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Abstract: One of the statistical tools used in geometric function theory is the generalized distribution
which has recently gained popularity due to its use in solving practical issues. In this work, we obtained
a new subclass of holomorphic functions, which defined by the convolution of generalized distribution
and incomplete beta function associated with subordination in terms of the bell number. Further, we
estimate the coefficient inequality and upper bound for a subclass of holomorphic functions. Our
findings show a clear relationship between statistical theory and geometric function theory.
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1. Introduction

Let N(U) be the class of function that is holomorphic in the open unit disk U := {z ∈ C : |z| < 1},
and Let A be the subset of N(U) that consists of functions

f (z) = z +
∞∑

i=2

ai zi, z ∈ U. (1.1)

Let f j(z) =
∞∑

i=0
ai, j zi ( j = 1, 2) which are holomorphic in N(U), then well known hadamard product

of f1 and f2 is given by

( f1 ∗ f2)(z) =
∞∑

i=0

ai,1ai,2 zi, z ∈ U.

If holomorphic functions of f , g ∈ N(U), then f is subordinate to g, this is implies f ≺ g, if there
presents a schwarz function u ∈ N(U) with |u(z)| ≤ 1, z ∈ U and u(0) = 0 like f (z) = g (u(z)) for all
z ∈ U. In specifically if g is univalent in U, then we have the following condition holds ture;

f (z) ≺ g(z)⇔ f (0) = g(0) and f (U) ⊂ g(U).
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Let P denote the class of holomorphic functions Φ in U with Re(Φ(z)) > 0, and Φ(0) = 1 of the form
is given by

Φ(z) = 1 +
∞∑

i=1

dizi, z ∈ U. (1.2)

Generalized distribution series were recently proposed by Porwal [20], who also obtained some
necessary and sufficient criteria for a few classes of univalent functions. Because this distribution is a
generalization of all discrete probability distributions, the study of generalized distribution series is of
particular interest. In 2021, Abiodun Tinuoye Oladipo [19] studied analytic univalent functions defined
by a generalized discrete probability distribution. For a thorough analysis, see [20]. We now go back
to the generalized distribution definition.

The probability mass function of a generalized discrete probability distribution is below as follows

p(i) =
ai

S
, i = 0, 1, 2, ....

where p(i) is the probability mass function, since
∑

i p(i) = 1 and p(i) ≥ 0 and

S =
∞∑

i=0

ai. (1.3)

Let

ψ(x) =
∞∑

i=0

aixi. (1.4)

It is clear from (1.3) that the series generated by (1.4) is convergent for |x| < 1 and convergent for
x = 1. Binomial distribution, Yule-Simmon distribution, Poisson distribution, Bernoulli distribution,
and Logarithmic distribution are different well-known discrete probability distributions, which can be
obtained in of specific concern is the polynomial whose coefficients are probabilities of the generalized
distribution study in [20] and as follows

Mψ(z) = z +
∞∑

i=2

ai−1

s
, zi z ∈ U, (1.5)

whereS =
∞∑

i=0
ai.

Definition 1. Let ϕ(a, c; z) be the incomplete beta function provided by

ϕ(a, c; z) = z +
∞∑

i=2

(a)i−1

(c)i−1
zi = z +

∞∑
i=2

φi−1zi, c , 0,−1,−2....

where φi−1 =
(a)i−1
(c)i−1

, and (y)i− Pochkammer symbol defined interms of the gamma function by

(y)i =
Γ(y + i)
Γ(y)

(y)i =

1 if i = 0
y(y + 1)(y + 2).....(y + i − 1) if i ∈ N.

(1.6)
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For f ∈ A, by using Carlson and Shaffer operator [7] La
c f (z) : A −→ A defined by

La
c f (z) = ϕ(a, c; z) ∗ f (z)

= z +
∞∑

i=2

(a)i−1

(c)i−1
aizi, z ∈ U

La
c f (z) = z +

∞∑
i=2

φi−1aizi, z ∈ U (1.7)

where φi−1 =
(a)i−1
(c)i−1

, and notice that

z(La
c f (z))′ = aLa+1

c − (a − 1)La
c f (z), f or z ∈ U.

Remark 1. We will focus the operator L(a, c) of some specific cases is given below:
(i) La

a = f (z);
(ii) L2

1 = z f ′(z);
(iii) L3

1 = z f ′(z) + 1
2z2 f ′′(z);

(iv) Lm
1 + 1 = Dm f (z) = z

(1−z)m+1 ∗ f (z),m > −1,m ∈ z is the well known Ruscheweyh derivative of
f (z) [23].
Definition 2. For a permanent non-negative integer i, the bell numbers Bi count the possible disjoint
partitions of a set with i elements into non-empty subsets.

The numbers Bi are labeled the bell numbers later Eric temple bell (1883–1960) ( [1, 2]) who
named them the exponential numbers. The bell numbers Bi, (i ≧ 0) satisfy a recurrence relation
involving binomial coefficients Bi+1 =

∑i
k=0

(
i
k

)
Bk. Clearly

B0 = B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, andB6 = 203. The function eez−1 that as follows:

Q(z) = eez−1 =

∞∑
i=0

Bi

(
zi

i!

)
= 1 + z + z2 +

5
6

z3 +
5
8

z4 + .... (1.8)

Recently Kumar et al. and coauthors studied coefficient bounds for starlike functions to the bell
number [8, 14]. We introduced a linear operator Ka

c,ψ f (z) by convolution product of generalized
distribution is given (1.5) and the incomplete beta function in (1.7), defined as follows

Ka
c,ψ f (z) = z +

∞∑
i=2

φi−1
ai−1

S
zi, z ∈ U (1.9)

where φi−1 =
(a)i−1
(c)i−1

,

and notice that
z(Ka

c,ψ f (z))′ = aKa+1
c,ψ − (a − 1)Ka

c,ψ f (z), f or z ∈ U.

Remark 2. We will focus the operator Ka
c,ψ f (z) of some specific cases is given below:

(i) Ka
a,1 = f (z);

(ii) K2
1,1 = z f ′(z).

Motivated by the articles of [6,10–13,21,22,24], using the concept of subordination and the linear
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operator [18] Ka
c,, we defined a subclass of A by Ka

c,ψ f (z). For this subclass, we obtained coefficient

inequality and sharp bounds of
∣∣∣∣a2

S − µ
a2

1
S 2

∣∣∣∣.
Murugusundaramoorthy et al. [18] defined the subclasses as given by:

Definition 3. For 0 ≤ δ ≤ 1, Let MKa
c,ψ(δ,Q) with c , 0,−1,−2...... and

Q(z) = 1 + z + z2 + 5
6z3 + 5

8z4 + ...., z ∈ U indicate the subclass of function. f is belongs to the class A
that satisfies the subordination condition

z(Ka
c,ψ f (z))′

(1 − δ)Ka
c,ψ f (z) + δz

≺ Q(z). (1.10)

Remark 3. (i) For δ = 0, let MKa
c,ψ(0,Q) = SKa

c,ψ(Q) indicate the subclass of A, the elements of
which are follows by (1.1) and convince the subordination condition

z(Ka
c,ψ f (z))′

Ka
c,ψ f (z)

≺ Q(z).

(ii) For δ = 1, let MKa
c,ψ(1,Q) = RKa

c,ψ(Q) indicate the subclass of A, the elements of which are
follows by (1.1) and convince the subordination condition

z(Ka
c,ψ f (z))′ ≺ Q(z).

Using the techiques of Zlotkiewicz and libera [15, 16] and Koepf [12] and Caglar et al. [4] concerted
with the help of MappleT M software and obtain coefficient inequality and sharp bounds of

∣∣∣∣a2
S − µ

a2
1

S 2

∣∣∣∣
for the function f comes under the classMKa

c,ψ(δ,Q).

2. Preliminarities

To prove our main results, we recall the below lemmas as follows. The lemma 2.1 is well known
caratheodory lemma (see also [9] corollary 2.3) and is used for this study:
Lemma 1. [7] If c ∈ P is given by (1.2), then |dk| ≤ 2, for all k ≥ 1 and the results is best possible for
Φ(z) = 1+ρz

1−ρz and |ρ| = 1.
Lemma 2. [5] Let Φ ∈ P as in (1.2). Then,

|d2 − vd2
1 | ≤ 2max {1; |2v − 1|} , where v ∈ C (2.1)

the results is sharp for the functions as follows by Φ1(z) = 1+ρz
1−ρz and Φ2(z) = 1+ρ2z2

1−ρ2z2 with |ρ| = 1.
Lemma 3. [17] (Lemma 1 and Remark, pp. 162 and 163) If Φ given by (1.2) is a element of the class
P, then

|d2 − vd2
1 | ≤ (y)i =

2, if 0 ≤ v ≤ 1
4v − 2, if v ≥ 1.

(2.2)

Where v < 0 or v > 1, the equality holds if and only if Φ is 1+z
1−z or one of its rotations. If 0 < v < 1,

then equality holds if and only if Φ is 1+z2

1−z2 or one of its rotations.if v = 0, the equality holds if and only
if

Φ3(z) =
(
1
2
+
η

2

)
+

1 + z
1 − z

+

(
1
2
−
η

2

) (
1 − z
1 + z

)
, 0 ≤ η ≤ 1

AIMS Mathematics Volume 8, Issue 4, 8018–8026.



8022

or one of its rotations. If v = 1, the equality holds if and only if Φ is the reciprocal of one of the
functions such that the equality holds in the case of v = 0.

Although, when 0 < v < 1, the above upper bound is sharp, it can be enhanced as follows:

|d2 − vd2
1 | + v|d2

1 | ≤ 2, i f 0 < v ≤
1
2

(2.3)

and
|d2 − vd2

1 | + (1 − v)|d2
1 | ≤ 2, i f

1
2
≤ v ≤ 1. (2.4)

Lemma 4. [3] Let Φ ∈ P as follows in (1.2). Then

d2 =
1
2

[
d2

1 + (4 − d2
1)x

]
, (2.5)

and
d3 =

1
4

[
d2

1 + 2(4 − d2
1)d1x − (4 − d2

1)d1 + x2 + 2(4 − d2
1)(1 − |x|2z)

]
(2.6)

for some complex numbers x, z convincing |z| ≤ 1 and |x| ≤ 1.

3. Coefficient inequality and upper bound

In this section, we first obtain the coefficient inequality for f ∈ MKa
c,ψ(δ,Q) and this tends to solve

the upper bound
∣∣∣∣a2

S − µ
a2

1
S 2

∣∣∣∣ for the subclassMKa
c,ψ(δ,Q).

Theorem 1. If f ∈ MKa
c,ψ(δ,Q) and is in (1.1), then∣∣∣∣∣a1

S

∣∣∣∣∣ ≤ ∣∣∣∣∣ca
∣∣∣∣∣ 1
1 + δ

,

∣∣∣∣∣a2

S

∣∣∣∣∣ ≤ ∣∣∣∣∣ (c)2

(a)2

∣∣∣∣∣ 1
(2 + δ)

max
{

1;
∣∣∣∣∣ δ + 3
(1 + δ)

∣∣∣∣∣} ,
∣∣∣∣∣a3

S

∣∣∣∣∣ ≤ ∣∣∣∣∣ (c)3

(a)3

∣∣∣∣∣ 1
2(3 + δ)

,

where S denote the sum of the convergent series.
Proof. If f ∈ MKa

c,ψ(δ,Q) from (1.10), then a function exists ω ∈ H(U) with ω(0) = 0, z ∈ U and
|ω(z)| < 1 such that

z(Ka
c,ψ f (z))′

(1 − λ)Ka
c,ψ f (z) + λz

= Q (ω(z)) . (3.1)

Define the function Φ by

Φ(z) =
1 + ω(z)
1 − ω(z)

= 1 + d1z + d2z2 + ........ , z ∈ U.
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Which is
ω(z) =

Φ(z) − 1
Φ(z) + 1

, z ∈ U (3.2)

and, since ω ∈ N(U) with |ω(z)| < 1 and ω(0) = 0, z ∈ D and it follows that Φ ∈ P substitute for ω
from (3.2) on the R.H.S of (3.1) and we get

Q (ω(z)) = Q

(
Φ(z) − 1
Φ(z) + 1

)
= 1 +

d1

2
z +

d2

2
z2 +

(
d3

2
−

d3
1

48

)
z3 + ...., z ∈ U (3.3)

and, with help of (1.7), the L.H.S of (3.1) will be

z(Ka
c,ψ f (z))′

(1 − δ)Ka
c,ψ f (z) + δz

= 1 + (1 + δ)φ1
a1

S
+

[
(2 + δ)φ2

a2

S
+ (δ2 − 1)φ2

1

a2
1

S 2

]
z2

+

[
(3 + δ)φ3

a3

S
+ (2δ2 + δ − 3)φ1φ2

a1

S
a2

S
+ (δ3 − δ2 − δ + 1)φ3

1

a3
1

S 3

]
z3 + ...

(3.4)

Where φn, n ∈ N, is in (1.7).
Therefore, substituting (3.3) and (3.4) in (3.1) and compare the coefficients of z, z2 and z3, we get

a1

S
=

c
a
.

d1

2(1 + δ)
, (3.5)

a2

S
=

(c)2

(a)2

1
2(2 + δ)

(
d2 −

(δ − 1)
2(1 + δ)

d2
1

)
, (3.6)

a2

S
=

(c)3

(a)3

(
d3 −

2δ2 + δ − 3
2(1 + δ)(2 + δ)

d1d2 −

(
5δ3 + 12δ2 + 9δ − 1

4(2 + δ)(1 + δ)3

)
d3

1

)
. (3.7)

Thus, from Lemma 1, we have ∣∣∣∣∣a1

S

∣∣∣∣∣ ≤ ∣∣∣∣∣ca
∣∣∣∣∣ 1
(1 + δ)

,∣∣∣∣∣a2

S

∣∣∣∣∣ ≤ ∣∣∣∣∣ (c)2

(a)2

∣∣∣∣∣ 1
2(2 + δ)

∣∣∣∣∣d2 −
(δ − 1)

2(1 + δ)
d2

1

∣∣∣∣∣ ,
and according to lemma 2, it follows that∣∣∣∣∣a2

S

∣∣∣∣∣ ≤ ∣∣∣∣∣ (c)2

(a)2(2 + δ)

∣∣∣∣∣ max
{

1;
∣∣∣∣∣δ + 3
1 + δ

∣∣∣∣∣} ,
and

a3

S
=

(c)3

(a)3

1
2(3 + δ)

(
d3 −

2δ2 + δ − 3
2(1 + δ)(2 + δ)

d1d2 +
5δ2 − 15δ + 4

24(1 + δ)(2 + δ)
d3

1

)
. (3.8)

Substitute the values of d2 and d3 is follows by the relations (2.5) and (2.6) in (3.8), respectively, and,
indicating d = d1, we get

a3

S
=

(c)3

(a)3

1
2(3 + δ)

[
−(δ2 + 3δ − 34)
24(1 + δ)(2 + δ)

d3 +
5δ + 7

4(1 + δ)(2 + δ)
(4 − p2)px −

1
4

(4 − d2)dx2 +
1
2

(4 − d2)(1 − |x|2)z
]
,
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for few complex numbers z and x, with |z| ≤ 1 and |x| < 1. Using the triangle’s inequality and
substitute |x| = y, we get

a3

S
≤

(c)3

(a)3

1
4(3 + δ)

[
|δ2 + 3δ − 34|

24(1 + δ)(2 + δ)
d3 +

5δ + 7
4(1 + δ)(2 + δ)

(4 − d2)dy −
1
4

(4 − d2)dy2 +
1
2

(4 − d2)(1 − y2)
]

= F (d, y), (0 ≤ d ≤ 2, 0 ≤ y ≤ 1).
Now, we will identify the maximum of F (d, y) on the closed version rectangle [0, 2] × [0, 1]

G(d, y) =
|δ2 + 3δ − 34|

24(1 + δ)(2 + δ)
d3 +

5δ + 7
4(1 + δ)(2 + δ)

(4 − d2)dy −
1
4

(4 − d2)dy2 +
1
2

(4 − d2)(1 − y2),

and using the MAPLET M software, we get

max {G(d, y) : (d, y) ∈ [0, 2] × [0, 1]} = max
{

2,
δ2 + 3δ − 34

3(1 + δ)(2 + δ)

}
,

and

G(0, 0) = 2,G(2, y) =
δ2 + 3δ − 34

3(1 + δ)(2 + δ)
.

A simple computation shows that 2 > δ2+3δ−34
3(1+δ)(2+δ)whenever δ ≥ 0;therefore,

max {G(d, t) : (d, t) ∈ [0, 2] × [0, 1]} = G(0, 0) = 2,

which implies that

max {G(d, y) : (d, y) ∈ [0, 2] × [0, 1]} =
(c)3

(a)3

1
2(3 + δ)

= F (0, 0).

and the proof is complete.
Theorem 2. If f ∈ MKa

c,ψ(δ,Q) and is of the form (1.1), then µ ∈ C, we have∣∣∣∣∣∣a2

S
− µ

a2
1

S 2

∣∣∣∣∣∣ ≤
∣∣∣∣∣ (c)2

(a)2

∣∣∣∣∣ 1
2 + δ

max
{

1,
|(2δ)a(c + 1) + µ(2 + δ)c(a + 1)|

(1 + δ)2|a(c + 1)|

}
.

Proof. f ∈ MKa
c,ψ(δ,Q) is of the form (1.1), from (3.5) and (3.6), we get

a2

S
− µ

a2
1

S 2 =
1

2(2 + δ)
(c)2

(a)2
(d2 − vd2

1)

where

v =
(δ2 − 1)a(c + 1) + µ(2 + δ)c(a + 1)

2(1 + δ)2a(c + 1)
.

Taking the modules of both sides , with the use of the inequality (2.1) of Lemma 2, then we obtain the
necessary estimate.

The above theorem For a = c, reduces to the given special case:
Corollary 1. If f ∈ MKψ(δ,Q) and is of the form (1.1), then µ ∈ C,∣∣∣∣∣∣a2

S
− µ

a2
1

S 2

∣∣∣∣∣∣ ≤ 1
2 + δ

max
{

1,
|(2δ) + µ(2 + δ)|

(1 + δ)2

}
.
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Remark 4. If f ∈ MKψ(δ,Q) and is of the form (1.1), then, for the special case µ = 1,∣∣∣∣∣∣a2

S
−

a2
1

S 2

∣∣∣∣∣∣ ≤ 1
2 + δ

max
{

1,
|(2 + 3δ)|
(1 + δ)2

}
.

4. Conclusions

This paper deals with the geometric properties of holomorphic functions involving generalized
distribution with bell numbers. Also, we found that coefficient inequality and sharp bound to be in the
subclass of holomorphic functions. Further, Hankel determinant may be investigated to this
distribution in the future. We anticipate that this distribution series will be important in several fields
related to mathematics, science, and technology.
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