0.3363|0.05, 0.3602|0.08, 0.3630|0.04,
0.3766|0.17, 0.3792|0.07, 0.4016|0.08, 0.4042|0.04,
0.4830|0.13, 0.4852|0.05, 0.5038|0.13, 0.5059|0.05

 ,
{0.0481|0.70, 0.0634|0.30}


,

ñ4 =


{0.1024|0.30, 0.1037|0.20, 0.1044|0.30, 0.1058|0.20},{

0.5949|0.11, 0.5977|0.17, 0.6709|0.17, 0.6732|0.25,
0.7038|0.05, 0.7058|0.07, 0.7594|0.07, 0.7611|0.11

}
,

{0.0591|1}

 ,

ñ5 =


{0.1613|0.60, 0.1660|0.20, 0.1696|0.20},
{0.5850|0.24, 0.6372|0.36, 0.6503|0.16, 0.6943|0.24},
{0.0716|0.60, 0.0805|0.40}

 .
Step 3’: Compute the score values of each overall rating value ñ j ( j = 1, 2, 3, 4, 5) using

Definition 4.3:

s(ñ1) = 0.4439, s(ñ2) = 0.4760, s(ñ3) = 0.4881, s(ñ4) = 0.4397, s(ñ5) = 0.4285.

Step 4’: Utilize Definition 4.4 to rank the overall rating values ñ j ( j = 1, 2, 3, 4, 5) in descending
order: ñ3 > ñ2 > ñ1 > ñ4 > ñ5. Then we rank all the alternatives x j ( j = 1, 2, 3, 4, 5) in accordance with
ñ j ( j = 1, 2, 3, 4, 5) as follows:

x3 � x2 � x1 � x4 � x5.

Thus, the best alternative is x3.

Example 7.2. Suppose that a university seeks to recruit excellent foreign professors to improve the
teaching level and scientific research [14, 27]. There are five foreign professors selected by the human
resources department at the university. According to priority level, the criteria for investigation are
morality (C1), research ability (C2), teaching capacity (C3), and educational experience (C4), and there
is a priority relationship C1 � C2 � C3 � C4 between the criteria. Then, the probabilistic picture
hesitant fuzzy decision matrix N = (ñi j)4×5 is presented in Table 3.

Then we use the proposed Approach 2 to choose the optimal foreign professor(s) which are
presented as below.

Step 1: Since all of these criteria are benefit types, the normalized probabilistic picture hesitant
fuzzy decision matrix N̄ is as the same as the probabilistic picture hesitant fuzzy decision matrix N.
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Step 2: Utilize Eq (6.4) to calculate the values of Ti j (i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5), which are
contained in the matrix T = (Ti j)4×5:

T =


1.0000 1.0000 1.0000 1.0000 1.0000
0.3420 0.3888 0.3656 0.4022 0.4125
0.0448 0.0778 0.0443 0.0968 0.0588
0.1125 0.0878 0.1231 0.0869 0.1400

 .
Step 3: Utilize the GPPHFPWA operator (λ = 1) (Eq (6.5)) to aggregate all the evaluation values

n̄i j (i = 1, 2, 3, 4) of the jth column and get the overall rating value n̄ j corresponding to the alternative
x j ( j = 1, 2, 3, 4, 5):

ñ1 =


{

0.4807|0.12, 0.4836|0.09, 0.4870|0.09, 0.5402|0.16,
0.5427|0.09, 0.5457|0.12, 0.6730|0.12, 0.6747|0.09, 0.6769|0.09

}
,

{0.0519|0.16, 0.0535|0.24, 0.0577|0.24, 0.0595|0.36},
{0.1131|0.24, 0.1154|0.16, 0.1795|0.36, 0.1833|0.24}

 ,

ñ2 =



{
0.6332|0.17, 0.6369|0.07, 0.6372|0.11, 0.6409|0.05,
0.7046|0.25, 0.7076|0.11, 0.7078|0.17, 0.7108|0.07

}
,

{0.0303|0.24, 0.0360|0.16, 0.0473|0.36, 0.0562|0.24},{
0.1283|0.18, 0.1313|0.12, 0.1320|0.18, 0.1352|0.12,
0.1526|0.12, 0.1562|0.08, 0.1570|0.12, 0.1608|0.08

}

,

ñ3 =


{0.5992|0.21, 0.6118|0.28, 0.6153|0.09, 0.6274|0.12, 0.6417|0.21, 0.6561|0.09},
{0.0556|0.16, 0.0568|0.24, 0.0776|0.24, 0.0792|0.36},{

0.1341|0.17, 0.1347|0.07, 0.1437|0.11, 0.1443|0.05,
0.1748|0.25, 0.17550.11, 0.1872|0.17, 0.1880|0.07

}
 ,

ñ4 =


{0.5109|0.30, 0.5330|0.20, 0.5751|0.18, 0.5943|0.12, 0.6456|0.12, 0.6616|0.08},
{0.0962|0.16, 0.1001|0.24, 0.1013|0.24, 0.1053|0.36},
{0.0980|0.18, 0.1018|0.42, 0.11690|0.12, 0.1214|0.28}

 ,
ñ5 =


{0.5976|0.42, 0.6035|0.28, 0.6469|0.18, 0.6521|0.12},
{0.0594|0.24, 0.0631|0.36, 0.0913|0.16, 0.0970|0.24},
{0.1690|0.24, 0.1732|0.16, 0.2020|0.36, 0.2071|0.24}

 .
Step 4: Compute the score values of each overall rating value ñ j ( j = 1, 2, 3, 4, 5) using

Definition 4.3:

s(ñ1) = 0.5050, s(ñ2) = 0.5271, s(ñ3) = 0.5329, s(ñ4) = 0.5208, s(ñ5) = 0.5436.

Step 5: Utilize Definition 4.4 to rank the overall rating values ñ j ( j = 1, 2, 3, 4, 5) in descending
order: ñ5 > ñ3 > ñ2 > ñ4 > ñ1. Then we rank all the alternatives x j ( j = 1, 2, 3, 4, 5) in accordance with
ñ j ( j = 1, 2, 3, 4, 5) as follows:

x5 � x3 � x2 � x4 � x1.

Thus, the best alternative is x5.
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If the GPPHFPWA operator is replaced by the GPPHFPWG operator in the above Step 3, the
procedure for selecting the best alternative(s) is as follows.

Step 1’: see Step 1.
Step 2’: see Step 2.
Step 3’: Utilize the GPPHFPWG operator (λ = 1) (Eq (6.6)) to aggregate all the evaluation values

n̄i j (i = 1, 2, 3, 4) of the jth column and get the overall rating value n̄ j corresponding to the alternative
x j ( j = 1, 2, 3, 4, 5):

ñ1 =


{

0.4577|0.12, 0.4607|0.09, 0.4632|0.09, 0.5311|0.16,
0.5346|0.12, 0.5376|0.12, 0.6647|0.12, 0.6692|0.09, 0.6728|0.09

}
,

{0.0533|0.16, 0.0573|0.24, 0.0602|0.24, 0.0642|0.36},
{0.1155|0.24, 0.1186|0.16, 0.1823|0.36, 0.1852|0.24}

 ,

ñ2 =



{
0.6243|0.17, 0.6264|0.11, 0.6323|0.07, 0.0.6343|0.05,
0.6846|0.25, 0.6868|0.17, 0.6932|0.11, 0.6955|0.07

}
,

{0.0407|0.24, 0.0533|0.36, 0.0536|0.16, 0.0660|0.24},{
0.1329|0.18, 0.1343|0.12, 0.1391|0.18, 0.1404|0.12,
0.1581|0.12, 0.1595|0.08, 0.1640|0.12, 0.1654|0.08

}

,

ñ3 =


{0.5005|0.21, 0.5142|0.09, 0.5513|0.28, 0.5664|0.12, 0.6227|0.21, 0.6398|0.09},
{0.0577|0.16, 0.0586|0.24, 0.0841|0.24, 0.0849|0.36},{

0.1585|0.17, 0.1603|0.07, 0.1889|0.11, 0.1893|0.25,
0.1906|0.05, 0.1910|0.11, 0.2185|0.17, 0.2202|0.07

}
 ,

ñ4 =


{0.4852|0.30, 0.5135|0.20, 0.5443|0.18, 0.5760|0.12, 0.5999|0.12, 0.6348|0.08},
{0.1102|0.16, 0.1125|0.24, 0.1160|0.24, 0.1182|0.36},
{0.0998|0.18, 0.1094|0.42, 0.1263|0.12, 0.1356|0.28}

 ,
ñ5 =


{0.5775|0.42, 0.5803|0.28, 0.6295|0.18, 0.6325|0.12},
{0.0618|0.24, 0.0714|0.36, 0.0928|0.16, 0.1020|0.24},
{0.1754|0.24, 0.1863|0.16, 0.2058|0.36, 0.2164|0.24}

 .
Step 4’: Compute the score values of each overall rating value ñ j ( j = 1, 2, 3, 4, 5) using

Definition 4.3:

s(ñ1) = 0.5036, s(ñ2) = 0.5245, s(ñ3) = 0.5258, s(ñ4) = 0.5158, s(ñ5) = 0.5396.

Step 5’: Utilize Definition 4.4 to rank the overall rating values ñ j ( j = 1, 2, 3, 4, 5) in descending
order: ñ5 > ñ3 > ñ2 > ñ4 > ñ1. Then we rank all the alternatives x j ( j = 1, 2, 3, 4, 5) in accordance with
ñ j ( j = 1, 2, 3, 4, 5) as follows:

x5 � x3 � x2 � x4 � x1.

Thus, the best alternative is x5.

7.2. Analysis

To explain how the different parameter value λ plays a role in the aggregation operator, different
possible values of λ, such as 0.1, 0.3, 0.5, 3, 5, 7, 10, are used in the approaches of above two examples.
Then, the corresponding score values and rankings of the alternatives are presented in Tables 4–7.
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Table 4. Score values obtained by the GPPHFWA operator and rankings of alternatives in
Example 4.

Parameter Value s(ñ1) s(ñ2) s(ñ3) s(ñ4) s(ñ5) Ranking
λ = 0.1 0.4788 0.5020 0.5138 0.4712 0.4807 x3 � x2 � x5 � x1 � x4

λ = 0.3 0.4819 0.5041 0.5158 0.4761 0.4860 x3 � x2 � x5 � x1 � x4

λ = 0.5 0.4850 0.5061 0.5178 0.4812 0.4914 x3 � x2 � x5 � x1 � x4

λ = 1 0.4925 0.5090 0.5277 0.4915 0.5116 x3 � x5 � x2 � x1 � x4

λ = 3 0.5155 0.5199 0.5322 0.5222 0.5421 x5 � x3 � x4 � x2 � x1

λ = 5 0.5299 0.5241 0.5378 0.5345 0.5598 x5 � x3 � x4 � x1 � x2

λ = 7 0.5402 0.5264 0.5407 0.5413 0.5696 x5 � x4 � x3 � x1 � x2

λ = 10 0.5511 0.5287 0.5441 0.5473 0.5783 x5 � x1 � x4 � x3 � x2

Table 5. Score values obtained by the GPPHFWG operator and rankings of alternatives in
Example 4.

Parameter Value s(ñ1) s(ñ2) s(ñ3) s(ñ4) s(ñ5) Ranking
λ = 0.1 0.4528 0.4832 0.4953 0.4448 0.4404 x3 � x2 � x1 � x4 � x5

λ = 0.3 0.4507 0.4816 0.4936 0.4436 0.4375 x3 � x2 � x1 � x4 � x5

λ = 0.5 0.4485 0.4800 0.4920 0.4424 0.4347 x3 � x2 � x1 � x4 � x5

λ = 1 0.4439 0.4760 0.4881 0.4397 0.4285 x3 � x2 � x1 � x4 � x5

λ = 3 0.4275 0.4637 0.4774 0.4323 0.4125 x3 � x2 � x4 � x1 � x5

λ = 5 0.4180 0.4566 0.4717 0.4271 0.4036 x3 � x2 � x4 � x1 � x5

λ = 7 0.4120 0.4521 0.4684 0.4229 0.3977 x3 � x2 � x4 � x1 � x5

λ = 10 0.4063 0.4479 0.4654 0.4182 0.3920 x3 � x2 � x4 � x1 � x5

Table 6. Score values obtained by the GPPHFPWA operator and rankings of alternatives in
Example 5.

Parameter Value s(ñ1) s(ñ2) s(ñ3) s(ñ4) s(ñ5) Ranking
λ = 0.1 0.5047 0.5268 0.5318 0.5202 0.5431 x5 � x3 � x2 � x4 � x1

λ = 0.3 0.5048 0.5269 0.5320 0.5203 0.5432 x5 � x3 � x2 � x4 � x1

λ = 0.5 0.5049 0.5270 0.5323 0.5205 0.5433 x5 � x3 � x2 � x4 � x1

λ = 1 0.5050 0.5271 0.5329 0.5208 0.5436 x5 � x3 � x2 � x4 � x1

λ = 3 0.5056 0.5275 0.5349 0.5226 0.5449 x5 � x3 � x2 � x4 � x1

λ = 5 0.5062 0.5279 0.5364 0.5248 0.5461 x5 � x3 � x2 � x4 � x1

λ = 7 0.5068 0.5283 0.5374 0.5272 0.5472 x5 � x3 � x2 � x4 � x1

λ = 10 0.5077 0.5288 0.5385 0.5307 0.5485 x5 � x3 � x4 � x2 � x1
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Table 7. Score values obtained by the GPPHFPWG operator and rankings of alternatives in
Example 5.

Parameter Value s(ñ1) s(ñ2) s(ñ3) s(ñ4) s(ñ5) Ranking
λ = 0.1 0.5042 0.5270 0.5284 0.5180 0.5412 x5 � x3 � x2 � x4 � x1

λ = 0.3 0.5041 0.5268 0.5279 0.5176 0.5409 x5 � x3 � x2 � x4 � x1

λ = 0.5 0.5040 0.5254 0.5273 0.5171 0.5406 x5 � x3 � x2 � x4 � x1

λ = 1 0.5036 0.5245 0.5258 0.5158 0.5396 x5 � x3 � x2 � x4 � x1

λ = 3 0.5014 0.5202 0.5185 0.5091 0.5336 x5 � x2 � x3 � x4 � x1

λ = 5 0.4989 0.5146 0.5126 0.5027 0.5260 x5 � x2 � x3 � x4 � x1

λ = 7 0.4968 0.5102 0.5085 0.4980 0.5189 x5 � x2 � x3 � x4 � x1

λ = 10 0.4945 0.5056 0.5047 0.4935 0.5108 x5 � x2 � x3 � x1 � x4

Tables 4 and 5 show that when we utilize the GPPHFWA operator to aggregate evaluation values,
the best EPR system in Example 7.1 is x3 for 0.1 ≤ λ ≤ 1, but x5 for 3 ≤ λ ≤ 10; however, when the
GPPHFWG operator is utilized, the best alternative is x3. From Tables 6 and 7, we can see that the
best foreign professor in Example 7.2 using each of the GPPHFPWA and GPPHFPWG operators is the
same as x5, but there are some differences between ranking results with respect to different values of λ.
In addition, the score values of all alternatives depend on different values of λ because the aggregation
process of the proposed operators has changed. The following results are obtained from Tables 4–7:

(1) In Example 7.1, the score values of each alternative obtained by the GPPHFWA operator are
greater than those obtained by the GPPHFWG operator, and the difference between them
increases along with the increasing of λ. For GPPHFWA operator, the choice of parameter value
has a greater impact on the score values and the ranking of alternatives, whereas for GPPHFWG
operator, parameter values slightly affect the final ranking of alternatives. It means that the
GPPHFWA operator reflects the optimistic attitudes of DMs, while the GPPHFWG operator
reflects the pessimistic attitudes of DMs. Furthermore, the level of optimism and pessimism are
greater with the bigger value of λ.

(2) In Example 7.2, the score values of each alternative obtained by the GPPHFPWA operator are
greater than those obtained by the GPPHFPWG operator, but the score values by the two operators
are relatively stable when the different values of λ are used. That is, the parameter value cannot
reflect the attitude of DMs. In addition, when the value of λ is relatively high, the ranking obtained
by the GPPHFPWA and GPPHFPWG operators are slightly changed, but the best alternative is
always the same. This means that the ranking obtained by the GPPHFWA operator is more
affected by the parameter λ than by the GPPHFPWA operator, but the rankings obtained by the
GPPHFWG and GPPHFPWG operators are relatively unaffected by the parameter λ.

The aforementioned analysis results show that the value of λ plays a significant role in using the
GPPHFWA operator rather than using other operators in MCDM problems, especially when the value
of λ is relatively high. The value of λ can be determined according to DMs’ preference to obtain
different ranking results and thus the proposed methods are very flexible in dealing with various
situations in real MCDM problems.
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7.3. Comparison

To demonstrate the feasibility of the proposed MCDM methods, we compare the rankings of
Example 7.1 with those obtained by existing MCDM methods, including the PFWA and PFWG
operators [62], the picture fuzzy cross-entropy [63], the PFHWA operator [64], the PFDWHM
operator [65], and the GPHFWA and GPHFWG operators [27] as shown in Table 8. Furthermore, the
comparison of Example 7.2 between the GPPHFPWA and GPPHFPWG operators and existing
operators, including the HFPWA and HFPWG operators [14] and the GPHFPWA and GPHFPWG
operators [27], is shown in Table 9.

Table 8. Comparison result of Example 4.

Method Use Tool Ranking
Wei [62] PFWA operator x3 � x2 � x1 � x5 � x4

PFWG operator x3 � x1 � x2 � x5 � x4

Wei [63] Picture fuzzy cross-entropy x3 � x1 � x2 � x5 � x4

Wei [64] PFHWA operator (λ = 2) x3 � x2 � x5 � x1 � x4

Zang et al. [65] FDWHM operator (λ = 2, p, q = 1) x3 � x5 � x4 � x1 � x2

Wang and Li [27] GPHFWA operator (λ = 1) x3 � x2 � x5 � x1 � x4

GPHFWG operator (λ = 1) x3 � x2 � x1 � x5 � x4

Our Approach 1 GPPHFWA operator (λ = 1) x3 � x5 � x2 � x1 � x4

GPPHFWG operator (λ = 1) x3 � x2 � x1 � x4 � x5

Table 9. Comparison result of Example 5.

Method Use Tool Ranking
Wei [14] HFPWA operator x5 � x2 � x1 � x4 � x3

HFPWG operator x2 � x5 � x1 � x4 � x3

Wang and Li [27] GPHFPWA operator (λ = 1) x2 � x4 � x1 � x5 � x3

GPHFPWG operator (λ = 1) x2 � x1 � x5 � x4 � x3

Our Approach 2 GPPHFPWA operator (λ = 1) x5 � x3 � x2 � x4 � x1

GPPHFPWG operator (λ = 1) x5 � x3 � x2 � x4 � x1

Table 8 shows that the best alternative of Example 7.1 obtained by MCDM methods based on the
GPPHFWA and GPPHFWG operators is the same as the existing methods, but there are some
differences in the ranking order of alternatives. So, the results can demonstrate the feasibility of the
proposed method. Compared with PFSs and PHFSs, P-PHFSs can describe DM’s evaluation values
more accurately and comprehensively, as it denotes not only the positive membership degrees,
neutral-membership degrees and negative membership degrees, but also the corresponding
probabilistic information. For example, the evaluation information of alternative x1 for criterion C1

provided by DM is represented as picture fuzzy number (PFN) (0.53, 0.33, 0.09) [63-66] or PHFE
({0.43, 0.53}, {0.33}, {0.06, 0.09}) [27]. In fact, DM may doubt to determine an exact value for each
membership level, or may doubt that the importance of several values for each membership level is
the same. Then, PFN or PHFE cannot deal with this situation, but P-PHFE can be used to express the
evaluation information as ({0.43|0.5, 0.53|0.5}, {0.33|1}, {0.06|0.4, 0.09|0.6}) as shown in Table 2. As a
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result, the proposed method can solve the MCDM problem when DMs feel difficulty to determine the
exact values of each membership level, or the importance of several values at each membership level.
However, if the number of criteria is relatively large, the aggregation process of the proposed
operators becomes more complex than the existing methods [49,63–66] and the data size becomes
relatively large. This is the limitation of the proposed method. In Table 9, the best alternative to
Example 7.2 obtained by the GPPHFPWA and GPPHFPWG operators is x5, but the results of other
existing MCDM methods [14, 27] are x2 and x5, respectively. This is because the difference arises by
ignoring the complex evaluation information of DMs in the MCDM methods using the GPHFPWA
and GPHFPWG operators or the HFPWA and HFPWG operators. HFSs [14] allows DMs to provide
several values of positive membership level, and PHFSs allows DMs to provide several values of
negative and neutral membership level as well as positive membership level. For example, the
evaluation information of alternative x1 for criterion C1 provided by DM is expressed as HFE
{0.4, 0.5, 0.7} [14], or PHFE ({0.40, 0.50, 0.70}, {0.05}, {0.10, 0.20}) [27]. However, in some situations,
it is less convincing to express the evaluation information of DMs that only consider positive
membership level or consider negative and neutral membership levels as well as positive membership
level. This is because it does not take into account the importance of values at each membership level.
Thus, the proposed method can overcome the limitations of HFSs and PHFSs. It is noteworthy that
the GPPHFPWA and GPPHFPWG operators also have the same disadvantage as the GPPHFWA and
GPPHFWG operators.

By the above comparison results, our proposed methods have two advantages:

(1) Since our proposed operators are reduced to other specific aggregation operators by varying the
value of λ, it is very flexible to deal with MCDM problems in several different situations.
Furthermore, the parameter λ can also be considered a measure of DMs’ optimistic and
pessimistic attitudes in the information fusion process of the GPPHFWA and GPPHFWG
operators (or, the GPPHFPWA and GPPHFPWG operators), so that the value of λ can be
determined by DMs according to their actual preferences.

(2) Since the weight values of criteria play important role in MCDM problems, the proposed
methods can deal with cases where the criteria have the same or different priorities in the
MCDM process. When the criteria have the same priority level, the proposed method based on
the GPPHFWA and GPPHFWG operators with weighted vectors of the criteria can used to
determine the ranking of alternatives. On the other hand, when the criteria have different priority
levels, the GPPHFPWA and GPPHFPWG operators can be used to determine the ranking of
alternatives. Thus, the proposed different aggregation operators can be used to handle different
situations of MCDM problems. It can be seen that our proposed methods are more powerful and
flexible than existing MCDM methods.

8. Conclusions

In this paper, we presented two noble MCDM methods that can be used to effectively solve
practical decision-making problems. To achieve that, the main contributions of this paper are as
follows. Firstly, we proposed a novel representation tool, called P-PHFSs, to describe DMs’ complex
evaluation information more accurately and effectively. Compared with PHFSs and P-HFSs, the
proposed P-PHFSs handle DMs’ fuzzy judgments more effectively because they not only describe the
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positive membership degree, neutral membership degree and negative membership degree, but also
depict their corresponding probabilistic information. Due to this advantage, in the framework of
P-PHFSs, DMs can fully express their evaluations, which can reduce information loss. Secondly, a
series of aggregation operators of P-PHFEs were developed, which are useful to aggregate criteria
values given in the form of probabilistic picture hesitant fuzzy information. Our proposed aggregation
operators are more useful because they not only reduce the negative impact of DMs’ excessively high
or low evaluation values on the final decision results, but also reflects the interrelationship among
various criteria. Thirdly, two new MCDM methods were derived to help DMs choose the optimal
alternative(s). Numerical examples have clearly illustrated the effectiveness of our methods. From
comparative analysis, the superiority of our proposed methods is that they not only provide DMs with
much freedom to express their decision-making information, but also yield reasonable and reliable
decision-making results. These characteristics make our methods more suitable to handle real-world
MCDM problems.

In future research, we will use Einstein t-norm and t-conorm, or Hamacher t-norm and t-conorm
to investigate other operations of P-PHFSs and develop different aggregation operators to aggregate
P-PHFSs. Furthermore, we will study consensus-building processes based on P-PHFSs because the
consensus reaching process [66–68], which is aimed at a decision-making result that are acceptable to
many experts, is an important part of group decision-making.
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Appendix A

Proof. Since (1)–(4) and (7) are trivial, we prove (5) and (6).
(5)

λ(ñ1 ⊕ ñ2)

= λ
(
∪ α1∈µ̃1 ,β1∈η̃1 ,γ1∈ν̃1 ,

α2∈µ̃2 ,β2∈η̃2 ,γ2∈ν̃2

(
{α1 + α2 − α1α2|pα1 pα2}, {β1β2|qβ1qβ2}, {γ1γ2|rγ1rγ2}

))
= ∪ α1∈µ̃1 ,β1∈η̃1 ,γ1∈ν̃1 ,

α2∈µ̃2 ,β2∈η̃2 ,γ2∈ν̃2

({
1 − (1 − (α1 + α2 − α1α2))λ |pα1 pα2

}
, {(β1β2)λ |qβ1qβ2}, {(γ1γ2)λ |rγ1rγ2}

)
= ∪ α1∈µ̃1 ,β1∈η̃1 ,γ1∈ν̃1 ,

α2∈µ̃2 ,β2∈η̃2 ,γ2∈ν̃2

({
1 −

(
(1 − α1)λ(1 − α2)λ

)
|pα1 pα2

}
, {(β1β2)λ |qβ1qβ2}, {(γ1γ2)λ |rγ1rγ2}

)
= ∪ α1∈µ̃1 ,β1∈η̃1 ,γ1∈ν̃1 ,

α2∈µ̃2 ,β2∈η̃2 ,γ2∈ν̃2

({
1 − (1 − α1)λ + 1 − (1 − α2)λ

−(1 − (1 − α1)λ)(1 − (1 − α2)λ)
|pα1 pα2

}
, {βλ1β

λ
2 |qβ1qβ2}, {γ

λ
1γ

λ
2 |rγ1rγ2}

)
= λñ1 ⊕ λñ2;

(6)

(ñ1 ⊗ ñ2)λ
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=

(
∪ α1∈µ̃1 ,β1∈η̃1 ,γ1∈ν̃1 ,

α2∈µ̃2 ,β2∈η̃2 ,γ2∈ν̃2

(
{α1α2|pα1 pα2}, {β1 + β2 − β1β2|qβ1qβ2}, {γ1 + γ2 − γ1γ2|rγ1rγ2}

))λ
= ∪ α1∈µ̃1 ,β1∈η̃1 ,γ1∈ν̃1 ,

α2∈µ̃2 ,β2∈η̃2 ,γ2∈ν̃2

(
{(α1α2)λ|pα1 pα2},

{
1 − (1 − (β1 + β2 − β1β2))λ |qβ1qβ2

}
,{

1 − (1 − (γ1 + γ2 − γ1γ2))λ |rγ1rγ2

})
= ∪ α1∈µ̃1 ,β1∈η̃1 ,γ1∈ν̃1 ,

α2∈µ̃2 ,β2∈η̃2 ,γ2∈ν̃2

(
{(α1α2)λ|pα1 pα2},

{
1 −

(
(1 − β1)λ(1 − β2)λ

)
|qβ1qβ2

}
,{

1 −
(
(1 − γ1)λ(1 − γ2)λ

)
|rγ1rγ2

})
= ∪ α1∈µ̃1 ,β1∈η̃1 ,γ1∈ν̃1 ,

α2∈µ̃2 ,β2∈η̃2 ,γ2∈ν̃2

(
{(α1α2)λ|pα1 pα2},

{
1 − (1 − β1)λ + 1 − (1 − β2)λ

−(1 − (1 − β1)λ)(1 − (1 − β2)λ)
|qβ1qβ2

}
,{

1 − (1 − β1)λ + 1 − (1 − β2)λ

−(1 − (1 − β1)λ)(1 − (1 − β2)λ)
|qβ1qβ2

})
= ñλ1 ⊗ ñλ2,

which complete the proof.

Appendix B

Proof. Equation (5.2) can be proved by mathematical induction on n as follows.
For n = 2, let ñ1 =

(
µ̃1|pµ̃1 , η̃1|qη̃1 , ν̃1|rν̃1

)
and ñ2 =

(
µ̃2|pµ̃2 , η̃2|qη̃2 , ν̃2|rν̃2

)
, using operational laws in

Definition 4.7, since

ñλ1 = ∪α1∈µ̃1,β1∈η̃1,γ1∈ν̃1

({
αλ1

∣∣∣pα1

}
,
{
1 − (1 − β1)λ

∣∣∣qβ1

}
,
{
1 − (1 − γ1)λ

∣∣∣rγ1

})
,

ñλ2 = ∪α2∈µ̃2,β2∈η̃2,γ2∈ν̃2

({
αλ2

∣∣∣pα2

}
,
{
1 − (1 − β2)λ

∣∣∣qβ2

}
,
{
1 − (1 − γ2)λ

∣∣∣rγ2

})
,

we have

w1ñλ1 = ∪α1∈µ̃1,β1∈η̃1,γ1∈ν̃1

({
1 − (1 − αλ1)w1

∣∣∣pα1

}
,
{(

1 − (1 − β1)λ
)w1 ∣∣∣qβ1

}
,
{(

1 − (1 − γ1)λ
)w1 ∣∣∣rγ1

})
,

w2ñλ2 = ∪α2∈µ̃2,β2∈η̃2,γ2∈ν̃2

({
1 − (1 − αλ2)w2

∣∣∣pα2

}
,
{(

1 − (1 − β2)λ
)w2 ∣∣∣qβ2

}
,
{(

1 − (1 − γ2)λ
)w2 ∣∣∣rγ2

})
.

Then, by Definition 4.7, we get

GPPHFWA(ñ1, ñ2) =
(
w1ñλ1 ⊕ w2ñλ2

) 1
λ

= ∪ α1∈µ̃1 ,β1∈η̃1 ,γ1∈ν̃1
α2∈µ̃2 ,β2∈η̃2 ,γ2∈ν̃2



{(
1 −

∏2
i=1(1 − αλi )wi

) 1
λ
∣∣∣∏2

i=1 pαi

}
,{

1 −
(
1 −

∏2
i=1

(
1 − (1 − βi)λ

)wi
) 1
λ
∣∣∣∏2

i=1 qβi

}
,{

1 −
(
1 −

∏2
i=1

(
1 − (1 − γi)λ

)wi
) 1
λ
∣∣∣∏2

i=1 rγi

}

.

Thus, Eq (5.2) holds for n = 2.
Suppose that Eq (5.2) holds for n = k. When n = k + 1, by operational laws of P-PHFEs, we have(

⊕k
i=1wiñλi

)
⊕ wk+1ñλk+1
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= ∪αi∈µ̃i,βi∈η̃i,γi∈ν̃i


{
1 −

∏k
i=1(1 − αλi )wi

∣∣∣∏k
i=1 pαi

}
,{∏k

i=1

(
1 − (1 − βi)λ

)wi ∣∣∣∏k
i=1 qβi

}
,{∏k

i=1

(
1 − (1 − γi)λ

)wi ∣∣∣∏k
i=1 rγi

}


⊕ ∪αk+1∈µ̃k+1,βk+1∈η̃k+1,γk+1∈ν̃k+1


{
1 − (1 − αλk+1)wk+1

∣∣∣pαk+1

}
,{(

1 − (1 − βk+1)λ
)wk+1 ∣∣∣qβk+1

}
,{(

1 − (1 − γk+1)λ
)wk+1 ∣∣∣rγk+1

}


= ∪αi∈µ̃i,βi∈η̃i,γi∈ν̃i


{
1 −

∏k+1
i=1 (1 − αλi )wi

∣∣∣∏k+1
i=1 pαi

}
,{∏k+1

i=1

(
1 − (1 − βi)λ

)wi ∣∣∣∏k+1
i=1 qβi

}
,{∏k+1

i=1

(
1 − (1 − γi)λ

)wi ∣∣∣∏k+1
i=1 rγi

}
 .

Then,

GPPHFWA(ñ1, ñ2, . . . , ñk+1) =
(
⊕k+1

i=1 wiñλi
) 1
λ

= ∪αi∈µ̃i,βi∈η̃i,γi∈ν̃i



{(
1 −

∏k+1
i=1 (1 − αλi )wi

) 1
λ
∣∣∣∏k+1

i=1 pαi

}
,{

1 −
(
1 −

∏k+1
i=1

(
1 − (1 − βi)λ

)wi
) 1
λ
∣∣∣∏k+1

i=1 qβi

}
,{

1 −
(
1 −

∏k+1
i=1

(
1 − (1 − γi)λ

)wi
) 1
λ
∣∣∣∏k+1

i=1 rγi

}

,

i.e., Eq (5.2) holds for n = k + 1. Thus, Eq (5.2) holds for all n.

Appendix C

Proof. (1) Since αmin ≤ αi ≤ αmax for all i, then 1 − αλmax ≤ 1 − αλi ≤ 1 − αλmin. Since w =

(w1,w2, . . . ,wn)T is the weight vector of hi satisfying wi ∈ [0, 1] and
∑n

i=1 wi = 1, then for all i, we have(
1 − αλmax

)wi
≤

(
1 − αλi

)wi
≤

(
1 − αλmin

)wi

⇒

n∏
i=1

(
1 − αλmax

)wi
≤

n∏
i=1

(
1 − αλi

)wi
≤

n∏
i=1

(
1 − αλmin

)wi

⇒ 1 −
n∏

i=1

(
1 − αλmin

)wi
≤ 1 −

n∏
i=1

(
1 − αλi

)wi
≤ 1 −

n∏
i=1

(
1 − αλmax

)wi

⇒ αmin =

1 − n∏
i=1

(
1 − αλmin

)wi


1
λ

≤

1 − n∏
i=1

(
1 − αλi

)wi


1
λ

≤

1 − n∏
i=1

(
1 − αλmax

)wi


1
λ

= αmax.

Hence, the required result for positive membership values is obtained. Next, for neutral
membership, since βmin ≤ βi ≤ βmax for all i, then (1 − βmax)λ ≤ (1 − βi)λ ≤ (1 − βmin)λ. Since
w = (w1,w2, . . . ,wn)T is the weight vector of hi satisfying wi ∈ [0, 1] and

∑n
i=1 wi = 1, then for all i, we

have (
1 − (1 − βmin)λ

)wi
≤

(
1 − (1 − βi)λ

)wi
≤

(
1 − (1 − βmax)λ

)wi
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⇒

n∏
i=1

(
1 − (1 − βmin)λ

)wi
≤

n∏
i=1

(
1 − (1 − βi)λ

)wi
≤

n∏
i=1

(
1 − (1 − βmax)λ

)wi

⇒ 1 −
n∏

i=1

(
1 − (1 − βmin)λ

)wi
≤ 1 −

n∏
i=1

(
1 − (1 − βi)λ

)wi
≤ 1 −

n∏
i=1

(
1 − (1 − βmax)λ

)wi

⇒

1 − n∏
i=1

(
1 − (1 − βmax)λ

)wi


1
λ

≤

1 − n∏
i=1

(
1 − (1 − βi)λ

)wi


1
λ

≤

1 − n∏
i=1

(
1 − (1 − βmin)λ

)wi


1
λ

⇒ βmin = 1 −

1 − n∏
i=1

(
1 − (1 − βmin)λ

)wi


1
λ

≤ 1 −

1 − n∏
i=1

(
1 − (1 − βi)λ

)wi


1
λ

≤ 1 −

1 − n∏
i=1

(
1 − (1 − βmax)λ

)wi


1
λ

= βmax.

Hence, we obtain the required result for neutral membership values. Similarly, for negative
membership, since γmin ≤ γi ≤ γmax for all i, we have

γmin ≤ 1 −

1 − n∏
i=1

(
1 − (1 − γi)λ

)wi


1
λ

≤ γmax.

Hence, the required result for negative membership values is obtained.
Now, for probabilities, since pmin ≤ pαi ≤ pmax, qmin ≤ qβi ≤ qmax and rmin ≤ rγi ≤ rmax, we

have
∏n

i=1 pmin ≤
∏n

i=1 pαi ≤
∏n

i=1 pmax,
∏n

i=1 qmin ≤
∏n

i=1 qβi ≤
∏n

i=1 qmax and
∏n

i=1 rmin ≤
∏n

i=1 rγi ≤∏n
i=1 rmax. Let GPPHFWA(ñ1, ñ2, . . . , ñn) = ñ =

(
µ̃|pµ̃, η̃|qη̃, ν̃|rν̃

)
. By Definition 4.3, we obtain s(ñ−) ≤

s(ñ) ≤ s(ñ+). Hence, we have ñ− ≤ GPPHFWA(ñ1, ñ2, . . . , ñn) ≤ ñ+.
(2) Similar to that of (1).
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