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1. Introduction

In 1922, the mathematician Banach [1] proved the well-known fixed-point theorem named the
Banach contraction principle in the settings of complete metric spaces. He proved that every
contraction mapping on a complete metric space has a unique fixed-point. Thereafter, various
generalizations and fixed-point results have been proved by many authors and some are recently
appeared in [2–4].

In 2007, Huang and Zhang [5] introduced the concept of cone metric spaces by replacing real
numbers with a cone in a normed space. They also defined the convergence and Cauchyness concepts
of sequences in terms of the interior points of the given cone. Moreover, they proved some important
fixed-point theorems and extended the well-known Banach contraction principle to the settings of
cone metric spaces where the respective cones are normal and solid. Such a line allows for
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investigating lots of studies and results in fixed-point theory without assuming the normality property
of the underlying cone. The results of Huang and Zhang were generalized by Rezapour and
Hamlbarani [6] by eliminating the normality assumption of the underlying cone. There are actually
lots of generalizations of metric spaces in which the distance function takes values in ordered cones.

Unfortunately, when cones are assumed to be normal and solid, these generalizations become
impractical due to the equivalent of the topology induced by a metric and the topology induced by a
cone metric. In fact; the equivalent characterizations have been shown by many authors, see for
instance [7–14] and references cited therein. We also mention that Azam and Mehmood [15]
introduced the notion of tvs-valued cone metric space to present the same notions in more general
settings.

In 2006, Bhaskar and Lakshmikantham [16] studied the existence and uniqueness of coupled fixed-
point theorems for maps with mixed monotonic properties in metric spaces with a partial order. The
obtained results were investigated using the assumption of weak contraction type.

In 2009, Lakshmikantham and Ćirić [17] introduced more notations of mixed g-monotone maps
and proved coupled coincidence and coupled common fixed-point theorems for such types of
contractive maps in the case of partially ordered complete metric spaces. These presented results are a
generalization of the results given in [16].

In 2011, Janković et al. [18] showed that all fixed-point results in cone metric spaces wherein the
underlying cone is normal and solid are proper copies of classical results in metric spaces. Therefore,
any generalizations of fixed-point from metric space to cone metric space are repeated.

In 2012, Sönmez [19, 20] defined a partial cone metric space and studied its topological properties.
In the same paper, fixed-point results for some contractive types of operators are proved in the
generalized complete partial cone metric spaces.

In 2012, Samet et al. [21] initially considered the notion of α-admissible mappings in metric spaces
and they gave some examples to elucidate and support the concept. Furthermore, they presented some
relevant fixed-point results for such a class of mappings in this space. Subsequently, a number of
authors have exploited the concept of α-admissible contraction types of mappings to study the existence
of fixed-points in many generalized spaces.

In 2013, Malhotra et al. [22], Jiang and Li [23] extended the results of [19] and [20] to θ-complete
partial cone metric spaces without using the normality condition of the ordered cones. In all the results
listed before, the given Banach space is considered to be with a solid cone.

In 2017, Basile et al. [24] defined the notion of semi-interior point as a partial treatment of the
non-solidness problem of cones and hence solved many equilibrium and computer problems in this
setting.

In 2018, Aleksi´ et al. [25] gave a survey on some properties and results of (non)-normal and (non)-
solid cones. On the other hand, they showed that any solid cone in a topological vector space can be
replaced by a solid and normal cone in a normed space. Consequently, most of the problems in (TVS)
cone metric spaces can be reduced to their standard metric counterparts.

In 2019, Mehmood et al. [26] defined a new concept of convergence by means of semi-interior
points of the positive cone in the settings of E-metric spaces. The authors proved some generalizations
of fixed point theorem of contraction, Kannan and Chatterjea types of mappings in the context of E-
metric spaces where the underlying positive cone of a real normed space E is non-solid and possibly
non-normal.
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After that, Huang et al. [27] explored some topological properties and fixed point results in cone
metric spaces over Banach algebras. Also, Huang [28] gave some fixed points theorems with some
applications in E-metric spaces using the concept of semi-interior points.

In 2020, 2021 and 2022 Sahar Mohamed Ali Abou Bakr [29–32] studied various types of cone
metric spaces and made some generalizations in the case of b-cone metric spaces, cone metric spaces,
θ-cone metric spaces and b-cone metric spaces and applied these generalizations to some fixed-point
and coupled fixed-point theorems.

In 2022 Sahar Mohamed Ali Abou Bakr [33] considered non-normal and non-solid cones and
proved more generalized fixed-point theorems in the case of generalized b-cone metric spaces over
Banach algebras.

Motivated by the preceding studies, most of our efforts in this research are directed to study the
topological structure of partially satisfactory cone metric spaces when cones in normed spaces fail to
have interior points but have semi-interior points and the cones possibly non-normal. As a sequel, in the
settings of partial satisfactory cone metric spaces, we generalize many concepts of α-admissible types
of mappings and define improved wider categories of these generalized functions of α-admissibility
types. Since the class of α-admissible mappings are a special case of these improvements, we find
results valid to a wider range of contraction classes of mappings. Further, we investigate a new aspect
of fixed-point theory where the real contraction constant of the fundamental contraction inequality is
replaced by a suitable control sequence of positive real numbers backed by a certain condition to make
the generalized inequality more general. Besides that, we will stick to looking for coincidence points,
coupled coincidence points, coupled fixed-point and fixed-points of the contraction mapping in a small
set of points rather than the whole domain of the mapping. In fact; we precisely combine all of the
above trends in our obtained main results.

2. Basic definitions and mathematical preliminaries

For the sake of simplicity in notation, here and in what follows, let E be a real Banach space, θ be
the zero vector in E, C be a cone in E, Int C denotes the set of all interior points of C,
U := {x ∈ E : ‖x‖ ≤ 1} denotes the closed unit ball of E and the set U+ := U ∩ C denotes the positive
part of the unit ball of E defined by C.

Whenever misunderstandings might occur, we write UE to confirm that UE is the closed unit ball in
the space E and we denote by UE

+ , the positive part of UE.
Any cone C ⊂ E defines the following partial ordered relations:

x � y if and only if y − x ∈ C,

x ≺ y if and only if y − x ∈ C and x , y,

and
x � y if and only if y − x ∈ Int C.

The following basic definitions and facts are mostly presented in [5–10,12–15,19,20,22–24,29–34].

Definition 2.1. A cone C of a real Banach space E is solid if and only if Int C , ∅ and it is normal if
and only if there exists a real number M > 0 such that ‖x‖ ≤ M‖y‖ for every x, y ∈ E with θ � x � y.
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The smallest positive constant M for which the above inequality holds is called the normal constant of
C.

Lemma 2.2. Let C be a solid cone of the normed space (E, ‖.‖) and {un}n∈N be a sequence in E. Then,

un
‖.‖
→ θ implies that for each c ∈ Int C, there exists a positive integer n0 such that un � c for all n ≥ n0.

Definition 2.3. A partial cone metric on a non-empty set X is a mapping p : X × X → C such that for
all x, y, z ∈ X, the following conditions are satisfied:
(PCM1) : θ � p (x, x) � p (x, y) ;
(PCM2) : If p (x, x) = p (x, y) = p (y, y), then x = y;
(PCM3) : p (x, y) = p (y, x) ;
(PCM4) : p (x, y) � p (x, z) + p (z, y) − p (z, z) .

The quadruple (X, E,C, p) in this case is said to be partial cone metric space.

Theorem 2.4. Any partial cone metric space (X, E,C, p) is a topological space. If C is a normal cone,
then (X, E,C, p) is T0−space.

Definition 2.5. Let (X, E,C, p) be a partial cone metric space over a solid cone C and {xn}n∈N be a
sequence in X. Then, we have the following:
(1) {xn}n∈N converges to x ∈ X if and only if for each c � θ, there exists a positive integer n0 such that
p (xn, x) � p (x, x) + c for all n ≥ n0. This type of convergence denoted by xn

τp
→ x.

(2) {xn}n∈N strongly converges to x ∈ X, if limn→∞ p(xn, x) = limn→∞ p(xn, xn) = p(x, x), the limit is

taken with respect to the norm ‖.‖ on E. This type of convergence denoted by xn
s−τp
→ x.

(3) {xn}n∈N is a θ-Cauchy if and only if for each c � θ, there exists a positive integer n0 such that
p (xn, xm) � c for all n,m ≥ n0.
(4) The partial cone metric space (X, E,C, p) is a θ-complete, if each θ-Cauchy sequence {xn}n∈N of X
converges to some point x ∈ X with p (x, x) = θ.
(5) {xn}n∈N is Cauchy, if there exists u ∈ C such that limn→∞ p (xn, xm) = u.
(6) The partial cone metric space (X, E,C, p) is complete if and only if every Cauchy sequence {xn}n∈N

of X strongly converges to some point x ∈ X with p (x, x) = u.

Remark 2.6. Every complete partial cone metric space (X, E,C, p) is θ-complete, but the converse
is not generally true. In fact; example (3) in [32] is an example of θ-complete partial cone metric
space with a Cauchy sequence which is not strongly convergent to any element in X. Consequently, it
represents an example of θ-complete partial cone metric space which is not complete.

Now, we recall a class of cones in an ordered normed spaces (E, ‖.‖) defined by means of points in
C, cones with semi-interior points, that are weaker than the one of interior points of C. The concept of
semi-interior point of cone C and some of its characteristics can be found in [24, 28].

Definition 2.7. The vector x0 ∈ C is called semi-interior point of C if there exists a positive real number
ρ > 0 such that x0 − ρU+ ⊆ C.

The set of semi-interior points of C is generally denoted by C	. The partial ordered relation≪ can
be defined for x, y ∈ E as follows:

x≪ y if and only if y − x ∈ C	.
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In particular; we have
θ≪ x if and only if x ∈ C	.

Remark 2.8. (1) We have the following relations:

(a) C	 + C	 ⊂ C	.
(b) C	 + C ⊂ C	.
(c) αC	 ⊂ C	 for any real number α > 0.

(2) Any interior point of a cone C is a semi-interior point of C with respect to the norm ‖.‖ on E, while
the converse is not true. Some examples of non-solid cones in normed and Banach spaces having some
semi-interior points can be found in [24].

By the help of example (2.5) in [24], we rebuild an illustrative example to support definition (2.7)
in the following way:

Example 2.9. Let Xn :=
(
R2, ‖.‖n

)
be the Banach space R2 ordered by the point-wise ordering and

equipped with the norm ‖.‖n defined by the following formula:

∥∥∥(xn
1, x

n
2
)∥∥∥

n
=


∣∣∣xn

1

∣∣∣ +
∣∣∣xn

2

∣∣∣ , xn
1xn

2 ≥ 0,

max
{∣∣∣xn

1

∣∣∣ , ∣∣∣xn
2

∣∣∣} − (
n−1

n

)
min

{∣∣∣xn
1

∣∣∣ , ∣∣∣xn
2

∣∣∣} , xn
1xn

2 < 0.

Figure 1 sketches the closed unit ball of Xn whose vertices are the points (1, 0), (0, 1), (−n, n),
(−1, 0), (0,−1) and (n,−n).

Figure 1. The closed unit ball in Xn.

Let β = {βn}n∈N be any sequence of positive numbers, βn > 0 for all n ∈ N. Denote by
E :=

(⊕
n∈N Xn

)
`∞(β)

, the linear space of all sequences defined by:

E :=

⊕
n∈N

Xn


`∞(β)

=
{
{xn}n∈N : xn =

(
xn

1, x
n
2
)
∈ Xn, {‖βnxn‖n}n∈N ∈ `∞

}
.

Endow the space E :=
(⊕

n∈N Xn

)
`∞(β)

with the following norm:

‖x‖`∞ (β) = supn∈N {βn‖xn‖n} for every x = {xn}n∈N ∈ E.
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Assume that the space E is ordered by the cone

C :=
{
x = {xn}n∈N ∈ E : xn =

(
xn

1, x
n
2
)
, xn

i ≥ 0, i ∈ {1, 2} , n ∈ N
}
.

Choose in particular the weighted sequence β =
{

1
n

}
n∈N

and let x = {(n, n)}n∈N. Since

‖x‖
`∞

(
{
1
n
}n∈N

) = supn∈N

{
2n · 1

n

}
= 2 < ∞, we see that x ∈ C is not an interior point of C.

Now, take any y =
{(

yn
1, y

n
2

)}
n∈N
∈ UE

+ . Then, we have

1
n

∥∥∥(yn
1, y

n
2
)∥∥∥

n
≤ ‖y‖

`∞

(
{
1
n
}n∈N

) ≤ 1 for all n ∈ N.

Clearly, x − y =
{(

n − yn
1, n − yn

2

)}
n∈N
. It is easy to check that

n − yn
1 ≥

(
n −

1
n

)
+ yn

2 ≥ yn
2 ≥ 0 for all n ∈ N.

Similarly, we have n − yn
2 ≥ 0 for all n ∈ N. Thus, we find a real number ρ = 1 > 0 such that

x − y ∈ C for all y ∈ UE
+ . Therefore, x = {(n, n)}n∈N ∈ C	.

Depending on Huaping Huang results [28] in 2019, the following results are based on the
assumption that the cone C has a semi-interior points.

Definition 2.10. A sequence {xn}n∈N in C is called s-sequence, if for each c ∈ C	, there exists n0 ∈ N

such that xn ≪ c for all n ≥ n0.

Lemma 2.11. Let {xn}n∈N be a sequence in E and xn → θ as n→ ∞. Then, {xn}n∈N is s−sequence.

Proposition 2.12. Let x, y, z ∈ E. Then, x≪ z if one of the following holds:

either x � y≪ z, x≪ y � z, or x≪ y≪ z.

Proposition 2.13. If θ � u≪ c holds for any c ∈ C	, then u = θ.

Proposition 2.14. Let (X, E,C, p) be a partial cone metric space. Then, some topology τp is generated
on X and defined by:

τp =
{
U ⊆ X : ∀x ∈ U,∃c ∈ C	, Bp (x, c) ⊆ U

}
∪ {φ} , X =

⋃
Bp∈βp

Bp.

The base of this topology is given by βp =
{
Bp (x, c) : (x, c) ∈ X ×C	

}
, where the set

Bp (x, c) := {y ∈ X : p (x, y)≪ c + p (x, x)} is the neighborhood of x with radius c.

In the following, redefined versions of the convergent and Cauchy sequences in our space are given
by exchanging roles of≪ and�. Therefore, the new definitions are controlled by C	 instead of Int C.
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Definition 2.15. Let (X, E,C, p) be a partial cone metric space, x ∈ X and {xn}n∈N be a sequence in X.
Then,
(1) {xn}n∈N is convergent to x, we denote this by xn

τp
→ x, whenever for every c ∈ E with c≫ θ, there is

n0 ∈ N such that p (xn, x)≪ p (x, x) + c for all n ≥ n0.

(2) {xn}n∈N is strongly convergent to x, we denote this by xn
s−τp
→ x, if

limn→∞ p (xn, x) = limn→∞ p (xn, xn) = p (x, x) .
(3) {xn}n∈N is a θ-Cauchy whenever for every c ∈ E with c ≫ θ, there is n0 ∈ N such that
p (xn, xm)≪ c for all n,m ≥ n0. That is; a sequence {xn}n∈N is a θ-Cauchy if and only if
‖p (xn, xm)‖ → θ as n,m→ ∞.
(4) The partial cone metric space (X, E,C, p) is said to be θ-complete, if each θ-Cauchy sequence
{xn}n∈N of X converges to x in X such that p (x, x) = θ.

(5) {xn}n∈N is Cauchy, if there is u ∈ C such that limn,m→∞ p (xn, xm) = u.
(6) The partial cone metric space (X, E,C, p) is complete, if each Cauchy sequence {xn}n∈N in X is
strongly convergent to x ∈ X such that p (x, x) = u.

Remark 2.16. (1) A sequence {xn}n∈N is a θ-Cauchy if and only if {p (xm, xn)}m,n∈N is s-sequence in E.
(2) For s−sequence which is not convergent, one can see example (2) in [23].
(3) Each strongly convergent sequence of a partial cone metric space (X, E,C, p) is convergent with
respect to τp. However, the converse of this fact need not hold. In particular; the converse is true if
C is a normal cone. In fact; example (3) in [23] showed the existence of some sequences of a partial
cone metric space which are convergent, but not strongly convergent if the cone C is non-normal.

Now, we are going to highlight two new classes of cones in normed spaces, namely; semi-solid
cones and satisfactory cones. These classes will play a key role in our results and enable moving the
roles from interior points to semi-interior points of cones.

Definition 2.17. A cone C in the normed space E is called semi-solid if and only if it has a non-empty
set of semi-interior points, C	 , ∅, and it is called a satisfactory cone if and only if cone C satisfies
any one of the following:
(1) C is normal and solid,
(2) C is not-normal and solid,
(3) C is normal and semi-solid,
(4) C is not-normal and semi-solid.

A partial cone metric space (X, E,C, p) is said to be a partial satisfactory cone metric space if and
only if the cone C is satisfactory.

With this notion, the above-mentioned conclusions are still working with non-normal semi-solid
cones and hence generally for partial (satisfactory) cone metric spaces. Particularly, the following
remark is a direct consequence of Lemma (2.11) and part (3) of Definition (2.15).

Remark 2.18. Let (X, E,C, p) be a partial (satisfactory) cone metric space. Then,
(1) A complete partial (satisfactory) cone metric space is a subcategory of a θ-complete partial
(satisfactory) cone metric space. In particular; if C is a normal cone of the normed space (E, ‖.‖),
then every θ−Cauchy sequence in (X, E,C, p) is a Cauchy sequence and every complete partial
(satisfactory) cone metric space is θ−complete.
(2) If {yn}n∈N is s-sequence in E satisfying p (xn, xm) � yn for all m, n ∈ N with m > n, then {xn}n∈N is a
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θ-Cauchy sequence in X.
(3) If {xn}n∈N is a sequence in X, {αn}n∈N is a sequence in E that converges to θ and satisfying
p (xn, xm) � αn for all m, n ∈ N with m > n, then {xn}n∈N is a θ-Cauchy sequence.
(4) The limit of a convergent sequence in a partial (satisfactory) cone metric space may not be unique.
In fact; the partial (satisfactory) cone metric space (X, E,C, p) need not be T1−space. Actually,
Example (3.1) in [35] and Examples (3) , (11) in [32] showed that the limit of convergent sequence in
(X, E,C, p) is not necessarily unique.
(5) The partial (satisfactory) cone metric p is not always continuous mapping, in the sense of xn

τp
→ x

and yn
τp
→ y imply that p (xn, yn)

‖.‖
→ p (x, y). In other words; the fact that p (xn, yn)

‖.‖
→ p (x, y) if xn

τp
→ x

and yn
τp
→ y, is not guaranteed. See example (11) in [32] .

Now, we are going to display the concept of α-admissible mappings defined by Samet [21] and
review the essential definition of generalized α-admissible mappings given by Zhu [36].

Definition 2.19. Let X be a non-empty set, α : X × X → [0,∞) be a mapping and S ,T : X → X be two
self-mappings. Then,
(1) T is said to be an α-admissible, if for every x, y ∈ X,

α (x, y) ≥ 1 implies α (T x,Ty) ≥ 1.

(2) S and T are called generalized α-admissible, if for every x, y ∈ X,

α (S x, S y) ≥ 1 implies α (T x,Ty) ≥ 1.

Before starting the core results, we need to recall some standard terminology from fixed-point
theory.

Definition 2.20. [37] Let X be a non-empty set and T, S : X → X be mappings such that T X ⊆ S X. If
v = Tu = S u for some u ∈ X, then u is a coincidence point of T and S , and v is a point of coincidence
of T and S . Furthermore, if Tv = S v = v, then v is a common fixed-point of T and S . Finally, if
TS w = S Tw, whenever Tw = S w for some w ∈ X, then T and S are said to be weakly compatible.
That is; if they commute at their coincidence points.

For simplicity, we use the notation Λ to denote the set of coincidence points of T and S .

Proposition 2.21. [37] Let T and S be coincidentally commuting self-mappings on a set X. If T and
S have a unique point of coincidence w = T x = S x, then w is the unique common fixed-point of T and
S .

We need to consider the followings which will be effectively used in the proof of our next main
results.

Definition 2.22. [16] Let (X,6) be an ordered set and T : X × X → X. Then, T is said to have the
mixed monotone property in X, if for any x, y ∈ X,

x1, x2 ∈ X, x1 6 x2 implies T (x1, y) 6 T (x2, y) ,

y1, y2 ∈ X, y1 6 y2 implies T (x, y1) > T (x, y2) .
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Definition 2.23. [16] An element (x, y) ∈ X × X is said to be a coupled fixed-point of the mapping
T : X × X → X, if T (x, y) = x and T (y, x) = y.

Definition 2.24. [17] Let T : X × X → X and S : X → X be two mappings. An element (x, y) ∈ X × X
is called a coupled coincidence point of the mappings T and S , if T (x, y) = S x and T (y, x) = S y, and
(S x, S y) is called coupled point of coincidence.

Definition 2.25. [17] Let (X,6) be a partially ordered set, T : X × X → X and S : X → X be two
mappings. Then, T is said to have the mixed S -monotone property, if T is monotone S -non-decreasing
in its first argument and is monotone S -non-increasing in its second argument. That is; for any x, y ∈ X

x1, x2 ∈ X, S x1 6 S x2 implies T (x1, y) 6 T (x2, y) ,

y1, y2 ∈ X, S y1 6 S y2 implies T (x, y1) > T (x, y2) .

The following definitions are part of the main topics in our work.

Remark 2.26. Suppose that (X,6) is a partially ordered set and let (X, E,C, p) be a partial
(satisfactory) cone metric space. Then, a partial ordered relation 6 on X can be induced on X × X in
the following way: for every (x, y) and (u, v) ∈ X × X,

(x, y) . (u, v) if and only if x 6 u and y > v.

The element (x, y) is said to be comparable to (u, v) , if either (x, y) . (u, v) , or (x, y) & (u, v) and the
sequence {(xn, yn)}n∈N ⊂ X × X is non-decreasing with respect to ., if (xn, yn) . (xn+1, yn+1) for all n.

Definition 2.27. Let (X, E,C, p) be a θ−complete partial (satisfactory) cone metric space ordered with
the relation 6. Then, (X, E,C, p,6) is said to be regular, if X has the following properties:
(1) If for every non-decreasing sequence {xn} in X such that xn

τp
→ x, then xn 6 x for all n.

(2) If for every non-increasing sequence {yn} in X such that yn
τp
→ y, then yn > y for all n.

Definition 2.28. [38] Let T : X × X → X and α : X2 × X2 → [0,∞) be given mappings. Then, T is
said to be an α-admissible mapping, if for all (x, y) , (u, v) ∈ X × X, the following is satisfied

α ((x, y) , (u, v)) ≥ 1 implies α (T (x, y) ,T (y, x) ,T (u, v) ,T (v, u)) ≥ 1.

Definition 2.29. [39] Let T : X × X → X, S : X → X and α : X2 × X2 → [0,∞) be mappings. Then,
T and S are said to be α−admissible, if

α ((S x, S y) , (S u, S v)) ≥ 1 implies α (T (x, y) ,T (y, x) ,T (u, v) ,T (v, u)) ≥ 1

for all x, y, u, v ∈ X.

3. Main results: Generalized classes of admissible mappings

Let T : X → X be a given self-mapping. The set of all fixed-points of the mapping T is denoted by
Fix (T ) = {x ∈ X : T x = x} .
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Lemma 3.1. Every contraction mapping on a metric space (X, d) is an α-admissible mapping for some
mapping α : X × X → [0,∞). However, not every α-admissible mapping is a contraction mapping.

Proof. Let T be a contraction mapping on a metric space (X, d) . Then, there exists a constant k ∈ (0, 1)
such that d (T x,Ty) ≤ kd (x, y) for every x, y ∈ X. Consider the mapping α : X × X → [0,∞) be
defined by

α (x, y) =

 1
d(x,y) , if x , y,

1, otherwise.

Then, T is an α-admissible mapping. More exactly, we need here to think over two situations as
follows:
Case (1) : For any x , y in X, we have 1

k
1

d(x,y) ≤
1

d(T x,Ty) . This implies α (x, y) ≤ kα (T x,Ty). Since
0 < k < 1, then we have α (x, y) < α (T x,Ty). It is fairly simple to see that α (T x,Ty) ≥ 1 whenever
α (x, y) ≥ 1.
Case (2) : Otherwise, we know that x = y implies d (x, y) = 0. Imposing that T is a contraction
mapping on X, it yields d (T x,Ty) = 0 and so T x = Ty. Eventually, the conclusion that α(T x,Ty) =

α(x, y) = 1 is valid for x = y. In both cases, the contraction mapping T is an α−admissible mapping,
but not conversely in general.

We demonstrate that the converse of Lemma (3.1) is not true as in the following example.

Example 3.2. Let X be the metric space ([0,∞), d) with the absolute value metric function
d (x, y) = |x − y| for all x, y ∈ [0,∞). Let T : X → X and α : X × X → [0,∞) be defined by

T x =
√

x for all x ∈ X and α (x, y) =

ex−y, for x ≥ y,

0, otherwise.

Then, T is an α-admissible mapping, but it is not contraction because T has two fixed-points on the
given complete metric space, Fix (T ) = {0, 1}.

�

Remark 3.3. By virtue of Lemma (3.1) and Example (3.2), we can understand that the class of
α−admissible mappings is effectively more generalized than the class of contraction mappings.

In the sequel, we will continue to modify the concept of α-admissible operators by generalizing a
new function class of such mappings in more general conditions.

We state Definition (3.4) in the line of Definition (2.19) as follows:

Definition 3.4. Let (X, E,C, p) be a partial (satisfactory) cone metric space and C be a cone of a
normed space (E, ‖.‖). In a non-empty set X, define T : X → X and α : X × X → C. Assume that
c runs through C − {θ}. Then,
(1) T is said to be α − c−admissible mapping if and only if

α(T x,Ty) � c whenever α(x, y) � c.

(2) (X, E,C, p) is α − c−regular, if for any sequence {xn}n∈N in X such that α(xn, xn+1) � c for all n ∈ N
and xn

τp
→ x∗ ∈ X, we have α(xn, x∗) � c for sufficiently large n.
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Inspired by Definition (3.4), we went further, defining a new class of α−admissible mappings which
is different from and stronger than the one introduced in Definition (3.4). The refinement version of
these mappings will be crucial in our main results.

Definition 3.5. Let (X, E,C, p) be a partial (satisfactory) cone metric space and C be a cone of a
normed space (E, ‖.‖). In a non-empty set X, define T : X → X and α : X × X → C. Assume that
{cn}n∈N be a non-zero sequence in C. Then,
(1) T is said to be α−sequentially admissible mapping if and only if

α(T x,Ty) � cn+1 whenever α(x, y) � cn for every n ∈ N.

(2) (X, E,C, p) is said to be α−sequentially regular, if for any sequence {xn}n∈N in X such that
α(xn, xn+1) � cn+1 for all n ∈ N and xn

τp
→ x∗ ∈ X, we have α(xn, x∗) � cn+1 for sufficiently large n.

Remark 3.6. (1) Note that the class of all α−admissible operators described in Definition (2.19), is
included in two classes of all α − c−admissible and α−sequentially admissible operators. Indeed; in
Definition (3.4), let (E, ‖.‖) := (R, |.|), where the normed space E is endowed with the usual ordering
of real numbers ≤ and ordered by the cone C := [0,∞). Further, if c = 1, then T is an α-admissible
mapping. Similarly, in Definition (3.5), let (E, ‖.‖) ,C and � be the same ones as those stipulated
above. Moreover, let {cn}n∈N be the constant sequence cn = 1 for all n ∈ N. Thus, T is an α-admissible
mapping.
(2) The class of all α−c−admissible operators is included in the class of all α−sequentially admissible
operators. In fact; suppose that T is α−c−admissible operator. In Definition (3.5), we can take {cn}n∈N

equals the constant sequence cn = c for all n ∈ N. Thus, T is α−sequentially admissible operator. It is
obvious that the last category is the widest.
(3) If T is α−sequentially admissible and {cn}n∈N is an increasing sequence starting with the element
cn0 , θ, then T is α− cn−admissible mapping for every n ≥ n0. This is true in particular for arithmetic
sequences with base c∗ belonging to C, where c1 = c1, c2 = c1 + c∗, . . . , cn = c1 + (n − 1)c∗, n ∈ N.
(4) If T is α−sequentially admissible mapping and {cn}n∈N is a decreasing sequence bounded below by
θ , c∗ ∈ C, then for every θ , c ∈ C, there is n(c) ∈ N such that c∗ � cn(c) ≺ c∗ + c. Now, the inequality
α(x, y) � c∗ + c implies α(x, y) � cn(c), and the later one suggests that α(T x,Ty) � cn(c)+1. Using the
lower bound c∗, it follows that α(T x,Ty) � c∗.

Taking inspiration from Definition (2.19), we shall establish our newly corresponding
generalizations in the following way:

Definition 3.7. Let (X, E,C, p) be a partial (satisfactory) cone metric space and C be a cone of a
normed space (E, ‖.‖). In a non-empty set X, define T, S : X → X and α : X × X → C. Assume that
c runs through C − {θ} and {cn}n∈N be a non-zero sequence in C. Then,
(1) The mapping T is called αS − c−admissible, if

α(S x, S y) � c implies α (T x,Ty) � c.

(2) T is called αS−sequentially admissible if and only if

α(S x, S y) � cn implies α(T x,Ty) � cn+1 for all n ∈ N.
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Remark 3.8. Every α − c−admissible is αI − c−admissible, where I denotes the identity mapping on
X. Similarly, every α−sequentially admissible mapping is αI−sequentially admissible.

To ensure clarity, we will deal particularly with partial satisfactory cone metric spaces in which the
cone C is semi-solid and need not be normal. The results in the case of ordering solid cones will be the
same as those concerning the case of semi-solid cones. It is important to mention that our results are
valid in all cases of the satisfactory cone C.

We begin with the following main generalized theorem.

Theorem 3.9. Suppose that (X, E,C, p) is a θ-complete partial satisfactory cone metric space. Let
α : X × X → C be a symmetric mapping and T, S : X → X be two self-mappings. Presume that {cn}n∈N

is a non-zero sequence in C. Also, assume that the following assumptions are fulfilled:
(1) T X ⊆ S X and S X is a closed subset of X;
(2) T is αS−sequentially admissible mapping;
(3) There exists x0 ∈ X such that α(S x0,T x0) � c1;
(4) (X, E,C, p) is αS−sequentially regular;
(5) There is a sequence of positive real numbers {kn}n∈N such that limn→∞ kn < 1 and satisfying the
following condition:

p(T x,Ty) � kn p(S x, S y) for every x, y ∈ X with α(S x, S y) � cn, n ∈ N.

Then, T and S have coincidence points. Moreover, if T and S are weakly compatible such that for all
x, y ∈ Λ we have α (S x, S y) � c1, then T and S have a unique common fixed-point in X.

Proof. From assumption (3), there exists x0 ∈ X such that

α (S x0,T x0) � c1. (3.1)

Since T X ⊆ S X, we get an element x1 ∈ X such that S x1 = T x0. Again, we set S x2 = T x1. In a
similar manner, we define two sequences {xn}n∈N and {yn}n∈N as follows:
yn+1 = S xn+1 = T xn for all n ∈ N.

First, if we can find some N ∈ N such that yN = yN+1, then we have

T xN = S xN+1 = yN+1 = yN = S xN .

Thus, xN is a coincidence point of T and S and the conclusion is checked. Without any loss of
generality, we consider that yn , yn+1 for all n ∈ N.

Since α (S x0,T x0) = α (S x0, S x1), inequality (3.1) gives the following:

α (S x0, S x1) � c1. (3.2)

Since T is αS−sequentially admissible, inequality (3.2) implies α (T x0,T x1) � c1. Consequently,
we have α (S x1, S x2) � c2 and so α (T x1,T x2) � c2. By repetition of the above procedure, we get
α (S xn, S xn+1) � cn+1 which implies α (T xn,T xn+1) � cn+1. Equivalently; we get

α (yn, yn+1) � cn+1 for all n ∈ N. (3.3)

AIMS Mathematics Volume 8, Issue 4, 8431–8459.



8443

This in turns implies the following:

α (S xn, S xn+1) � cn+1. (3.4)

Taking advantage of the given generalized contractive condition (5), we arrive at

p (yn+1, yn+2) � kn+1 p (S xn, S xn+1) = kn+1 p (yn, yn+1) .

Using a similar way of the above process up to n times, we obtain

p (yn, yn+1) � kn p (yn−1, yn) �
[
kn × kn−1

]
p (yn−2, yn−1)

� · · · �

 n∏
i=1

ki

 p (y0, y1) .

Consider the sequence

s1 := {k1, k1 × k2, k1 × k2 × k3, . . . ,

n∏
j=1

k j, . . . }

with an :=
∏n

j=1 k j, we have limn→∞
an

an−1
= limn→∞ kn < 1. Hence, the sequence s1 should converge to

zero sequence, limn→∞ an = 0, and we have

p (yn, yn+1) � an p (y0, y1) →
n→∞

θ. (3.5)

For any n, p ∈ N, we have

p(yn, yn+p)
(PCM4)
�

n+p−1∑
i=n

p(yi, yi+1) �
n+p−1∑

i=n

[ i∏
j=1

k j

]
p(y0, y1)

=

n∏
i=1

ki

[
1 + kn+1 + kn+1 × kn+2 + kn+1 × kn+2 × kn+3

+ · · · +

n+p−1∏
i=n+1

ki

]
p(y0, y1).

Consider the sequence

s2 := {1, kn+1, kn+1 × kn+2, kn+1 × kn+2 × kn+3, . . . ,

n+p−1∏
i=n+1

ki, . . . }

with bn :=
∏n+p−1

i=n+1 ki, we have limn→∞
bn

bn−1
= limn→∞ kn+p−1 < 1. Hence, using the usual form of the

Ratio test of series, the sequence of partial sums of s2 should converge to some number (say) k such
that

k := 1 + kn+1 + kn+1 × kn+2 + kn+1 × kn+2 × kn+3 + · · · +

n+p−1∏
i=n+1

ki + . . . .

AIMS Mathematics Volume 8, Issue 4, 8431–8459.



8444

Thus, one can see that {
∑l

m=1

[∏n+1+m
j=n+1 k j

]
}l∈N is convergent to some number (say) K such that

K := lim
l→∞

l∑
m=1

n+1+m∏
j=n+1

k j

 =

∞∑
m=1

n+1+m∏
j=n+1

k j

 .
In conclusion, we proved the following:

p(yn, yn+p) � an

[
1 + kn+1 + kn+1 × kn+2 + · · · +

n+p−1∏
i=n+1

ki

]
p(y0, y1)

� anK p(y0, y1).

Since {anK p(y0, y1)}n∈N is convergent to zero, limn→∞ anK p(y0, y1)
‖.‖
→ θ, it is s−sequence. Now, let

c ∈ E with c≫ θ, then there exists n0 ∈ N such that

anK p(y0, y1)≪ c for all n ≥ n0.

Hence, for any n, p ∈ N, we have

p
(
yn, yn+p

)
� anK p(y0, y1)≪ c for all n ≥ n0.

This concluded that for any n, p ∈ N and any c≫ θ, there exists n0 ∈ N such that

p
(
yn, yn+p

)
≪ c for all n ≥ n0.

Owing to the above arguments, we find that {yn}n∈N is a θ-Cauchy sequence in (X, E,C, p).

Regarding the θ-completeness of the space, there exists an element (say) y′ ∈ X such that yn
τp
→ y′

and p (y′, y′) = θ. Since {yn}n∈N ⊆ S X and S X is closed set in X, it leads that y′ ∈ S X. Then, there exists
z ∈ X such that y′ = S z.

Now, we wish to show that Tz = S z. Employing (PCM4), we have

p (Tz, S z) � p (Tz,T xn) + p
(
yn+1, y′

)
.

Since α (yn, yn+1) � cn+1 for all n ∈ N and yn
τp
→ y′, by making use of condition (4), we obtain

α (yn, y′) = α (S xn, S z) � cn+1 for sufficiently large n.
Accordingly, we find p (Tz, S z) � kn+1 p (y′, yn) + p (yn+1, y′) . Since yn

τp
→ y′, then for c ∈ E with

c≫ θ and for all m ∈ N, choose n3 ∈ N such that

kn+1 p
(
yn, y′

)
≪

c
2m

and p
(
yn+1, y′

)
≪

c
2m

for all n ≥ n3.

Hence, for all c≫ θ and for all m ∈ N, it follows that p (Tz, S z)≪ c
m . Taking the limit as m→ ∞,

we get p (Tz, S z) = θ and so Tz = S z.
Therefore, T and S have a coincidence point in X. As a last step, we claim that T and S possess a

unique point of coincidence. In order to obtain the claim, consider that Tw = S w be another point of
coincidence of T and S . So, we assume that Tw = S w , Tz = S z. By the hypothesis α (S w, S z) � c1,
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we have p (Tw,Tz) � k1 p (S w, S z) = k1 p (Tw,Tz) . As 0 < k1 < 1, we get p (Tw,Tz) = θ and so
Tw = Tz. This contradicts the assumption that Tw = S w , Tz = S z. Thus, the point of coincidence is
uniquely determined. Bearing the assertion that the mappings T and S are weakly compatible in
mind, we deduce that S v = S Tz = TS z = Tv. Regarding to the uniqueness of the point of coincidence
of T and S , we get Tv = S v = v.

As a consequence, v is the unique common fixed-point of T and S and so the proof is done. �

Once again, we can here replace the condition C	 , ∅ with the other states of the satisfactory cone
C, if we wish.

Remark 3.10. As a special case, if we replace the mapping S with I, the identity mapping on X, in
the statement of Theorem (3.9), we conclude that any mapping with these prescribed conditions has
fixed-points in X.

Now our purpose is to determine sufficient conditions to acquire the uniqueness of the fixed-point
of the mapping T stipulated in Theorem (3.9) with S = I.

Proposition 3.11. Assume that all the hypothesis of Theorem (3.9) are verified with S = I.
Furthermore, suppose that the following properties are hold:

Let c∗ ∈ C such that c∗ � ci0 for some ci0 ∈ C − {θ} and i0 ∈ N. Let the set {α (x, y) : x, y ∈ Fix (T )} be
bounded below by c∗. Under these conditions, we obtain that the fixed-point of T is uniquely
determined.

Proof. Since T satisfies the hypothesis of Theorem (3.9), then the fixed-point of T exists. We show
that the set Fix (T ) is in fact reduced to a single point. For this, if possible, let x, y ∈ Fix (T ) . Then,
α (x, y) � c∗ and so α (x, y) � ci0 . Making use of condition (2) in Theorem (3.9), we guarantee that
α (T x,Ty) = α (x, y) � ci0+1. Continuing in this way, we derive that α (x, y) � cn for all n ≥ i0.

We can now apply assumption (4), which leads to p (T x,Ty) � kn p (x, y) for all n ≥ i0. That is;
p (x, y) � kn p (x, y) for all n ≥ i0. On taking the limit as n → ∞ of the sequence {(kn − 1) p (x, y)}n≥i0
gives us −p (x, y) ∈ C. Thus, we have p (x, y) ∈ −C, but p (x, y) ∈ C and so p (x, y) ∈ C ∩ −C = {θ} .

Then, p (x, y) = θ implies x = y. Therefore, the set Fix (T ) should be singleton. �

As a usual relationship between more and less general theorem, we have the following one:

Corollary 3.12. Suppose that (X, E,C, p) is a θ-complete partial satisfactory cone metric space. Let
α : X × X → C be a symmetric mapping and T : X → X be a self-mapping. Presume that {cn}n∈N is a
non-zero sequence in C. Also, assume that the following assumptions are fulfilled:
(1) There exists N ∈ N such that T N is α−sequentially admissible;
(2) There exists x0 ∈ X such that α(x0,T N x0) � c1;
(3) (X, E,C, p) is α−sequentially regular;
(4) There is a sequence of positive real numbers {kn}n∈N such that limn→∞ kn < 1 and satisfying the
following condition:

p(T N x,T Ny) � kn p(x, y) for every x, y ∈ X with α(x, y) � cn, n ∈ N.

Then, the mapping T has fixed-points in X.
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Theorem 3.13. Suppose that (X, E,C, p) is a θ-complete partial satisfactory cone metric space. Let
α : X × X → C be a symmetric mapping and T : X → X be a bijective self-mapping. Presume that
{cn}n∈N is a non-zero sequence in C. Also, assume that the following assumptions are fulfilled:
(1) T−1 is α−sequentially admissible mapping;
(2) There exists x0 ∈ X such that α(x0,T−1x0) � c1;
(3) (X, E,C, p) is α−sequentially regular;
(4) There is a sequence of positive real numbers {kn}n∈N such that limn→∞ (kn)−1 < 1 and satisfying the
following condition:

p(T x,Ty) � kn p(x, y) for every x, y ∈ Xwith α(x, y) � cn+1, n ∈ N.

Then, the mapping T has fixed-points in X.

Proof. Since T is bijective, then it is an invertible mapping, say T−1 : X −→ X is the inverse mapping
of T . Let x0 ∈ X be a chosen point and define the sequence x1 = T−1x0, x2 = T−1x1 =

(
T−1

)2
x0, . . . ,

xn = T−1xn−1 =
(
T−1

)n
x0 for all n ∈ N. Since α

(
x0,T−1x0

)
� c1, we conclude that

α
(
x0,T−1x0

)
= α (x0, x1) � c1

(1)
⇒ α

(
T−1x0,T−1x1

)
= α (x1, x2) � c2.

Inductively, we get α (xn, xn+1) � cn+1 for all n ∈ N.
We can employ condition (4) as follows: p (xn−1, xn) = p (T xn,T xn+1) � kn p (xn, xn+1) for all n ∈ N.

This is equivalent to p (xn, xn+1) � (kn)−1 p (xn−1, xn) for all n ∈ N. Set ηn = (kn)−1 for all n ∈ N, we
infer that

p (xn, xn+1) � ηn p (xn−1, xn) � · · · �

 n∏
j=1

η j

 p (x0, x1) .

For n, p ∈ N, consider

p
(
xn, xn+p

)
�

n+p−1∑
i=n

p (xi, xi+1) �
∞∑

i=n

 i∏
j=1

η j

 p (x0, x1) .

The next step is easily obtained by following the related lines from the proof of Theorem (3.9). Hence,
we assure that {xn}n∈N =

{(
T−1

)n
x0

}
n∈N

is a θ-Cauchy sequence. For the sake of θ-completeness of the

space, there exists x ∈ X such that xn
τp
→ x with p (x, x) = θ. Now, we show that x is a fixed-point of

T. Since T is onto, there exists u ∈ X such that x = Tu. Since we have xn
τp
→ x and α (xn, xn+1) � cn+1

for all n ∈ N, then it follows that α (xn, x) � cn+1 for sufficiently large n.
Thereafter, by using assumption (1), we get α (xn+1, u) � cn+2. Suppose now that condition (4) takes

place, we conclude that

p (xn, x) = p
(
T

(
T−1xn

)
,Tu

)
� kn+1 p (xn+1, u) .

Hence, p (xn+1, u) � ηn+1 p (xn, x) . Since xn
τp
→ x, then for any c≫ θ, there exists n0 ∈ N such that

ηn+1 p (xn, x)≪
c
2

and p (xn+1, x)≪
c
2

for all n ≥ n0.
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For all n ≥ n0 and for any c≫ θ, consider that

p (u, x)
(PCM4)
� p (u, xn+1) + p (xn+1, x) � ηn+1 p (xn, x) + p (xn+1, x)≪ c.

In conclusion, we arrive at

θ � p (u, x)≪ c holds for any c ∈ C	 implies p (u, x) = θ.

Which leads us to u = x = Tu. Since T is injective mapping, then T x = Tu = x. Therefore, x ∈ X is a
fixed-point of T and Fix (T ) , ∅. �

Now, let us introduce our newly major concepts.

Definition 3.14. Let (X, E,C, p) be a partial satisfactory cone metric space. In a non-empty set X,
define T : X × X → X, S : X → X and β : X2 × X2 → C. Let {cn}n∈N be a non-zero sequence in C.
Then,
(1) T is called βS−sequentially admissible mapping if and only if

β ((S x, S y) , (S u, S v)) � cn implies β ((T (x, y) ,T (y, x)), (T (u, v) ,T (v, u))) � cn+1

for all n ∈ N and for all x, y, u, v ∈ X.
(2) (X, E,C, p) is said to be βS -sequentially regular, if {xn} and {yn} are two sequences in X such that

β ((S xn, S yn) , (S xn+1, S yn+1)) � cn+1,

β ((S yn, S xn) , (S yn+1, S xn+1)) � cn+1

for all n ∈ N and S xn
τp
→ x∗, S yn

τp
→ y∗, then

β ((S xn, S yn) , (S x∗, S y∗)) � cn+1 and β ((S yn, S xn) , (S y∗, S x∗)) � cn+1 for sufficiently large n.

Theorem 3.15. Let (X,6) be a partially ordered set induced with partial satisfactory cone metric
p such that (X, E,C, p) is a θ-complete partial satisfactory cone metric space. Let T : X × X → X
and S : X → X be such that T has S -mixed monotone property. Presume that β : X2 × X2 → C is a
symmetric mapping. Also, assume that the following assertions are fulfilled:
(1) T is βS−sequentially admissible mapping;
(2) There exist x0, y0 ∈ X such that

β ((S x0, S y0) , (T (x0, y0) ,T (y0, x0))) � c1,

β ((S y0, S x0) , (T (y0, x0) ,T (x0, y0))) � c1;

(3) T (X × X) ⊆ S X and S X is closed subset of X;
(4) (X, E,C, p) is βS − sequentially regular and (X, E,C, p,6) is regular;
(5) There is a sequence of positive real numbers {kn}n∈N such that limn→∞ kn < 1 and satisfying the
following condition:

p (T (x, y) ,T (u, v)) �
kn

2

[
p (S x, S u) + p (S y, S v)

]
for all x, y, u, v ∈ X
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with (S x, S y) . (S u, S v) and β ((S x, S y) , (S u, S v)) � cn, n ∈ N. Under these conditions, if there exist
x0, y0 ∈ X such that S x0 6 T (x0, y0) and S y0 > T (y0, x0) , then T and S have coupled coincidence
points.

Proof. By starting from arbitrary points x0, y0 ∈ X such that S x0 6 T (x0, y0) and S y0 > T (y0, x0) .
Since T (X × X) ⊆ S X and x0, y0 ∈ X, there exist x1, y1 ∈ X such that S x1 = T (x0, y0) and
S y1 = T (y0, x0) . Let x2, y2 ∈ X be such that S x2 = T (x1, y1) and S y2 = T (y1, x1) .

Inductively, we construct the sequences {xn}n∈N and {yn}n∈N in X by
S xn+1 = T (xn, yn) = T n+1 (x0, y0) = T (T n (x0, y0) ,T n (y0, x0)) ,

S yn+1 = T (yn, xn) = T n+1 (y0, x0) = T (T n (y0, x0) ,T n (x0, y0))

for all n ∈ N ∪ {0} . By Mathematical Induction, we verify that S xn 6 S xn+1 and S yn > S yn+1 for all
n ∈ N ∪ {0} . Given that S x0 6 T (x0, y0) and S y0 > T (y0, x0). Thus, the statement is true for n = 0.
Suppose that the claim is true for some fixed n = k. That is; S xk 6 S xk+1 and S yk > S yk+1. By S -mixed
monotone property of T , we obtain S xk+1 6 S xk+2 and S yk+1 > S yk+2. Thus, the statement is true for
n = k + 1. The later lines guarantee that

(S xn, S yn) . (S xn+1, S yn+1) and (S yn+1, S xn+1) . (S yn, S xn) for all n ∈ N ∪ {0} .

Without loss of generality, we assume that (xn+1, yn+1) , (xn, yn) for all n ∈ N ∪ {0} . From
assumption (2), we have

β ((S x0, S y0) , (S x1, S y1)) = β ((S x0, S y0) , (T (x0, y0) ,T (y0, x0))) � c1.

Due to the fact that T is βS -sequentially admissible, it follows that

β ((T (x0, y0) ,T (y0, x0)) , (T (x1, y1) ,T (y1, x1))) = β ((S x1, S y1) , (S x2, S y2)) � c2.

By continuing this procedure, we have β ((S xn, S yn) , (S xn+1, S yn+1)) � cn+1 for all n ∈ N. Similarly,
we obtain that β ((S yn, S xn) , (S yn+1, S xn+1)) � cn+1 for all n ∈ N. Now, we can apply condition (5) as
follows: 

p (S xn, S xn+1) � kn
2

[
p (S xn−1, S xn) + p (S yn−1, S yn)

]
,

p (S yn, S yn+1) � kn
2

[
p (S yn−1, S yn) + p (S xn−1, S xn)

]
.

On adding the previous two inequalities, one has

p (S xn, S xn+1) + p (S yn, S yn+1) � kn
[
p (S xn−1, S xn) + p (S yn−1, S yn)

]
.

Repeating the above process, we deduce

p (S xn, S xn+1) + p (S yn, S yn+1) �
n∏

i=1

ki
[
p (S x0, S x1) + p (S y0, S y1)

]
for all n ∈ N.

For any n, p ∈ N, we infer

p(S xn, S xn+p)
(PCM4)
�

n+p−1∑
i=n

p(S xi, S xi+1) �
n+p−1∑

i=n

[ n∏
i=1

ki

2

]
p(S x0, S x1)
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=
[ n∏

i=1

ki

2

][ p−1∑
m=1

m∏
i=n+1

ki

2

]
p(S x0, S x1).

By a similar manner, we obtain

p(S yn, S yn+p)
(PCM4)
�

n+p−1∑
i=n

p(S yi, S yi+1) �
n+p−1∑

i=n

[ n∏
i=1

ki

2

]
p(S y0, S y1)

=
[ n∏

i=1

ki

2

][ p−1∑
m=1

m∏
i=n+1

ki

2

]
p(S y0, S y1).

Therefore, we arrive at

p(S xn, S xn+p) + p(S yn, S yn+p) �
[ n∏

i=1

ki

][ p−1∑
m=1

m∏
i=n+1

ki

][
p (S x0, S x1) + p (S y0, S y1)

]
.

Since limn→∞ kn < 1, using the usual form of the Ratio test of series, one can easily see that
{
∑m

i=n

[∏n
i=1 ki

][
p (S x0, S x1) + p (S y0, S y1)

]
}m∈N is convergent to the limit∑∞

i=n

[∏n
i=1 ki

][
p (S x0, S x1) + p (S y0, S y1)

]
and its n’s term {

∏n
i=1 ki}n∈N tends to zero. Therefore, for

given ε > 0, there exists n1 ∈ N such that

∞∑
i=n

 i∏
j=1

k j

 < ε∥∥∥[p (S x0, S x1) + p (S y0, S y1)
]∥∥∥ for all n ≥ n1.

For all n ≥ n1, we consider∥∥∥∥∑n+p−1
i=n

[∏i
j=1 k j

][
p (S x0, S x1) + p (S y0, S y1)

]∥∥∥∥ ≤ ∑n+p−1
i=n

∥∥∥∥[∏i
j=1 k j

][
p (S x0, S x1) + p (S y0, S y1)

]∥∥∥∥
≤

∞∑
i=n

∥∥∥∥∥∥∥[
i∏

j=1

k j

][
p (S x0, S x1) + p (S y0, S y1)

]∥∥∥∥∥∥∥
≤

∞∑
i=n

i∏
j=1

k j

∥∥∥∥[p (S x0, S x1) + p (S y0, S y1)
]∥∥∥∥

< ε.

Thus,
∑n+p−1

i=n

[∏i
j=1 k j

][
p (S x0, S x1) + p (S y0, S y1)

] ‖.‖
→ θ. It follows that, for any c ∈ E with c≫ θ,

there exists n2 ∈ N such that

p
(
yn, yn+p

)
�

n+p−1∑
i=n

[ i∏
j=1

k j

][
p (S x0, S x1) + p (S y0, S y1)

]
≪ c for all n ≥ n2.

Owing to the above arguments, we deduce that the sequences {S xn}n∈N and {S yn}n∈N are θ-Cauchy in
the θ-complete partial satisfactory cone metric space (X, E,C, p). Then, there exist x, y ∈ X such that
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S xn
τp
→ x and S yn

τp
→ y with p (x, x) = θ and p (y, y) = θ. Since {S xn}n∈N ⊆ S X and S X is closed, it leads

that x ∈ S X. So, there must be some x′ ∈ X such that S x′ = x. Similarly, S y′ = y for some y′ ∈ X.
Now, since {S xn} is a non-decreasing sequence that converges to S x′, we get S xn 6 S x′ for all n.
Similarly, we have S y′ 6 S yn for all n. That is; (S xn, S yn) . (S x′, S y′) for all n. Since

(X, E,C, p,6) is βS − regular, we obtain

β
(
(S xn, S yn) ,

(
S x′, S y′

))
� cn+1 and β

(
(S yn, S xn) ,

(
S y′, S x′

))
� cn+1.

Since S xn
τp
→ S x′ and S yn

τp
→ S y′, then for c ∈ E with c≫ θ and for all m ∈ N, choose n3 ∈ N such

that kn+1
2 p (S xn, S x′)≪ c

3m ,
kn+1

2 p (S yn, S y′)≪ c
3m and p (S xn+1, S x′)≪ c

3m for all n ≥ n3.

For all n ≥ n3, we have

p (T (x′, y′) , S x′)
(PCM4)
� p (T (x′, y′) ,T (xn, yn)) + p (S xn+1, S x′)

(5)
�

kn+1

2

[
p
(
S xn, S x′

)
+ p

(
S yn, S y′

) ]
+ p

(
S xn+1, S x′

)
≪ c

m .

Proceeding limit as m→ ∞, we get p (T (x′, y′) , S x′) = θ and so T (x′, y′) = S x′. In such a similar
way, one can easily get T (y′, x′) = S y′. Therefore, we reach that (x′, y′) is a coupled coincidence point
of T, S and (S x′, S y′) is a coupled point of coincidence of T, S . �

Remark 3.16. If we replace the mapping S by I, the identity mapping on X, in the statements of
Theorem (3.15), we have a new type of mappings for which we proved the existence of the coupled
fixed-point of the mapping T .

4. Applications of fixed-point theory to ordinary differential equations

In this section, we apply Theorem (3.9) with S = I to study the existence of a unique solution for
the following two-point boundary value problem of the second-order differential equation:

−d2 x
dt2 = f (t, x (t)) , t ∈ [0, 1] ;

x (0) = x (1) = 0,
(4.1)

where f : [0, 1] × R→ R is a continuous function.

Theorem 4.1. Presume that the following hypotheses hold:
(1) For all s ∈ [0, 1] , f (s, .) is a non-decreasing function;
(2) If f (s, x (s)) = x (s) for all s ∈ [0, 1] , then we have

f
(
s,

∫ s

0
x (w) dw

)
=

∫ s

0
f (w, x (w)) dw for all s ∈ [0, 1] ;

(3) There exists a continuous function K : [0, 1]→ R+ such that

f (s, y (s)) − f (s, x (s)) ≤ K (s)
[
y (s) − x (s)

]
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for all s ∈ [0, 1] with x � y;
(4) There exists L ∈ [0, 1) such that sups∈[0,1] K (s) ≤ L

2 ;
(5) There exists a symmetric function ϕ : R2 → R with the following properties:
(ϕ1) There exists x0 ∈ CR [0, 1] such that for all t ∈ [0, 1] , we have

ϕ

(
x0 (t) ,

∫ 1

0
G (t, s) f (s, x0 (s)) ds

)
≥ 0;

(ϕ2) For all t ∈ [0, 1] and for any x, y ∈ CR [0, 1] , ϕ (x (t) , y (t)) ≥ 0 implies

ϕ

(∫ 1

0
G (t, s) f (s, x (s)) ds,

∫ 1

0
G (t, s) f (s, y (s)) ds

)
≥ 0;

(ϕ3) If {xn}n∈N in CR [0, 1] such that ϕ(xn, xn+1) ≥ 0 for all n ∈ N and xn
τp
→ x∗ ∈ CR [0, 1], we have

ϕ(xn, x∗) ≥ 0 for sufficiently large n.
Then, the mentioned second-order differential equation (4.1) has a unique solution in CR [0, 1] .

Proof. Clearly, the problem (4.1) is equivalent to the integral equation

x (t) =

∫ 1

0
G (t, s) f (s, x (s)) ds for all t ∈ [0, 1] , (4.2)

where G (t, s) is the Green function defined by

G (t, s) =

t (1 − s) , if 0 ≤ t ≤ s ≤ 1;
s (1 − t) , if 0 ≤ s ≤ t ≤ 1.

It is clear that the existence of a solution of (4.1) is equivalent to the existence of the integral
equation (4.2).

Let X = E := CR [0, 1] be the Banach space of all real continuous functions on the closed unit
interval [0, 1] and C := {u ∈ E : u (t) ≥ 0, t ∈ [0, 1]} , which is a solid (semi-solid) cone.

Define p : X × X → C by

p (x, y) (t) =

(
sup

t∈[0,1]
{|x (t) − y (t)|}

)
ψ (t) ,

where ψ (t) = et ∈ E. Then, easily one can verify that (X, E,C, p) is a θ−complete partial satisfactory
cone metric space.

We endow X with the partial order � given by

x � y if and only if x (t) ≤ y (t) for all t ∈ [0, 1] .

Let T : CR [0, 1]→ CR [0, 1] be defined by

T x (t) =

∫ 1

0
G (t, s) f (s, x (s)) ds for all t ∈ [0, 1] .

AIMS Mathematics Volume 8, Issue 4, 8431–8459.



8452

Obviously, the fixed-point of T is a solution of (4.1) or, equivalently; a solution of the problem (4.2).
We will check that the mapping T satisfies all the conditions of Theorem (3.9) with S = I.
First, we show that T is non-decreasing with regards to � . Since f is non-decreasing with respect

to its second variable, then for any x, y ∈ X with x � y and for any t ∈ [0, 1] , we have

T x (t) =

∫ 1

0
G (t, s) f (s, x (s)) ds ≤

∫ 1

0
G (t, s) f (s, y (s)) ds = Ty (t) ,

since G (x, y) ≥ 0 for any t, s ∈ [0, 1] . Thus, we have T x � Ty.
Define α : X × X → C by

α (x, y) =

1, if ϕ (x (t) , y (t)) ≥ 0 or x � y,

λ, otherwise,

where λ ∈ (0, 1) and t ∈ [0, 1] . If x, y ∈ X, α (x, y) ≥ 1, then x � y or ϕ (x (t) , y (t)) ≥ 0. Observe
that α (x, y) ≥ 1 =⇒ x � y =⇒ T x � Ty =⇒ α (T x,Ty) ≥ 1. If x, y ∈ X, α (x, y) ≥ 1 implies
ϕ (x (t) , y (t)) ≥ 0, then by condition (ϕ2), we get ϕ (T x (t) ,Ty (t)) ≥ 0 and thus α (T x,Ty) ≥ 1.
Therefore, T is α−sequentially admissible mapping with cn = 1 for any n ∈ N.

Since there exists x0 ∈ CR [0, 1] such that

ϕ

(
x0 (t) ,

∫ 1

0
G (t, s) f (s, x0 (s)) ds

)
= ϕ (x0 (t) ,T x0 (t)) ≥ 0

for all t ∈ [0, 1] , then α (x0,T x0) ≥ 1.
From condition (ϕ3) , it is easy to verify that (X, E,C, p) is αS−sequentially regular.
Now, let x, y ∈ X such that x � y. Then, we have

p (T x,Ty) (t) =
(

supt∈[0,1] {|T x (t) − Ty (t)|}
)
ψ (t)

=
(
supt∈[0,1]

{[
Ty (t) − T x (t)

]})
ψ (t)

=
(

sup
t∈[0,1]

[ ∫ 1

0
G (t, s) f (s, y (s)) ds −

∫ 1

0
G (t, s) f (s, x (s)) ds

])
ψ (t)

=
(

supt∈[0,1]

{∫ 1

0
G (t, s)

[
f (s, y (s)) − f (s, x (s))

]
ds

} )
ψ (t)

≤
(

supt∈[0,1]

{∫ 1

0
G (t, s)

(
K (s)

[
y (s) − x (s)

])
ds

} )
ψ (t)

≤
(

supt∈[0,1]

{
sups∈[0,1] K (s)

∫ 1

0
G (t, s)

[
y (s) − x (s)

]
ds

} )
ψ (t)

≤ L
2

(
supt∈[0,1]

{∫ 1

0
G (t, s)

[
y (s) − x (s)

]
ds

} )
ψ (t)

≤ L
2

(
supt∈[0,1]

[
y (t) − x (t)

] {
supt∈[0,1]

∫ 1

0
G (t, s) ds

} )
ψ (t)

=
L
2

({
sup

t∈[0,1]
|x (t) − y (t)|

}
sup

t∈[0,1]

{
−

t2

2
+

t
2

})
ψ (t)
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= L
16

(
supt∈[0,1] {|x (t) − y (t)|}

)
ψ (t)

=
(

L
16

)
p (x, y) (t) .

Therefore,

p (T x,Ty) (t) ≤
( L
16

)
p (x, y) (t)

for any t ∈ [0, 1] and for certain L ∈ [0, 1) .
Hence, we find a constant sequence of positive real numbers kn = L

16 for any n ∈ N such that
limn→∞ kn = L

16 < 1 and satisfying
p (T x,Ty) � kn p (x, y)

for any x, y ∈ X with α (x, y) ≥ 1. Therefore, all the conditions of Theorem (3.9) hold with S = I and
thus T has a unique fixed-point in CR [0, 1] . Thus, there is a unique solution of problem (4.1). �

5. Applications of coupled fixed-point to integral equations

In this section, we study the existence of solutions for the following system of integral equations:
x (r) =

∫ b

a
(H1 (r, s) + H2 (r, s))

[
f (s, x (s)) + g (s, y (s))

]
ds + k (r) ;

y (r) =
∫ b

a
(H1 (r, s) + H2 (r, s))

[
f (s, y (s)) + g (s, x (s))

]
ds + k (r) ,

(5.1)

where r ∈ [a, b] ; H1,H2 ∈ CR ([a, b] × [a, b]) ; f , g ∈ CR ([a, b] × R) and k ∈ CR [a, b] .

Theorem 5.1. Assume that the following conditions hold:
(1) H1 (r, s) ≥ 0 and H2 (r, s) ≤ 0 for all r, s ∈ [a, b] ;
(2) supt∈[a,b]

∫ b

a
[H1 (r, s) − H2 (r, s)] ds ≤ 1

4ρ for some positive real number ρ;
(3) There exists a symmetric function ϑ : C2

R [a, b] ×C2
R [a, b]→ R with the following properties:

(ϑ1) For all (x, y) , (u, v) ∈ C2
R [a, b] , ϑ ((x, y) , (u, v)) ≥ 0 implies

ϑ ((T (x, y) ,T (y, x)) , (T (u, v) ,T (v, u))) ≥ 0;

(ϑ2) There exist x0, y0 ∈ CR [a, b] such that (x0, y0) . (T (x0, y0) ,T (y0, x0)) ,
ϑ ((x0, y0) , (T (x0, y0) ,T (y0, x0))) ≥ 0,

ϑ ((y0, x0) , (T (y0, x0) ,T (x0, y0))) ≥ 0;

(ϑ3) For all x, y, u, v ∈ X with (x, y) . (u, v) and ϑ ((x, y) , (u, v)) ≥ 0, the following Lipschitzian-type
conditions hold: 

0 ≤ f (r, x) − f (r, u) ≤ (x − u) ,

0 ≤ f (r, v) − f (r, y) ≤ (v − y) ,

− (v − y) ≤ g (r, v) − g (r, y) ≤ 0,

− (x − u) ≤ g (r, x) − g (r, u) ≤ 0;
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(ϑ4) If {xn} and {yn} are two sequences in CR [a, b] such that
ϑ ((xn, yn) , (xn+1, yn+1)) ≥ 1,

ϑ ((yn, xn) , (yn+1, xn+1)) ≥ 1

for all n ∈ N and xn
τp
→ x∗, yn

τp
→ y∗, then

ϑ ((xn, yn) , (x∗, y∗)) ≥ 1 and ϑ ((yn, xn) , (y∗, x∗)) ≥ 1 for sufficiently large n.

With these conditions, the system of integral equations (5.1) has at least one solution in CR [a, b] ×
CR [a, b] .

Proof. Let X = E := CR [a, b] be the Banach space of all real continuous functions on [a, b] and
C := {u ∈ E : u (t) ≥ 0, t ∈ [a, b]} , which is a solid (semi-solid) cone. Define p : X × X → C by

p (x, y) (t) =

(
sup

t∈[a,b]
{|x (t) − y (t)|}

)
ψ (t) ,

where ψ (t) = et ∈ E. Then, (X, E,C, p) is a θ−complete partial satisfactory cone metric space. Suppose
that CR [a, b] is endowed with the natural partial ordered relation, that is; for all x, y ∈ CR [a, b] , x �
y if and only if x (t) ≤ y for all t ∈ [a, b] .

The set X × X = CR [a, b] ×CR [a, b] is partially ordered under the following ordered relation:

(x, y) . (u, v) if and only if x (r) ≤ u (r) and y (r) ≥ v (r) for all r ∈ [a, b] .

For any x, y ∈ X, maxr∈[a,b] {x (r) , y (r)} ,minr∈[a,b] {x (r) , y (r)} ∈ X are the upper and lower bounds
of x and y, respectively. Therefore, for every (x, y) , (u, v) ∈ X × X, there is
(max {x, u} ,min {y, v}) ∈ X × X that comparable to (x, y) and (u, v) .

Define T : X × X → X by

T (x, y) (r) =

∫ b

a
H1 (r, s)

[
f (s, x (s)) + g (s, y (s))

]
ds +

∫ b

a
H2 (r, s)

[
f (s, y (s)) + g (s, x (s))

]
ds + k (r)

for all r ∈ [a, b] .
First, we show that T has the mixed monotone property. If (t1, u) . (t2, u) , then for all r ∈ [a, b] ,

we have

T (t1, u) (r) =

∫ b

a
H1 (r, s)

[
f (s, t1 (s))+g (s, u (s))

]
ds+

∫ b

a
H2 (r, s)

[
f (s, u (s))+g (s, t1 (s))

]
ds+k (r)

≤

∫ b

a
H1 (r, s)

[
f (s, t2 (s))+g (s, u (s))

]
ds+

∫ b

a
H2 (r, s)

[
f (s, u (s))+g (s, t2 (s))

]
ds+k (r)

= T (t2, u) (r) .

Thus, T (t1, u) � T (t2, u) . Similarly, T (t, u1) � T (t, u2) whenever (t, u1) . (t, u2) .
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Let β : X2 × X2 → C be defined by

β ((x, y) , (u, v)) =

1, if ϑ ((x (t) , y (t)) , (u (t) , v (t))) ≥ 0,
0, otherwise.

If x, y, u, v ∈ X, β ((x, y) , (u, v)) ≥ 1, then ϑ ((x (t) , y (t)) , (u (t) , v (t))) ≥ 0.
By condition (ϑ1), we get ϕ (T x (t) ,Ty (t)) ≥ 0 and thus β ((x, y) , (u, v)) ≥ 1. Therefore, T is β-

sequentially admissible mapping with cn = 1 for any n ∈ N.
From condition (ϑ2) , it follows that there exist x0, y0 ∈ CR [a, b] with

(x0, y0) . (T (x0, y0) ,T (y0, x0)) such that β ((x0, y0) , (T (x0, y0) ,T (y0, x0))) ≥ 0 and
β ((y0, x0) , (T (y0, x0) ,T (x0, y0))) ≥ 0. Thus, condition (2) in Theorem (3.15) is satisfied with S = I.

The property (X, E,C, p) is β−sequentially regular follows trivially from the corresponding
condition of the mapping ϑ.

Next, suppose that {tn} is a monotone non-decreasing sequence in X that converges to a point t ∈ X.
Then, for any r ∈ [a, b] , the sequence of real numbers

t1 (t) ≤ t2 (t) ≤ · · · ≤ tn (t) ≤ · · ·

converges to t (r) . Thus, for all t (r) ∈ [a, b] , we have tn (r) ≤ t (r) and thus tn � t for all n ∈ N.
Similarly, if u (r) is a limit of a monotone non-increasing sequence {un} in X, then un (r) ≥ u (r) and
thus un � u for all n ∈ N. Therefore, (X, E,C, p,�) is regular.

For all x, y, u, v ∈ X with (x, y) . (u, v) and ϑ ((x, y) , (u, v)) ≥ 0, it follows that

p (T (x, y) ,T (u, v)) (r)

=
(

supr∈[a,b] |T (x, y) (r) − T (u, v) (r)|
)
ψ (t)

=
(

sup
r∈[a,b]

∣∣∣∣∣∣
∫ b

a
H1 (r, s)

[
( f (s, x (s)) − f (s, u (s))) − (g (s, v (s)) − g (s, y (s)))

]
ds

−

∫ b

a
H2 (r, s)

[
( f (s, v (s)) − f (s, y (s))) − (g (s, x (s)) − g (s, u (s)))

]
ds

∣∣∣∣∣∣ )ψ (t)

≤
(

supr∈[a,b]

∣∣∣∣∫ b

a
H1 (r, s)

[
(u (s) − x (s)) + (y (s) − v (s))

]
ds

−
∫ b

a
H2 (r, s)

[
(y (s) − v (s)) + (u (s) − x (s))

]
ds

∣∣∣∣ )ψ (t)

=
(

sup
r∈[a,b]

∣∣∣∣∣∣
∫ b

a
(H1 (r, s) − H2 (r, s))

[
(x (s) − u (s)) + (v (s) − y (s))

]
ds

∣∣∣∣)ψ (t)

≤
(

sup
r∈[a,b]

∣∣∣∣∣∣
∫ b

a
(H1 (r, s) − H2 (r, s))

[
sup

s∈[a,b]
(x (s) − u (s)) + sup

s∈[a,b]
(v (s) − y (s))

]
ds

∣∣∣∣∣∣ )ψ (t)

=
( [

sup
s∈[a,b]

|x (s) − u (s)| + sup
s∈[a,b]

|v (s) − y (s)|
]

sup
r∈[a,b]

∫ b

a
(H1 (r, s) − H2 (r, s)) ds

)
ψ (t)
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≤ 1
4ρ

[
sups∈[a,b] |x (s) − u (s)| + sups∈[a,b] |v (s) − y (s)|

]
ψ (t)

≤ 1
4ρ

[
p (x, u) + p (y, v)

]
(r),

for any r ∈ [a, b]. Therefore, we can find a constant sequence of positive real numbers kn = 1
2ρ for all

n ∈ N such that limn→∞ kn = 1
2ρ < 1 and satisfying

p (T (x, y) ,T (u, v)) �
kn

2

[
p (x, u) + p (y, v)

]
for all (x, y) . (u, v) and β ((x, y) , (u, v)) ≥ 1.Which is just the contractive condition in Theorem (3.15).
All the hypotheses of Theorem (3.15) with S = I, are satisfied. Therefore, T has a coupled fixed-points
in CR [a, b] ×CR [a, b]. �

6. Conclusions

The study of this article along with our defined distance structure represents a new research
direction that included updated versions of some abstract results and some methods in fixed-point
lectures. Many of the previously known results found in fixed-point theory consider direct
generalizations and special occurrences of the results of this article. In the present paper, there are
multiple appearances of various types of generalized admissible mappings and mappings have mixed
monotone property associated with several interesting conditions. In this regard, we discussed the
problem of finding coincidence points, coupled coincidence points, coupled fixed-point and
fixed-points of such mappings. For showing efficiency of the obtained main results we gave some
applications. In one approach, we introduced a novel fixed-point technique to ordinary differential
equations in partial satisfactory cone metric spaces, and in another approach we studied the existence
of solutions in a system including non-linear integral equations.
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