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Abstract: Aiming at the problem that the convergence time of the chaotic finance/economic system
cannot be set independently and the continuous macro-control is required, this paper investigates the
predefined-time control of the chaotic finance/economic system based on event-triggered mechanism.
The predefined-time control approach ensures the chaotic finance system quickly converge to the
stable state within a pre-determined time. Moreover, in order to avoid continuous macro-control, an
event-trigger mechanism is added into the above predefined-time control approach, which guarantees
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derivation is presented and concrete simulation experiments are carried out to validate the feasibility
and applicability of the proposed control strategy.
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1. Introduction

During the past several years, a novel science branch called economic physics has risen gradually,
in which, the research approaches based on mathematics, physics and complex sciences are applied to
explain and deal with the financial and economical problems.

Finance/economic system [1–3] is an open and irreversible entropy increasing process which is far
away from the equilibrium point and is constructed by many factors. Influenced by the changes of
various parameters, it is quite common for its motion state to appear chaotic state due to instability.
Previous research results show that chaos theory can reasonably explain the internal operation
mechanism of economic phenomena and the essential changes in economic prospects. Therefore,
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nonlinear chaotic finance/economic economics has gradually developed into a research highlight in
the field of economic physics, and has obtained fruitful achievement.

Considering that the appearance of chaotic behaviour in the finance/economic system will lead
to the uncertainty and unpredictability of macroeconomic control, various control techniques have
been proposed to ensure the chaotic finance/economic system stabilises to the equilibrium point, such
as feedback control [4], sliding mode control [5], adaptive control [6, 7], fuzzy control [8], active
control [9, 10], H∞ control [11], and so forth.

It is worth noting that, most of the above research results are based on the asymptotic stability
control strategy, therefore, the convergence time of the closed-loop system is infinite and the
convergence speed is slow. In fact, it is of more practical significance to realize the stability of the
chaotic finance/economic system within a finite time. Based on the above purpose, the concept of
finite-time stability the chaotic finance/economic system has been investigated. Applying the
time-delay feedback control technique, Chen investigated the finite-time H∞ control problem of the
chaotic finance system with external disturbance [12]. A finite-time resilient fault-tolerant guaranteed
cost control scheme is proposed by Ahmad, to solve the fluctuations in investment policy strategy for
the chaotic nonlinear finance system [13]. For the chaotic finance/economic system with perturbance,
Ahmad designed a finite-time controller, which can not only eliminate the influence of external
perturbance, but also ensure that the perturbed state converges to the equilibrium point quickly in a
finite time without oscillation [14]. However, in the finite-time control algorithm, the convergence
time of the closed-loop system depends heavily on the initial state and control parameters of the
system [15]. Therefore, it will be of more practical significance to design a novel control scheme so
that the convergence time of the finance/economic system can be set independently in advance
according to the economic market demand, without being affected by the initial state of the system or
other control gains. This is the main objective of this paper.

The existing control schemes of chaotic finance/economic system all adopt continuous control
strategy, which needs real-time regulation. During the operation process of the financial system,
frequent regulations, on the one hand, will increase the operation cost, on the other hand, it is not easy
to operate in practice. Therefore, it is essential and urgent for the control of chaotic finance/economic
system to reduce the update frequency of control input, without damaging the good convergence
performance of the controlled system.

Compared with the traditional control technology, event-triggered control is an emerging
discontinuous control strategy [16, 17]. It originates from the control problem of network system and
aims to reduce the update frequency of network data, thus reducing the load of network
communication. Its core idea is to add an event trigger between the sensor and the controller, which
can recognize the error between the sampling output at the current time and the sampling output at the
previous event-triggered time. The sampled data is transferred to the controller only if the above error
violates some pre-set threshold, otherwise, the controller input remains unchanged. Compared with
the continuous control strategy, the event-triggered control strategy can effectively reduce the update
frequency of the controller input [18–21]. If the above event-triggered control strategy can be applied
to the control process of the chaotic finance/economic system, it will effectively reduce the frequency
of macro-control. Therefore, this is an interesting and valuable work. So far, this subject is still open,
so it is another motivation of this paper.

Motivated by the above analysis, this paper is dedicated to investigate the predefined-time control
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of chaotic finance/economic system based on the event-triggered mechanism. The rest of this paper
is organized as follows. In Section 2, a novel concept called predefined-time stability and its related
properties are introduced. In Section 3, the nonlinear dynamics of the chaotic finance/economic system
is established and the object of this work is expounded. In Sections 4 and 5, the predefined-time control
strategy and the event-triggered predefined-time control strategy are designed to realize the predefined-
time stability of the chaotic finance/economic system, respectively. In Section 6, some simulation
experiments are presented to illustrate the validity and superiority of the proposed control scheme. In
Section 7, the conclusion and future work are declared.

The main highlights of this paper are summarized as below:
• Firstly, by designing the predefined-time control scheme, the stabilizing time Tp of the chaotic

finance/economic system can be preseted off-line by the designer without being affected by the initial
state of the system or other control gains, which is superior to the finite-time control technique.
• Secondly, the traditional finite-time control algorithm in the existing literatures needs to design

many control parameters. However, the predefined-time control algorithm proposed in this paper only
needs to design one control parameter q, which is easy to operate.
• Thirdly, by introducing the event-triggered mechanism into the control strategy, the frequency of

macro-control policy of the government is effectively reduced without damaging the good convergence
performance of the chaotic finance/economic system, which is of more practical value.

2. Predefined-time stability

In this section, we will introduced a novel concept called predefined-time stability and some related
properties.

Definition 1. [22] (Predefined-time stability.) Let Tp > 0 be a constant which can be preset arbitrarily.
The origin x(t) = 0 of the nonlinear dynamical system

ẋ(t) = f (t, x; %), t ∈ [t0,+∞) (2.1)

is said to be globally predefined-time stable, if and only if lim
t→Tp−

x(t, x0) = 0, t ∈ [t0, t0 + Tp)

x(t, x0) ≡ 0, t ∈ [t0 + Tp,+∞)
(2.2)

holds for arbitrary x0 of system (2.1). If so, the constant Tp is called the predefined-time. Here, x ∈ Rn

denotes the system state, % ∈ Rm denotes the system parameter which satisfies %̇ = 0, t0 ≥ 0 represents
the initial time and x0 = x(t0) stands for the initial state for system (2.1).

Lemma 1. [23] Let Tp > 0 be a predefined constant. If there exists a radially unbounded Lyapunov
function V(t) for the dynamics system (2.1) and it satisfies

V̇(t) ≤ −
π

pTp

(
V1+

p
2 + V1− p

2
)
,

where p ∈ (0, 1) is a real constant.
Then, the origin of system (2.1) will be globally predefined-time stable within the predefined-time

Tp.
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Proof. For any initial state x0 ∈ R
n of system (2.1), the convergence time T (x0) can be calculated as

T (x0) =

∫ T (x0)

t0
dt =

∫ 0

V(x0)

1
V̇(t)

dV

≤

∫ 0

V(x0)
−

1
π

pTp

(
V1+

p
2 + V1− p

2

)dV

=
pTp

π

∫ V(x0)

0

dV

V1− p
2 (1 + V p)

=
pTp

π
·

2
p
·

∫ V(x0)

0

dV
p
2

1 + Vα

=
pTp

π
·

2
p
· arctan(V

p
2 )|V(x0)

0

=
2Tp

π
arctan

(
V

p
2 (x0)

)
.

In virtue of V(x0) ≥ 0, we obtain

arctan
(
V

p
2 (x0)

)
∈ (0,

π

2
].

Hence it holds that
Tp = sup T (x0).

�

Remark 1. From Lemma 1, it can be seen that, the convergence time Tp for predefined-time stability
can be pre-specified without being affected by the initial state x0 or other system parameter %, thus it
can be set freely and has more practical value.

Definition 2. For the vector ξ = (ξ1, · · · , ξN)> ∈ RN and constant q ∈ R \ {0}, the functions | · | : ξ 7→ |ξ|
and d·cq : x 7→ dξcq are defined as

|ξ| = (|ξ1|, · · · , |ξN |)>, (2.3)

dξcq =
(
sign(ξ1)|ξ1|

q, · · · , sign(ξN)|ξN |
q)> , (2.4)

in which sign(·) refers to the sign function.
Specially, for q = 1, it holds that

dξc =
(
sign(ξ1)|ξ1|, · · · , sign(ξN)|ξN |

)> . (2.5)

Lemma 2. [24] Let ξ1, ξ2, · · · , ξN ≥ 0. Then,
i) It holds for m ∈ (0, 1) that  N∑

i=1

ξi

m

≤

N∑
i=1

ξm
i ≤ N1−m

 N∑
i=1

ξi

m

. (2.6)
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ii) It holds for m ∈ [1,+∞) that

N1−m

 N∑
i=1

ξi

m

≤

N∑
i=1

ξm
i ≤

 N∑
i=1

ξi

m

. (2.7)

Lemma 3. [25] Let ξ ∈ RN . Then

‖ξ‖m ≤ ‖ξ‖n ≤ N( 1
n−

1
m )‖ξ‖m, (2.8)

where m, n denote two real constants which satisfy m > n > 0. ‖ξ‖m refers to the m−norm of ξ, which
is defined as

‖ξ‖m =

 N∑
i=1

|ξi|
m


1
m

. (2.9)

Specially, for m = 2, n = 1, it holds that

‖ξ‖2 ≤ ‖ξ‖1 ≤ N
1
2 ‖ξ‖2. (2.10)

Lemma 4. [17] For a constant p ∈ (0, 1] and two vectors x, y ∈ Rn, it holds that

‖x + y‖p
1 ≤ 2p−1

(
‖x‖p

1 + ‖y‖p
1

)
. (2.11)

Moreover, if ‖x‖1 ≥ ‖y‖1, then

− x>dx + ycp ≤ −21−px>dxcp + 2p−1 | x |>| y |p . (2.12)

Lemma 5. [17] For a constant p ∈ [1,+∞) and two vectors x, y ∈ Rn, it holds that

‖x + y‖p
1 ≤ ‖x‖

p
1 + ‖y‖p

1 . (2.13)

Moreover, if ‖x‖1 ≥ ‖y‖1, then

− x>dx + ycp ≤ −x>dxcp+ | x |>| y |p . (2.14)

Lemma 6. (Young’s inequality) Let p, q ∈ (1,+∞) be two real constants, which satisfy

1
p

+
1
q

= 1.

Then, it holds for any constants x, y ∈ R+ ∪ 0 that

xy ≤
xp

p
+

yq

q
. (2.15)
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3. Problem description

Consider the chaotic finance/economic system proposed in [26], which is composed of four sub-
components that include production, stock, money, and labor force. The mathematical model of the
above chaotic finance/economic system is described by

ẋ1(t) = x3(t) + x1(t)(x2(t) − a) + u1(t),
ẋ2(t) = 1 − bx2(t) − x2

1(t) + u2(t),
ẋ3(t) = −x1(t) − cx3(t) + u3(t),

(3.1)

where the vector
x(t) = (x1(t), x2(t), x3(t))> ∈ R3

denotes the system state, whose elements x1, x2, x3 ∈ R stand for the interest rate, the investment
demand, and the price index, respectively; the system parameters a, b, c ∈ R+ stand for the saving
amount, the cost per investment, and the elasticity of demand of the commercial markets; the vector
u(t) = (u1(t), u2(t), u3(t))> ∈ R3 represents the control input (i.e., macro-control measures of the
government). The stability and bifurcation of these balancing points have been discussed
detailed [26–28]. When we set

(a, b, c)> = (0.9, 0.2, 1.2)>, (x1(0), x2(0), x3(0))> = (0.2, 5, 0.5)>

and
(u1(0), u2(0), u3(0))> = (0, 0, 0)>,

the chaotic attractors of system (3.1) are displayed by Figure 1.
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Figure 1. Chaotic attractors of the chaotic finance/economic system without control input.
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4. Design of the predefined-time controller

In order to independently control the convergence time Tp of the closed-loop system, we propose
the following predefined-time controller.

u(t) = x̄(t) − κ1dx(t)c1−q − κ2dx(t)c1+q, (4.1)

where Tp > 0 denotes the predetermined convergence time, q ∈ (0, 1) stands for the control gain, and

x̄(t) = (ax1(t), bx2(t) − 1, cx3(t))>,

κ1 =
n1−qπ

21− q
2 qTp

,

κ2 =
n1+qπ

21+
q
2 qTp

,

n = 3.

Theorem 1. For the chaotic finance/economic system (3.1), the state trajectory x(t) will stabilize to the
origin (0, 0, 0)> within in any predefined-time Tp > 0 under the action of the control law (4.1).

Proof. Choose the following Lyapunov function

V(t) =
1
2

x>(t)x(t). (4.2)

It is easy to calculate

V̇(t) = x>(t)ẋ(t) =

n∑
i=1

xi(t)ẋi(t)

=

n∑
i=1

xi(t) ·
(
−κ1sign(xi(t))|xi(t)|1−q − κ2sign(xi(t))|xi(t)|1+q

)
=

n∑
i=1

(
−κ1|xi(t)|2−q − κ2|xi(t)|2+q

)
= −κ1

n∑
i=1

|xi(t)|2−q − κ2

n∑
i=1

|xi(t)|2+q. (4.3)

Since 2 − q > 1,2 + q > 1, then, applying Lemmas 2 and 3, we obtain

V̇(t) ≤ −κ1 · n−1+q‖xi(t)‖
2−q
1 − κ2 · n−1−q‖xi(t)‖

2+q
1

≤ −κ1 · n−1+q‖xi(t)‖
2−q
2 − κ2 · n−1−q‖xi(t)‖

2+q
2

= −
π

qTp

(
1
2
‖xi(t)‖22

)1− q
2

−
π

qTp

(
1
2
‖xi(t)‖22

)1+
q
2

= −
π

qTp

(
V1− q

2 (t) + V1+
q
2 (t)

)
. (4.4)

Therefore, according to Lemma 1, the state trajectory x(t) of the chaotic finance/economic system (3.1)
will converge to the original point (0, 0, 0)> within the predefined time Tp. �
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5. Design of the event-triggered predefined-time controller

5.1. Design of the event-triggered mechanism

The framework of the event-triggered control scheme is shown by Figure 2 and the event-triggered
mechanism is described as below.

Figure 2. Framework of the event-triggered control scheme.

Let t0 = 0 be the first event-triggered time, and tk denote the latest event-triggered time for the
current time t, then, the next event-triggered time tk+1 is defined as

tk+1 = min{t > tk : ‖x(t)‖1 > ε and ‖δ(t)‖1 > σ‖x(tk)‖1}, (5.1)

where h > 0, δ(t) = x(tk) − x(t), t ∈ [tk, tk+1). The constants σ ∈ [0, 1) and ε ≥ 0 are the threshold
parameters which determine the transmission frequency of the output-sample x(t). It is obvious that
lim

k→+∞
tk = +∞.

Remark 2. In the event-triggered transmission scheme, once the current sample-data x(t) violates the
following event-triggered condition

‖x(t)‖1 ≤ ε or (‖x(t)‖1 > ε and ‖δ(t)‖1 ≤ σ‖x(t)‖1), t ∈ [tk, tk+1) (5.2)

an event will be generated by the event trigger, which means the current sample-data x(t) will be
transmitted to the controller and the control input u(t) will be updated. Otherwise, the current sample-
data x(t) will be discarded and the control input u(t) will be kept by a zero-order hold (ZOH) with the
holding time [tk, tk+1).

Remark 3. It can be shown from (5.2) that, the condition ‖x(t)‖1 ≤ ε determines the requirement
of finance/ecnomics system managers for control accuracy, while the condition ‖δ(t)‖1 ≤ σ‖x(t)‖1
characterizes the tolerance of the system to the relative error

‖δ(t)‖1
‖x(t)‖1

=
‖x(tk) − x(t)‖1
‖x(t)‖1

.
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Obviously, the smaller the threshold parameters ε and σ, the higher the control performance of the
system, and the higher the update frequency of control input. The larger the threshold parameters
ε and σ, the lower the control performance requirements of the system, and the lower the update
frequency of control input. In particular, when the threshold parameters ε = σ = 0, the event-triggered
control degenerates into the traditional continuous control.

5.2. Design of the event-triggered predefined-time controller

To ensure that the chaotic finance/ecnomic system stabilizes to the equilibrium point (0, 0, 0)>

within the predetermined time Tp, the following event-triggered control law is designed.

u(t) = x̄(tk) − β1α1dx(tk)cµ1 − β2α2dx(tk)cµ2 − β3α3dx(tk)c, t ∈ [tk, tk+1) (5.3)

where 0 < q < 1 and

x̄(tk) = (ax1(tk), bx2(tk) − 1, cx3(tk))>,
µ1 = 1 − q,

µ2 = 1 + q,

β1 =
π

21− q
2 qTp

,

β2 =
π

21+
q
2 qTp

,

β3 = Mσn,

α1 =
1

µ1
1+µ1

(
1 − σ1+µ1n

1+µ1
2

) ,
α2 =

1(
21−µ2 − 2µ2−1

1+µ2

)
n

1−µ2
2 −

2µ2−1µ2
1+µ2

σ1+µ2n
1+µ2

2

,

α3 =
1

1
2

(
1 − σ2n

) ,
M = max{a, b, c},
n = 3.

Theorem 2. For the chaotic finance/economic system (3.1), if the event-triggered mechanism (5.1) and
the control law (5.3) are employed, then the state trajectory x(t) will stabilize to the origin (0, 0, 0)>

within in any predefined-time Tp > 0.

Proof. Construct the Lyapunov function candidate as below,

V(t) =
1
2

x>(t)x(t). (5.4)

Based on the event-triggered condition (5.2), we obtain, for any t ∈ [tk, tk+1), it holds that ‖x(t)‖1 ≤ ε
or (‖x(t)‖1 > ε and ‖δ(t)‖1 ≤ σ‖x(t)‖1), which implies ‖δ(t)‖1 ≤ ‖x(t)‖1.

Now we discuss it in two cases:
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Case 1: ‖x(t)‖1 ≤ ε.
In this case, the system state x(t) is fully close to the equilibrium point (0, 0, 0)> thus meets the

requirement of finance/economic system managers for control accuracy.
Case 2: ‖x(t)‖1 > ε and ‖δ(t)‖1 ≤ σ‖x(t)‖1.
Use the fact δ(t) = x(tk) − x(t), t ∈ [tk, tk+1), then, the time-derivative of (5.4) along the trajectory of

chaotic finance/economic system (3.1) can be calculated as

V̇(t) = x>(t)ẋ(t)

=

n∑
i=1

xi(t)ẋi(t)

= x>(t)(−β1α1dx(tk)cµ1 − β2α2dx(tk)cµ2 − β3α3dx(tk)c + x̄(tk) − x̄(t))
= −β1α1x>(t)dx(tk)cµ1 − β2α2x>(t)dx(tk)cµ2 − β3α3x>(t)dx(tk)c + x>(t)(x̄(tk) − x̄(t))
= −β1α1x>(t)dx(t) + δ(t)cµ1 − β2α2x>(t)dx(t) + δ(t)cµ2

− β3α3x>(t)dx(t) + δ(t)c + x>(t)(x̄(tk) − x̄(t)). (5.5)

Since σ ∈ [0, 1), it is easy to get ‖δ(t)‖1 ≤ ‖x(t)‖1.
Notice µ1 = 1 − q and q ∈ (0, 1), we get 0 < µ1 < 1, 1 < 1 + µ1 < 2 and 0 < 1+µ1

2 < 1. Applying
Lemma 4, we have

− x>(t)dx(t) + δ(t)cµ1 ≤ −x>(t)dx(t)cµ1 + |x(t)|>|δ(t)|µ1

= −

n∑
i=1

| xi(t) |1+µ1 +

n∑
i=1

|xi(t)| · |δi(t)|µ1 . (5.6)

Using Lemma 6, we derive

|xi(t)| · |δi(t)|µ1 ≤
|xi(t)|1+µ1

1 + µ1
+
µ1|δi(t)|1+µ1

1 + µ1
. (5.7)

Substituting (5.7) into (5.6), we obtain

− x>(t)dx(t) + δ(t)cµ1 ≤ −

n∑
i=1

|xi(t)|1+µ1 +

n∑
i=1

(
|xi(t)|1+µ1

1 + µ1
+
µ1|δi(t)|1+µ1

1 + µ1

)
=

µ1

1 + µ1

− n∑
i=1

|xi(t)|1+µ1 +

n∑
i=1

|δi(t)|1+µ1

 . (5.8)

Based on Lemmas 2 and 3, we get

−

n∑
i=1

|xi(t)|1+µ1 ≤ −

 n∑
i=1

|xi(t)|2


1+µ1
2

= −‖x(t)‖1+µ1
2 . (5.9)

n∑
i=1

|δi(t)|1+µ1 ≤ ‖δ(t)‖1+µ1
1 ≤ σ1+µ1‖x(t)‖1+µ1

1 ≤ σ1+µ1n
1+µ1

2 ‖x(t)‖1+µ1
2 . (5.10)
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Combing (5.8) with (5.9) and (5.10), we have

−x>(t)dx(t) + δ(t)cµ1 ≤ −
µ1

1 + µ1

(
1 − σ1+µ1n

1+µ1
2

)
‖x(t)‖1+µ1

2 = −
1
α1
‖x(t)‖1+µ1

2 . (5.11)

Since µ2 = 1 + q and q ∈ (0, 1), it yields 1 < µ2 < 2, 2 < 1 + µ2 < 4 and 1 < 1+µ2
2 < 2. With the help

of Lemmas 5 and 6, we derive that

− x>dx(t) + δ(t)cµ2 ≤ −21−µ2 x>(t)dx(t)cµ2 + 2µ2−1 | x(t) |>| δ(t) |µ2

= −21−µ2

n∑
i=1

|xi(t)|1+µ2 + 2µ2−1
n∑

i=1

|xi(t)| · |δi(t)|µ2 . (5.12)

|xi(t)| · |δi(t)|µ2 ≤
|xi(t)|1+µ2

1 + µ2
+
µ2|δi(t)|

1+µ2
1

1 + µ2
. (5.13)

Substituting (5.13) into (5.12), we deduce that

− x>(t)dx(t) + δ(t)cµ2 ≤ −21−µ2

n∑
i=1

| xi(t) |1+µ2 + 2µ2−1
n∑

i=1

 |xi(t)|1+µ2

1 + µ2
+
µ2|δi(t)|

1+µ2
1

1 + µ2


= −

(
21−µ2 −

2µ2−1

1 + µ2

) n∑
i=1

|xi(t)|1+µ2 +
2µ2−1µ2

1 + µ2

n∑
i=1

|δi(t)|1+µ2 . (5.14)

In view of µ2 = 1+q and q ∈ (0, 1), we obtain 1 < µ2 < 2 and 1 < 1+µ2
2 < 2. According to Lemmas 2

and 3, we further get

−

n∑
i=1

|xi(t)|1+µ2 ≤ −n
1−µ2

2

 n∑
i=1

|xi(t)|2


1+µ2
2

= −n
1−µ2

2 ‖x(t)‖1+µ2
2 . (5.15)

n∑
i=1

|δi(t)|1+µ2 ≤ ‖δ(t)‖1+µ2
1 ≤ σ1+µ2‖x(t)‖1+µ2

1 ≤ σ1+µ2n
1+µ2

2 ‖x(t)‖1+µ2
2 . (5.16)

Substituting (5.15) and (5.16) into (5.14), we obtain

− x>(t)dx(t) + δ(t)cµ2 ≤ −

((
21−µ2 −

2µ2−1

1 + µ2

)
n

1−µ2
2 −

2µ2−1µ2

1 + µ2
σ1+µ2n

1+µ2
2

)
‖x(t)‖1+µ2

2

= −
1
α2
‖x(t)‖1+µ2

2 . (5.17)

Similary, it can be derived that

− x>(t)dx(t) + δ(t)c ≤ −
1
2

(
1 − σ2n

)
‖x(t)‖22 = −

1
α3
‖x(t)‖22. (5.18)
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Let M = max{a, b, c} and employ Lemma 3, it yields

x>(t)(x̄(tk) − x̄(t)) = ax1(t)(x1(tk) − x1(t)) + bx2(t)(x2(tk) − x2(t)) + cx3(t)(x3(tk) − x3(t))
= ax1(t)δ1(t) + bx2(t)δ2(t) + cx3(t)δ3(t)
≤ M|x(t)|> · |δ(t)|
≤ M‖x(t)‖1 · ‖δ(t)‖1
≤ Mσ‖x(t)‖21
≤ Mσn‖x(t)‖22
= β3‖x(t)‖22. (5.19)

Substituting (5.11) and (5.17)–(5.19) into (5.5), we obtain

V̇(t) ≤ −β1‖x(t)‖1+µ1
2 − β2‖x(t)‖1+µ2

2 − β3‖x(t)‖22 + β3‖x(t)‖22
= −β1‖x(t)‖1+µ1

2 − β2‖x(t)‖1+µ2
2 . (5.20)

Since µ1 = 1 − q, µ2 = 1 + q, we get

V̇(t) ≤ −β1

(
‖x(t)‖22

)1− q
2
− β2

(
‖x(t)‖22

)1+
q
2

= −
π

qTp

(
1
2
‖x(t)‖22

)1− q
2

−
π

qTp

(
1
2
‖x(t)‖22

)1+
q
2

= −
π

qTp

(
V1− q

2 (t) + V1+
q
2 (t)

)
. (5.21)

Therefore, it follows from Lemma 1 that the state trajectory x(t) of the chaotic finance/economic
system (3.1) will converge to the original point (0, 0, 0)> within the predefined time Tp. �

Remark 4. It can be seen from the proof process of Theorem 2 that, the selection of threshold
parameter σ should ensure α1 > 0, α2 > 0, and α3 > 0. Therefore, we stipulate σ ∈ [0, σmax) with

σmax = max{σ < 1 : α1 > 0, α2 > 0, and α3 > 0},

Similary, the control gain q ∈ (0, 1) should comply

21−µ2 −
2µ2−1

1 + µ2
> 0,

which implies 2 + q > 4q.

6. Numerical simulation

To verify the effectiveness of the proposed control strategy, the following illustrative numerical
example is carried out. The chaotic finance/economic system involved in this example is formulated
by (3.1) and the system parameters and initial conditions are introduced in Section 3. The 2D and 3D
phase portraits of system (3.1) without input are illustrated by Figure 1. The time response of each
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state variable without input is displayed by Figure 3. From Figures 1 and 3, it is appreciable that, the
chaotic finance/economic system (3.1) has obvious chaotic characteristics.

0 10 20 30 40 50 60 70 80 90 100
t

-3

-2

-1

0

1

2

3

4

5
x
(t
)

x1

x2

x3

Figure 3. The behavior of the state variable xi(t) without control input.

Now we appoint the predefined convergence time as Tp = 1, and carry out the simulation by
applying the event-triggered mechanism (5.1) and the event-triggered control law (5.3), in which, the
control gain q is taken as q = 0.2. Based on Remark 4, we can calculate the upper bound of the
threshold parameter σ as σmax = 0.4206. So the threshold parameters of event-triggered mechanism
in this simulation are chosen as ε = 0.01 and σ = 0.35. If the simulation step is fixed as h = 0.001 and
the simulation time is taken as 3, then the simulation results will be shown by Figures 4–8.

0 0.5 1 1.5 2 2.5 3
t

-2

0

2

4

6

x
(t
)

x1

x2

x3

0 0.02 0.04 0.06 0.08 0.1
t

-2

0

2

4

6

x
(t
)

Figure 4. Time response curve of the state variable xi(t) via event-triggered predefined-time
control technique with Tp = 1.

From Figure 4 it can be seen that, under the proposed control scheme, the trajectory of state variable
xi(t) of chaotic finance/economic system (3.1) stabilizes to zero within the predefined-time Tp = 1.
Moreover, as shown in Figure 5, the state trajectory x(t) in 3D space converges to the origin (0, 0, 0)>

smoothly without chatting, which shows the effectiveness of the proposed control technique.
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The event-triggered instants and event-holding times based on the proposed event-triggered
mechanism are displayed by Figure 6, in which, the abscissa corresponding to each match stick
represents an event-triggered instant tk, and the height of the match stick represents the holding time
tk+1 − tk of the k-th event. Figure 6 shows that the distribution of matchsticks is sparse, which means
the event-triggered frequency is low, which further indicates that the introduction of the
event-triggered mechanism can effectively reduce the update frequency of the controller and thus to
save the control cost. This further reveals the applicability of the proposed control strategy.

-0.2
6

0
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0.2

4 0.2

0.4

0.6

0.12
0

0 -0.1

(0, 0, 0)T

(0.2, 5, 0.5)T

x1

x2

x3

Figure 5. State trajectory in 3D space via event-triggered predefined-time control technique
with Tp = 1.
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update frequency of the control input=81

Figure 6. event-triggered instants and event-holding times.

Next, we carry out another two experiments to explore the role of threshold parameters in the event-
triggered mechanism (5.1). The initial state and system parameters remain unchanged. First, we fix
threshold parameter ε = 0.01 and let σ choose different values, then the event-triggered frequencies
are shown by Figure 7, from which one can see, compared with the continuous control technique (ε =

σ = 0), the event-triggered control technique can reduce the update frequency of the controller by at
least 94.1%. What is more, the update frequency of the controller decreases with the increase of the
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value of σ.

Similarly, we fix threshold parameter σ = 0.35 and let ε choose different values, then the
event-triggered frequencies are shown by Figure 8, from which one can see, compared with the
continuous control technique (ε = σ = 0), the event-triggered control technique still can reduce the
update frequency of the controller by at least 88.9% and the update frequency of the controller
decreases with the increase of the value of ε.

To further demonstrate the superiority of the predefined-time control technology designed in this
paper, we compare it with the famous finite-time control technology [12]. From the comparison of
Figures 4 and 9, we can see that, the predefined-time control technology has faster convergence speed
and shorter convergence time.
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Figure 7. Comparison of event-triggered frequency with fixed threshold parameter ε = 0.01.

0

500

1000

1500

2000

2500

3000

ev
en

t-
tr

ig
ge

re
d 

fr
eq

ue
nc

y

σ = 0.35

ǫ = 0.001

σ = 0.35

ǫ = 0.005

σ = 0.35

ǫ = 0.01

σ = 0.35

ǫ = 0.02

3001

81

331

42
σ = 0

ǫ = 0

(continuous control)

148

Figure 8. Comparison of event-triggered frequency with fixed threshold parameter σ = 0.35.

AIMS Mathematics Volume 8, Issue 4, 8000–8017.



8015

0 1 2 3 4 5 6
t

-2

0

2

4

6
x1

x2

x3

finite-time control technique [12]

Figure 9. Time response curve of the state variable xi(t) via finite-time control technique
proposed in [12].

7. Conclusions

In this work, a novel event-triggered predefined-time control approach has been proposed to deal
with the stability problem of chaotic finance/economic system. Both the theoretical and experimental
results have illustrated that, the proposed control strategy can not only ensure that the system converges
to the stable state quickly and smoothly within a predefined time, but also significantly reduce the
update frequency of the control input, thereby saving the control cost. Recently, it is found that the
fractional derivative can provide a favorable tool to describe the memory and hereditary properties
of the dynamical behaviors of the financie/economic system [6, 8, 29, 30]. Thereby, the control of
the fractional-order financie/economic system is becoming increasingly attractive. Therefore, in our
future works, we will dedicate to study the event-triggered predefined-time control of fractional-order
financie/economic system.
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