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1. Introduction

In the modelling of numerous real-world events in control theory, chemistry, physics and other
branches of engineering and science, fractional derivatives can be used successfully [1–5]. The basic
reason for this is that fractional calculus can be used to model real-world issues successfully because
realistic models not only depend on the present time but also on the past historical time [6–8]. As a
result, the fractional differential equations (FDEs) have drawn the interest of numerous scientific and
engineering academics due to their significant role in understanding a number of real-life process that
happen in the natural sciences, such as mechanical systems, wave propagation phenomena, earthquake
modelling, image processing and control theory. Fractional calculus can be used to describe and
reformulate these processes as FDEs. The use of FDEs in the aforementioned and other phenomena
is notable for their nonlocality feature. Similarly, the differential operators give an excellent way to
describe the memory and inherited characteristics of distinct processes and materials [9, 10].

In the framework of fractional derivatives, partial differential equations (PDEs) are regarded as a
potential tool in mathematical modelling to explain and understand some physical processes structures
that are complicated due to outside influences. Because of this reason, researchers utilized them to
both construct a natural problem that is easily accessible and to simplify the regulating plan without
losing some inherited material or memorial impact [11–13]. The development of trustworthy numerical
methods to handle the fraction PDEs of physical concern has also been the subject of countless
efforts, many of which have been successful [14–19]. Many real-world issues, such as earthquakes,
gas dynamics, traffic flow and oscillation, can be formulated as nonlinear PDEs in the framework
of fractional derivative, and the solutions of fractional PDEs provide remarkable insight into the
behaviour of particular dynamic systems [20, 21]. Therefore, it is important to develop a practical and
useful method for identifying analytical solutions to these and other issues. To examine and develop
analytical-approximate solutions of fractional FDEs and PDEs, researchers have recently used a variety
of analytical and numerical methodologies, such as the Homotopy perturbation transform method [22],
residual power series (RPS) method [23], Adomian decomposition method [24], variational iteration
transform method [25, 26], Iterative laplace transform method [27], Elzaki transform decomposition
method [28, 29] and Natural transform decomposition method [30, 31].

A numerical analytic method for solving many forms of ordinary, partial, integro-differential
equations and fractional fuzzy differential equations is known as the residual power series (RPS)
technique. The RPSM was introduced by Jordanian mathematician Omar Abu Arqub in 2013 [32]. Due
to the fact that it offers closed-form solutions of well-known functions, it is an efficient optimization
strategy [33, 34]. With the use of the fractional residual power series (FRPS) technique, fuzzy FDEs,
a variety of FDEs, and integral equations having fractional-order are solved. Such as, Coupled
fractional resonant Schrödinger equations [35], time-fractional Fokker-Planck models [36], fractional
fredholm integro-differential equations [37], fractional Newell-hitehead-Segel equation [38], singular
initial value problems [39], Fractional partial differential equations [40], fractional Kundu-Eckhaus and
massive Thirring equations [41] and several classes of fractional fuzzy differential equations [42, 43].
The Yang transform (YT) is a powerful tool for resolving numerous complex models that are appearing
in various branches of the natural sciences. When analytical methods are combined with the YT
operator, non-linear problems can be solved more quickly and with more precision.

Researchers introduced a new approach to solve fractional differential equations by combining
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two well-known approaches. Several of these groups include a combination of the homotopy
analysis method and the natural transform [44], also homotopy perturbation approach and the Sumudu
transform [45], the Yang transform and the Adomian decomposition method [46], and the Laplace
transform with RPSM [47]. The main goal of this work is to examine the approximate solution of
nonlinear systems by implementing the Yang residual power series (YRPS) method. The YT and
RPS approaches are combined in the YRPS approach, which provides both approximate and accurate
solutions as quickly fractional power series (FPS) solutions. The proposed system is converted to Yang
space, and then the solutions in the form of algebraic equations are created. Lastly, the Yang inverse
is applied to the proposed problem results. In contrast to the FRPS approach, which depends on the
fractional derivative and consume time to compute the various derivatives of fractional-order in steps
of determining the solutions, the unknown coefficients in a modified Yang expansion can be identified
by employing the limit idea. The YRPS approach take less time and provide higher accuracy with
minor computational requirements.

In this article, we consider fractional nonlinear systems as:

Dς
t u + vϑwψ − vψwϑ + u = 0, 0 < ς ≤ 1,

Dς
t v + wϑuψ − uψwϑ − v = 0,

Dς
t w + uϑvψ − uψvϑ − w = 0,

(1.1)

having initial sources

u(ϑ, ψ, 0) = f0(ϑ, ψ),
v(ϑ, ψ, 0) = g0(ϑ, ψ),
w(ϑ, ψ, 0) = h0(ϑ, ψ),

(1.2)

and

Dς
t u − uϑϑ − 2uuϑ + (uv)ϑ = 0, 0 < ς ≤ 1,

Dς
t v − vϑϑ − 2vvϑ + (uv)ϑ = 0,

(1.3)

having initial sources

u(ϑ, ψ, 0) = f0(ϑ, ψ),
v(ϑ, ψ, 0) = g0(ϑ, ψ).

(1.4)

Following is the breakdown of our study. Section 2 reviews the YT, as well as some fundamental
definitions and theorem pertaining to fractional calculus. Section 3 describes the idea behind the
suggested technique for creating the approximation of the fractional model taken into account in
Eq (1.1). In Section 4, the YRPS methodology is applied to solve fractional nonlinear systems in
order to show the applicability and efficacy of the method in analysing the solutions of time-PDEs of
fractional order. Section 5 concludes with a summary of our results.

2. Preliminaries

In this part, we review some definitions and fractional derivatives theorems in Caputo manner along
with YT properties.
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Definition 2.1. In Caputo sense the fractional derivative of a function u(ϑ, t) is given as [48]

CDς
t u(ϑ, t) = Jm−ς

t um(ϑ, t), m − 1 < ς ≤ m, t > 0, (2.1)

with m ∈ N and Jςt represents the fractional integral in Riemann-Liouville manner of u(ϑ, t) as

Jςt u(ϑ, t) =
1

Γ(ς)

∫ t

0
(t − τ)ς−1u(ϑ, τ)dτ. (2.2)

Definition 2.2. The YT of a function φ(κ) is stated by Y{u(t)} or M(s) as [49, 50]

Y{u(t)} = M(s) =

∫ ∞

0
e
−t
s u(t)dt, t > 0, s ∈ (−t1, t2). (2.3)

The inverse YT is given as
Y−1{M(s)} = u(t). (2.4)

Definition 2.3. The nth derivatives YT is given [49, 50]

Y{un(t)} =
M(s)

sn −

n−1∑
k=0

uk(0)
sn−k−1 , ∀ n = 1, 2, 3, · · · (2.5)

Definition 2.4. The YT of derivatives having order fraction is as [49, 50]

Y{uς(t)} =
M(s)

sς
−

n−1∑
k=0

uk(0)
sς−(k+1) , 0 < ς ≤ n. (2.6)

Theorem 2.5. The fractional power series
∑∞

m−0 am(t − ε)mp can converge within just three of the
following ways:
(1) The series converges only when the radius of convergence equals zero, or t = ε.
(2) The series converges with a radius of convergence equal to∞ for all t ≥ ε.
(3) The series diverges for t > c + R and converges for ε ≤ t < ε + R and some real positive integer R.
In this context, R refers to the fractional power series radius of convergence.

3. Idea of YRPS

In this part, we will present the general implementation of YRPS for solving fractional nonlinear
systems of PDEs.

By employing YT to Eq (1.1), we have

U(ϑ, ψ, s) − s f0(ϑ, ψ) + sςYt

[
Y−1

t [Vϑ]Y−1
t [Wψ] − Y−1

t [Vψ]Y−1
t [Wϑ] +Y−1

t [U]
]

= 0,

V(ϑ, ψ, s) − sg0(ϑ, ψ) + sςYt

[
Y−1

t [Wϑ]Y−1
t [Uψ] − Y−1

t [Uψ]Y−1
t [Wϑ] − Y−1

t [V]
]

= 0,

W(ϑ, ψ, s) − sh0(ϑ, ψ) + sςYt

[
Y−1

t [Uϑ]Y−1
t [Vψ] − Y−1

t [Uψ]Y−1
t [Vϑ] − Y−1

t [W]
]

= 0.

(3.1)
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Considering that the solution of Eq (3.1) has the appropriate expansion

U(ϑ, ψ, s) =

∞∑
n=0

snς+1 fn(ϑ, ψ, s), V(ϑ, ψ, s) =

∞∑
n=0

snς+1gn(ϑ, ψ, s),

W(ϑ, ψ, s) =

∞∑
n=0

snς+1hn(ϑ, ψ, s).

(3.2)

The kth-truncated series are

U(ϑ, ψ, s) = s f0(ϑ, ψ, s) +

k∑
n=1

snς+1 fn(ϑ, ψ, s), V(ϑ, ψ, s) = sg0(ϑ, ψ, s) +

k∑
n=1

snς+1gn(ϑ, ψ, s),

W(ϑ, ψ, s) = sh0(ϑ, ψ, s) +

k∑
n=1

snς+1hn(ϑ, ψ, s). k = 1, 2, 3, 4 · · ·

(3.3)

By Yang residual functions (YRFs)

YtResu(ϑ, ψ, s) =U(ϑ, ψ, s) − s f0(ϑ, ψ, s) + sςYt

[
Y−1

t [Vϑ]Y−1
t [Wψ] − Y−1

t [Vψ]Y−1
t [Wϑ] +Y−1

t [U]
]
,

YtResv(ϑ, ψ, s) =V(ϑ, ψ, s) − sg0(ϑ, ψ, s) + sςYt

[
Y−1

t [Wϑ]Y−1
t [Uψ] − Y−1

t [Uψ]Y−1
t [Wϑ] − Y−1

t [V]
]
,

YtResρ(ϑ, ψ, s) =W(ϑ, ψ, s) − sh0(ϑ, ψ, s) + sςYt

[
Y−1

t [Uϑ]Y−1
t [Vψ] − Y−1

t [Uψ]Y−1
t [Vϑ] − Y−1

t [W]
]
.

(3.4)

And the kth-YRFs as:

YtResu,k(ϑ, ψ, s) =Uk(ϑ, ψ, s) − s f0(ϑ, ψ, s) + sςYt

[
Y−1

t [Vϑ,k]Y−1
t [Wψ,k] − Y−1

t [Vψ,k]Y−1
t [Wϑ,k] +Y−1

t [Uk]
]
,

YtResv,k(ϑ, ψ, s) =Vk(ϑ, ψ, s) − sg0(ϑ, ψ, s) + sςYt

[
Y−1

t [Wϑ,k]Y−1
t [Uψ,k] − Y−1

t [Uψ,k]Y−1
t [Wϑ,k] − Y−1

t [Vk]
]
,

YtResw,k(ϑ, ψ, s) =Wk(ϑ, ψ, s) − sh0(ϑ, ψ, s) + sςYt

[
Y−1

t [Uϑ,k]Y−1
t [Vψ,k] − Y−1

t [Uψ,k]Y−1
t [Vϑ,k] − Y−1

t [Wk]
]
.

(3.5)

To highlight some facts, the YRPSM contains the following characteristics:

• YtRes(ϑ, ψ, s) = 0 and lim j→∞YtResu,k(ϑ, ψ, s) = YtResu(ϑ, ψ, s) for each s > 0.
• lims→∞ sYtResu(ϑ, ψ, s) = 0⇒ lims→∞ sYtResu,k(ϑ, ψ, s) = 0.
• lims→∞ skς+1YtResu,k(ϑ, ψ, s) = lims→∞ skς+1YtResu,k(ϑ, ψ, s) = 0, 0 < ς ≤ 1, k = 1, 2, 3, · · · .

Now to determine the coefficients fn(ϑ, ψ, s), gn(ϑ, ψ, s), hn(ϑ, ψ, s) and ln(ϑ, ψ, s), we resolve the below
system recursively as

lim
s→∞

skς+1YtResu,k(ϑ, ψ, s) = 0, k = 1, 2, · · · ,

lim
s→∞

skς+1YtResv,k(ϑ, ψ, s) = 0, k = 1, 2, · · · ,

lim
s→∞

skς+1YtResρ,k(ϑ, ψ, s) = 0, k = 1, 2, · · · .

(3.6)

Finally by employing inverse YT to Eq (3.3), to obtain the kth analytical solutions of uk(ϑ, ψ, t),
vk(ϑ, ψ, t) and ρk(ϑ, ψ, t)
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4. Applications

In this part, we find the solution of fractional nonlinear systems by implementing the suggested
approach.

4.1. Problem

Let us assume the system of fractional PDEs:

Dς
t u + vϑwψ − vψwϑ + u = 0,

Dς
t v + wϑuψ − uψwϑ − v = 0,

Dς
t w + uϑvψ − uψvϑ − w = 0.

(4.1)

By considering Eq (4.1), having below initial sources:

u(ϑ, ψ, 0) = eϑ+ψ,

v(ϑ, ψ, 0) = eϑ−ψ,

w(ϑ, ψ, 0) = eψ−ϑ.

(4.2)

By employing YT to Eq (4.1) and using Eq (4.2), we have

U(ϑ, ψ, s) − seϑ+ψ + sςYt

[
Y−1

t [Vϑ]Y−1
t [Wψ] − Y−1

t [Vψ]Y−1
t [Wϑ] +Y−1

t [U]
]

= 0,

V(ϑ, ψ, s) − seϑ−ψ + sςYt

[
Y−1

t [Wϑ]Y−1
t [Uψ] − Y−1

t [Uψ]Y−1
t [Wϑ] − Y−1

t [V]
]

= 0,

W(ϑ, ψ, s) − seψ−ϑ + sςYt

[
Y−1

t [Uϑ]Y−1
t [Vψ] − Y−1

t [Uψ]Y−1
t [Vϑ] − Y−1

t [W]
]

= 0.

(4.3)

The kth-truncated term series are

U(ϑ, ψ, s) = seϑ+ψ +

k∑
n=1

snς+1 fn(ϑ, ψ, s), V(ϑ, ψ, s) = seϑ−ψ +

k∑
n=1

snς+1gn(ϑ, ψ, s),

W(ϑ, ψ, s) = seψ−ϑ +

k∑
n=1

snς+1hn(ϑ, ψ, s), k = 1, 2, 3, 4 · · ·

(4.4)

and the kth-YRFs as:

YtResu,k(ϑ, ψ, s) =Uk(ϑ, ψ, s) − seϑ+ψ + sςYt

[
Y−1

t [Vϑ,k]Y−1
t [Wψ,k] − Y−1

t [Vψ,k]Y−1
t [Wϑ,k] +Y−1

t [Uk]
]
,

YtResv,k(ϑ, ψ, s) =Vk(ϑ, ψ, s) − seϑ−ψ + sςYt

[
Y−1

t [Wϑ,k]Y−1
t [Uψ,k] − Y−1

t [Uψ,k]Y−1
t [Wϑ,k] − Y−1

t [Vk]
]
,

YtResw,k(ϑ, ψ, s) =Wk(ϑ, ψ, s) − seψ−ϑ + sςYt

[
Y−1

t [Uϑ,k]Y−1
t [Vψ,k] − Y−1

t [Uψ,k]Y−1
t [Vϑ,k] − Y−1

t [Wk]
]
.

(4.5)

To find fk(ϑ, ψ, s), gk(ϑ, ψ, s) and hk(ϑ, ψ, s) k = 1, 2, 3, · · · , the kth-truncated series equation
Eq (4.4) will be inserted into the kth-Yang residual function equation Eq (4.5), which will
then be multiplied by skς+1 to solve the relation recursively lims→∞(skς+1YtResu,k(ϑ, ψ, s)) = 0,
lims→∞(skς+1YtResv,k(ϑ, ψ, s)) = 0, and lims→∞(skς+1YtResw,k(ϑ, ψ, s)) = 0, k = 1, 2, 3, · · · .
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Few terms are as:

f1(ϑ, ψ, s) =eϑ+ψ, g1(ϑ, ψ, s) = eϑ−ψ, h1(ϑ, ψ, s) = eψ−ϑ,

f2(ϑ, ψ, s) = − eϑ+ψ, g2(ϑ, ψ, s) = eϑ−ψ, h2(ϑ, ψ, s) = eψ−ϑ,

f3(ϑ, ψ, s) =eϑ+ψ, g3(ϑ, ψ, s) = eϑ−ψ, h3(ϑ, ψ, s) = eψ−ϑ,

f4(ϑ, ψ, s) = − eϑ+ψ, g4(ϑ, ψ, s) = eϑ−ψ, h4(ϑ, ψ, s) = eψ−ϑ,

f5(ϑ, ψ, s) =eϑ+ψ, g5(ϑ, ψ, s) = eϑ−ψ, h5(ϑ, ψ, s) = eψ−ϑ,

f6(ϑ, ψ, s) = − eϑ+ψ, g6(ϑ, ψ, s) = eϑ−ψ, h6(ϑ, ψ, s) = eψ−ϑ,

(4.6)

and go on.

By substituting the values of fk(ϑ, ψ, s), gk(ϑ, ψ, s) and hk(ϑ, ψ, s), k = 1, 2, 3, · · · , in Eq (4.4), we
have

U(ϑ, ψ, s) = seϑ+ψ − sς+1eϑ+ψ + s2ς+1eϑ+ψ − s3ς+1eϑ+ψ + s4ς+1eϑ+ψ − s5ς+1eϑ+ψ + s6ς+1eϑ+ψ + · · · ,

V(ϑ, ψ, s) = seϑ−ψ + sς+1eϑ−ψ + s2ς+1eϑ−ψ + s3ς+1eϑ−ψ + s4ς+1eϑ−ψ + s5ς+1eϑ−ψ + s6ς+1eϑ−ψ + · · · ,

W(ϑ, ψ, s) = seψ−ϑ + sς+1eψ−ϑ + s2ς+1eψ−ϑ + s3ς+1eψ−ϑ + s4ς+1eψ−ϑ + s5ς+1eψ−ϑ + s6ς+1eψ−ϑ + · · · .

(4.7)

Figure 1. 3-D and 2-D behavior for u(ϑ, ψ, t) of Problem 1.
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Figure 2. 3-D and 2-D behavior for v(ϑ, ψ, t) of Problem 1.

Figure 3. 3-D and 2-D behavior for w(ϑ, ψ, t) of Problem 1.
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By employing inverse YT, we have

u(ϑ, ψ, t) = eϑ+ψ

(
1 −

tς

Γ(ς + 1)
+

t2ς

Γ(2ς + 1)
−

t3ς

Γ(3ς + 1)
+

t4ς

Γ(4ς + 1)
−

t5ς

Γ(5ς + 1)
+ · · ·

)
,

v(ϑ, ψ, t) = eϑ−ψ
(
1 +

tς

Γ(ς + 1)
+

t2ς

Γ(2ς + 1)
+

t3ς

Γ(3ς + 1)
+

t4ς

Γ(4ς + 1)
+

t5ς

Γ(5ς + 1)
+ · · ·

)
,

ρ(ϑ, ψ, t) = eψ−ϑ
(
1 +

tς

Γ(ς + 1)
+

t2ς

Γ(2ς + 1)
+

t3ς

Γ(3ς + 1)
+

t4ς

Γ(4ς + 1)
+

t5ς

Γ(5ς + 1)
+ · · ·

)
.

Putting ς = 1

u(ϑ, ψ, t) = eϑ+ψ

(
1 − t +

t2

2!
−

t3

3!
+

t4

4!
−

t5

5!
+ · · ·

)
,

v(ϑ, ψ, t) = eϑ−ψ
(
1 + t +

t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+ · · ·

)
,

w(ϑ, ψ, t) = eψ−ϑ
(
1 + t +

t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+ · · ·

)
.

(4.8)

Thus we get exact solutions as

u(ϑ, ψ, t) = eϑ+ψ−t,

v(ϑ, ψ, t) = eϑ−ψ+t,

ρ(ϑ, ψ, t) = eψ−ϑ+t.

(4.9)

Table 1. Behavior on the basis of Error by implementing YRPSM for the suggested problem
at different values of t and ϑ with ς = 1, ψ = 1.

t ϑ |uexact − uYRPS M | |vexact − vYRPS M | |wexact − wYRPS M |

0.2 0.2 2.671×10−8 9.927×10−8 1.8080×10−8

0.4 3.263×10−8 1.212×10−8 1.4810×10−8

0.6 3.986×10−7 1.481×10−8 1.2126×10−7

0.8 4.868×10−7 1.808×10−7 9.9270×10−7

1 5.945×10−6 2.209×10−7 8.1280×10−6

0.4 0.2 2.1267×10−7 7.981×10−8 1.4544×10−8

0.4 2.5975×10−7 9.748×10−7 1.1908×10−7

0.6 3.1727×10−6 1.190×10−7 9.7489×10−7

0.8 3.8752×10−6 1.454×10−6 7.9817×10−6

1 4.7330×10−5 1.776×10−6 6.5349×10−6

0.6 0.2 7.142×10−6 2.707×10−7 4.9333×10−6

0.4 8.7233×10−6 3.3068×10−6 4.0390×10−6

0.6 1.0654×10−5 4.0390×10−5 3.3068×10−5

0.8 1.3013×10−5 4.9333×10−5 2.7074×10−5

1 1.5894×10−4 6.0254×10−5 2.2166×10−5
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4.2. Problem

Let us assume the system of fractional Burger’s equations:

Dς
t u − uϑϑ − 2uuϑ + (uv)ϑ = 0,

Dς
t v − vϑϑ − 2vvϑ + (uv)ϑ = 0.

(4.10)

By considering Eq (4.10), having below initial sources:

u(ϑ, 0) = sin(ϑ),
v(ϑ, 0) = sin(ϑ).

(4.11)

By employing YT to Eq (4.10) and using Eq (4.11), we get

U(ϑ, s) − s sin(ϑ) + sςYt

[
−Y−1

t [Uϑϑ] − 2Y−1
t [U]Y−1

t [Uϑ] +Y−1
t [(UV)ϑ]

]
= 0,

V(ϑ, s) − s sin(ϑ) + sςYt

[
−Y−1

t [Vϑϑ] − 2Y−1
t [V]Y−1

t [Vϑ] +Y−1
t [(UV)ϑ]

]
= 0.

(4.12)

The kth-truncated series are

U(ϑ, s) = s sin(ϑ) +

k∑
n=1

snς+1 fn(ϑ, s),V(ϑ, s) = s sin(ϑ) +

k∑
n=1

snς+1gn(ϑ, s), k = 1, 2, 3, 4 · · · (4.13)

and the kth-YRFs as:

YtResu,k(ϑ, s) =Uk(ϑ, s) − s sin(ϑ) + sςYt

[
−Y−1

t [Uϑϑ,k] − 2Y−1
t [Uk]Y−1

t [Uϑ,k] +Y−1
t [(UV)ϑ,k]

]
,

YtResv,k(ϑ, s) =Vk(ϑ, s) − s sin(ϑ) + sςYt

[
−Y−1

t [Vϑϑ,k] − 2Y−1
t [Vk]Y−1

t [Vϑ,k] +Y−1
t [(UV)ϑ,k]

]
.

(4.14)

To find fk(ϑ, s) and gk(ϑ, s), k = 1, 2, 3, · · · , the kth-truncated series equation Eq (4.13) will be inserted
into the kth-Yang residual function equation Eq (4.14), which will then be multiplied by skς+1 to
solve the relation recursively lims→∞(skς+1YtResu,k(ϑ, s)) = 0 and lims→∞(skς+1YtResv,k(ϑ, s)) = 0,
k = 1, 2, 3, · · · .

Few terms are as:

f1(ϑ, s) = sin(ϑ), g1(ϑ, s) = sin(ϑ),
f2(ϑ, s) = − sin(ϑ), g2(ϑ, s) = − sin(ϑ),
f3(ϑ, s) = sin(ϑ), g3(ϑ, s) = sin(ϑ),
f4(ϑ, s) = − sin(ϑ), g4(ϑ, s) = − sin(ϑ),
f5(ϑ, s) = sin(ϑ), g5(ϑ, s) = sin(ϑ),
f6(ϑ, s) = − sin(ϑ), g6(ϑ, s) = − sin(ϑ),

(4.15)

and so on.
By substituting the values of fk(ϑ, s) and gk(ϑ, s), k = 1, 2, 3, · · · , in Eq (4.13), we have

U(ϑ, s) = s sin(ϑ) − sς+1 sin(ϑ) + s2ς+1 sin(ϑ) − s3ς+1 sin(ϑ) + s4ς+1 sin(ϑ) − s5ς+1 sin(ϑ) + s6ς+1 sin(ϑ) + · · · ,

V(ϑ, s) = s sin(ϑ) − sς+1 sin(ϑ) + s2ς+1 sin(ϑ) − s3ς+1 sin(ϑ) + s4ς+1 sin(ϑ) − s5ς+1 sin(ϑ) + s6ς+1 sin(ϑ) + · · · .
(4.16)
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By employing inverse YT, we have

u(ϑ, t) = sin(ϑ)
(
1 −

tς

Γ(ς + 1)
+

t2ς

Γ(2ς + 1)
−

t3ς

Γ(3ς + 1)
+

t4ς

Γ(4ς + 1)
−

t5ς

Γ(5ς + 1)
+ · · ·

)
,

v(ϑ, t) = sin(ϑ)
(
1 −

tς

Γ(ς + 1)
+

t2ς

Γ(2ς + 1)
−

t3ς

Γ(3ς + 1)
+

t4ς

Γ(4ς + 1)
−

t5ς

Γ(5ς + 1)
+ · · ·

)
.

Putting ς = 1

u(ϑ, t) = sin(ϑ)
(
1 − t +

t2

2!
−

t3

3!
+

t4

4!
−

t5

5!
+ · · ·

)
,

v(ϑ, t) = sin(ϑ)
(
1 − t +

t2

2!
−

t3

3!
+

t4

4!
−

t5

5!
+ · · ·

)
.

(4.17)

Thus we get accurate solutions as

u(ϑ, t) = e−t sin(ϑ),
v(ϑ, t) = e−t sin(ϑ).

(4.18)

Figure 4. 3-D and 2-D behavior for u(ϑ, t) and v(ϑ, t) of Problem 2.

4.3. Results and discussion

In the present study, we obtained the closed form solution of two nonlinear fractional systems by
means of YRPSM upto sixth order. The obtained results are describes with the help of graphs and
table. The YRPSM results for system 1 on the basis of error is illustrated in Table 1. Figure 1a,b
shows the exact and analytical behavior whereas Figure 1c,d shows the 3-D and 2-D behavior of
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approximate solution at different fractional-orders for u(ϑ, ψ, t). Figure 2a,b shows the exact and
analytical behavior whereas Figure 2c,d shows the 3-D and 2-D behavior of approximate solution
at different fractional-orders for v(ϑ, ψ, t). Figure 3a,b shows the exact and analytical behavior whereas
Figure 3c,d shows the 3-D and 2-D behavior of approximate solution at different fractional-orders
for w(ϑ, ψ, t) of system 1. Similarly, Figure 4a,b shows the exact and analytical behavior whereas
Figure 4c,d shows the 3-D and 2-D behavior of approximate solution at different fractional-orders for
u(ϑ, t) and v(ϑ, t) of system 2. The behavior of Table and Figures shows that our solution is in good
agreement with the exact solutions of the problems.

5. Conclusions

To find the solutions of DEs and FDEs, a variety of numerical and analytical techniques are
employed, some of which are regarded by the prospect of non-exact solutions. This work emphasised
that the suggested strategy, YRPS, is an easy-to-use analytical technique for developing accurate and
approximative solutions for certain systems of FDEs with suitable initial sources. The aforementioned
method gave us the solutions in the Yang transform space by making it simple to calculate the
expansion series constants with the aid of the limit concept at infinity. In contrast to the RPS approach,
the YRPS method requires minimal calculations to obtain the series coefficients since it uses the
limit idea rather than the fractional derivative. The calculated results demonstrate how closely the
approximative solutions approach the accurate solution. This proves that the aforementioned method
is an appropriate and extraordinarily effective method for obtaining the approximative and analytical
solutions to a large number of linear and non-linear fractional problems that arise in engineering and
applied physics.
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