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Abstract: This work considers a discrete-time predator-prey system with a strong Allee effect.
The existence and topological classification of the system’s possible fixed points are investigated.
Furthermore, the existence and direction of period-doubling and Neimark-Sacker bifurcations are
explored at the interior fixed point using bifurcation theory and the center manifold theorem. A hybrid
control method is used for controlling chaos and bifurcations. Some numerical examples are presented
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1. Introduction

The interaction between predators and prey is one of the most critical topics in biomathematics
literature. Consequently, several ecologists, mathematicians, and biologists have studied the dynamical
behavior of the predator-prey system, which describes the relationship between prey and predator.
Lotka [1] and Voltera [2] established the Lotka-Volterra predator-prey system, a basic population
model. Numerous scholars have modified this model over the years to provide a more realistic
explanation and enhance comprehension since it ignores many real-world scenarios and complexity.
Several ecological concepts, including functional response, refuge, harvesting, fear, and the Allee
effect, have been added to the predator-prey system to provide a more realistic description [3–7].
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In population dynamics, the functional response is one of the most important characteristics of
all interactions between predators and prey. The functional response is proportional to the prey
density. It indicates how much prey each predator consumes. In 1965, Holling [8] proposed
three kinds of functional responses. Later, researchers such as Crowley-Martin [9] and Beddington-
DeAngelis [10, 11] provided various functional responses. After that, several researchers looked at
models that were developed on interactions between predators and prey, including various kinds of
functional responses [12–17].

In recent years, it has been widely accepted that the Allee effect significantly impacts population
dynamics and may enrich them. Allee [18] was the first to describe this phenomenon. The Allee
effect is a biological phenomenon that describes the relationship between population size or density
and growth rate. Generally, it happens when a species’ population has a very low density, making
reproduction and survival difficult. The Allee effect is classified into two categories based on the
strength of density dependency at low densities: the strong Allee effect and the weak Allee effect [19].
Several works in the literature explore this impact in various population models [20–25] and find that
it may significantly influence system dynamics.

We consider the following class of predator-prey interaction with the strong Allee effect [26]:dx
dt = rx(1 − x

k )(x − A) − bxy,
dy
dt = y( λbx

1+bhx − d1),
(1.1)

where x(t) and y(t) are the densities of prey and predator populations at time t with the initial conditions
x(0) ≥ 0, y(0) ≥ 0, r is the rate of growth of x(t), and k is the carrying capacity of prey. The per capita
conversion rate from prey to predator is described by bx

1+bhx , which is supposed to be the usual Holling
type II functional response form, λ represents the conversion efficiency, A is the strong Allee effect
parameter, and it meets 0 < A < k. All of the parameters are positive. Let t̄ = krt, x̄ = x

k , and ȳ = b
r y,

and dropping the bars, the system (1.1) becomes dx
dt = x(1 − x)(x − α) − 1

k xy,
dy
dt = y( ωx

1+ηx − σ),
(1.2)

where α = A
k , ω =

λb
r , σ =

d1
kr , η = bhk.

Mathematical models can be expressed as either continuous-time models or discrete-time models.
In recent years, many authors have significantly contributed to discrete models. The reasons are that,
when there are no overlapping generations in a population, discrete-time models governed by difference
equations are much more suitable than continuous ones, and moreover, discrete models provide more
effective results for numerical simulations. Many species, like monocarpic plants and semelparous
animals, have different generations that don’t mix with each other, and births happen at predictable
times during mating seasons. Difference equations or discrete-time mappings are used to describe their
interactions. The dynamical characteristics of discrete dynamical systems are rich and complicated.
Studies on the nonlinear dynamics of continuous-time predator-prey systems have a long history. There
are a significant number of papers on the local and global stability of fixed points, bifurcation analysis,
limit cycles, permanence, extinction, the Allee effect, and so on in the literature [20, 27–29]. On
the other hand, studies on those discrete-time predator-prey systems have attracted much attention
over the past three decades. Most of these works have focused on the existence and stability of fixed
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points, the Allee effect on their dynamics, resonance and bifurcation analysis, and complex and chaotic
behaviors. These discrete-time predator-prey models were usually obtained from their continuous-time
counterparts by utilizing the forward Euler scheme with an integral step size that was either varying
or fixed [30–33]. It is observed that discrete-time models exhibit complex dynamics depending on the
integral step size. It motivates us to study the discrete counterpart of the system (1.2) by using the
forward Euler scheme.

The qualitative behavior of the continuous system (1.2) has recently been explored in [26]. We study
the discrete analog of the system (1.2) to investigate the complex dynamical character of such predator-
prey interactions. To discretize, we use the following Euler’s approximation to the system (1.2):

xn+1 = xn + δxn

(
(1 − xn)(xn − α) − 1

k yn

)
,

yn+1 = yn + δyn

(
ωxn

1+ηxn
− σ

)
,

(1.3)

where δ is the step size.
This paper’s primary contributions are as follows:

• The existence and topological classification of fixed points are discussed.
• At the interior fixed point, we investigate period-doubling (PD) and Neimark-Sacker (NS)

bifurcation by using δ as bifurcation parameter.
• About the interior fixed points , the direction and existence conditions for both kinds of

bifurcations are investigated.
• To control chaos in the system, a hybrid control strategy is used.
• Numerical simulations are performed to illustrate that a discrete system has rich dynamics due to

integral step size δ.

The rest of the paper is structured as follows: We study fixed points’ existence and topological
classification in Section 2. We then investigate the local bifurcation phenomenon at the interior fixed
point in Section 3. A hybrid control method is used for controlling chaos and bifurcations in Section 4.
Some numerical examples are provided to support and illustrate the theoretical discussion in Section 5.
Finally, we conclude our analysis in Section 6.

2. Fixed points and stability analysis

In this section, we discuss the existence of fixed points for the system (1.3) and then study the
stability of the fixed points by using the characteristic polynomial or the eigenvalues of the Jacobian
matrix evaluated at the fixed points. Let us now provide some important information. Let us consider
the two-dimensional discrete dynamical system of the following form:xn+1 = f (xn, yn),

yn+1 = g(xn, yn), n = 0, 1, 2, ...,
(2.1)

where f : I × J → I and g : I × J → J are continuously differentiable functions and I, J are some
intervals of real numbers. Furthermore, a solution {(xn, yn)}∞n=0 of system (2.1) is uniquely determined
by initial conditions (x0, y0) ∈ I × J. A fixed point of system (2.1) is a point (x̄, ȳ) that satisfies
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x̄ = f (x̄, ȳ),
ȳ = g(x̄, ȳ).

Let (x̄, ȳ) be a fixed point of the map F(x, y) = ( f (x, y), g(x, y)), where f and g are continuously
differentiable functions at (x̄, ȳ). The linearized system of (2.1) about the fixed point (x̄, ȳ) is given by

Xn+1 = JXn, where Xn =

[
xn

yn

]
and J is the Jacobian matrix of system (2.1) about the fixed point (x̄, ȳ).

The following results are helpful in examining the stability of the fixed points.

Lemma 2.1. [34] Let F(θ) = θ2 + A1θ + A0 be the characteristic equation of the Jacobian matrix at
(x̄, ȳ) and θ1, θ2 are solutions of F(θ) = 0, then (x̄, ȳ) is a
(1) sink iff |θ1| < 1 and |θ2| < 1,
(2) source iff |θ1| > 1 and |θ2| > 1,
(3) saddle point iff |θ1| < 1 and |θ2| > 1 (or |θ1| > 1 and |θ2| < 1),
(4) non-hyperbolic point iff either |θ1| = 1 or |θ2| = 1.

Lemma 2.2. [34] Let F(θ) = θ2 + A1θ + A0. Assume that F(1) > 0. If θ1 and θ2 are two roots of
F(θ) = 0, then,
(1) |θ1| < 1 and |θ2| < 1 iff F(−1) > 0 and A0 < 1,
(2) |θ1| < 1 and |θ2| > 1 (or |θ1| > 1 and |θ2| < 1) iff F(−1) < 0,
(3) |θ1| > 1 and |θ2| > 1 iff F(−1) > 0 and A0 > 1,
(4) θ1 = −1 and |θ2| , 1 iff F(−1) = 0 and A1 , 0, 2,
(5) θ1, θ2 ∈ C and |θ1,2| = 1 iff A2

1 − 4A0 < 0 and A0 = 1.

2.1. Existence of fixed points

The fixed points of the system (1.3) can be obtained by algebraically solving the following system
of equations: 

x = x + δx
(
(1 − x)(x − α) − 1

k y
)
,

y = y + δy
(
ωx

1+ηx − σ
)
.

(2.2)

It is found that system (1.3) has four fixed points E0(0, 0), E1(1, 0), E2(α, 0) and
E∗(− σ

ησ−ω
,− k(σ+ησ−ω)(σ+αησ−αω)

(ησ−ω)2 ). The trivial fixed point E0 and boundary fixed points E1 and E2 always
exist. The interior fixed point exists iff αω

1+αη < σ <
ω

1+η .

2.2. Stability of fixed points

The stability of the fixed points can be established by calculating the eigenvalues θ of the Jacobian
matrix J corresponding to each fixed point. The Jacobian matrix for system (1.3) is

J(x, y) =
1 − 3x2δ − yδ

k − αδ + 2x(1 + α)δ − xδ
k

yδω
(1+xη)2 1 − δσ + xδω

1+xη

 . (2.3)

Proposition 2.3. The trivial fixed point E0(0, 0) is a
(1) sink if σ < 2

δ
and one of the requirements listed below is satisfied:
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(a) δ ≤ 2,
(b) δ > 2, 0 < α < 2

δ
,

(2) saddle point if one of the requirements listed below is satisfied:
(a) δ > 2, 2

δ
< α < 1, and 0 < σ < 2

δ
,

(b) δ ≤ 2 and σ > 2
δ
,

(c) δ > 2, 0 < α < 2
δ
, and σ > 2

δ
,

(3) source if δ > 2, 2
δ
< α < 1, and σ > 2

δ
,

(4) non-hyperbolic point if one of the requirements listed below is satisfied:
(a) δ > 2 and α = 2

δ
,

(b) σ = 2
δ
.

Proof. The Jacobian matrix computed at E0 is

J(E0) =
[
1 − αδ 0

0 1 − δσ

]
. (2.4)

The eigenvalues of J(E0) are θ1 = 1 − αδ and θ2 = 1 − δσ. One can easily check that

|1 − αδ|


< 1 if δ ≤ 2 or δ > 2 & 0 < α < 2

δ
,

= 1 if δ > 2 & α = 2
δ
,

> 1 if δ > 2 & 2
δ
< α < 1,

and

|1 − δσ|


< 1 if 0 < σ < 2

δ
,

= 1 if σ = 2
δ
,

> 1 if σ > 2
δ
.

□

It is clear that if α = 2
δ

or σ = 2
δ
, then one of the eigenvalues of J(E0) is −1. As a result, there

is the potential for PD bifurcation to take place if the parameters are allowed to change in a close
neighborhood of Γ01 or Γ02, where

Γ01 =

{
(δ, α, k, ω, η, σ) ∈ R6

+

∣∣∣∣∣0 < α < 1, δ > 2, α =
2
δ

}
,

Γ02 =

{
(δ, α, k, ω, η, σ) ∈ R6

+

∣∣∣∣∣0 < α < 1, σ =
2
δ

}
.

Proposition 2.4. The boundary fixed point E1(1, 0) is a
(1) sink if ω

1+η < σ <
2(1+η)+δω
δ(1+η) and one of the requirements listed below is satisfied:

(a) δ ≤ 2,
(b) δ > 2, −2+δ

δ
< α < 1,

(2) saddle point if one of the requirements listed below is satisfied:
(a) δ > 2, α < −2+δ

δ
, and ω

1+η < σ <
2(1+η)+δω
δ(1+η) ,

(b) δ ≤ 2 and σ < ω
1+η ,

(c) δ ≤ 2 and σ > 2(1+η)+δω
δ(1+η) ,
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(d) δ > 2, −2+δ
δ
< α < 1, and σ < ω

1+η ,
(e) δ > 2, −2+δ

δ
< α < 1, and σ > 2(1+η)+δω

δ(1+η) ,
(3) source if δ > 2, α < −2+δ

δ
, and one of the requirements listed below is satisfied:

(a) σ < ω
1+η ,

(b) σ > 2(1+η)+δω
δ(1+η) ,

(4) non-hyperbolic point if one of the requirements listed below is satisfied:
(a) δ > 2 and α = −2+δ

δ
,

(b) σ = ω
1+η ,

(c) σ = 2(1+η)+δω
δ(1+η) .

Proof. The Jacobian matrix computed at E1 is given by

J(E1) =
[
1 + (−1 + α)δ − δk

0 1 − δσ + δω
1+η

]
. (2.5)

The eigenvalues of J(E1) are θ1 = 1 + (−1 + α)δ and θ2 = 1 − δσ + δω
1+η . One can easily check that

|1 + (−1 + α)δ|


< 1 if δ ≤ 2 or δ > 2 & −2+δ

δ
< α < 1,

= 1 if δ > 2 & α = −2+δ
δ
,

> 1 if δ > 2 & α < −2+δ
δ
,

and ∣∣∣∣∣1 − δσ + δω1 + η

∣∣∣∣∣

< 1 if ω

1+η < σ <
2(1+η)+δω
δ(1+η) ,

= 1 if σ = ω
1+η or σ = 2(1+η)+δω

δ(1+η) ,

> 1 if σ < ω
1+η or σ > 2(1+η)+δω

δ(1+η) .

□

It is clear that if α = −2+δ
δ

or σ = 2(1+η)+δω
δ(1+η) , then one of the eigenvalues of J(E1) is −1. As a result,

there is the potential for PD bifurcation to take place if the parameters are allowed to change in a close
neighborhood of Γ11 or Γ12, where

Γ11 =

{
(δ, α, k, ω, η, σ) ∈ R6

+

∣∣∣∣∣0 < α < 1, δ > 2, α =
−2 + δ
δ

}
,

Γ12 =

{
(δ, α, k, ω, η, σ) ∈ R6

+

∣∣∣∣∣0 < α < 1, σ =
2(1 + η) + δω
δ(1 + η)

}
.

Moreover, ifσ = ω
1+η , then one of the eigenvalues of J(E1) is 1. As a result, a transcritical bifurcation

may take place if the parameters are allowed to fluctuate within a close neighborhood of Γ13, where

Γ13 =

{
(δ, α, k, ω, η, σ) ∈ R6

+

∣∣∣∣∣0 < α < 1, σ =
ω

1 + η

}
.

Proposition 2.5. The boundary fixed point E2(α, 0) is
(1) never a sink,
(2) a saddle point if αω

1+αη < σ <
2(1+αη)+αδω
δ(1+αη) ,
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(3) a source if one of the requirements listed below is satisfied:
(a) σ < αω

1+αη ,
(b) σ > 2(1+αη)+αδω

δ(1+αη) ,
(4) a non-hyperbolic point if one of the requirements listed below is satisfied:

(a) σ = αω
1+αη ,

(b) σ = 2(1+αη)+αδω
δ(1+αη) .

Proof. The Jacobian matrix computed at E2 is given by

J(E2) =
[
1 + (1 − α)αδ −αδk

0 1 − δσ + αδω
1+αη

]
. (2.6)

The eigenvalues of J(E2) are θ1 = 1 + (1 − α)αδ and θ2 = 1 − δσ + αδω
1+αη . One can easily check that

θ1 > 1 and ∣∣∣∣∣1 − δσ + αδω1 + αη

∣∣∣∣∣

< 1 if αω

1+αη < σ <
2(1+αη)+αδω
δ(1+αη) ,

= 1 if σ = αω
1+αη or σ = 2(1+αη)+αδω

δ(1+αη) ,

> 1 if σ < αω
1+αη or σ > 2(1+αη)+αδω

δ(1+αη) .

□

It is clear that if σ = αω
1+αη , then one of the eigenvalues of J(E2) is 1. As a result, a transcritical

bifurcation may take place if the parameters are allowed to fluctuate within a close neighborhood of
Γ21, where

Γ21 =

{
(δ, α, k, ω, η, σ) ∈ R6

+

∣∣∣∣∣0 < α < 1, σ =
αω

1 + αη

}
.

Moreover, ifσ = 2(1+αη)+αδω
δ(1+αη) , then one of the eigenvalues of J(E2) is −1. As a result, a PD bifurcation

may take place if the parameters are allowed to fluctuate within a close neighborhood of Γ22, where

Γ22 =

{
(δ, α, k, ω, η, σ) ∈ R6

+

∣∣∣∣∣0 < α < 1, σ =
2(1 + αη) + αδω
δ(1 + αη)

}
.

Next, we investigate the local dynamics of the system (1.3) about E∗(− σ
ησ−ω
,− k(σ+ησ−ω)(σ+αησ−αω)

(ησ−ω)2 )
by using Lemma 2.2. The Jacobian matrix of the system (1.3) at E∗ is given by

J(E∗) =
1 + δσ(−(2+η+αη)σ+(1+α)ω)

(−ησ+ω)2
δσ

kησ−kω

−
kδ(σ+ησ−ω)(σ+αησ−αω)

ω
1

 . (2.7)

Thus, the characteristic polynomial of J(E∗) is

F(θ) = θ2 + (−2 + S δ)θ + 1 − S δ + Tδ2,

where

S =
σ((2 + η + αη)σ − (1 + α)ω)

(−ησ + ω)2 ,

T =
σ(σ + ησ − ω)(σ + αησ − αω)

(ησ − ω)ω
.
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Since αω
1+αη < σ <

ω
1+η , therefore T > 0. By simple computations, we obtain

F(−1) = 4 − 2S δ + Tδ2,

F(0) = 1 − S δ + Tδ2,

F(1) = Tδ2 > 0.

Thus, we can conclude with the following result.

Proposition 2.6. The following holds true for the unique positive fixed point E∗ of system (1.3):
(1) E∗ is a sink if S > 0 and if one of the requirements listed below is satisfied:

(a) S 2 − 4T ≥ 0, and δ < S−
√

S 2−4T
T ,

(b) S 2 − 4T < 0 and δ < S
T ,

(2) E∗ is a saddle point if S > 0, S 2 − 4T > 0, and S−
√

S 2−4T
T < δ < S+

√
S 2−4T
T ,

(3) E∗ is a source if one of the requirements listed below is satisfied:
(a) S ≤ 0,
(b) S > 0, S 2 − 4T > 0, and δ > S+

√
S 2−4T
T ,

(c) S > 0, S 2 − 4T ≤ 0, and δ > S
T ,

(4) E∗ is a non-hyperbolic point if S > 0 and one of the requirements listed below is satisfied:
(a) S 2 − 4T > 0 and δ = S±

√
S 2−4T
T ,

(b) S 2 − 4T = 0 and δ = S−
√

S 2−4T
T ,

(c) S 2 − 4T < 0 and δ = S
T .

It is clear that if δ = S±
√

S 2−4T
T , then one of the eigenvalues of J(E∗) is −1. As a result, there

is the potential for PD bifurcation to take place if the parameters are allowed to change in a close
neighborhood of Γ1 or Γ2, where

Γ1 =

{
(δ, α, k, ω, η, σ) ∈ R6

+

∣∣∣∣∣0 < α < 1, S > 0, S 2 − 4T > 0, δ =
S +
√

S 2 − 4T
T

}
,

Γ2 =

{
(δ, α, k, ω, η, σ) ∈ R6

+

∣∣∣∣∣0 < α < 1, S > 0, S 2 − 4T ≥ 0, δ =
S −
√

S 2 − 4T
T

}
.

Furthermore, if δ = S
T , the eigenvalues of J(E∗) are unit-modulus complex. Thus, the system

experiences NS bifurcation if the parameters are varied in a close neighborhood of Γ3, where

Γ3 =

{
(δ, α, k, ω, η, σ) ∈ R6

+

∣∣∣∣∣0 < α < 1, S > 0, S 2 − 4T < 0, δ =
S
T

}
.

3. Bifurcation analysis

The PD and NS bifurcations of system (1.3) around the interior fixed point
E∗(− σ

ησ−ω
,− k(σ+ησ−ω)(σ+αησ−αω)

(ησ−ω)2 ) are discussed in this section. We began by investigating the PD
bifurcation at E∗ when parameters vary in a small neighborhood of Γ1. Similar investigations can be
done for Γ2. We consider the following set:

Υ1 =

{
(δ1, α, k, ω, η, σ) ∈ R6

+

∣∣∣∣∣0 < α < 1, S > 0, S 2 − 4T > 0, δ1 =
S +
√

S 2 − 4T
T

}
.
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Giving a perturbation ϵ (where |ϵ |≪ 1) of the bifurcation parameter δ1 to the system (1.3), we have
xn+1 = xn + (δ1 + ϵ)xn

(
(1 − xn)(xn − α) − 1

k yn

)
,

yn+1 = yn + (δ1 + ϵ)yn

(
ωxn

1+ηxn
− σ

)
.

(3.1)

Assuming that un = xn +
σ
ησ−ω
, vn = yn +

k(σ+ησ−ω)(σ+αησ−αω)
(ησ−ω)2 , after substituting the value of δ1 the

system (3.1) is reduced to the following form:[
un+1

vn+1

]
=

 1 −
S
(
S+
√

S 2−4T
)

T
Sσ+

√
S 2−4Tσ

kTησ−kTω

−
k
(
S+
√

S 2−4T
)
(ησ−ω)

σ
1


[
un

vn

]
+

[
F(un, vn, ϵ)
G(un, vn, ϵ)

]
, (3.2)

where

F(un, vn, ϵ) = a1u3
n + a2unvn + a3unvnϵ + a4vnϵ + a5u2

n + a6u2
nϵ + a7unϵ + O((|un| + |vn| + |ϵ |)4),

G(un, vn, ϵ) = b1u2
nvn + b2unvn + b3unvnϵ + b4u2

n + b5u2
nϵ + b6unϵ + b7u3

n + O((|un| + |vn| + |ϵ |)4),

a1 = −
S +
√

S 2 − 4T
T

, a2 = −
S +
√

S 2 − 4T
kT

, a3 = −
1
k
,

a4 =
σ

kησ − kω
, a5 =

(
S +
√

S 2 − 4T
)

((3 + η + αη)σ − (1 + α)ω)

T (ησ − ω)
,

a6 =
(3 + η + αη)σ − (1 + α)ω

ησ − ω
, a7 =

σ(−(2 + η + αη)σ + (1 + α)ω)
(−ησ + ω)2 ,

b1 =

(
S +
√

S 2 − 4T
)
η(ησ − ω)3

Tω2 , b2 =

(
S +
√

S 2 − 4T
)

(−ησ + ω)2

Tω
, b3 =

(−ησ + ω)2

ω
,

b4 = −
k
(
S +
√

S 2 − 4T
)
η(ησ − ω)(σ + ησ − ω)(σ + αησ − αω)

Tω2 ,

b5 = −
kη(ησ − ω)(σ + ησ − ω)(σ + αησ − αω)

ω2 , b6 = −
k(σ + ησ − ω)(σ + αησ − αω)

ω
,

b7 = −
k
(
S +
√

S 2 − 4T
)
η2(σ + ησ − ω)(−ησ + ω)2(σ + αησ − αω)

Tω3 .

We diagonalize system (3.2) by considering the following transformation:[
un

vn

]
=


(
S+
√

S 2−4T
)
σ

k
(
S 2+S

√
S 2−4T−2T

)
(ησ−ω)

(
S+
√

S 2−4T
)
σ

2kT (ησ−ω)

1 1


[
en

fn

]
. (3.3)

Under this transformation, the system (3.2) becomes[
en+1

fn+1

]
=

[
−1 0
0 λ

] [
en

fn

]
+

[
Φ(en, fn, ϵ)
Ψ(en, fn, ϵ)

]
, (3.4)
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where

Φ(en, fn, ϵ) =c1en fn + c2e2
n + c3 f 2

n + c4en fnϵ + c5e2
nϵ + c6 f 2

n ϵ + c7 fnϵ + c8enϵ + c9en f 2
n

+ c10e2
n fn + c11e3

n + c12 f 3
n + O((|en| + | fn| + |ϵ |)4),

Ψ(en, fn, ϵ) =d1 f 2
n + d2e2

n + d3en fn + d4 f 2
n ϵ + d5e2

nϵ + d6en fnϵ + d7 fnϵ + d8enϵ + d9 f 3
n

+ d10e3
n + d11e2

n fn + d12en f 2
n + O((|en| + | fn| + |ϵ |)4),

c1 =
a2

(
(−1 + λ)λ + (1 − 3λ)a11 + 2a2

11

)
+ a12 (2a5 (λ − a11) + (1 − λ + 2a11) b2 − 2a12b4)

1 + λ
,

c2 =
−a2 (λ − a11) (1 + a11) + a12 (a5 (λ − a11) + (1 + a11) b2 − a12b4)

1 + λ
,

c3 =
a2 (λ − a11) 2 − a12 (a5 (−λ + a11) + (λ − a11) b2 + a12b4)

1 + λ
,

c4 =
a3

(
(−1 + λ)λ + (1 − 3λ)a11 + 2a2

11

)
+ a12 (2a6 (λ − a11) + (1 − λ + 2a11) b3 − 2a12b5)

1 + λ
,

c5 =
−a3 (λ − a11) (1 + a11) + a12 (a6 (λ − a11) + (1 + a11) b3 − a12b5)

1 + λ
,

c6 =
a3 (λ − a11) 2 − a12 (a6 (−λ + a11) + (λ − a11) b3 + a12b5)

1 + λ
,

c7 =
a4 (λ − a11) 2 − a12 (a7 (−λ + a11) + a12b6)

(1 + λ)a12
,

c8 = −
a4 (λ − a11) (1 + a11) + a12 (a7 (−λ + a11) + a12b6)

(1 + λ)a12
,

c9 =
a2

12 (3a1 (λ − a11) + (1 − 2λ + 3a11) b1 − 3a12b7)
1 + λ

,

c10 =
a2

12 (3a1 (λ − a11) + (2 − λ + 3a11) b1 − 3a12b7)
1 + λ

,

c11 =
a2

12 (a1 (λ − a11) + (1 + a11) b1 − a12b7)
1 + λ

,

c12 = −
a2

12 (a1 (−λ + a11) + (λ − a11) b1 + a12b7)
1 + λ

,

d1 =
a2 (λ − a11) (1 + a11) + a12 (a5 (1 + a11) + (λ − a11) b2 + a12b4)

1 + λ
,

d2 =
−a2 (1 + a11) 2 + a12 (a5 (1 + a11) − (1 + a11) b2 + a12b4)

1 + λ
,

d3 =
a2 (−1 + λ − 2a11) (1 + a11) + a12 (2a5 (1 + a11) + (−1 + λ − 2a11) b2 + 2a12b4)

1 + λ
,

d4 =
a3 (λ − a11) (1 + a11) + a12 (a6 (1 + a11) + (λ − a11) b3 + a12b5)

1 + λ
,
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d5 =
−a3 (1 + a11) 2 + a12 (a6 (1 + a11) − (1 + a11) b3 + a12b5)

1 + λ
,

d6 =
a3 (−1 + λ − 2a11) (1 + a11) + a12 (2a6 (1 + a11) + (−1 + λ − 2a11) b3 + 2a12b5)

1 + λ
,

d7 =
a4 (λ − a11) (1 + a11) + a12 (a7 (1 + a11) + a12b6)

(1 + λ)a12
,

d8 =
−a4 (1 + a11) 2 + a12 (a7 (1 + a11) + a12b6)

(1 + λ)a12
,

d9 =
a2

12 (a1 (1 + a11) + (λ − a11) b1 + a12b7)
1 + λ

,

d10 =
a2

12 (a1 (1 + a11) − (1 + a11) b1 + a12b7)
1 + λ

,

d11 =
a2

12 (3a1 (1 + a11) + (−2 + λ − 3a11) b1 + 3a12b7)
1 + λ

,

d12 =
a2

12 (3a1 (1 + a11) + (−1 + 2λ − 3a11) b1 + 3a12b7)
1 + λ

,

λ =
−2S 4 − 2S 3

√
S 2 − 4T + 11S 2T + 7S

√
S 2 − 4TT − 12T 2(

S 2 + S
√

S 2 − 4T − 4T
)

T
.

Next, we assume that WC(0, 0, 0) is the center manifold for (3.4) computed at (0, 0) within a small
neighborhood of ϵ = 0. Consequently, WC(0, 0, 0) can be estimated as follows:

WC(0, 0, 0) =
{
(en, fn, ϵ) ∈ R3

+

∣∣∣∣∣ fn = p1e2
n + p2enϵ + p3ϵ

2 + O((|en| + |ϵ |)3)
}
,

where

p1 =
d2

1 − λ
, p2 = −

d8

1 + λ
, p3 = 0.

The system (3.4) restricted to the center manifold is

F̃ : en+1 = −en+c2e2
n+c8enϵ+(c11+

c1d2

1 − λ
)e3

n−
c7d8

1 + λ
enϵ

2+(c5+
c7d2

1 − λ
−

c1d8

1 + λ
)e2

nϵ+O((|en|+|ϵ |)4). (3.5)

Now for PD bifurcation, we require that the following two quantities l1 and l2 are non-zero, where

l1 = F̃ϵ F̃enen + 2F̃enϵ

∣∣∣∣∣
(0,0)
= 2c8, (3.6)

l2 =
1
2

(F̃enen)
2 +

1
3

F̃enenen

∣∣∣∣∣
(0,0)
= 2(c2

2 + c11 +
c1d2

1 − λ
). (3.7)

As a consequence of the above study, we reach the following conclusion:

Theorem 3.1. Suppose that (δ, α, k, ω, η, σ) ∈ Υ1. The model (1.3) undergoes PD bifurcation at
interior fixed point E∗ if l1 and l2 defined in (3.6) and (3.7) are nonzero and δ differs in a small
neighborhood of δ1 =

S+
√

S 2−4T
T . Moreover, if l2 > 0 (respectively l2 < 0), then the period-2 orbits that

bifurcate from E∗ are stable (respectively, unstable).
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Next, we investigated the NS bifurcation around the interior fixed point E∗ of the system (1.3). We
consider the following set:

Υ2 =

{
(δ2, α, k, ω, η, σ) ∈ R6

+

∣∣∣∣∣0 < α < 1, S > 0, S 2 − 4T < 0, δ2 =
S
T

}
.

Giving a perturbation ϵ (where |ϵ |≪ 1) of the bifurcation parameter δ2 to the system (1.3), we have
xn+1 = xn + (δ2 + ϵ)xn

(
(1 − xn)(xn − α) − 1

k yn

)
,

yn+1 = yn + (δ2 + ϵ)yn

(
ωxn

1+ηxn
− σ

)
.

(3.8)

Assuming that un = xn +
σ
ησ−ω
, vn = yn +

k(σ+ησ−ω)(σ+αησ−αω)
(ησ−ω)2 , after substituting the value of δ2, the

system (3.8) is reduced to the following form:[
un+1

vn+1

]
=

 1 − S 2

T − S ϵ Sσ+T ϵσ
kTησ−kTω

−
k(S+T ϵ)(ησ−ω)

σ
1

 [un

vn

]
+

[
F(un, vn)
G(un, vn)

]
, (3.9)

where

F(un, vn) = −
unvn

(
S
T + ϵ

)
k

−
u3

n(S + T ϵ)
T

+
u2

n(S + T ϵ)((3 + η + αη)σ − (1 + α)ω)
T (ησ − ω)

+ O((|un| + |vn| + |ϵ |)4),

G(un, vn) =
u2

nvn(S + T ϵ)η(ησ − ω)3

Tω2 −
ku2

n(S + T ϵ)η(ησ − ω)(σ + ησ − ω)(σ + αησ − αω)
Tω2

+
unvn(S + T ϵ)(−ησ + ω)2

Tω
−

ku3
n(S + T ϵ)η2(σ + ησ − ω)(−ησ + ω)2(σ + αησ − αω)

Tω3

+ O((|un| + |vn| + |ϵ |)4).

Let
θ2 − p(ϵ)θ + q(θ) = 0 (3.10)

be the characteristic equation of the Jacobian matrix of the system (3.9) evaluated at (0, 0), where

p(ϵ) = 2 −
S 2

T
− S ϵ, q(ϵ) = 1 + S ϵ + T ϵ2.

Because (δ2, α, k, ω, η, σ) ∈ Υ2, |θ1,2| = 1 such that θ1,2 are solutions of (3.10), it follows that

θ1,2 =
p(ϵ)

2
±

i
2

√
4q(ϵ) − p2(ϵ). (3.11)

We then obtain |θ1,2| =
√

q(θ), and(
d|θ1|
dϵ

)
ϵ=0
=

(
d|θ2|
dϵ

)
ϵ=0
=

S
2
> 0.
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Further, we need that when ϵ = 0, θi1,2 , 1 for i = 1, 2, 3, 4, which is equivalent to p(0) , −2, 0, 1, 2.
Since (δ2, α, k, ω, η, σ) ∈ Υ2, it follows that

−2 < p(0) = 2 −
S 2

T
< 2.

Next we assume that p(0) , 0, 1, that is,

S 2

T
, 1, 2. (3.12)

The canonical form of (3.9) at ϵ = 0 can be obtained by using the following transformation:[
un

vn

]
=

 Sσ
kTησ−kTω 0

S 2

2T −1
2

√
S 2(−S 2+4T)

T 2

 [en

fn

]
. (3.13)

Under the transformation (3.13), the system (3.9) becomes[
en+1

fn+1

]
=

 1 − S 2

2T − S
2T

√
−S 2 + 4T

S
2T

√
−S 2 + 4T 1 − S 2

2T

 [en

fn

]
+

[
Φ(en, fn)
Ψ(en, fn)

]
, (3.14)

where

Φ(en, fn) = C1en fn +C2e3
n +C3e2

n + O((|en| + | fn|)4),
Ψ(en, fn) = C4e2

n fn +C5en fn +C6e3
n +C7e2

n + O((|en| + | fn|)4),

C1 =
S 2
√
−S 2 + 4T
2kT 2 , C2 = −

S 3σ2

k2T 3(−ησ + ω)2 ,

C3 = −
S 2((−6 − 2(1 + α)η + S η2)σ2 + 2(1 + α − S η)σω + Sω2)

2kT 2(−ησ + ω)2 ,

C4 =
S 3ησ2(ησ − ω)

k2T 3ω2 , C5 =
S 2(2ησ2 + (S − 2σ)ω)

2kT 2ω
,

C6 =

(
S 4σ2(2αη5σ4 − Sω3 + S ηω4 + η4σ3(2(1 + α)σ − (S + 6α)ω) + η3σ2(2σ2 − 4(1 + α)σω

+ 3(S + 2α)ω2) + η2σω(−2σ2 + 2(1 + α)σω − (3S + 2α)ω2))
)/

(k2S T 3
√
−S 2 + 4Tω3(−ησ + ω)2),

C7 = −

(
S 3(−4αη4σ5 + 2η3σ4(−2(1 + α)σ + (S + 6α)ω) + Sω2(−6σ2 + 2σ(1 + α − ω)ω + Sω2)

+ η2σ2(−4σ3 + 8(1 + α)σ2ω + S 2ω2 − 6(S + 2α)σω2) − 2ησω(−2σ3 + 2(1 + α)σ2ω + S 2ω2

+ σω(S + Sα − 3Sω − 2αω)))
)/

(2kS T 2
√
−S 2 + 4Tω2(−ησ + ω)2).

To examine the direction of the NS bifurcation, we consider the first Lyapunov exponent derived
as follows:

L =
([
−Re

(
(1 − 2θ1)θ22

1 − θ1
m20m11

)
−

1
2
|m11|

2 − |m02|
2 + Re(θ2m21)

])
δ=0
, (3.15)
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where

m20 =
1
8

[
Φenen − Φ fn fn + 2Ψen fn + i(Ψenen − Ψ fn fn − 2Φen fn)

]
,

m11 =
1
4

[
Φenen + Φ fn fn + i(Ψenen + Ψ fn fn)

]
,

m02 =
1
8

[
Φenen − Φ fn fn − 2Ψen fn + i(Ψenen − Ψ fn fn + 2Φen fn)

]
,

m21 =
1

16

[
Φenenen + Φen fn fn + Ψenen fn + Ψ fn fn fn + i(Ψenenen + Ψen fn fn − Φenen fn − Φ fn fn fn)

]
.

Thus, we can obtain the following theorem based on the above analysis:

Theorem 3.2. If the condition (3.12) holds and L defined in (3.15) is nonzero, then system (1.3) passes
through NS bifurcation at the interior fixed point E∗ provided the parameter δ changes its value in a
small vicinity of δ2 =

S
T . Moreover, if L < 0 (respectively, L > 0) then the NS bifurcation of system (1.3)

at δ = δ2 is supercritical (subcritical) and there exists a unique closed invariant curve bifurcation from
E∗ for δ = δ2, which is attracting (repelling).

4. Chaos control

It is desirable, in dynamical systems, to optimize the system according to certain performance
requirements and to minimize chaos. Nearly all disciplines of applied research and engineering make
extensive use of chaos control techniques. In the case of mathematical biology, bifurcations and
unstable fluctuations have long been viewed as negative events, since they are destructive for the
breeding of the biological population. As the order to regulate chaos under the impact of period-
doubling and Neimark-Sacker bifurcations, one may develop a controller that can adjust the bifurcation
features for a given nonlinear dynamical system and in a consequence certain desired dynamical
properties can be acquired. To control the chaos in the system (1.3), we use the hybrid control
technique [35] for controlling chaos through both forms of bifurcation effects. We consider the
controlled system shown below to correspond to the system (1.3):

xn+1 = ρ
(
xn + δxn

(
(1 − xn)(xn − α) − 1

k yn

))
+ (1 − ρ)xn,

yn+1 = ρ
(
yn + δyn

(
ωxn

1+ηxn
− σ

))
+ (1 − ρ)yn,

(4.1)

where 0 < ρ < 1. The fixed points of the controlled system (4.1) and the uncontrolled system (1.3) are
identical. At its interior fixed point E∗, the Jacobian matrix of the controlled system (4.1) is

J(E∗) =

 η2σ2+ω2−ησ((1+α)δρσ+2ω)+δρσ(−2σ+ω+αω)
(−ησ+ω)2

δρσ

kησ−kω

−
kδρ(σ+ησ−ω)(σ+αησ−αω)

ω
1

 . (4.2)

The trace T and determinant D of J(E∗) are

τ =
2η2σ2 + 2ω2 − ησ((1 + α)δρσ + 4ω) + δρσ(−2σ + ω + αω)

(−ησ + ω)2 ,
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and

∆ = 1 +
δ2ρ2σ(σ + ησ − ω)(σ + αησ − αω)

(ησ − ω)ω
+
δρσ(−(2 + η + αη)σ + (1 + α)ω)

(−ησ + ω)2 .

The Jury condition states that the fixed point E∗ of system (4.1) is stable if and only if the following
is true: ∣∣∣∣∣2η2σ2 + 2ω2 − ησ((1 + α)δρσ + 4ω) + δρσ(−2σ + ω + αω)

(−ησ + ω)2

∣∣∣∣∣ (4.3)

<2 +
δ2ρ2σ(σ + ησ − ω)(σ + αησ − αω)

(ησ − ω)ω
+
δρσ(−(2 + η + αη)σ + (1 + α)ω)

(−ησ + ω)2 < 2.

5. Numerical simulation

In this section, several numerical simulations and calculations are performed to support the
analytical findings’ validity. Using δ as the bifurcation parameter for system (1.3) about interior fixed
point E∗, we perform numerical simulations to confirm the previously obtained results. The parameter
values were taken from the [26]. We used MATLAB for the calculations and graphic drawings.

5.1. Neimark-Sacker bifurcation

Considering the parameter values as

α = 0.2, k = 1.3, ω = 1, η = 0.6, σ = 0.5,

with initial conditions x0 = 0.7, y0 = 0.2, the NS bifurcation value is computed as δ2 = 3.1746 and the
interior fixed point of system (1.3) has been evaluated as E∗ = (0.714286, 0.19102). The eigenvalues
of J(E∗) are θ1,2 = 0.740849 ± 0.671672i with |θ1,2| = 1. It verifies that the system (1.3) undergoes NS
bifurcation at E∗. Furthermore, the value of the first Lyapunov exponent is calculated as L = −14.2754.
As a result, the NS bifurcation is supercritical, demonstrating the accuracy of Theorem 3.2. Figure 1a,b
depict bifurcation figures for prey and predator for δ ∈ [2.1, 5.1]. Moreover, to confirm the chaotic
behavior of system (1.3) maximum Lyapunov exponents (MLE) are shown in Figure 1e.

The fixed point E∗ is a sink for these parameter values iff δ < 3.1746. Figure 2 depicts phase
portraits of the system (1.3) for different values of δ. The figures show that the fixed point E∗ is a sink
for δ < 3.1746 but becomes unstable at δ ≈ 3.1746, where the system (1.3) experiences NS bifurcation.
A smooth invariant curve appears for δ ≥ 3.1746, increasing its radius as δ increases. By increasing the
value of δ, the invariant curve disappears suddenly, and some periodic orbit appears, and then again,
we have an invariant curve in place of a periodic orbit. It leads to the appearance of a strange chaotic
attractor for large values of δ.

For the controlled system (4.1), we consider the same parameter values with ρ = 0.95. The stability
condition (4.3) for these values is 0 < δ < 3.34169. The bifurcation diagram for the controlled system
depicts that NS bifurcation has been delayed. See Figure 1c,d. The controlled system is experiencing
NS bifurcation when δ passes through δ2 = 3.34169. The NS bifurcation can be delayed for a wider
range of δ by using small values of the control parameter ρ.
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(a) (b)

(c) (d)

(e)

Figure 1. Bifurcation diagrams of (1.3) and (4.1) and MLE for (1.3) for α = 0.2, k = 1.3,
ω = 1, η = 0.6, σ = 0.5, ρ = 0.95, x0 = 0.7, y0 = 0.2, δ ∈ [2.1, 5.1].
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(a) (b) (c)

(d) (e) (f)

Figure 2. Phase portraits of (1.3) for α = 0.2, k = 1.3, ω = 1, η = 0.6, σ = 0.5, x0 = 0.7,
y0 = 0.2, δ ∈ {3.17, 3.18, 3.21, 4.15, 4.30, 4.95}.

5.2. Period-doubling bifurcation

Considering the parameter values as

α = 0.5, k = 1.3, ω = 0.83, η = 0.65, σ = 0.5,

with the initial conditions x0 = 0.95, y0 = 0.01 for system (1.3). The PD bifurcation value
is computed as δ0 =

S−
√

S 2−4T
T = 4.23443 and the interior fixed point has been computed as

E∗ = (0.990099, 0.00630821). The eigenvalues of J(E∗) are λ1 = −1, λ2 = 0.986766, confirming
that system (1.3) undergoes PD bifurcation at E∗ as the bifurcation parameter δ passes through
δ0 = 4.23443. See Figure 3a. Moreover, to confirm the chaotic behavior of the system (1.3),
maximum Lyapunov exponents (MLE) are shown in Figure 3c. For controlled system (4.1), we
consider the same parameter values with ρ = 0.95. The stability condition (4.3) for these values is
0 < δ < 4.4573. The bifurcation diagram for the controlled system shows that PD bifurcation has been
delayed. See Figure 3b. The controlled system is experiencing PD bifurcation when δ passes through
δ0 = 4.4573. The PD bifurcation can be delayed for a wider range of δ by using small values of the
control parameter ρ.
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(a) (b)

(c)

Figure 3. Bifurcation diagram of xn for system (1.3) and (4.1) and MLE of system (1.3) by
taking α = 0.5, k = 1.3, ω = 0.83, η = 0.65, σ = 0.5, ρ = 0.95, x0 = 0.95, y0 = 0.01,
δ ∈ [4.1, 5.5].

5.3. Time series plots with and without Allee effect

This section shows that the Allee effect can cause the solutions of a system to take much longer to
reach a stable fixed point. Considering the parameter values as

α = 0.2, k = 1.3, ω = 1, η = 0.6, σ = 0.5, δ = 3.1,

with initial conditions x0 = 0.7, y0 = 0.2, the interior fixed point of system (1.3) is computed as
E∗ = (0.724286, 0.19102). The time series plots for prey and predator populations are presented in
Figure 4a,b.

If we consider the system (1.2) without the Allee effect, then the following discrete-time system
is obtained: 

xn+1 = xn +
δxn
k

(
1 − xn − yn

)
,

yn+1 = yn + δyn

(
ωxn

1+ηxn
− σ

)
.

(5.1)

The time series plots for prey and predator populations are presented in Figure 4c,d.
By considering the same parameter values and initial conditions, the interior fixed point of

system (5.1) is computed as (0.198556, 1.2208). Comparing interior fixed points, it is found that the
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prey population is increased and the predator population is decreased when we use the Allee effect.
Moreover, the time series plots reveal that the system with the Allee effect requires much more time to
attain fixed point.

(a) (b)

(c) (d)

Figure 4. Time series plots of (1.3) and (5.1) for α = 0.2, k = 1.3, ω = 1, η = 0.6, σ = 0.5,
δ = 3.1, x0 = 0.7, y0 = 0.2.

6. Conclusions

This paper examined a discrete predator-prey model with a strong Allee effect on prey. We obtained
the discrete system (1.3) by applying the forward Euler scheme to the system (1.2), which was
proposed in [26]. The discrete system (1.3) has the same fixed points as its corresponding continuous
system (1.2). However, the dynamic behaviors of systems (1.2) and (1.3) are quite different. Local
stability analysis of fixed points is discussed. Also, we carry out an examination of local bifurcations
at the interior fixed point in detail. It is shown that system (1.3) experiences PD and NS bifurcation.
In system (1.2), the trivial fixed point (0, 0) is always stable, but in the system (1.3), it has complex
dynamics. Moreover, the topological classification of fixed points of the system (1.3) depends on step
size δ. Our numerical simulations show that PD and NS bifurcations occur when a large step size
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is considered in Euler’s method. However, the dynamics of the system (1.2) do not depend on δ.
Therefore, we have good reasons to believe that the dynamic behavior of the system (1.3) is richer than
that of the system (1.2). Moreover, a hybrid control technique is used to control the chaotic behavior
of the system (1.3). Consequently, both forms of bifurcation can be controlled over a wide range of
control parameters. Finally, numerical simulations are performed to describe the theoretical analysis
discussed in the form of bifurcation diagrams, phase portraits, and time series plots. It is shown that
the system with the Allee effect requires much more time to reach a fixed point.
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