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Abstract: This article’s purpose is to investigate and generalize the concepts of rough set, in addition 

to the q-spherical fuzzy set, and to introduce a novel concept that is called q-spherical fuzzy rough 

set (q-SFRS). This novel approach avoids the complications of more recent ideas like the 

intuitionistic fuzzy rough set, Pythagorean fuzzy rough set, and q-rung orthopair fuzzy rough set.  

Since mathematical operations known as “aggregation operators” are used to bring together sets of 

data. Popular aggregation operations include the arithmetic mean and the weighted mean. The key 

distinction between the weighted mean and the arithmetic mean is that the latter allows us to weight 

the various values based on their importance. Various aggregation operators make different 

assumptions about the input (data kinds) and the kind of information that may be included in the 

model. Because of this, some new q-spherical fuzzy rough weighted arithmetic mean operator and 

q-spherical fuzzy rough weighted geometric mean operator have been introduced. The developed 

operators are more general. Because the picture fuzzy rough weighted arithmetic mean (PFRWAM) 

operator, picture fuzzy rough weighted geometric mean (PFRWGM) operator, spherical fuzzy rough 

weighted arithmetic mean (SFRWAM) operator and spherical fuzzy rough weighted geometric mean 

(SFRWGM) operator are all the special cases of the q-SFRWAM and q-SFRWGM operators. When 

parameter q=1, the q-SFRWAM operator reduces the PFRWAM operator, and the q-SFRWGM 

operator reduces the PFRWGM operator. When parameter q=2, the q-SFRWAM operator reduces the 
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SFRWAM operator, and the q-SFRWGM operator reduces the SFRWGM operator. Besides, our 

approach is more flexible, and decision-makers can choose different values of parameter q according 

to the different risk attitudes. In addition, the basic properties of these newly presented operators 

have been analyzed in great depth and expounded upon. Additionally, a technique called 

multi-criteria decision-making (MCDM) has been established, and a detailed example has been 

supplied to back up the recently introduced work. An evaluation of the offered methodology is 

established at the article's conclusion. The results of this research show that, compared to the 

q-spherical fuzzy set, our method is better and more effective. 

Keywords: q-spherical fuzzy relation; q-spherical fuzzy approximation; q-spherical fuzzy rough set; 

aggregation operators; decision-making problems 

Mathematics Subject Classification: 60L70, 68N17 

 

1. Introduction  

The fuzzy set theory is an extension of the more conventional crisp set theory, which was 

described for the first time by Zadeh [1]. Also, it was Zadeh who first introduced the idea of a fuzzy 

set, which considers grades that were earned with a positive grade. The intuitionistic fuzzy set (IFS) 

was proposed by Atanassov [2] as an extension of the fuzzy set, in which both the positive and 

negative grades are included, but only if their sum is less than or equal to 1. In other words, both the 

positive grade and the negative grade are taken into consideration by the IFS. IFS has grown in 

significance ever since it was first introduced, and it has been put to extensive use in the solution of 

decision-making issues. In 2014, Cuong [3] expanded the notion of fuzzy sets and IFS and invented a 

new concept that he referred to as a picture fuzzy (PF) set. In this concept, he specifies positive 

grades, neutral grades, and negative grades. Multiple attribute group decision-making strategies 

based on intuitionistic fuzzy frank power aggregation operators were developed by Zhang et al. [4] in 

2015. Seikh and Mandal [5] have introduced several intuitionistic fuzzy Dombi aggregation 

operators and applied them to MCDM issues. Additionally, Zeng et al. [6] established the MCDM by 

merging social network analysis with an intuitionistic fuzzy hybrid contingent aggregation operator. 

It is important to keep in mind that the restriction sum (𝜇+, 𝜇−) ∈ [0, 1] in IFS restricts the 

potential of obtaining both a good grade “𝜇+” and a negative grade “𝜇−” for the same work. To get 

over this limitation, as an extension of the IFS, Yager [7] constructed what is now known as the 

Pythagorean fuzzy set (PyFS). For this generalization, we will make use of the required condition, 

which may be represented as 0 ≤ 𝜇+
2
+ 𝜇−2  ≤ 1. PyFS is a stronger mathematical tool, and it 

provides decision-makers (DMs) in fuzzy set theory with greater flexibility to operate with the data 

at their fingertips. After PyFS was introduced, other academics sought to construct forks of it in the 

form of additional aggregation operators (AOs). As a result, Akram et al. [8] presented some 

Pythagorean Dombi fuzzy AOs. Additionally, Garg [9] design various PyF aggregation operations 

depending on confidence level and apply them to DM situations. Furthermore, Wang and Garg [10] 

have devised an algorithm for MADM that operates according to the principle of PyFS and makes 

use of the interactive Archimedean norm operations. The flexibility of the MAGDM was further 

shown by Wu et al. [11] via the use of the information fusion approach and uncertain Pythagorean 

fuzzy sets. PyFS is a restricted concept that has been brought to the attention of researchers because 

when DMs provide 0.8 as a positive grade (PG) and 0.7 as a negative grade (NG), then sum (0.82 +
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0.72) ≤ ∉ [0, 1], PyFS cannot be used, so PyFS is unable to resolve this issue as a result of the 

current circumstances. Yager [12] developed the idea of q-rung orthopair fuzzy set (q-ROFS) as a 

generalization of IFS and PyFS to reduce the difficulty associated with this task. In a recent article by 

Xing et al. [13], certain point-weighted AOs for q-ROFSs were shown, and their applicability to 

MCDM difficulties was discussed. On top of that, Liu, and Wang [14] have introduced various 

q-ROFS-based AOs for MADM issues. These AOs have been developed. It is important to note that 

the PG and NG are the only grades that are mentioned in any of the concepts, while the abstinence 

grade (AG) is completely disregarded, even though it is necessary to discuss the AG in many 

different types of real-life scenarios. This problem was brought to light by Cuong and Kreinovich [15], 

and they came up with a novel concept that is referred to as a picture fuzzy set (PFS) in the published 

works. When it comes to dealing with the ambiguity and uncertainty that MCDM issues present, PFS 

is a more effective tool. Note that the PFS employs the condition that the sum (𝜇+, 𝜇′, 𝜇−) ∈ [0,1], 

and this feature differentiates the PFS from all other theories to make it more general. In addition, 

Wei [16], which is derived from PFS, discusses a few PF Hamacher AOs.  If the membership grades 

all end up being 0.5 (positive), 0.4 (negative), or 0.2 (negative), then PFS is not a permissible 

formation since its primary requirement is not satisfied. This is because the formula 0.5 + 0.2 + 0.4 ∉ 

[0,1] does not work in this scenario. Mahmood et al. [17] have proposed the idea of a spherical fuzzy 

set (SFS) as a solution to this problem to control it. Since it has been introduced, SFS has been 

receiving increased attention from researchers. Additionally, Deli and Cagman [18] have developed 

some theories for spherical fuzzy numbers as well as an approach is known as the MCDM method. 

In addition, some cosine similarity measures based on SFS have been presented by Raq et al. [19], 

along with their application to DM issues. In addition, Ashraf et al. [20] propose several 

symmetric-based AOs for the SF data. To deal with uncertainty, Kahraman [21] proposed the 

q-spherical fuzzy set. He used the idea to solve a decision-making difficulty. It is believed to be an 

expanded idea of what is known as a spherical fuzzy set. In q-SFS, the element is specified by three 

degrees: Positive ( 𝜇+ ), neutral ( 𝜇′ ), and negative ( 𝜇− ) with the requirement that 0  ≤
(𝜇+)𝑞+(𝜇′)𝑞+(𝜇−)𝑞 ≤ 1. The opinion in this q-spherical fuzzy set is not restricted to yes or no, but 

also includes the option to abstain or refuse. The total of the q powers of (𝜇+), (𝜇′) and (𝜇−) must be 

less than or equal to one. Therefore, q-SFSs (q-Spherical Fuzzy Sets) provide a greater preference 

volume for decision makers so that they may assign their judgments on membership, 

non-membership, and hesitant degrees. 

Rough sets (RS) are a technique initially suggested by Pawlak [22,23] for handling ambiguity. 

There is a mathematical resemblance between this setup and ambiguity and uncertainty. Rough set 

theory (RST), which is an extension of classical set theory, has as its primary instrument the relation, 

which is a representation of information systems. It has been observed that the equivalence relation 

in the Pawlak relational semantics theory is restricted in many practical fields. As a result, many 

authors have extended the Pawlak rough set theory by employing non-equivalence relations, and 

examples of similarity relations can be found in [24,25]. 

Although intuitionistic fuzzy sets, Pythagorean fuzzy sets, and q-rung orthopair fuzzy all have 

their place, they can only consider binary options like yes or no, and human opinion is never just yes 

or no. Take the act of voting as an example; there are four possible outcomes: voting yes, voting no, 

not voting at all, or abstaining from voting. Not voting at all means refusing to vote for someone and 

abstaining from voting means in the parliamentary process when they are there for the vote but don't 

cast a ballot. No currently accepted theory can account for this phenomenon. Keep in mind that the 

picture fuzzy set and the spherical fuzzy set can deal with these kinds of problems, despite certain 

limitations. The q-spherical fuzzy set, however, has shown to be the most effective framework for 
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dealing with problems of this kind. Also, keep in mind that the current theories must overcome 

obstacles in their structures or conditions, as shown below. 

(1) The fuzzy rough set (FRS) can be combined with RS to manage information with continuous 

attributes and investigate data inconsistencies. The FRS model is highly effective in many 

application areas because it is a powerful tool for analyzing inconsistent and ambiguous 

information. FRS set theory is a rough set theory extension that handles continuous numerical 

attributes [26]. The significance of the FRS theory may be observed in a variety of 

applications. Pan et al. [27] established the additive consistent fuzzy preference relation to 

improving the rough set model of the fuzzy preference relation. Li et al. [28] suggested a 

practical FRS approach for robust feature selection. Feng et al. [29] reduced 

multi-granulation using uncertainty measures based on FRSs, eliminating the negative and 

positive regions. Sun et al. [30] used a constructive technique to provide three 

multi-granulation FRSs over two universes. In this study by Liu [31], in the framework of 

interval-valued fuzzy and fuzzy probabilistic approximation space models, a 

decision-theoretic RS model was investigated. Zhang used axiomatic and constructive 

techniques to integrate rough set theory and interval-valued fuzzy set theory and [32] 

presented a novel paradigm based on FRSs with extended interval values. Zhang et al. [33] 

offered FR-based feature selection based on information entropy to minimize heterogeneous 

data. By combining granular variable precision FRSs and general fuzzy relations, Wang and 

Hu [34] provided a random set of fuzzy relationships. Vluymans et al. [35] introduced a new 

type of classifier for unbalanced multi-instance data based on FRS theory. Shaheen et al. [36] 

described the application of generalized hesitant fuzzy rough sets (GHFRS) in risk analysis. 

Khan et al. [37] addressed the use of a probabilistic hesitant FRS in a decision support system. 

Tang et al. [38] proposed the decision-theoretic rough set model with q-rung orthopair fuzzy 

information, as well as its application in evaluating stock investments. Liang et al. [39] 

suggested q-Rung orthopair fuzzy sets on decision-theoretic rough sets for three-way 

decisions under group DM. Zhang et al. [40] proposed group DM using incomplete q-rung 

orthopair fuzzy preference relations. IFRS [41], PyFRS [42], and q-ROFRS [43,44] are three 

popular theories that fail miserably when faced with data that includes all three possible grades 

(positive, neutral, and negative). Some decision-making techniques are discussed in [45–49]. 

(2) Even though the concept of the picture fuzzy rough set PFSRS allows for the consideration of 

the voting phenomena, it is constrained by the presence of lower and upper approximations 

like 0 ≤ 𝜇+ + 𝜇′+ 𝜇− ≤ 1  and 0 ≤ 𝜇^ + +𝜇′+ 𝜇
−
≤ 1.  On the other hand, when 

information is presented to decision-makers as q-spherical fuzzy rough sets (q-SFRS), which 

include lower and upper approximations like {(0.7,0.8,0.9), (0.9,0.7,0.8)} etc. then, be aware 

that the sum of the lower and upper approximation values is beyond the range [0,1], which 

means that (0 ≰ 0.72 + 0.82 + 0.92 ≰ 1) and (0 ≰ 0.92 + 0.72 + 0.82 ≰ 1)  that can 

never be handled by SFRS and that limit the SFRS concept. 

In this article, we propose a new kind of fuzzy set that we name a q-spherical fuzzy rough set. 

This type of fuzzy set includes the benefits that are associated with both the rough set and the 

q-spherical fuzzy set. Because of this, the primary contribution that this work makes to the existing 

body of knowledge is the development of a practical decision-making technique that is relevant to 

the q-spherical fuzzy rough set. Also, the innovative work has led to the proposal of novel 

aggregation operators, such as the q-spherical fuzzy rough weighted average mean (q-SFRWAM) 

and q-spherical fuzzy rough weighted geometric (q-SFRWGM). Also, up for discussion are the 
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fundamental properties of these newly designed operators. In addition, via the use of MCDM, a 

deconstructive examination of the work that was done in the past as well as an illustrative example to 

back up our claims. We have supplied an example of the work in the form of a frame diagram, which 

can be seen in Figure 1. We hope that this will make it simpler for you to understand the work. 

 

Figure 1. Workflow framework diagram. 

The remaining parts of the article can be broken down into the following sections: In the second 

section of this article, we had a look at the fundamental definitions of FS, PFS, SFS, q-SFS, and RS 

as well as operational laws and aggregation operators for q-SFNs, q-spherical fuzzy relation, and 

q-spherical fuzzy rough approximation space. In Section 3, operational laws, and aggregation 

operators for q-SFNs are discussed. In Section 4, both an algorithm and an example that illustrates its 

use are provided to demonstrate how these operators function. In Section 5, a comparison assessment 
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is used to discuss how beneficial the planned work would be as well as how credible it will be. The 

concluding observations are summarized in Section 6, which is the last section. 

2. Preliminary 

This section investigates the concepts of fuzzy set (FS), picture fuzzy set (PFS), spherical fuzzy 

set (SFS), q-spherical fuzzy set (q-SFS), and rough set (RS), in addition to operational laws and 

aggregation operators for q-spherical fuzzy numbers (q-SFSs), q-spherical fuzzy relation, and 

q-spherical fuzzy rough approximation space. 

Definition 2.1. Zadeh [1] came up with the idea of fuzzy set in 1965. It is a generalization of the 

crisp set. Mathematically, it's defined as: 

𝐴 = {〈𝑥, 𝜇𝐴(𝑥)〉: 𝑥 ∊ 𝑋}         (1) 

with the condition, 

0 ≤ 𝜇𝐴(𝑥) ≤ 1. 

Where 𝜇𝐴(𝑥): 𝑋 → [0,1] represents the membership function. 

Definition 2.2. Picture fuzzy set is the generalization of fuzzy set and intuitionistic fuzzy set, which 

was proposed by Cuong et al. [3] in 2014. Mathematically it is defined as:  

𝐴 = {〈𝑥, 𝜇+𝐴(𝑥), 𝜇
′
𝐴
(𝑥), 𝜇−𝐴(𝑥)〉: 𝑥 ∊ 𝑋}      (2) 

with the condition, 

0 ≤ 𝜇+𝐴(𝑥) + 𝜇
′
𝐴
(𝑥) + 𝜇−𝐴(𝑥) ≤ 1. 

Where 𝜇+𝐴(𝑥): 𝑋 → [0,1], 𝜇′𝐴(𝑥): 𝑋 → [0,1] and 𝜇−𝐴(𝑥): 𝑋 → [0,1] represents the positive, neutral, 

and negative membership functions respectively. 

Definition 2.3. Spherical fuzzy set is the generalization of the picture fuzzy set proposed by 

Mehmood et al. [17] in 2019. Mathematically it is defined as: 

𝐴 = {〈𝑥, 𝜇+𝐴(𝑥), 𝜇
′
𝐴
(𝑥), 𝜇−𝐴(𝑥)〉: 𝑥 ∊ 𝑋}      (3) 

with the condition, 

0 ≤ (𝜇+𝐴(𝑥))
2

+ (𝜇′𝐴(𝑥))
2

+ (𝜇−𝐴(𝑥))
2
≤ 1. 

Where 𝜇+𝐴(𝑥): 𝑋 → [0,1], 𝜇′𝐴(𝑥): 𝑋 → [0,1] and 𝜇−𝐴(𝑥): 𝑋 → [0,1] represents the positive, neutral, 

and negative membership functions respectively. 

Definition 2.4. q-Spherical fuzzy set is the generalization of the spherical fuzzy set proposed by 

Kahraman et al. [21] in 2020. Mathematically it is defined as: 

Let X be a non-empty set. A q-spherical fuzzy set 𝐴𝑞−𝑆𝐹𝑆 is of the form 

𝐴𝑞−𝑆𝐹𝑆 = {〈𝑥, 𝜇+𝐴𝑞−𝑆𝐹𝑆
(𝑥), 𝜇′𝐴𝑞−𝑆𝐹𝑆(𝑥),  𝜇

−
𝐴𝑞−𝑆𝐹𝑆

(𝑥)〉 : 𝑥 ∈ 𝑋}    (4) 

with the condition that (0 ≤ (𝜇+𝐴𝑞−𝑆𝐹𝑆
(𝑥))

𝑞

+ (𝜇′𝐴𝑞−𝑆𝐹𝑆(𝑥))
𝑞

+ ( 𝜇−𝐴𝑞−𝑆𝐹𝑆
(𝑥))

𝑞

≤ 1, q ≥ 1). 

Where 𝜇+𝐴𝑞−𝑆𝐹𝑆
(𝑥): 𝑋 → [0,1], 𝜇′𝐴𝑞−𝑆𝐹𝑆(𝑥): 𝑋 → [0,1] and 𝜇−𝐴𝑞−𝑆𝐹𝑆

(𝑥): 𝑋 → [0,1] is the positive, 

neutral and negative membership functions respectively. 
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Definition 2.5. Pawlak [22] was the first to introduce the concept of a rough set in 1982, which is 

defined as: 

Let R be an arbitrary binary relation on 𝑈1 × 𝑈2, then the triplet (𝑈1, 𝑈2, 𝑅) is called approximation 

space. For any, 𝑋 ⊆ 𝑈1 and 𝐴 ⊆ 𝑈2 the lower approximation 𝑅(𝐴) and the upper approximation 

𝑅(𝐴) are defined as  

(
𝑅(𝐴) = {𝑥 ∊ 𝑈1: [𝑥]𝐴 ⊆ 𝑋}

𝑅(𝐴) = {𝑥 ∊ 𝑈1: [𝑥]𝐴⋂𝑋 ≠ 𝜙}
).      (5) 

Where [𝑥]𝐴 denote indiscernibility.  

Then the pair (𝑅(𝐴), 𝑅(𝐴)) is called a rough set. 

Definition 2.6. Basic operators 

Kahraman et al. [21] 2020 defined q-spherical fuzzy set with their basic operators which are defined as: 

(i) Intersection: Let 𝐴𝑞−𝑆𝐹𝑆 and 𝐵𝑞−𝑆𝐹𝑆 are two q-SF numbers, then  

𝐴𝑞−𝑆𝐹𝑆 ∩ 𝐵𝑞−𝑆𝐹𝑆 

= ⟨min {𝜇+𝐴𝑞−𝑆𝐹𝑆 , 𝜇
+
𝐵𝑞−𝑆𝐹𝑆

} ,max {𝜇′𝐴𝑞−𝑆𝐹𝑆 , 𝜇
′
𝐵𝑞−𝑆𝐹𝑆

} ,min {1

− ((min {𝜇+𝐴𝑞−𝑆𝐹𝑆 , 𝜇
+
𝐵𝑞−𝑆𝐹𝑆

})
𝑞

+ (max {𝜇′𝐴𝑞−𝑆𝐹𝑆 , 𝜇
′
𝐵𝑞−𝑆𝐹𝑆

})
𝑞

, min {𝜇−𝐴𝑞−𝑆𝐹𝑆 , 𝜇
−
𝐵𝑞−𝑆𝐹𝑆

})}⟩. 

(ii) Union: Let 𝐴𝑞−𝑆𝐹𝑆 and 𝐵𝑞−𝑆𝐹𝑆 are two q-SFNs, then 

𝐴𝑞−𝑆𝐹𝑆⋃𝐵𝑞−𝑆𝐹𝑆 

= ⟨max {𝜇+𝐴𝑞−𝑆𝐹𝑆 , 𝜇
+
𝐵𝑞−𝑆𝐹𝑆

} ,min {𝜇′𝐴𝑞−𝑆𝐹𝑆 , 𝜇
′
𝐵𝑞−𝑆𝐹𝑆

} ,max {1

− ((max {𝜇+𝐴𝑞−𝑆𝐹𝑆 , 𝜇
+
𝐵𝑞−𝑆𝐹𝑆

})
𝑞

+ (min {𝜇′𝐴𝑞−𝑆𝐹𝑆 , 𝜇
′
𝐵𝑞−𝑆𝐹𝑆

})
𝑞

, max {𝜇−𝐴𝑞−𝑆𝐹𝑆 , 𝜇
−
𝐵𝑞−𝑆𝐹𝑆

})}⟩. 

(iii) Addition: Let 𝐴𝑞−𝑆𝐹𝑆 and 𝐵𝑞−𝑆𝐹𝑆 are two q-SFNs, then  

𝐴𝑞−𝑆𝐹𝑆⊕𝐵𝑞−𝑆𝐹𝑆 = 

⟨((𝜇+𝐴𝑞−𝑆𝐹𝑆)
𝑞

+ (𝜇+𝐵𝑞−𝑆𝐹𝑆)
𝑞

− (𝜇+𝐴𝑞−𝑆𝐹𝑆)
𝑞

(𝜇+𝐵𝑞−𝑆𝐹𝑆)
𝑞

)

1

𝑞
, (𝜇′𝐴𝑞−𝑆𝐹𝑆)

𝑞

 (𝜇′𝐵𝑞−𝑆𝐹𝑆)
𝑞

, ((1 −

(𝜇+𝐵𝑞−𝑆𝐹𝑆)
𝑞

) (𝜇−𝐴𝑞−𝑆𝐹𝑆)
𝑞

+ (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆)
𝑞

) (𝜇−𝐵𝑞−𝑆𝐹𝑆)
𝑞

− (  𝜇−𝐴𝑞−𝑆𝐹𝑆)
𝑞

(𝜇−𝐵𝑞−𝑆𝐹𝑆)
𝑞

)

1

𝑞

 ⟩. 

(iv) Multiplication: Let 𝐴𝑞−𝑆𝐹𝑆 and 𝐵𝑞−𝑆𝐹𝑆 are two q-SFNs, then  

𝐴𝑞−𝑆𝐹𝑆⊗𝐵𝑞−𝑆𝐹𝑆 

= ⟨(𝜇+𝐴𝑞−𝑆𝐹𝑆)
𝑞

(𝜇+𝐵𝑞−𝑆𝐹𝑆)
𝑞

 , (𝜇′𝐴𝑞−𝑆𝐹𝑆)
𝑞

+ (𝜇′𝐵𝑞−𝑆𝐹𝑆)
𝑞

− (𝜇′𝐴𝑞−𝑆𝐹𝑆) (𝜇
′
𝐵𝑞−𝑆𝐹𝑆

)

1

𝑞
  , (((1 −
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(𝜇′𝐵𝑞−𝑆𝐹𝑆)
𝑞

) (𝜇−𝐴𝑞−𝑆𝐹𝑆)
𝑞

+ (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑆)
𝑞

) (𝜇−𝐵𝑞−𝑆𝐹𝑆)
𝑞

)−(  𝜇−𝐴𝑞−𝑆𝐹𝑆)
𝑞

(𝜇−𝐵𝑞−𝑆𝐹𝑆)
𝑞
)

1

𝑞

 ⟩. 

(v) Multiplication by a scaler: For λ >0  

λ𝐴𝑞−𝑆𝐹𝑆 = ⟨(1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆)
𝑞

)
λ

)

1

𝑞

, (𝜇′𝐴𝑞−𝑆𝐹𝑆)
λ

, [(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆)
𝑞

)
λ

− (1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑆)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑆)
q

)
λ

]

1

𝑞

⟩. 

(vi) 𝛌 Power of 𝑨𝒒−𝑺𝑭𝑺;  𝛌 >0  

𝐴𝑞−𝑆𝐹𝑆
λ = ⟨(𝜇+𝐴𝑞−𝑆𝐹𝑆)

λ

, (1 − (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑆)
𝑞

)
λ

)

1

𝑞

, [(1 − (𝜇′𝐴𝑞−𝑆𝐹𝑆)
𝑞

)
λ

− (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑆)
𝑞

−

(𝜇−𝐴𝑞−𝑆𝐹𝑆)
q

)
λ

]

1

𝑞

⟩. 

Definition 2.7. For two q-SFNs 

𝐴𝑞−𝑆𝐹𝑆 = 〈𝜇+𝐴𝑞−𝑆𝐹𝑆 , 𝜇
′
𝐴𝑞−𝑆𝐹𝑆

, 𝜇−𝐴𝑞−𝑆𝐹𝑆
〉  and 𝐵𝑞−𝑆𝐹𝑆 = 〈𝜇

+
𝐵𝑞−𝑆𝐹𝑆

, 𝜇′𝐵𝑞−𝑆𝐹𝑆 , 𝜇
−
𝐵𝑞−𝑆𝐹𝑆

〉 , the 

following are valid under the condition 𝜆, 𝜆1, 𝜆2>0 
(𝑖) 𝐴𝑞−𝑆𝐹𝑆⊕𝐵𝑞−𝑆𝐹𝑆 = 𝐵𝑞−𝑆𝐹𝑆⊕ 𝐴𝑞−𝑆𝐹𝑆. 

(𝑖𝑖) 𝐴𝑞−𝑆𝐹𝑆⊗𝐵𝑞−𝑆𝐹𝑆 = 𝐵𝑞−𝑆𝐹𝑆⊗𝐴𝑞−𝑆𝐹𝑆. 

(𝑖𝑖𝑖) 𝜆(𝐴𝑞−𝑆𝐹𝑆⊕𝐵𝑞−𝑆𝐹𝑆) = 𝜆𝐵𝑞−𝑆𝐹𝑆⊕ 𝜆𝐴𝑞−𝑆𝐹𝑆. 

(𝑖𝑣) 𝜆1(𝐴𝑞−𝑆𝐹𝑆) ⊕ 𝜆2(𝐴𝑞−𝑆𝐹𝑆) = (𝜆1⊕𝜆2)𝐴𝑞−𝑆𝐹𝑆. 

(𝑣) (𝐴𝑞−𝑆𝐹𝑆⊗𝐵𝑞−𝑆𝐹𝑆)
𝜆 = 𝐴𝑞−𝑆𝐹𝑆

𝜆⊗𝐵𝑞−𝑆𝐹𝑆
𝜆. 

(𝑣𝑖) 𝐴𝑞−𝑆𝐹𝑆
𝜆1 ⊗𝐴𝑞−𝑆𝐹𝑆

𝜆2 = 𝐴𝑞−𝑆𝐹𝑆
𝜆1+𝜆2. 

Definition 2.8. q-Spherical Fuzzy Weighted Arithmetic Operator (q-SFRWAO) for 𝑤 =
(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛); 𝑤𝑖∈ [0,1]; ∑ 𝑤𝑖 = 1,𝑛

𝑖=1  q-SFWAO is defined as  

q − SFWAO𝑤(𝐴𝑞−𝑆𝐹𝑆1, 𝐴𝑞−𝑆𝐹𝑆2, 𝐴𝑞−𝑆𝐹𝑆3, … , 𝐴𝑞−𝑆𝐹𝑆𝑛)

= 𝑤1𝐴𝑞−𝑆𝐹𝑆1⊕𝑤2𝐴𝑞−𝑆𝐹𝑆2⊕𝑤3𝐴𝑞−𝑆𝐹𝑆3⊕,… ,⊕𝑤𝑛𝐴𝑞−𝑆𝐹𝑆𝑛 

= ⟨[1 − ∏ (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑛
𝑖=1 ]

1

𝑞

, ∏ (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑤𝑖𝑛

𝑖=1 , [∏ (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑛
𝑖=1 −

∏ (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑛
𝑖=1 ]

1

𝑞

⟩. 

Definition 2.9. q-Spherical Fuzzy Weighted Geometric Operator (q-SWGO) for 𝑤 =
(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛); 𝑤𝑖∈ [0,1]; ∑ 𝑤𝑖 = 1,𝑛

𝑖=1  q-SFWGO is defined as 

q − SFWGO𝑤(𝐴𝑞−𝑆𝐹𝑆1, 𝐴𝑞−𝑆𝐹𝑆2, 𝐴𝑞−𝑆𝐹𝑆3, … , 𝐴𝑞−𝑆𝐹𝑆𝑛)

= 𝑤1𝐴𝑞−𝑆𝐹𝑆1⊗𝑤2𝐴𝑞−𝑆𝐹𝑆2⊗𝑤3𝐴𝑞−𝑆𝐹𝑆3⊗,… ,⊗𝑤𝑛𝐴𝑞−𝑆𝐹𝑆𝑛 
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= ⟨∏ (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝒘𝒊𝑛

𝑖=1 , [1 − ∏ (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝒘𝒊

𝑛
𝑖=1 ]

1

𝑞

, [∏ (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑛
𝑖=1 −

∏ (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑛
𝑖=1 ]

1

𝑞

⟩. 

Definition 2.10. A q-spherical fuzzy relation R in 𝑈1 × 𝑈2 is a q-spherical fuzzy subset of 𝑈1 × 𝑈2 

and is given by  

R = {⟨(r,s): 𝜇+𝑅(𝑟, 𝑠),  𝜇′𝑅(𝑟, 𝑠),  𝜇
−
𝑅
(𝑟, 𝑠)⟩: ((𝜇+𝑅(𝑟, 𝑠), )

𝑞
+ ( 𝜇′𝑅(𝑟, 𝑠), )

𝑞 + ( 𝜇−𝑅(𝑟, 𝑠))
𝑞

)

≤ 1: ∀ 𝑟 ∈ 𝑈1, 𝑠 ∈ 𝑈2}, 

where 𝜇+𝑅: U → [0,1], 𝜇′𝑅: U → [0,1] and 𝜇−𝑅: U → [0,1]. 

The degree of refusal 𝑠 ∈ 𝑈 is defined by 𝑟(𝑠) = √1 − ( 𝜇′(𝑠)𝑞 + 𝜇′(𝑠)𝑞 +  𝜇−(𝑠)𝑞)
𝑞

. 

Definition 2.11. Let R be a q-spherical fuzzy relation R on two universes, then we call the triplet 

(𝑈1, 𝑈2, 𝑅) q-spherical fuzzy rough approximation space. 

Definition 2.12. Let A⊆ 𝑈2, then the lower and upper approximation of A for (𝑈1, 𝑈2, 𝑅) is defined by 

𝐴𝑞−𝑆𝐹𝑅𝑆 = (𝐴𝑞−𝑆𝐹𝑅𝑆, �̅�𝑞−𝑆𝐹𝑅𝑆

= {𝑠, 〈𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆
(𝑠), 𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆

(𝑠),  𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆
(𝑠), 𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆

(𝑠), 𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆
(𝑠),  𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆

(𝑠)〉 : 𝑠 ∈ 𝑈1}, 

where, 

𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆
(𝑠) = ⋀𝑠∈𝑈2{𝜇

+
𝑅
(𝑟, 𝑠)⋀𝜇+𝑨(𝑠)} 

𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆(𝑠) = ⋁𝑠∈𝑈2{𝜇′𝑅(𝑟, 𝑠)⋁𝜇′𝑨(𝑠)} 

 𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆
(𝑠) = ⋁𝑠∈𝑈2{ 𝜇

−
𝑅
(𝑟, 𝑠)⋁ 𝜇−𝑨(𝑠)} 

𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆
(𝑠) = ⋁𝑠∈𝑈2{𝜇

+
𝑅
(𝑟, 𝑠)⋁𝜇+𝑨(𝑠)} 

𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆(𝑠) = ⋀𝑠∈𝑈2{𝜇′𝑅(𝑟, 𝑠)⋀𝜇′𝑨(𝑠)} 

 𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆
(𝑠) = ⋀𝑠∈𝑈2{ 𝜇

−
𝑅
(𝑟, 𝑠)⋀ 𝜇−𝑨(𝑠)}, 

with the condition that 

{
 
 

 
 (0 ≤ (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆

(𝑠))

𝑞

+ (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆(𝑠))
𝑞

+ ( 𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆
(𝑠))

𝑞

≤ 1) ,

(0 ≤ (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆
(𝑠))

𝑞

+ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆(𝑠))
𝑞

+ ( 𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆
(𝑠))

𝑞

≤ 1)
}
 
 

 
 

. 

The pair of q-spherical fuzzy sets is then said to represent a q-spherical fuzzy rough set (q-SFRS) if 

𝐴𝑞−𝑆𝐹𝑅𝑆 ≠ �̅�𝑞−𝑆𝐹𝑅𝑆 . For simplicity, we write 𝐴 = (𝐴𝑞−𝑆𝐹𝑅𝑆, �̅�𝑞−𝑆𝐹𝑅𝑆) and the expression 𝐴 =

(𝐴𝑞−𝑆𝐹𝑅𝑆, �̅�𝑞−𝑆𝐹𝑅𝑆) is called a q-spherical fuzzy rough number. 𝐴𝑞−𝑆𝐹𝑅𝑆𝑖  denotes the collection of 

all q-SFRNs. 

Example 1. Let’s say that a person in charge of making decisions, Z, purchases a home, as shown in 

the set 𝑈1 = { ℎ1, ℎ2, ℎ3, ℎ4, ℎ5} that are now being considered.  
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Let 𝑈2 = {beautiful (a1), size (a2), expensive (a3) 𝑎𝑛𝑑 location (a4)} is the set of alternatives. 

A person who makes decisions Z would want to buy a home from among those that are currently on the 

market and which, to the greatest degree possible, satisfy the requirements that have been outlined. 

Consider the fact that decision-maker Z displays the attractiveness of the homes in the form of a 

q-SFR relation, which can be found in Table 1 below. 

Table 1. q-Spherical fuzzy rough relation. 

1 2 3 4

1

2

3

4

(0.7,0.2,0.4) (0.5,0.2,0.7) (0.6,0.5,0.3) (0.7,0.2,0.5)

(0.6,0.3,0.1) (0.3,0.2,0.5) (0.3,0.2,0.4) (0.5,0.2,0.5)

(0.3,0.1,0.2) (0.7,0.4,0.3) (0.2,0.3,0.7) (0.3,0.4,0.1)

(0.4,0.5,0.2) (0.8,0.4,0.5) (

R a a a a

h

h

h

h

5

0.5,0.3,0.4) (0.4,0.3,0.2)

(0.6,0.1,0.5) (0.4,0.3,0.5) (0.9,0.3,0.5) (0.3,0.2,0.1)h

 

Consider a decision-maker Z that provides the optimal normal decision object A, which is a 

q-SFS subset over the attribute set U2; that is to say, 

A= {(a1/ (0.8,0.1,0.3)), (a2/ (0.8,0.4,0.3)), (a3/ (0.5,0.1,0.4)), (a4/ (0.5,0.4,0.6))}. 

In this case, we use Definition 3.4 to determine the lower and upper approximations of A 

approximations regarding (U1, U2, R, A). 

𝐴𝑞−𝑆𝐹𝑅𝑆 = {(h1/(0.5,0.5,0.7)),(h2/(0.3,0.4,0.6)),(h3/(0.2,0.4,0.7)),(h4/(0.4,0.5,0.6)),(h5/(0.3,0.4,0.6))}. 

�̅�𝑞−𝑆𝐹𝑅𝑆= 

{(h1/(0.8,0.1,0.3)),(h2/(0.8,0.1,0.1)),(h3/(0.8,0.1,0.1)), (h4/(0.8,0.1,0.2)), (h5/(0.9,0.1,0.1))}. 

Hence 𝐴𝑞−𝑆𝐹𝑅𝑆 = {(h1/(0.5,0.5,0.7),(0.8,0.1,0.3)), (h2/(0.3,0.4,0.6),(0.8,0.1,0.1)), (h3/(0.2,0.4,0.7), 

(0.8,0.1,0.1)),(h4/(0.4,0.5,0.6), (0.8,0.1,0.2)),(h5/(0.3,0.4,0.6), (0.9,0.1,0.1))}. 

3. Operations of q-spherical fuzzy rough sets 

This section examines the basic operational laws and aggregation operators of q-spherical fuzzy 

rough numbers. 

Definition 3.1. Basic operators  

(i) Intersection: Let 𝐴𝑞−𝑆𝐹𝑅𝑆 and 𝐵𝑞−𝑆𝐹𝑅𝑆 are two q-SFRNs in (U1, U2, R), then 

𝐴𝑞−𝑆𝐹𝑅𝑆 ∩ 𝐵𝑞−𝑆𝐹𝑅𝑆 = 𝐴𝑞−𝑆𝐹𝑅𝑆 ∩ 𝐵𝑞−𝑆𝐹𝑅𝑆, �̅�𝑞−𝑆𝐹𝑅𝑆 ∩ �̅�𝑞−𝑆𝐹𝑅𝑆 where, 

𝐴𝑞−𝑆𝐹𝑅𝑆 ∩ 𝐵𝑞−𝑆𝐹𝑅𝑆 = ⟨min {𝜇
+
𝐴𝑞−𝑆𝐹𝑆𝑅

, 𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆} ,max {𝜇
′
𝐴𝑞−𝑆𝐹𝑅𝑆

, 𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆} ,min {1 −

((min {𝜇+𝐴𝑞−𝑆𝐹𝑆𝑅 , 𝜇
+
𝐵𝑞−𝑆𝐹𝑅𝑆

})
𝑞

+ (max {𝜇′𝐴𝑞−𝑆𝐹𝑆𝑅 , 𝜇
′
𝐵𝑞−𝑆𝐹𝑅𝑆

})
𝑞

, min {𝜇−𝐴𝑞−𝑆𝐹𝑆𝑅 , 𝜇
−
𝐵𝑞−𝑆𝐹𝑅𝑆

})}⟩. 

�̅�𝑞−𝑆𝐹𝑅𝑆 ∩ �̅�𝑞−𝑆𝐹𝑅𝑆 = ⟨min {𝜇
+
�̅�𝑞−𝑆𝐹𝑅𝑆

, 𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆} ,max {𝜇
′
�̅�𝑞−𝑆𝐹𝑅𝑆

, 𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆} ,min {1 −

((min {𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆 , 𝜇
+
�̅�𝑞−𝑆𝐹𝑅𝑆

})
𝑞

+ (max {𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆 , 𝜇
′
�̅�𝑞−𝑆𝐹𝑅𝑆

})
𝑞

, min {𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆 , 𝜇
−
�̅�𝑞−𝑆𝐹𝑅𝑆

})}⟩. 
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(ii) Union: Let 𝐴𝑞−𝑆𝐹𝑅𝑆 and 𝐵𝑞−𝑆𝐹𝑅𝑆 are two q-SFRNs in (U1, U2, R), then 

𝐴𝑞−𝑆𝐹𝑅𝑆⋃𝐵𝑞−𝑆𝐹𝑅𝑆 = 𝐴𝑞−𝑆𝐹𝑅𝑆⋃𝐵𝑞−𝑆𝐹𝑅𝑆, �̅�𝑞−𝑆𝐹𝑅𝑆⋃�̅�𝑞−𝑆𝐹𝑅𝑆 where, 

𝐴𝑞−𝑆𝐹𝑅𝑆⋃𝐵𝑞−𝑆𝐹𝑆𝑅 = ⟨max {𝜇
+
𝐴𝑞−𝑆𝐹𝑅𝑆

, 𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆} ,min {𝜇
′
𝐴𝑞−𝑆𝐹𝑅𝑆

, 𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆} ,max {1 −

((max {𝜇+𝐴𝑞−𝑆𝐹𝑆𝑅 , 𝜇
+
𝐵𝑞−𝑆𝐹𝑅𝑆

})
𝑞

+ (min {𝜇′𝐴𝑞−𝑆𝐹𝑆𝑅 , 𝜇
′
𝐵𝑞−𝑆𝐹𝑅𝑆

})
𝑞

, max {𝜇−𝐴𝑞−𝑆𝐹𝑆𝑅 , 𝜇
−
𝐵𝑞−𝑆𝐹𝑅𝑆

})}⟩. 

�̅�𝑞−𝑆𝐹𝑅𝑆⋃�̅�𝑞−𝑆𝐹𝑅𝑆 = ⟨max {𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆 , 𝜇
+
�̅�𝑞−𝑆𝐹𝑅𝑆

} , min {𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆 , 𝜇
′
�̅�𝑞−𝑆𝐹𝑅𝑆

} ,max {1 −

((max {𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆 , 𝜇
+
�̅�𝑞−𝑆𝐹𝑅𝑆

})
𝑞

+ (min {𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆 , 𝜇
′
�̅�𝑞−𝑆𝐹𝑅𝑆

})
𝑞

, max {𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆 , 𝜇
−
�̅�𝑞−𝑆𝐹𝑅𝑆

})}⟩.  

(iii) Addition: Let 𝐴𝑞−𝑆𝐹𝑆 and 𝐵𝑞−𝑆𝐹𝑆 are two q-SFRNs in (U1, U2, R), then 

𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆 = 𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆, �̅�𝑞−𝑆𝐹𝑅𝑆⊕ �̅�𝑞−𝑆𝐹𝑅𝑆 where, 

𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆 = ⟨((𝜇
+
𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞

+ (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞
, (  𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

 (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

, (((1 − (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

+

(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)−(𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

 (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞
)

1

𝑞

 ⟩.  

�̅�𝑞−𝑆𝐹𝑅𝑆⊕ �̅�𝑞−𝑆𝐹𝑅𝑆 = ⟨((𝜇
+
�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝑞

+ (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞
, (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

 (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

, (((1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+

(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) − (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

 (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞

  ⟩. 

(iv) Multiplication: Let 𝐴𝑞−𝑆𝐹𝑅𝑆 and 𝐵𝑞−𝑆𝐹𝑅𝑆 are two q-SFRNs in (U1, U2, R), then  

𝐴𝑞−𝑆𝐹𝑅𝑆⊗𝐵𝑞−𝑆𝐹𝑅𝑆 = 𝐴𝑞−𝑆𝐹𝑅𝑆⊗𝐵𝑞−𝑆𝐹𝑅𝑆, �̅�𝑞−𝑆𝐹𝑅𝑆⊗ �̅�𝑞−𝑆𝐹𝑅𝑆, where, 

𝐴𝑞−𝑆𝐹𝑅𝑆⊗𝐵𝑞−𝑆𝐹𝑅𝑆 = ⟨(𝜇
+
𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞

(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

 , ((𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞
  , (((1 − (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞

) (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (1 −

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

) − (  𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

 (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

 )

1

𝑞

⟩.  

�̅�𝑞−𝑆𝐹𝑅𝑆⊗ �̅�𝑞−𝑆𝐹𝑅𝑆 = ⟨(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

, (   (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

−
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(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞
 , (((1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (1 −

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) − (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

 (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞

 ⟩. 

(v) Multiplication by a scaler: Let 𝐴𝑞−𝑆𝐹𝑅𝑆 be a q-SFRNs in (U1, U2, R) and λ >0  then 

λ𝐴𝑞−𝑆𝐹𝑅𝑆 = λ𝐴𝑞−𝑆𝐹𝑅𝑆, λ�̅�𝑞−𝑆𝐹𝑅𝑆 where, 

λ𝐴𝑞−𝑆𝐹𝑅𝑆 = ⟨(1 − (1 − (𝜇
+
𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞

)
λ

)

1

𝑞

, (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
λ

, [(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
q

)
λ

]

1

𝑞

⟩. 

λ�̅�𝑞−𝑆𝐹𝑅𝑆 = ⟨(1 − (1 − (𝜇
+
�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝑞

)
λ

)

1

𝑞

, (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
λ

, [(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
q

)
λ

]

1

𝑞

⟩. 

(vi) 𝛌 Power of �̅�𝒒−𝑺𝑭𝑺: Let 𝐴𝑞−𝑆𝐹𝑅𝑆 be a q-SFRNs in (U1, U2, R) and λ >0  then 

𝐴𝑞−𝑆𝐹𝑅𝑆
λ = 𝐴𝑞−𝑆𝐹𝑅𝑆

λ, �̅�𝑞−𝑆𝐹𝑅𝑆
λ
 where, 

𝐴𝑞−𝑆𝐹𝑅𝑆
λ = ⟨ (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)

λ

, (1 − (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)

1

𝑞

,  [(1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 −

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
q

)
λ

]

1

𝑞

⟩. 

�̅�𝑞−𝑆𝐹𝑅𝑆
λ
 = ⟨ (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)

λ

, (1 − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)

1

𝑞

,  [(1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 −

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
q

)
λ

]

1

𝑞

⟩. 

Definition 3.2. For two q-SFRNs 

𝐴𝑞−𝑆𝐹𝑅𝑆 = 〈𝜇
+
𝐴𝑞−𝑆𝐹𝑅𝑆

 , 𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆  ,   𝜇
−
𝐴𝑞−𝑆𝐹𝑅𝑆

 , 𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆  , 𝜇
′
�̅�𝑞−𝑆𝐹𝑅𝑆

 ,   𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆   
〉  and 

𝐵𝑞−𝑆𝐹𝑅𝑆 = 〈𝜇
+
𝐵𝑞−𝑆𝐹𝑅𝑆

 , 𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆  ,   𝜇
−
𝐵𝑞−𝑆𝐹𝑅𝑆

 , 𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆  , 𝜇
′
�̅�𝑞−𝑆𝐹𝑅𝑆

 ,   𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆
〉 , the following 

are valid under the condition 𝜆, 𝜆1, 𝜆2 >0 
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(𝑖) 𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆 = 𝐵𝑞−𝑆𝐹𝑅𝑆⊕ 𝐴𝑞−𝑆𝐹𝑅𝑆 

(𝑖𝑖) 𝐴𝑞−𝑆𝐹𝑅𝑆⊗𝐵𝑞−𝑆𝐹𝑅𝑆 = 𝐵𝑞−𝑆𝐹𝑅𝑆⊗𝐴𝑞−𝑆𝐹𝑅𝑆 

(𝑖𝑖𝑖) 𝜆(𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆) = 𝜆𝐴𝑞−𝑆𝐹𝑅𝑆⊕ 𝜆𝐵𝑞−𝑆𝐹𝑅𝑆 

(𝑖𝑣) 𝜆1(𝐴𝑞−𝑆𝐹𝑅𝑆) ⊕ 𝜆2(𝐴𝑞−𝑆𝐹𝑅𝑆) = (𝜆1⊕𝜆2)𝐴𝑞−𝑆𝐹𝑅𝑆 

(𝑣) (𝐴𝑞−𝑆𝐹𝑅𝑆⊗𝐵𝑞−𝑆𝐹𝑅𝑆)
𝜆 = 𝐴𝑞−𝑆𝐹𝑅𝑆

𝜆⊗𝐵𝑞−𝑆𝐹𝑅𝑆
𝜆 

(𝑣𝑖) 𝐴𝑞−𝑆𝐹𝑅𝑆
𝜆1 ⊗𝐴𝑞−𝑆𝐹𝑅𝑆

𝜆2 = 𝐴𝑞−𝑆𝐹𝑅𝑆
𝜆1+𝜆2. 

Definition 3.3. q-Spherical Fuzzy Rough Arithmetic Mean (q-SFRAM) with respect to, 𝑤 =
(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛); 𝑤𝑖∈ [0,1]; ∑ 𝑤𝑖 = 1,𝑛

𝑖=1  q-SFRAM is defined as 

q − SFRAM𝑤(𝐴𝑞−𝑆𝐹𝑅𝑆1, 𝐴𝑞−𝑆𝐹𝑅𝑆2, 𝐴𝑞−𝑆𝐹𝑅𝑆3, … , 𝐴𝑞−𝑆𝐹𝑅𝑆𝑛)

= 𝑤1𝐴𝑞−𝑆𝐹𝑅𝑆1⊕𝑤2𝐴𝑞−𝑆𝐹𝑅𝑆2⊕𝑤3𝐴𝑞−𝑆𝐹𝑅𝑆3⊕,… ,⊕ 𝑤𝑛𝐴𝑞−𝑆𝐹𝑅𝑆𝑛 

= ⟨[1 − ∏ (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑛
𝑖=1 ]

1

𝑞

, ∏ (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑤𝑖𝑛

𝑖=1 , [∏ (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑛
𝑖=1 −

∏ (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑛
𝑖=1 ]

1

𝑞

, [1 − ∏ (1 −𝑛
𝑖=1

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖
]

1

𝑞

, ∏ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑤𝑖𝑛

𝑖=1 , [∏ (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑛
𝑖=1 −∏ (1 −𝑛

𝑖=1

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖
]

1

𝑞

⟩. 

Definition 3.4. q-Spherical Fuzzy Rough Geometric Mean (q-SFRGM) for 𝑤 = (𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛); 
𝑤𝑖∈ [0,1]; ∑ 𝑤𝑖 = 1,𝑛

𝑖=1  q-SFRGM is defined as 

q − SFRGM(𝐴𝑞−𝑆𝐹𝑅𝑆1, 𝐴𝑞−𝑆𝐹𝑅𝑆2, 𝐴𝑞−𝑆𝐹𝑅𝑆3, … , 𝐴𝑞−𝑆𝐹𝑅𝑆𝑛)

= 𝑤1𝐴𝑞−𝑆𝐹𝑅𝑆1⊗𝑤2𝐴𝑞−𝑆𝐹𝑅𝑆2⊗𝑤3𝐴𝑞−𝑆𝐹𝑅𝑆3⊗,… ,⊗ 𝑤𝑛𝐴𝑞−𝑆𝐹𝑅𝑆𝑛 

= ⟨∏ (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝒘𝒊𝑛

𝑖=1 , [1 − ∏ (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝒘𝒊

𝑛
𝑖=1 ]

1

𝑞

, [∏ (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑛
𝑖=1 −

∏ (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑛
𝑖=1 ]

1

𝑞

, ∏ (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝒘𝒊

𝑛
𝐼=1 , [1 − ∏ (1 −𝑛

𝑖=1

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝒘𝒊
]

1

𝑞

, [∏ (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑛
𝑖=1 −∏ (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆𝑖

)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑛
𝑖=1 ]

1

𝑞

⟩. 

Proof. The proof of this definition is like the proof of Definition 3.3, so we omit it here. 

Definition 3.5. The score function of sorting q-SFRNs is defined by  

𝑆𝑐𝑜𝑟𝑒(𝐴𝑞−𝑆𝐹𝑅𝑆) =
1

3
(2 + (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

+ (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) , 𝑆𝑐𝑜𝑟𝑒(𝐴𝑞−𝑆𝐹𝑅𝑆)  ∈ [−1,1] , 𝑞 ≥ 1. 

Note that if 𝐴𝑞−𝑆𝐹𝑅𝑆 < 𝐵𝑞−𝑆𝐹𝑅𝑆 if and only if  

𝑆𝑐𝑜𝑟𝑒(𝐴𝑞−𝑆𝐹𝑅𝑆) < 𝑆𝑐𝑜𝑟𝑒(𝐵𝑞−𝑆𝐹𝑅𝑆) or 

𝑆𝑐𝑜𝑟𝑒(𝐴𝑞−𝑆𝐹𝑅𝑆) = 𝑆𝑐𝑜𝑟𝑒(𝐵𝑞−𝑆𝐹𝑅𝑆) 𝑎𝑛𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝑞−𝑆𝐹𝑅𝑆) < 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐵𝑞−𝑆𝐹𝑅𝑆). 
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Example 2. Let 𝐴𝑞−𝑆𝐹𝑅𝑆1 = 〈(0.6, 0.4,0.3), (0.5, 0.3,0.2)〉,  

𝐴𝑞−𝑆𝐹𝑅𝑆2 = 〈(0.8, 0.7,0.2), (0.4, 0.6,0.4)〉,  

𝐴𝑞−𝑆𝐹𝑅𝑆3 = 〈(0.6, 0.4,0.3), (0.5, 0.3,0.2)〉  and 𝐴𝑞−𝑆𝐹𝑅𝑆4 = 〈(0.5, 0.4,0.3), (0.5, 0.3,0.2)〉  are four 

q-SFRNs, 𝑤 = (0.2, 0.1, 0.3, 0.4)𝑇is their associate weight vector and 𝑞 = 3. Then 

[1 − ∏ (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

4
𝑖=1 ]

1

𝑞

= [1 − (1 − (0.6)3)0.2(1 − (0.8)3)0.1(1 − (0.6)3)0.3(1 −

(0.5)3)0.4]
1

3 = 0.6025. 

∏ (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑤𝑖
= (0.4)0.2(0.7)0.1(0.4)0.3(0.4)0.4 =4

𝑖=1 0.0757. 

[∏ (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

4
𝑖=1 −∏ (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆𝑖

)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

4
𝑖=1 ]

1

𝑞

= [((1 −

(0.6)3)0.2(1 − (0.8)3)0.1(1 − (0.6)3)0.3(1 − (0.5)3)0.4) − ((1 − (0.6)3 − (0.3)3)0.2(1 − (0.8)3 −

(0.2)3)0.1(1 − (0.6)3 − (0.3)3)0.3(1 − (0.5)3 − (0.3)3)0.4)]
1

3 = 0.2900. 

[1 −∏(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

4

𝑖=1

]

1
𝑞

= [1 − (1 − (0.5)3)0.2(1 − (0.4)3)0.1(1 − (0.5)3)0.3(1 − (0.5)3)0.4]
1
3 = 0.4920 

∏ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑤𝑖
= (0.3)0.2(0.6)0.1(0.3)0.3(0.3)0.44

𝑖=1 = 0.0332. 

[∏ (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

4
𝑖=1 −∏ (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖

)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

4
𝑖=1 ]

1

𝑞

= [((1 −

(0.5)3)0.2(1 − (0.4)3)0.1(1 − (0.5)3)0.3(1 − (0.5)3)0.4) − ((1 − (0.5)3 − (0.2)3)0.2(1 − (0.4)3 −

(0.4)3)0.1(1 − (0.5)3 − (0.2)3)0.3(1 − (0.5)3 − (0.2)3)0.4)]
1

3 = 0.2376. 

Example 3. Let 𝐴𝑞−𝑆𝐹𝑅𝑆1 = 〈(0.6, 0.4,0.3), (0.5, 0.3,0.2)〉,  

𝐴𝑞−𝑆𝐹𝑅𝑆2 = 〈(0.8, 0.7,0.2), (0.4, 0.6,0.4)〉,  

𝐴𝑞−𝑆𝐹𝑅𝑆3 = 〈(0.7, 0.4,0.3), (0.6, 0.3,0.2)〉  and 𝐴𝑞−𝑆𝐹𝑅𝑆4 = 〈(0.5, 0.4,0.3), (0.5, 0.3,0.2)〉  are four 

q-SFRNs and 𝑞 = 3 then the score function is calculated as follows: 

𝑆𝑐𝑜𝑟𝑒(𝐴𝑞−𝑆𝐹𝑅𝑆1) =
1

3
(2 + (0.6)3 + (0.5)3 − (0.4)3 − (0.3)3 − (0.3)3 − (0.2)3) 

𝑆𝑐𝑜𝑟𝑒(𝐴𝑞−𝑆𝐹𝑅𝑆1) =  0.7383. 

𝑆𝑐𝑜𝑟𝑒(𝐴𝑞−𝑆𝐹𝑅𝑆2) =
1

3
(2 + (0.8)3 + (0.4)3 − (0.7)3 − (0.6)3 − (0.2)3 − (0.4)3) 

𝑆𝑐𝑜𝑟𝑒(𝐴𝑞−𝑆𝐹𝑅𝑆2) = 0.6483. 

𝑆𝑐𝑜𝑟𝑒(𝐴𝑞−𝑆𝐹𝑅𝑆3) =  
1

3
(2 + (0.7)3 + (0.6)3 − (0.4)3 − (0.3)3 − (0.3)3 − (0.2)3) 

𝑆𝑐𝑜𝑟𝑒(𝐴𝑞−𝑆𝐹𝑅𝑆3) =  0.8110. 

𝑆𝑐𝑜𝑟𝑒(𝐴𝑞−𝑆𝐹𝑅𝑆4) =
1

3
(2 + (0.5)3 + (0.5)3 − (0.4)3 − (0.3)3 − (0.3)3 − (0.2)3) 

𝑆𝑐𝑜𝑟𝑒(𝐴𝑞−𝑆𝐹𝑅𝑆4) = 0.7080. 
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4. Multi-attribute decision making techniques using q-spherical rough average aggregation 

operators 

4.1. An algorithm for the work that is being proposed 

In this part, we will investigate a novel approach for MADM problem solving that makes use of 

q-SFRWAM and q-SFRWGM aggregation operators to operate in an environment that contains 

q-SFR information. 

Let’s say that the set of “r” alternatives is denoted by 𝐴 = {𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑟} and that the set 

of “n” parameters is denoted by 𝐶 = {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑛}. Let us refer to the group of “m” experts as 

𝐸 = {𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑚 } and let us assume that these “m” experts share their knowledge on “A” 

𝐴𝑖{𝑖 = 1, 2,3, … , 𝑟}. Let us designate the weight vector of 𝐸𝑖 experts as 𝑊 = {𝑊1,𝑊2,𝑊3, … ,𝑊𝑛} 
with the condition that ∑ 𝑊𝑖 = 1.

𝑛
𝑖=1  

Let’s say that the evaluation data that was provided by the intellectual was in the form of 

q-SFRNs. All individual contributes their opinion in the form of q-SFRNs for each possible 

alternative 𝐴𝑖. After that, organize the information on the comprehensive assessment in the q-SFR 

decision matrix 𝑀 = [𝐴𝑞−𝑆𝐹𝑅𝑆𝑖𝑗]𝑛×𝑚. The MCDM approach includes the following as its primary 

phases, which are based on the established operators: 

Step 1: (Construction of q-SFRNs decision-making matrix): Gather all the information that is 

associated with each option in terms of q-SFRNs, and as a result, create an overall decision matrix 

𝑀 = [𝐴𝑞−𝑆𝐹𝑅𝑆𝑖𝑗]𝑛×𝑚. 

Step 2: (Normalize the q-SFR decision matrix): Normalize the q-SFR decision matrix that was 

provided in Step 1. If all the criteria have the same type, then there is no need for normalizing; 

however, if there are multiple kinds of criteria, such as profit and cost, then we transform the cost 

type criterion into the profit type using the normalized formula that is shown below: 

𝐴𝑞−𝑆𝐹𝑅𝑆𝑖𝑗 = {
(𝐴𝑞−𝑆𝐹𝑅𝑆𝑖𝑗)

𝐶
      for cost type criteria

(𝐴𝑞−𝑆𝐹𝑅𝑆𝑖𝑗 )    for benefit type criteria
    (6) 

where, 

(𝐴𝑞−𝑆𝐹𝑅𝑆𝑖𝑗)
𝐶
=

{𝑠, 〈 𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆𝑖𝑗
(𝑠), 𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆𝑖𝑗(𝑠), 𝜇

+
𝐴𝑞−𝑆𝐹𝑅𝑆𝑖𝑗

(𝑠),  𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆𝑖𝑗
(𝑠), 𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆𝑖𝑗(𝑠), 𝜇

+
�̅�𝑞−𝑆𝐹𝑅𝑆𝑖𝑗

(𝑠)〉 : 𝑠 ∈

𝑈1}, 

denote the complement of 

𝐴𝑞−𝑆𝐹𝑅𝑆𝑖 =

{𝑠, 〈𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆𝑖𝑗
(𝑠), 𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆𝑖𝑗(𝑠),  𝜇

−
𝐴𝑞−𝑆𝐹𝑅𝑆𝑖𝑗

(𝑠), 𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖𝑗
(𝑠), 𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆𝑖𝑗(𝑠),  𝜇

−
�̅�𝑞−𝑆𝐹𝑅𝑆𝑖𝑗

(𝑠)〉 : 𝑠 ∈ 𝑈1}. 

As a result, we can obtain the normalized form of the q-SFR decision matrix  

𝑁 = [𝐵𝑞−𝑆𝐹𝑅𝑆𝑖𝑗]𝑛×𝑚. 

Step 3: (Compute the aggregated values of alternatives): To each decision matrix  

𝑁 = [𝐵𝑞−𝑆𝐹𝑅𝑆𝑖𝑗]𝑛×𝑚and apply the established operators for each alternative 𝐴𝑖{𝑖 = 1, 2,3, … , 𝑟} 
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and calculate the aggregated results  

¥𝑖 = ⟨( 𝜇
−
𝐴𝑞−𝑆𝐹𝑅𝑆

, 𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆 , 𝜇
+
𝐴𝑞−𝑆𝐹𝑅𝑆

) , ( 𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆 , 𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆 , 𝜇
+
�̅�𝑞−𝑆𝐹𝑅𝑆

)⟩. 

Step 4: (Computation of score values): To get the score values for each ¥𝑖, use the Definition 3.5 

formula. 

Step 5: (Ranking of alternatives): Rank the results and choose the best one. 

4.2. The implementation of the suggested procedure 

In this part of the article, we illustrated the applicability of the model that was provided by 

providing a concrete example. The technique by which an operating system distributes available 

resources between the many tasks is known as job scheduling. The jobs in the job queue are ordered 

by the job scheduler, and the system gives more processing power to the jobs that are higher on the 

priority list inside the queue. The process of job scheduling ensures that all jobs are finished in a 

timely and equitable manner and that no jobs are left without enough CPU allocation. Most operating 

systems, such as UNIX, Windows, iOS, and Android, among others, come equipped with basic 

job-scheduling capabilities. In addition to this, a variety of applications, such as Database 

Management Systems (DBMS), Enterprise Resource Planning (ERP), and Business Process 

Management (BPM), are equipped with specialized job-scheduling features as well. Suppose a 

programmer needs to schedule jobs 𝐴1, 𝐴2, 𝐴3, and 𝐴4 following the criteria 𝐶1, 𝐶2, and 𝐶3, 

where 𝐶1 stands for automated restart in the event of a failure, 𝐶2 stands for the number of parallel 

jobs that are authorized for a user, and 𝐶3 stands for the execution time that is allotted to a user. The 

weight vector was used to determine the order of importance for each of these tasks 𝑤 =

 (0.20, 0.38, 0.42)𝑇. 

4.2.1. By using q-SFRWA operator 

Step 1: The data that the decision maker has gathered for the evaluation of the alternatives 𝐴𝑖 are 

provided in the form of q-SFRNs as shown in Table 1. Now we put the plan into action by selecting 

the most suitable alternative 𝐴𝑖. Table 2 represents the preferences of decision makers in the form of 

q-SFRNs for each job. 

Table 2. Preferences of decision-makers expressed in the form of q-SFRNs for each job. 

1 2 3

1

2

3

(0.8,0.4,0.3), (0.7,0.5,0.2) (0.7,0.4,0.2), (0.6,0.3,0.4) (0.7,0.3,0.3), (0.8,0.4,0.4)

(0.9,0.2,0.1), (0.8,0.3,0.2) (0.8,0.2,0.3), (0.5,0.4,0.1) (0.8,0.4,0.2), (0.9,0.3,0.2)

(0.8,0.4,0.3), (0.9,0.5,0.1

C C C

A

A

A

4

) (0.8,0.4,0.3), (0.7,0.3,0.2) (0.8,0.4,0.3), (0.4,0.4,0.2)

(0.7,0.4,0.5), (0.7,0.6,0.4) (0.9,0.4,0.3), (0.7,0.2,0.1) (0.7,0.3,0.3), (0.6,0.1,0.2)A

 

Step 2: Since 𝐶1 and 𝐶3 belong to the cost type of criterion, it is possible to normalize them by 

applying Eq (6), and as a result, we get the normalized decision matrix N, which is shown in Table 3. 

Table 3 represents the values of decision-making data that are normalized and presented in the form 

of q-SFRNs. 
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Table 3. Normalized decision-making data in the form of q-SFRNs. 

1 2 3

1

2

3

(0.3,0.4,0.8), (0.2,0.5,0.7) (0.7,0.4,0.2), (0.6,0.3,0.4) (0.3,0.3,0.7 ), (0.4,0.4,0.8)

(0.1,0.2,0.9), (0.2,0.3,0.8) (0.8,0.2,0.3), (0.5,0.4,0.1) (0.2,0.4,0.8, ), (0.2,0.3,0.9)

(0.3,0.4,0.8), (0.1,0.5,0.

C C C

A

A

A

4

9) (0.8,0.4,0.3), (0.7,0.3,0.2) (0.3,0.4,0.8), (0.2,0.4,0.4)

(0.5,0.4,0.7 ), (0.4,0.6,0.7 ) (0.9,0.4,0.3), (0.7,0.2,0.1) (0.3,0.3,0.7), (0.2,0.1,0.6)A

 

Step 3: Apply the q-SFRAM aggregation operators developed for normalized decision matrix 𝑁 =

[𝐵𝑞−𝑆𝐹𝑅𝑆𝑖𝑗]𝑛×𝑚 to each alternative 𝐴𝑖 to get the aggregated result 

¥𝑖 = ⟨(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆 , 𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆 ,  𝜇
−
𝐴𝑞−𝑆𝐹𝑅𝑆

) (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆 , 𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆 ,  𝜇
−
�̅�𝑞−𝑆𝐹𝑅𝑆

)⟩. 

¥1 = 〈(0.5450,0.3545,0.6211), (0.4859,0.3749,0.6845)〉 

¥2 = 〈(0.6226,0.2676,0.6961), (0.3784,0.3347,0.7817)〉 

¥3 = 〈(0.6312,0.4000, 0.6601), (0.5320,0.3749,0.6005)〉 

¥4 = 〈(0.7453,0.3545,0.5444), (0.5447,0.1862,0.5296)〉. 

Step 4: Compute the score values for each ¥𝑖, use Definition 3.5. 

Score (¥1) = 0.5397 

Score (¥2) = 0.4746 

Score (¥3) = 0.5937 

Score (¥4) =  0.7382. 

Step 5: Rank each alternative in order of preference ¥𝑖{𝑖 = 1, 2,3, … , 𝑟}. 

𝑆𝑐𝑜𝑟𝑒(¥4) >  𝑆𝑐𝑜𝑟𝑒(¥3) > 𝑆𝑐𝑜𝑟𝑒(¥1) > Score (¥2). 

According to these score values, the tasks on the timetable that were taken into consideration should 

be ranked as follows: 𝐴4 > 𝐴3 > 𝐴1 > 𝐴2.  

As a result, we have concluded that 𝐴4 should be scheduled first. 

 

Figure 2. Score values by using q-SFRAM aggregation operator. 
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4.2.2. By using q-SFRWGM operator 

On the other hand, if we aggregate the data that has been provided by utilizing the q- SFRGM 

operator, then the steps that have been taken are as follows: 

Step 1: All of the information related to each alternative is compiled and presented in the form of q- 

SFRNs in Table 2. 

Step 2: The examined problem’s normalized data are shown in Table 3. 

Step 3: To get the total performance value of each alternative, indicated by ¥𝑖, we may use the 

q-SFRGM operator as provided in Definition 3.4 to aggregate the ith row. 

¥1 = 〈(0.4140, 0.3650,0.6519), (0.4062,0.3975,0.7009)〉 

¥2 = 〈(0.2949,0.3172,0.7614), (0.2833,0.3455,0.7922)〉 

¥3 = 〈(0.4355,0.4000, 0.7176), (0.2803,0.3975,0.6719)〉 

¥4 = 〈(0.5044,0.3650,0.6179), (0.3698,0.3704,0.5706)〉. 

Step 4: The score values for these alternatives are  

Score (¥1) = 0.4684 

Score (¥2) = 0.3455 

Score (¥3) = 0.4350 

Score (¥4) = 0.5526. 

Step 5: As a result of this, the alternative with the highest rating is 𝐴4, followed by 𝐴1 and then 𝐴3, 

while the task with the lowest ranking is 𝐴2. i.e., 𝐴4 > 𝐴1 > 𝐴3 > 𝐴2.  

 

Figure 3. Score values by using q-SFRGM aggregation operator. 

The data that was shown previously makes it quite easy for us to conclude that while different 

methodologies may yield different orderings of alternatives, the ones that are the best stay the same. 

The q-SFAM and q-SFGM operators, on the other hand, do not consider the interrelationships that 

exist between fused arguments. 
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5. Comparative analysis 

In 2020, Kahraman et al. [21] defined operational laws for q-spherical fuzzy sets, and their 

aggregation operators and applied the proposed operators to decision-making problems to find the 

best solution. The q-spherical fuzzy rough set is presented here as part of the work that we have 

suggested. Also developed in detail are the operational laws for the q-spherical fuzzy rough numbers, 

aggregation operators (q-SFRAM and q-SFRGM), and the properties of those operators. Further 

application of the suggested aggregation operators in the issue of decision-making led to the 

selection of the most effective station for analyzing the job scheduling. From what has been shown 

so far, it should be clear that q-spherical fuzzy rough information job scheduling offers a wide range 

of potential applications. Because uncertainty can be effectively measured in terms of q-SFR 

numbers and because this provides improved results in fuzzy mathematics, the preference values are 

treated as q-SFR numbers rather than an exact numbers in the work that we have proposed. This is 

because uncertainty can be effectively measured in terms of q-SFR numbers. Because of this, the 

technique that is being offered is both innovative and effective. Therefore, the multiple attribute 

group decision-making models developed in this study are more generalizable and adaptable than the 

existing multiple attribute group decision-making models under a q-spherical fuzzy rough 

environment, making them applicable in a wider range of settings where the attribute group 

decision-making (MADM) procedure is used.  

Table 4. Comparison analysis. 

( ) 2 4 1 3

2 4 3 1

2 4 3 1

Methods Score values Ranking Order

IFWA  [50] 0.22016,0.33214,0.21173,0.27007

IFWG  [50] (0.46119, 0.5572,0.49917,0.55418)

PFSWA  [51] (0.52209, 0.62190,0.56596,0.59380)

PFSWG  [51] (

S S S S

S S S S

S S S S

  

  

  

2 3 4 1

2 1 4 3

2 1 4 3

t 2

0.46427, 0.57343,0.55374,0.51474)

q-ROFWA  [52] (0.09958, 0.14761,0.07984,0.08157)

q-ROFWG  [52] (0.29865, 0.40678,0.35021,0.38045)

q-ROFS RWA  [53] (0.226074, 0.298025, 0.241341)

S S S S

S S S S

S S S S

S

  

  

  

3 1

t 2 3 1

t 2 3 1

t 2 3 1

t 2 3 1

q-ROFS RWG  [53] (0.06616, 0.135502, 0.118744)

SFS RWA  [54] (0.4477, 0.5337, 0.5188)

SFS ROWA [54] (0.4317, 0.5412, 0.4977)

SFS RHA  [54] (0.4454,0.5202, 0.4711)

q-SFRWAM  (propose

S S

S S S

S S S

S S S

S S S

 

 

 

 

 

4 3 1 2

4 1 3 2

d) (0.5397,0.4746,0.5937,0.7382)

q-SFRWGM (proposed) (0.4684,0.3455,0.4350,0.5526)

S S S S

S S S S
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Table 5. Characteristic analysis. 

Approches Fuzzy information Parameters information Lower and upper approximation information 

IFWA [50] √ × × 

IFWG [50] √ × × 

PFSWA [51] √ √ × 

PFSWG [51] √ √ × 

q-ROFWA [52] √ × × 

q-ROFWG [52] √ × × 

q-ROFStRWA [53] √ √ √ 

q-ROFStRWG [53] √ √ √ 

SFStRWA [54] √ √ √ 

SFStROWA [54] √ √ √ 

SFStRHA [54] √ √ √ 

q-SFRWAM 

(proposed) 
√ √ √ 

q-SFRWGM 

(proposed) 
√ √ √ 

6. Conclusions 

In this article, we developed a hybrid notion called q-spherical fuzzy rough set, by combining 

the concepts of q-spherical fuzzy set and rough set, where there are three independent parameters 

with lower and upper set approximations. We define basic operational laws such as intersection, 

union, addition, multiplication, and scaler multiplication. We plan to develop new aggregation 

operators such as q-spherical fuzzy rough weighted arithmetic mean (q-SFRWAM) and q-spherical 

fuzzy rough weighted geometric mean (q-SFRWGM) operators. For application, we construct an 

example to show the validity of the developed work. In the end, we established a comparison 

analysis to show the advantages of the proposed operators. For the sake of future study, we want to 

create brand new aggregation operators in addition to defuzzification processes. In the future, one of 

our primary goals will be to expand the application of the methodology that we have created by 

doing research into increasingly complex theories and algorithms in a variety of subfields, and also, 

we will aim to use the developed approach in more domains, as well as investigate advanced theories 

and algorithms in diverse fields. As a result, considering everything, the q-spherical fuzzy rough set 

seems to be a promising new idea, opening the door to a wide variety of opportunities for study in 

the future. 
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Appendix  

Proof 3.2: (i) 𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆 = 𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆, �̅�𝑞−𝑆𝐹𝑅𝑆⊕ �̅�𝑞−𝑆𝐹𝑅𝑆 where, 

𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆 = 𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆, �̅�𝑞−𝑆𝐹𝑅𝑆⊕ �̅�𝑞−𝑆𝐹𝑅𝑆 where, 

𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆 = ⟨((𝜇
+
𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞
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−
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𝑞

)

1

𝑞
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𝑞
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𝑞

, (((1 − (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

+

(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)−(𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

 (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞
)

1

𝑞

 ⟩.  

𝐵𝑞−𝑆𝐹𝑅𝑆⊕𝐴𝑞−𝑆𝐹𝑅𝑆 = ⟨((𝜇
+
𝐵𝑞−𝑆𝐹𝑅𝑆

)
𝑞

+ (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞
, (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆   )

𝑞

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

, (((1 − (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

+

(1 − (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

) − ( 𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆  )

𝑞

 (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞

⟩. 

�̅�𝑞−𝑆𝐹𝑅𝑆⊕ �̅�𝑞−𝑆𝐹𝑅𝑆 = ⟨((𝜇
+
�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝑞

+ (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞
, (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

 (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

, (((1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+

https://doi.org/10.1108/IJICC-09-2020-0108
https://doi.org/10.1109/TFUZZ.2006.890678
https://doi.org/10.3233/JIFS-202781
https://doi.org/10.1007/s10462-020-09926-2
https://doi.org/10.1155/2020/6671001
https://doi.org/10.1109/ACCESS.2022.3150858
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(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) − (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

 (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞

  ⟩. 

�̅�𝑞−𝑆𝐹𝑅𝑆⊕ �̅�𝑞−𝑆𝐹𝑅𝑆 = ⟨((𝜇
+
�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝑞

+ (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞
, ( 𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆  )

𝑞

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

, (((1 − (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+

(1 − (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) − ( 𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆  )

𝑞

 (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞

⟩. 

And so, 𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆 = 𝐵𝑞−𝑆𝐹𝑅𝑆⊕ 𝐴𝑞−𝑆𝐹𝑅𝑆. 

(𝐢𝐢) 𝐴𝑞−𝑆𝐹𝑅𝑆⊗𝐵𝑞−𝑆𝐹𝑅𝑆 = 𝐴𝑞−𝑆𝐹𝑅𝑆⊗𝐵𝑞−𝑆𝐹𝑅𝑆, �̅�𝑞−𝑆𝐹𝑅𝑆⊗ �̅�𝑞−𝑆𝐹𝑅𝑆, where, 

𝐴𝑞−𝑆𝐹𝑅𝑆⊗𝐵𝑞−𝑆𝐹𝑅𝑆 = ⟨(𝜇
+
𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞

(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

 , ((𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞
 ,   (((1 − (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞

) (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (1 −

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

) − (  𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

 (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞

⟩. 

𝐵𝑞−𝑆𝐹𝑅𝑆⊗𝐴𝑞−𝑆𝐹𝑅𝑆 = ⟨(𝜇
+
𝐵𝑞−𝑆𝐹𝑅𝑆

)
𝑞

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

 , ((𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞
 ,  (((1 − (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

) (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (1 −

(𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

) − ( 𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆  )

𝑞

 (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞

⟩. 

�̅�𝑞−𝑆𝐹𝑅𝑆⊗ �̅�𝑞−𝑆𝐹𝑅𝑆 = ⟨(𝜇
+
�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝑞

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

 , ((𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞
 ,   (((1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (1 −

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) − (  𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

 (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞

⟩. 

�̅�𝑞−𝑆𝐹𝑅𝑆⊗ �̅�𝑞−𝑆𝐹𝑅𝑆 = ⟨(𝜇
+
�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝑞

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

 , ((𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞
 ,  (((1 − (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

) (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (1 −
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(𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) − (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆   )

𝑞

 (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞

⟩. 

And so, 𝐴𝑞−𝑆𝐹𝑅𝑆⊗𝐵𝑞−𝑆𝐹𝑅𝑆 = 𝐵𝑞−𝑆𝐹𝑅𝑆⊗𝐴𝑞−𝑆𝐹𝑅𝑆. 

(𝐢𝐢𝐢) 𝜆(𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆) = 𝜆𝐴𝑞−𝑆𝐹𝑅𝑆⊕ 𝜆𝐵𝑞−𝑆𝐹𝑅𝑆, where 

𝜆(𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆) = 𝜆(𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆), 𝜆(�̅�𝑞−𝑆𝐹𝑅𝑆⊕ �̅�𝑞−𝑆𝐹𝑅𝑆) and 

𝜆𝐴𝑞−𝑆𝐹𝑅𝑆⊕ 𝜆𝐵𝑞−𝑆𝐹𝑅𝑆 = 𝜆𝐴𝑞−𝑆𝐹𝑅𝑆⊕  𝜆𝐵𝑞−𝑆𝐹𝑅𝑆, 𝜆�̅�𝑞−𝑆𝐹𝑅𝑆⊕  𝜆�̅�𝑞−𝑆𝐹𝑅𝑆. 

𝜆(𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆) = 𝜆 ⟨((𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞
, ( 𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

(𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

,  (((1 − (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

+

(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

) − (  𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

 (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞

⟩, 

= ⟨(1 − (1 − ((𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

))

𝜆

)

1

𝑞

, (  𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝜆

 (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝜆

, [(1 − ((𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

+

(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

))

𝜆

− ((1 − ((𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)) − (1 − (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (  𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞
)

𝜆

]

1

𝑞

⟩. 

𝜆(�̅�𝑞−𝑆𝐹𝑅𝑆⊕ �̅�𝑞−𝑆𝐹𝑅𝑆) = 𝜆 ⟨((𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞
, ( 𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

, (((1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+

(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) − (  𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

 (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

1

𝑞

⟩, 

= ⟨(1 − (1 − ((𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

−
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(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

))

𝜆

)

1

𝑞

, (  𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆

 (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆

, [(1 − ((𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

))

𝜆

− ((1 − ((𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)) − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (  𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

 (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
)

𝜆

]

1

𝑞

⟩. 

𝜆𝐴𝑞−𝑆𝐹𝑅𝑆⊕  𝜆𝐵𝑞−𝑆𝐹𝑅𝑆 = ⟨(1 − (1 − (𝜇
+
𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞

)
λ

)

1

𝑞

, (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
λ

,  [(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

−

 (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
q

)
λ

]

1

𝑞

⟩⊕ ⟨ (1 − (1 − (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)

1

𝑞

, (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
λ

,  [(1 −

(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 − (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
q

)
λ

]

1

𝑞

⟩, 

= ⟨(1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

+ 1 − (1 − (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)(1 −

(1 − (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)) 
1

𝑞, (  𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝜆

 (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆

, 1 − (1 − (1 − (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)((1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

) +((1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)((1 −

(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 − (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

) − ((1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
q

)
λ

)((1 − (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 − (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
q

)
λ

))

1

𝑞

⟩, 

= ⟨(1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

(1 − (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)

1

𝑞

, (  𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝜆

 (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝜆

, ((1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

(1 − (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

(1 −
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(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)

1

𝑞

⟩, 

= ⟨(1 − (1 − ((𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

))

𝜆

)

1

𝑞

, (  𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝜆

 (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝜆

, [(1 − ((𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

+

(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

))

𝜆

− ((1 − ((𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

)) − (1 − (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (  𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

 (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞
)

𝜆

]

1

𝑞

⟩. 

𝜆�̅�𝑞−𝑆𝐹𝑅𝑆⊕  𝜆�̅�𝑞−𝑆𝐹𝑅𝑆 = ⟨(1 − (1 − (𝜇
+
�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝑞

)
λ

)

1

𝑞

, (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
λ

,  [(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

−

 (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
q

)
λ

]

1

𝑞

⟩⊕ ⟨(1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)

1

𝑞

, (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
λ

,  [(1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
q

)
λ

]

1

𝑞

⟩, 

= ⟨(1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

+ 1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)(1 −

(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)) 
1

𝑞, (  𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆

 (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆

, 1 − (1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)((1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

) +((1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)((1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

) − ((1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
q

)
λ

)((1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
q

)
λ

))

1

𝑞

⟩, 



8238 

AIMS Mathematics  Volume 8, Issue 4, 8210–8248. 

= ⟨(1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)

1

𝑞

, (  𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆

 (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆

, ((1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

(1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
λ

)

1

𝑞

⟩, 

= ⟨(1 − (1 − ((𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

))

𝜆

)

1

𝑞

, (  𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆

 (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆

, [(1 − ((𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

))

𝜆

− ((1 − ((𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

−

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)) − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

+ (  𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

 (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
)

𝜆

]

1

𝑞

⟩. 

And so, 𝜆(𝐴𝑞−𝑆𝐹𝑅𝑆⊕𝐵𝑞−𝑆𝐹𝑅𝑆) = 𝜆𝐴𝑞−𝑆𝐹𝑅𝑆⊕ 𝜆𝐵𝑞−𝑆𝐹𝑅𝑆. 

(𝐢𝐯) 𝜆1(𝐴𝑞−𝑆𝐹𝑅𝑆) ⊕ 𝜆2(𝐴𝑞−𝑆𝐹𝑅𝑆) = (𝜆1 + 𝜆2)𝐴𝑞−𝑆𝐹𝑅𝑆, where 

𝜆1(𝐴𝑞−𝑆𝐹𝑅𝑆) ⊕ 𝜆2(𝐴𝑞−𝑆𝐹𝑅𝑆) = 𝜆1(𝐴𝑞−𝑆𝐹𝑅𝑆) ⊕ 𝜆2(𝐴𝑞−𝑆𝐹𝑅𝑆), 𝜆1(�̅�𝑞−𝑆𝐹𝑅𝑆)) ⊕ 𝜆2(�̅�𝑞−𝑆𝐹𝑅𝑆)) 

(𝜆1 + 𝜆2)𝐴𝑞−𝑆𝐹𝑅𝑆 = ((𝜆1 + 𝜆2)𝐴𝑞−𝑆𝐹𝑅𝑆, (𝜆1 + 𝜆2)�̅�𝑞−𝑆𝐹𝑅𝑆) 

𝜆1(𝐴𝑞−𝑆𝐹𝑅𝑆) ⊕ 𝜆2(𝐴𝑞−𝑆𝐹𝑅𝑆) = ⟨(1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
)

1

𝑞

, (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝜆1
, [(1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
− (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
q

)
𝜆1
]

1

𝑞

⟩ ⊕ ⟨ (1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆2
)

1

𝑞

,

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝜆2
,    [(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

)
𝜆2
− (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
q

)
𝜆2
]

1

𝑞

⟩, 

= ⟨(1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
+ 1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

)
𝜆2
− (1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

)
𝜆1
)(1 −
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(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆2
)) 

1

𝑞, (  𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝜆1+𝜆2

, ((1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆2
((1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

𝜆1

) + (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
((1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆2
(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

𝜆2

) − ((1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
− (1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
) − ((1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

)
𝜆2
− (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

−

(𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆2
))

1

𝑞

⟩, 

= ⟨(1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
(𝜆1+𝜆2)

)

1

𝑞

, (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
(𝜆1+𝜆2)

,  [(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
(𝜆1+𝜆2)

−

 (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
q

)
(𝜆1+𝜆2)

]

1

𝑞

⟩. 

(𝜆1 + 𝜆2)𝐴𝑞−𝑆𝐹𝑅𝑆 = ⟨(1 − (1 − (𝜇
+
𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞

)
(𝜆1+𝜆2)

)

1

𝑞

, (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
(𝜆1+𝜆2)

, [(1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
(𝜆1+𝜆2)

− (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
q

)
(𝜆1+𝜆2)

]

1

𝑞

⟩. 

𝜆1(�̅�𝑞−𝑆𝐹𝑅𝑆) ⊕ 𝜆2(�̅�𝑞−𝑆𝐹𝑅𝑆) = ⟨(1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
)

1

𝑞

, (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆1
,   [(1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
q

)
𝜆1
]

1

𝑞

⟩ ⊕ ⟨ (1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆2
)

1

𝑞

,

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆2
,  [(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

)
𝜆2
− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
q

)
𝜆2
]

1

𝑞

⟩, 

= ⟨(1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
+ 1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

)
𝜆2
− (1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

)
𝜆1
)(1 −

(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆2
)) 

1

𝑞, (  𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆1+𝜆2

, ((1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆2
((1 −



8240 

AIMS Mathematics  Volume 8, Issue 4, 8210–8248. 

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

𝜆1

) + (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
((1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆2
(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

𝜆2

) − ((1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
− (1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
) − ((1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

)
𝜆2
− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

−

(𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆2
))

1

𝑞

⟩, 

= ⟨(1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
(𝜆1+𝜆2)

)

1

𝑞

, (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
(𝜆1+𝜆2)

,  [(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
(𝜆1+𝜆2)

−

 (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
q

)
(𝜆1+𝜆2)

]

1

𝑞

⟩, 

(𝜆1 + 𝜆2)𝐴𝑞−𝑆𝐹𝑅𝑆 = ⟨(1 − (1 − (𝜇
+
�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝑞

)
(𝜆1+𝜆2)

)

1

𝑞

, (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
(𝜆1+𝜆2)

,   [(1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
(𝜆1+𝜆2)

− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
q

)
(𝜆1+𝜆2)

]

1

𝑞

⟩. 

And so, 𝜆1(𝐴𝑞−𝑆𝐹𝑅𝑆)⊕ 𝜆2(𝐴𝑞−𝑆𝐹𝑅𝑆) = (𝜆1 + 𝜆2)𝐴𝑞−𝑆𝐹𝑅𝑆. 

(𝐯) (𝐴𝑞−𝑆𝐹𝑅𝑆⊗𝐵𝑞−𝑆𝐹𝑅𝑆)
𝜆 = 𝐴𝑞−𝑆𝐹𝑅𝑆

𝜆⊗𝐵𝑞−𝑆𝐹𝑅𝑆
𝜆, where 

(𝐴𝑞−𝑆𝐹𝑅𝑆⊗𝐵𝑞−𝑆𝐹𝑅𝑆)
𝜆 = ((𝐴𝑞−𝑆𝐹𝑅𝑆⊗𝐵𝑞−𝑆𝐹𝑅𝑆)

𝜆, (�̅�𝑞−𝑆𝐹𝑅𝑆⊗ �̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆) 

𝐴𝑞−𝑆𝐹𝑅𝑆
𝜆⊗𝐵𝑞−𝑆𝐹𝑅𝑆

𝜆 = 𝐴𝑞−𝑆𝐹𝑅𝑆
𝜆⊗𝐵𝑞−𝑆𝐹𝑅𝑆

𝜆, �̅�𝑞−𝑆𝐹𝑅𝑆
𝜆
⊗ �̅�𝑞−𝑆𝐹𝑅𝑆

𝜆
 

(𝐴𝑞−𝑆𝐹𝑅𝑆⊗𝐵𝑞−𝑆𝐹𝑅𝑆)
𝜆 

= ⟨((  𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
 (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
, ((𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
+ (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
− (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
(𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
)

1

𝑞
 , [((1 −

(𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞
) (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
− (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
) (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
+ (  𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
 (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
)]

1

𝑞

)

𝜆

⟩, 

= ⟨(  𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝜆
 (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)

𝜆
, (1 − (1 − ((𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
+ (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
−

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
(𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
))

𝜆

)

1

𝑞

 , [(1 − ((𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
+ (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
− (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
(𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
))

𝜆

−
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(1 − ((𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆
)
𝑞
+ (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆

)
𝑞
− (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞
(𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆

)
𝑞
)) − ((1 − (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
) (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞
−

(1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
) (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆

)
𝑞
+ (  𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞
 (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆

)
𝑞
)

𝜆

]

1

𝑞

⟩. 

(�̅�𝑞−𝑆𝐹𝑅𝑆⊗ �̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆 

= ⟨((  𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆
)
𝑞
 (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝑞
, ((𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
+ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
− (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
)

1

𝑞
 , [((1 −

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
− (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
+ (  𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
 (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
)]

1

𝑞

)

𝜆

⟩, 

= ⟨(  𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆
)
𝜆
 (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝜆
, (1 − (1 − ((𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
+ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
−

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
))

𝜆

)

1

𝑞

 , [(1 − ((𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
+ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
− (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
))

𝜆

−

(1 − ((𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
+ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
− (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
)) − ((1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
−

(1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
+ (  𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
(𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
)

𝜆

]

1

𝑞

⟩. 

𝐴𝑞−𝑆𝐹𝑅𝑆
𝜆⊗𝐵𝑞−𝑆𝐹𝑅𝑆

𝜆 = ⟨  (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆
)
λ
, (1 − (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞
)
λ

)

1

𝑞

, [(1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆
)
𝑞
)
λ

−

 (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)

q
)
λ

]

1

𝑞

⟩⊗ ⟨  (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)
λ
, (1 − (1 − (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
)
λ

)

1

𝑞

, [(1 −

(𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

− (1 − (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞
− (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)

q
)
λ

]

1

𝑞

⟩ , 

= ⟨(  𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝜆
 (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆)

𝜆
, (1 − (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
)
λ

+ 1 − (1 − (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

− (1 − (1 −

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

)(1 − (1 − (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

)) 
1

𝑞 , (1 − (1 − (1 − (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

)((1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

−

(1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
)
λ

) + ((1 − (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

)((1 − (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

− (1 −

(𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞
− (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
)
λ

) − ((1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

− (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)

q
)
λ

)((1 −
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(𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

− (1 − (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)
𝑞
− (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆

)
q
)
λ

)))

1

𝑞

⟩, 

= ⟨(  𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆
)
𝜆
 (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆

)
𝜆
, (1 − (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞
)
λ

(1 − (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆
)
𝑞
)
λ

)

1

𝑞

, ((1 −

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆
)
𝑞
)
λ

(1 − (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆
)
𝑞
)
λ

− (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆
)
𝑞
− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞
)
λ

(1 − (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆
)
𝑞
−

(𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆
)
𝑞
)
λ

)

1

𝑞

⟩, 

= ⟨(  𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆
)
𝜆
 (𝜇+𝐵𝑞−𝑆𝐹𝑅𝑆

)
𝜆
, (1 − (1 − ((𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞
+ (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆

)
𝑞
−

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
(𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
))

𝜆

)

1

𝑞

, [(1 − ((𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
+ (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
− (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
(𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
))

𝜆

−

((1 − ((𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
+ (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
− (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
(𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
)) − (1 − (𝜇′𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
) (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
−

(1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
) (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
+ (  𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
 (𝜇−𝐵𝑞−𝑆𝐹𝑅𝑆)

𝑞
)

𝜆

]

1

𝑞

⟩. 

�̅�𝑞−𝑆𝐹𝑅𝑆
𝜆
⊗ �̅�𝑞−𝑆𝐹𝑅𝑆

𝜆
= ⟨(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆

)
λ
, (1 − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝑞
)
λ

)

1

𝑞

 , [(1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆
)
𝑞
)
λ

−

 (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

q
)
λ

]

1

𝑞

⟩  ⊗ ⟨  (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
λ
, (1 − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
)
λ

)

1

𝑞

,  [(1 −

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

− (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

q
)
λ

]

1

𝑞

⟩, 

= ⟨(  𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆
 (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)

𝜆
, (1 − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
)
λ

+ 1 − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

− (1 − (1 −

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

)(1 − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

)) 
1

𝑞 , (1 − (1 − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

)((1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

−

(1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
)
λ

) + ((1 − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

)((1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

− (1 −

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
)
λ

) − ((1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

− (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

q
)
λ

)((1 −
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(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
λ

− (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆

)
q
)
λ

)))

1

𝑞

⟩, 

= ⟨(  𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆
)
𝜆
 (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝜆
, (1 − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝑞
)
λ

(1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆
)
𝑞
)
λ

)

1

𝑞

, ((1 −

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆
)
𝑞
)
λ

(1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆
)
𝑞
)
λ

− (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆
)
𝑞
− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝑞
)
λ

(1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆
)
𝑞
−

(𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆
)
𝑞
)
λ

)

1

𝑞

⟩, 

= ⟨(  𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆
)
𝜆
 (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝜆
, (1 − (1 − ((𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝑞
+ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆

)
𝑞
−

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
))

𝜆

)

1

𝑞

, [(1 − ((𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
+ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
− (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
))

𝜆

−

((1 − ((𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
+ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
− (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
)) − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
−

(1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞
) (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
+ (  𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
 (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞
)

𝜆

]

1

𝑞

⟩. 

And so, (𝐴𝑞−𝑆𝐹𝑅𝑆⊗𝐵𝑞−𝑆𝐹𝑅𝑆)
𝜆 = 𝐴𝑞−𝑆𝐹𝑅𝑆

𝜆⊗𝐵𝑞−𝑆𝐹𝑅𝑆
𝜆. 

(𝐯𝐢) 𝐴𝑞−𝑆𝐹𝑅𝑆
𝜆1 ⊗𝐴𝑞−𝑆𝐹𝑅𝑆

𝜆2 = 𝐴𝑞−𝑆𝐹𝑅𝑆
𝜆1+𝜆2 where, 

𝐴𝑞−𝑆𝐹𝑅𝑆
𝜆1 ⊗𝐴𝑞−𝑆𝐹𝑅𝑆

𝜆2 = (𝐴𝑞−𝑆𝐹𝑅𝑆
𝜆1 ⊗𝐴𝑞−𝑆𝐹𝑅𝑆

𝜆2 , �̅�𝑞−𝑆𝐹𝑅𝑆
𝜆1 ⊗ �̅�𝑞−𝑆𝐹𝑅𝑆

𝜆2) 

𝐴𝑞−𝑆𝐹𝑅𝑆
𝜆1+𝜆2 = (𝐴𝑞−𝑆𝐹𝑅𝑆

𝜆1+𝜆2 , �̅�𝑞−𝑆𝐹𝑅𝑆
𝜆1+𝜆2) 

𝐴𝑞−𝑆𝐹𝑅𝑆
𝜆1 ⊗𝐴𝑞−𝑆𝐹𝑅𝑆

𝜆2 = ⟨  (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝜆1
, (1 − (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
)
𝜆1
)

1

𝑞

,   [(1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
𝜆1
−

 (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)

q
)
𝜆1
]

1

𝑞

⟩⊗ ⟨ (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝜆2
, (1 − (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
)
𝜆2
)

1

𝑞

,   [(1 −

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
𝜆2
− (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)

q
)
𝜆2
]

1

𝑞

⟩, 

= ⟨(  𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝜆1+𝜆2

(1 − (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
𝜆1
+ 1 − (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
)
𝜆2
− (1 − (1 −
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(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆
)
𝑞
)
𝜆1
)(1 − (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞
)
𝜆2
)) 

1

𝑞, ((1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆
)
𝑞
)
𝜆2
((1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞
)
𝜆1
(1 −

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
)
𝜆1
) + (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
)
𝜆1
((1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
)
𝜆2
(1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞
−

(𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆
)
𝑞
)
𝜆2
) − ((1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞
)
𝜆1
− (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞
− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞
)
𝜆1
) − ((1 −

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆
)
𝑞
)
𝜆2
− (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞
− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆

)
𝑞
)
𝜆2
))

1

𝑞

⟩, 

= ⟨(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)
𝜆1+𝜆2

, (1 − (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
𝜆1+𝜆2

)

1

𝑞

,  [(1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
)
𝜆1+𝜆2

− (1 −

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞
− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)

q
)
𝜆1+𝜆2

]

1

𝑞

⟩. 

�̅�𝑞−𝑆𝐹𝑅𝑆
𝜆1 ⊗ �̅�𝑞−𝑆𝐹𝑅𝑆

𝜆2 = ⟨  (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆1
, (1 − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

)
𝜆1
)

1

𝑞

,   [(1 −

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
− (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
q

)
𝜆1
]

1

𝑞

⟩ ⊗ ⟨ (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆2
, (1 − (1 −

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆2
)

1

𝑞

,    [(1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆2
− (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
q

)
𝜆2
]

1

𝑞

⟩, 

= ⟨(  𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆1+𝜆2

(1 − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
+ 1 − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

)
𝜆2
− (1 − (1 −

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
)(1 − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

)
𝜆2
)) 

1

𝑞 , ((1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆2
((1 −

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
(1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

𝜆1

) + (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
((1 −

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆2
(1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)

𝜆2

) − ((1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
− (1 −

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1
) − ((1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

)
𝜆2
− (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)

𝑞

−

(𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆2
))

1

𝑞

⟩, 
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= ⟨(1 − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
(𝜆1+𝜆2)

)

1

𝑞

, (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
(𝜆1+𝜆2)

, [(1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
(𝜆1+𝜆2)

−

 (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
q

)
(𝜆1+𝜆2)

]

1

𝑞

⟩, 

= ⟨(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆)
𝜆1+𝜆2

, (1 − (1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1+𝜆2

)

1

𝑞

, [(1 − (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1+𝜆2

− (1 −

(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆)
q

)
𝜆1+𝜆2

]

1

𝑞

⟩. 

𝐴𝑞−𝑆𝐹𝑅𝑆
𝜆1+𝜆2 = ⟨(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆)

𝜆1+𝜆2
, (1 − (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)

𝑞

)
𝜆1+𝜆2

)

1

𝑞

,  [(1 −

(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

)
𝜆1+𝜆2

− (1 − (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆)
q

)
𝜆1+𝜆2

]

1

𝑞

⟩. 

Definition 3.3: Proof: We can prove the Eq (1) by using mathematical induction on n: when 𝑛 = 2, 

q − SFRAM𝑤(𝐴𝑞−𝑆𝐹𝑅𝑆1, 𝐴𝑞−𝑆𝐹𝑅𝑆2) = 𝑤1𝐴𝑞−𝑆𝐹𝑅𝑆1⊕𝑤2𝐴𝑞−𝑆𝐹𝑅𝑆2. 

According to Definition 3.2, we can see that both 𝑤1𝐴𝑞−𝑆𝐹𝑅𝑆1 and 𝑤2𝐴𝑞−𝑆𝐹𝑅𝑆2 are q-SFRNs. By 

the operational law (iv) in Definition 3.2, we have 

𝑤1𝐴𝑞−𝑆𝐹𝑆1 = ⟨(1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆1)
𝑞

)
𝑤1
)

1

𝑞

, (𝜇′𝐴𝑞−𝑆𝐹𝑆1)
𝑤1
,  [(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆1)

𝑞

)
𝑤1
−

 (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆1)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑆1)
q

)
𝑤1
]

1

𝑞

⟩. 

𝑤2𝐴𝑞−𝑆𝐹𝑆2 = ⟨(1 − (1 − (𝜇
+
𝐴𝑞−𝑆𝐹𝑆2

)
𝑞

)
𝑤2
)

1
𝑞
,

(𝜇′𝐴𝑞−𝑆𝐹𝑆2)
𝑤2
,  [(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆2)

𝑞

)
𝑤2
− (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆2)

𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑆2)
q

)
𝑤2
]

1
𝑞
⟩. 

𝑤1𝐴𝑞−𝑆𝐹𝑅𝑆1⊕𝑤2𝐴𝑞−𝑆𝐹𝑅𝑆2 = ⟨(1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆1)
𝑞

)
𝑤1
)

1

𝑞

, (𝜇′𝐴𝑞−𝑆𝐹𝑆1)
𝑤1
,   [(1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑆1)
𝑞

)
𝑤1
− (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆1)

𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑆1)
q

)
𝑤1
]

1

𝑞

⟩ ⊕ ⟨(1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆2)
𝑞

)
𝑤2
)

1

𝑞

,
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(𝜇′𝐴𝑞−𝑆𝐹𝑆2)
𝑤2
, [(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆2)

𝑞

)
𝑤2
− (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆2)

𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑆2)
q

)
𝑤2
]

1

𝑞

⟩, 

⟨(1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆1)
𝑞

)
𝑤1
)

1

𝑞

+ (1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆2)
𝑞

)
𝑤2
)

1

𝑞

− (1 − (1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑆1)
𝑞

)
𝑤1
)

1

𝑞

(1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆2)
𝑞

)
𝑤2
)

1

𝑞

, (𝜇′𝐴𝑞−𝑆𝐹𝑆1)
𝑤1
∙ (𝜇′𝐴𝑞−𝑆𝐹𝑆2)

𝑤2
, [1 − (1 −

(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆2)
𝑞

)
𝑤2
) ((1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆1)

𝑞

)
𝑤1
− (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆1)

𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆1)
𝑞

)
𝑤1
) +

((1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆1)
𝑞

)
𝑤1
) ((1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆2)

𝑞

)
𝑤2
− (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆2)

𝑞

−

(𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆2)
𝑞

)
𝑤2
) − ((1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆1)

𝑞

)
𝑤1
− (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆1)

𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆1)
q

)
𝑤1
) ((1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆2)
𝑞

)
𝑤2
− (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆2)

𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆2)
q

)
𝑤2
))

1

𝑞

]⟩, 

= ⟨[1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆1)
𝑞

)
𝑤1
(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆2)

𝑞

)
𝑤2
]

1

𝑞

, (𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆1)
𝑤1
(𝜇′𝐴𝑞−𝑆𝐹𝑅𝑆2)

𝑤2
, [(1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆1)
𝑞

)
𝑤1
(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆2)

𝑞

)
𝑤2
− (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆1)

𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆2)
𝑞

)
𝑤1
(1 −

(𝜇+𝐴𝑞−𝑆𝐹𝑅𝑆2)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑅𝑆2)
𝑞

)
𝑤2
]

1

𝑞

⟩. 

𝑤1𝐴𝑞−𝑆𝐹𝑆1 = ⟨(1 − (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆1)
𝑞

)
𝑤1
)

1

𝑞

, (𝜇′𝐴𝑞−𝑆𝐹𝑆1)
𝑤1
, [(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆1)

𝑞

)
𝑤1
−

 (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆1)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑆1)
q

)
𝑤1
]

1

𝑞

⟩. 

𝑤2𝐴𝑞−𝑆𝐹𝑆2 = ⟨(1 − (1 − (𝜇
+
𝐴𝑞−𝑆𝐹𝑆2

)
𝑞

)
𝑤2
)

1

𝑞

, (𝜇′𝐴𝑞−𝑆𝐹𝑆2)
𝑤2
, [(1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆2)

𝑞

)
𝑤2
−

 (1 − (𝜇+𝐴𝑞−𝑆𝐹𝑆2)
𝑞

− (𝜇−𝐴𝑞−𝑆𝐹𝑆2)
q

)
𝑤2
]

1

𝑞

⟩. 

𝑤1�̅�𝑞−𝑆𝐹𝑅𝑆1⊕𝑤2�̅�𝑞−𝑆𝐹𝑅𝑆2 = ⟨(1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑆1)
𝑞

)
𝑤1
)

1

𝑞

, (𝜇′�̅�𝑞−𝑆𝐹𝑆1)
𝑤1
, [(1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑆1)
𝑞

)
𝑤1
− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑆1)

𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑆1)
q

)
𝑤1
]

1

𝑞

⟩ ⊕ ⟨(1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑆2)
𝑞

)
𝑤2
)

1

𝑞

,

(𝜇′�̅�𝑞−𝑆𝐹𝑆2)
𝑤2
,  [(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑆2)

𝑞

)
𝑤2
− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑆2)

𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑆2)
q

)
𝑤2
]

1

𝑞

⟩, 



8247 

AIMS Mathematics  Volume 8, Issue 4, 8210–8248. 

= ⟨(1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑆1)
𝑞

)
𝑤1
)

1

𝑞

+ (1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑆2)
𝑞

)
𝑤2
)

1

𝑞

− (1 − (1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑆1)
𝑞

)
𝑤1
)

1

𝑞

(1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑆2)
𝑞

)
𝑤2
)

1

𝑞

, (𝜇′�̅�𝑞−𝑆𝐹𝑆1)
𝑤1
∙ (𝜇′�̅�𝑞−𝑆𝐹𝑆2)

𝑤2
, [1 − (1 −

(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆2)
𝑞

)
𝑤2
) ((1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆1)

𝑞

)
𝑤1
− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆1)

𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆1)
𝑞

)
𝑤1
) +

((1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆1)
𝑞

)
𝑤1
) ((1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆2)

𝑞

)
𝑤2
− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆2)

𝑞

−

(𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆2)
𝑞

)
𝑤2
) − ((1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆1)

𝑞

)
𝑤1
− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆1)

𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆1)
q

)
𝑤1
) ((1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆2)
𝑞

)
𝑤2
− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆2)

𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆2)
q

)
𝑤2
))

1

𝑞

]⟩, 

= ⟨[1 − (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆1)
𝑞

)
𝑤1
(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆2)

𝑞

)
𝑤2
]

1

𝑞

, (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆1)
𝑤1
(𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆2)

𝑤2
, [(1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆1)
𝑞

)
𝑤1
(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆2)

𝑞

)
𝑤2
− (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆1)

𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆2)
𝑞

)
𝑤1
(1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆2)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆2)
𝑞

)
𝑤2
]

1

𝑞

⟩. 

Thus, the result is true for 𝑛 = 2. Assume that the result is true for 𝑛 = 𝑘, Eq (1) holds, i.e., 

q − SFRAM𝑤(�̅�𝑞−𝑆𝐹𝑅𝑆1, �̅�𝑞−𝑆𝐹𝑅𝑆2, �̅�𝑞−𝑆𝐹𝑅𝑆3, … , �̅�𝑞−𝑆𝐹𝑅𝑆𝑘)

= 𝑤1�̅�𝑞−𝑆𝐹𝑅𝑆1⊕𝑤2�̅�𝑞−𝑆𝐹𝑅𝑆2⊕𝑤3�̅�𝑞−𝑆𝐹𝑅𝑆3⊕,… ,⊕𝑤𝑘�̅�𝑞−𝑆𝐹𝑅𝑆𝑘 

= ⟨[1 − ∏ (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑘
𝑖=1 ]

1

𝑞

, ∏ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑤𝑖𝑘

𝑖=1 , [∏ (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑘
𝑖=1 −

∏ (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑘
𝑖=1 ]

1

𝑞

⟩. 

Then when 𝑛 = 𝑘 + 1 

q − SFRAM𝑤(�̅�𝑞−𝑆𝐹𝑅𝑆1, �̅�𝑞−𝑆𝐹𝑅𝑆2, �̅�𝑞−𝑆𝐹𝑅𝑆3, … , �̅�𝑞−𝑆𝐹𝑅𝑆𝑘, �̅�𝑞−𝑆𝐹𝑅𝑆𝑘+1)

= 𝑤1�̅�𝑞−𝑆𝐹𝑅𝑆1⊕𝑤2�̅�𝑞−𝑆𝐹𝑅𝑆2⊕𝑤3�̅�𝑞−𝑆𝐹𝑅𝑆3
⊕,… ,⊕𝑤𝑘�̅�𝑞−𝑆𝐹𝑅𝑆𝑘⊕𝑤𝑘+1�̅�𝑞−𝑆𝐹𝑅𝑆𝑘+1 

= ⟨[1 − ∏ (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑘
𝑖=1 ]

1

𝑞

, ∏ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑤𝑖𝑘

𝑖=1 , [∏ (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑘
𝑖=1 −

∏ (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑘
𝑖=1 ]

1

𝑞

⟩ ⊕ ⟨[1 − (1 −
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(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑘+1)
𝑞

)
𝑤𝑘+1

]

1

𝑞

, (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆𝑘+1)
𝑤𝑘+1

, [(1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑘+1)
𝑞

)
𝑤𝑘+1

− (1 −

(𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑘+1)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆𝑘+1)
𝑞

)
𝑤𝑘+1

]

1

𝑞

⟩, 

= ⟨[1 − ∏ (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑘+1
𝑖=1 ]

1

𝑞

, ∏ (𝜇′�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑤𝑖𝑘+1

𝑖=1 , [∏ (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑘+1
𝑖=1 −

∏ (1 − (𝜇+�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

− (𝜇−�̅�𝑞−𝑆𝐹𝑅𝑆𝑖
)
𝑞

)
𝑤𝑖

𝑘+1
𝑖=1 ]

1

𝑞

⟩. 

i.e., when n=k+1 Eq (1) also holds and therefore the proof is completed. 

© 2023 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 


