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Abstract: The existing F-test of linearity cannot be applied when data has indeterminacy and 

uncertainty. The present paper introduces the F-test of testing linearity under neutrosophic statistics. 

We will develop F-test under neutrosophic statistics and neutrosophic analysis of the variance 

(NANOVA) table. The application of the proposed test will be given using the data of dry bulb 

temperature and relative humidity. From the analysis and comparison studies, it is found that the 

proposed F-test under neutrosophic statistics gives the results in indeterminate intervals and 

measures of indeterminacy. In addition, the proposed test is more flexible, adequate, and more 

informative than the F-test under classical statistics. 
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1. Introduction 

In regression theory, the relationship between independent and dependent variables is studied. It 

checked how the change in the independent variable affects the dependent variable. The regression 

models have been applied in various fields for the purposes of forecasting and estimation. Ghosal et 

al. [1] applied the regression model to estimate the deaths due to Covid-19. For this purpose, the 

existence of linearity between the independent variable and the dependent variable is tested first. The 

regression models can be applied for forecasting purposes if it is proved that the regression is linear. 

This testing is done under the assumption that the error terms are distributed normally and 

independently with mean zero and the two variables are also normally and independently distributed. 

For this purpose, the F-test for testing whether the two variables are linearly related or not are 



7982 

AIMS Mathematics  Volume 8, Issue 4, 7981–7989. 

applied. This test is applied to test the null hypothesis that two variables are not linearly related vs. 

the alternative hypothesis that two variables are linearly related. Due to the importance of such an 

F-test, many people proposed tests for a variety of reasons. Biedermann and Dette [2] used the test 

using the Kernel-based methods. Panagiotidis [3] worked on the assumptions of the F-test. Niermann [4] 

proposed the test for the simple linear regression model. Wang and Cui [5] and Lan et al. [6] 

presented the generalization of the F-test for high-dimensional models. Li et al. [7] and Wang. and 

Cui [8] focused on the development of the test for partially linear models. More information about 

the test can be seen in [9,10]. 

The regression models have been applied to estimating energy consumption. Among other 

variables, the temperature and humidity also affect energy consumption, see [11]. Schoen [12] 

worked on temperature and humidity index. Ojobo et al. [13] studied the effect of temperature and 

humidity on human stress. Bastistella et al. [14] applied the regression for bioengineering 

applications. McKinnon and Poppick [15] presented the relationship between temperature and 

humidity using the spline approach. The details about this type of study can be seen in [16–18].  

Due to the complexity of measuring the variables under study, it may not possible to record 

them accurately and precisely. In such situations, the data obtained may be intervals, fuzzy, or 

incomplete. For such data, the regression models designed using fuzzy logic is applied for forecasting 

purposes. Pourahmad et al. [19] applied a fuzzy regression in the medical field. Kovac et al. [20] 

presented the application of fuzzy regression in the manufacturing process. Tzimopoulos et al. [21] 

presented the application using the methodology data. Gkountakou and Papadopoulos [22] applied 

the fuzzy regression in predicting the cement strength. More applications can be seen in [21,23].  

Smarandache [24] introduced the neutrosophic logic and discussed that fuzzy logic is a special 

case of it. Neutrosophic logic has advantages over fuzzy logic because it gives additional knowledge 

about the measure of indeterminacy. Now, the applications of neutrosophic logic have become 

significant in those fields where uncertainty and indeterminacy can influence the results, see, for 

example, [25–27]. Using the idea of neutrosophic logic, Smarandache [28] introduced neutrosophic 

statistics. In classical statistics, the uncertainty factor is always involved which is always ignored in 

the analysis and development of statistical methods. Classical statistics is a special case of 

neutrosophic statistics. The neutrosophic gives information about the measure of indeterminacy and 

is applied when the Neutrosophy is presented in the data. Chen et al. [29] and Chen et al. [30] 

presented the methods to deal with neutrosophic numbers. More details can be seen in [31–33]. More 

information on uncertainty handling related works can be seen in [34–36]. 

Although the F-test for testing the linearity under classical statistics is available in the literature 

it cannot be applied when the data is obtained from a complex process or the data has neutrosophy, 

uncertainty, and indeterminacy. In the literature study, we did find any work on the F-test of linearity 

under neutrosophic statistics. We will present the neutrosophic analysis of variance (NANOVA) table. 

We will introduce the F-test statistics under neutrosophic statistics. We will apply the proposed test 

for testing the linear relationship between the dry bulb temperature (oC) and relative humidity (%). It 

is expected that the proposed F-test will be more informative, flexible, and adequate to be applied in 

an uncertain environment. 

2. The proposed F-test under neutrosophic statistics 

In this section, we will present the test of linearly between an independent variable and a 

dependent variable under neutrosophic statistics. The proposed test can be applied to test the linearity 

between variables when these variables are measured in intervals or have indeterminate observations. 

The proposed test has the ability to check whether linearity exists between two variables or not when 
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indeterminacy is recorded in the data. The proposed test has the assumption that the variables 

𝑋𝑁𝜖[𝑋𝑁, 𝑋𝑁] and 𝑌𝑁𝜖[𝑌𝑁 , 𝑌𝑁] of size 𝑛𝑁𝜖[𝑛𝐿 , 𝑛𝑈] have the neutrosophic normal distribution and 

are distributed independently. In addition, the error term under Neutrosophy has a neutrosophic 

normal distribution and is distributed independently with neutrosophic mean [0,0], see [28,37]. Let 

𝛼𝑁𝜖[𝛼𝐿 , 𝛼𝑈]  and 𝛽𝑁𝜖[𝛽𝐿 , 𝛽𝑈]  denote the neutrosophic intercept and neutrosophic slope of 

neutrosophic regression. The relationship between 𝑋𝑁𝜖[𝑋𝑁, 𝑋𝑁] and 𝑌𝑁𝜖[𝑌𝑁 , 𝑌𝑁] is expressed by  

𝑌𝑁 = 𝛼𝑁 + 𝛽𝑁𝑋𝑖𝑁.          (1) 

The proposed test will be applied to test the following neutrosophic null (𝐻0𝑁) and alternative 

hypothesis (𝐻1𝑁).  

𝐻0𝑁: 𝛽𝑁 = 0 vs. 𝐻1𝑁: 𝛽𝑁 ≠ 0.        (2) 

The neutrosophic null hypothesis states that no linear relationship exists between the two variables. 

The neutrosophic total sum of square (NTSS), say 𝑇𝑆𝑆𝑁𝜖[𝑇𝑆𝑆𝐿 , 𝑇𝑆𝑆𝑈] for the proposed test is 

given by 

𝑇𝑆𝑆𝑁 = ∑ 𝑦𝑖𝑁
2 − (∑ 𝑦𝑖𝑁)2 𝑛𝑁⁄ ; 𝑇𝑆𝑆𝑁𝜖[𝑇𝑆𝑆𝐿 , 𝑇𝑆𝑆𝑈].    (3) 

The neutrosophic form of 𝑇𝑆𝑆𝑁𝜖[𝑇𝑆𝑆𝐿 , 𝑇𝑆𝑆𝑈] is expressed as 

𝑇𝑆𝑆𝑁 = 𝑇𝑆𝑆𝐿 + 𝑇𝑆𝑆𝑈𝐼𝑁𝑇; 𝐼𝑁𝑇𝜖[𝐼𝐿𝑇 , 𝐼𝑈𝑇].       (4) 

Note here that 𝑇𝑆𝑆𝑁𝜖[𝑇𝑆𝑆𝐿 , 𝑇𝑆𝑆𝑈] has two parts, the first part 𝑇𝑆𝑆𝐿 presents the total sum of 

square (TSS) under classical statistics and the second part 𝑇𝑆𝑆𝑈𝐼𝑁𝑇 presents the indeterminate part 

and 𝐼𝑁𝑇𝜖[𝐼𝐿𝑇 , 𝐼𝑈𝑇] presents the indeterminacy interval associated with 𝑇𝑆𝑆𝑁𝜖[𝑇𝑆𝑆𝐿 , 𝑇𝑆𝑆𝑈]. The 

proposed NTSS reduces to TSS when 𝐼𝐿𝑇 = 0. 

The neutrosophic error sum of square (NESS), say 𝐸𝑆𝑆𝑁𝜖[𝐸𝑆𝑆𝐿 , 𝐸𝑆𝑆𝑈] is given by 

𝐸𝑆𝑆𝑁 = ∑(𝑦𝑖𝑁 − 𝑦̅𝑁) − 𝛽𝑁
2 ∑ 𝑛𝑖𝑁(𝑥𝑖𝑁 − 𝑥̅𝑁)2; 𝐸𝑆𝑆𝑁𝜖[𝐸𝑆𝑆𝐿 , 𝐸𝑆𝑆𝑈].    (5) 

The neutrosophic form of 𝑇𝑆𝑆𝑁𝜖[𝑇𝑆𝑆𝐿 , 𝑇𝑆𝑆𝑈] is expressed as 

𝐸𝑆𝑆𝑁 = 𝐸𝑆𝑆𝐿 + 𝐸𝑆𝑆𝑈𝐼𝑁𝐸; 𝐼𝑁𝐸𝜖[𝐼𝐿𝐸 , 𝐼𝑈𝐸].        (6) 

Note here that 𝐸𝑆𝑆𝑁𝜖[𝐸𝑆𝑆𝐿 , 𝐸𝑆𝑆𝑈] has two parts, the first part 𝐸𝑆𝑆𝐿 presents the error sum of 

square (ESS) under classical statistics and the second part 𝐸𝑆𝑆𝑈𝐼𝑁𝐸 presents the indeterminate part 

and 𝐼𝑁𝐸𝜖[𝐼𝐿𝐸 , 𝐼𝑈𝐸] presents the indeterminacy interval associated with 𝐸𝑆𝑆𝑁𝜖[𝐸𝑆𝑆𝐿 , 𝐸𝑆𝑆𝑈]. The 

proposed NESS reduces to ESS when 𝐼𝐿𝐸 = 0. 

The neutrosophic regression sum of square (RESS), say 𝑅𝑆𝑆𝑁𝜖[𝑅𝑆𝑆𝐿 , 𝑅𝑆𝑆𝑈] is given by 

𝑅𝑆𝑆𝑁 = 𝛽𝑁 (∑ 𝑥𝑖𝑁𝑦𝑖𝑁 −
1

𝑛𝑁
(∑ 𝑥𝑖𝑁)(∑ 𝑦𝑖𝑁)); 𝑅𝑆𝑆𝑁𝜖[𝑅𝑆𝑆𝐿 , 𝑅𝑆𝑆𝑈].   (7) 

The neutrosophic form of 𝑅𝑆𝑆𝑁𝜖[𝑅𝑆𝑆𝐿 , 𝑅𝑆𝑆𝑈] is expressed as 

𝑅𝑆𝑆𝑁 = 𝑅𝑆𝑆𝐿 + 𝑅𝑆𝑆𝑈𝐼𝑁𝑅; 𝐼𝑁𝑅𝜖[𝐼𝐿𝑅 , 𝐼𝑈𝑅].        (8) 

Note here that 𝑅𝑆𝑆𝑁𝜖[𝑅𝑆𝑆𝐿 , 𝑅𝑆𝑆𝑈] has two parts, the first part 𝑅𝑆𝑆𝐿 presents the regression sum 

of square (ESS) under classical statistics and the second part 𝑅𝑆𝑆𝑈𝐼𝑁𝑅 presents the indeterminate 

part and 𝐼𝑁𝑅𝜖[𝐼𝐿𝑅 , 𝐼𝑈𝑅]  presents the indeterminacy interval associated with 𝑅𝑆𝑆𝑁𝜖[𝑅𝑆𝑆𝐿 , 𝑅𝑆𝑆𝑈]. 
The proposed RESS reduces to RSS when 𝐼𝐿𝐸 = 0. 

The neutrosophic mean square error (NMSE) can be obtained by the neutrosophic sum of squares by 
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their corresponding neutrosophic degree of freedom (NDF). The proposed neutrosophic statistic 

𝐹𝑁𝜖[𝐹𝐿 , 𝐹𝑈] can be obtained by the ratio of the mean regression sum of square (MRSS) to the mean 

error sum of square (MESS). The neutrosophic analysis of variance (NANOVA) for the proposed test 

is given in Table 1. 

Table 1. The NANOVA table. 

Source NDF NSS NMSE 𝐹𝑁 

𝑅𝑆𝑆𝑁 [1,1] 𝑅𝑆𝑆𝐿 + 𝑅𝑆𝑆𝑈𝐼𝑁𝑅; 𝐼𝑁𝑅𝜖[𝐼𝐿𝑅 , 𝐼𝑈𝑅] 𝑅𝑆𝑆𝑁 [1,1]⁄  𝑀𝑅𝑆𝑆𝑁

𝑀𝐸𝑆𝑆𝑁
 𝐸𝑆𝑆𝑁 [𝑛𝑁 − 2] 𝐸𝑆𝑆𝐿 + 𝐸𝑆𝑆𝑈𝐼𝑁𝐸; 𝐼𝑁𝐸𝜖[𝐼𝐿𝐸 , 𝐼𝑈𝐸] 𝐸𝑆𝑆𝑁 [𝑛𝑁 − 2]⁄  

𝑇𝑆𝑆𝑁 [𝑛𝑁 − 1] 𝑇𝑆𝑆𝐿 + 𝑇𝑆𝑆𝑈𝐼𝑁𝑇; 𝐼𝑁𝑇𝜖[𝐼𝐿𝑇 , 𝐼𝑈𝑇] 𝑇𝑆𝑆𝑁 [𝑛𝑁 − 1]⁄  

The proposed test will be implemented in the following steps. 

Step-1: State the null hypothesis and alternative hypothesis as 𝐻0𝑁: 𝛽𝑁 = 0 vs. 𝐻1𝑁: 𝛽𝑁 ≠ 0. 

Step-2: Choose the level of significance 𝛼. 

Step-3: Compute the statistic 𝐹𝑁𝜖[𝐹𝐿 , 𝐹𝑈]. 
Step-4: Determine the neutrosophic p-value for (1, 𝑛 − 2) degree of freedom and 𝛼. 

Step-5: Do not accept 𝐻0𝑁 if the maximum neutrosophic p-value is less than 𝛼 = 0.05, see [38].  

The operational process of the proposed test can be seen in Figure 1. 

 

Figure 1. The operational process of the proposed test. 

3. Application using temperature and humidity data 

In this section, we will apply the proposed test to test the linearity of regression between the dry 

bulb temperature (oC) and relatively humidity (%). It is a well-known theory that determining the 

relatively humidity depends on the measurement of the dry-bulb temperature. Usually, these 

variables are measured having the minimum value and maximum value. The data is taken from 

(Signor, Westphal, & Lamberts, 2001). But, the maximum value of relatively humidity (%) is 
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simulated. Therefore, to test the linearity of regression between the dry bulb temperature (oC) and 

relatively humidity (%), the proposed test can be used more effectively than the test under classical 

statistics. Let 𝑋𝑁𝜖[𝑋𝑁, 𝑋𝑁] be a neutrosophic independent variable and 𝑌𝑁𝜖[𝑌𝑁 , 𝑌𝑁] represents the 

neutrosophic dependent variable. The aims of this study to test that 𝑋𝑁𝜖[𝑋𝑁 , 𝑋𝑁] and 𝑌𝑁𝜖[𝑌𝑁 , 𝑌𝑁] 
are linearly related or not. The neutrosophic data along with descriptive neutrosophic statistics is 

reported in Table 2. We would like to whether the relationship between dry bulb temperature and 

relatively humidity is linear or not. The null hypothesis 𝐻0𝑁 and the alternative hypothesis 𝐻1𝑁 are 

stated as follows  

𝐻0𝑁: 𝜇𝑖𝑁 = 𝛼𝑁 + 𝛽𝑁𝑋𝑖𝑁 or 𝐻0𝑁: 𝛽𝑁 = 0 vs. 𝐻1𝑁: 𝛽𝑁 ≠ 0, 

where 𝛼𝑁𝜖[𝛼𝐿 , 𝛼𝑈]  and 𝛽𝑁𝜖[𝛽𝐿 , 𝛽𝑈]  denote the neutrosophic intercept and rate of change of 

neutrosophic regression. Under the null hypothesis 𝐻0𝑁: 𝛽𝑁 = 0, the NTSS, NESS and NRSS for the 

given data are computed as  

NTSS = ∑ 𝑦𝑖𝑁
2 − (∑ 𝑦𝑖𝑁)2 14⁄ = [1405.42,439.21]  

NESS = ∑(𝑦𝑖𝑁 − 𝑦̅𝑁) − [1.02,1.92] ∑[14,14](𝑥𝑖𝑁 − 𝑥̅𝑁)2 = [400.08,227.40]  

NRSS = [1.02,1.92] (∑ 𝑥𝑖𝑁𝑦𝑖𝑁 −
1

[14,14]
(∑ 𝑥𝑖𝑁)(∑ 𝑦𝑖𝑁)) = [1005.35,211.80].  

The ratio of mean squares with (1,12) a degree of freedom is given by 

𝐹𝑁 = [30.15,11.17]. 

For 𝛼 = 0.05, (1,12) the degree of freedom, and 𝐹𝑁 = [30.15,11.17], the neutrosophic p-value is 

[0.000138,0.005865]. By (Smarandache, 2014), the null hypothesis will not be accepted if the 

maximum neutrosophic p-value is less than 𝛼 = 0.05. We note that 0.005865 < 0.05, therefore, 

𝐻0𝑁: 𝛽𝑁 = 0 will not be accepted in favor of 𝐻1𝑁: 𝛽𝑁 ≠ 0. From this study, it is concluded that the 

variables dry bulb temperature (oC) and relatively humidity (%) have a linear relation. In addition, energy 

experts can forecast the values of relatively humidity using the information on dry-bulb temperature.  

Table 2. The data along with neutrosophic descriptive statistics. 

Observation 𝑋𝑁 𝑌𝑁 𝑋𝑁
2  𝑌𝑁

2 𝑋𝑁. 𝑌𝑁 

1 [20,35] [44,90] [400,1225] [880,8100] [880,3150] 

2 [6.1,32.8] [16,100] [37.21,1075.84] [97.6,10000] [97.6,3280] 

3 [–2.2,31.1] [28,85] [4.84,967.21] [–61.6,7225] [–61.6,2643.5] 

4 [2.2,36.1] [26,100] [4.84,1303.21] [57.2,10000] [57.2,3610] 

5 [20,32.2] [39,91] [400,1036.84] [780,8281] [780,2930.2] 

6 [15.6,35] [40,100] [243.36,1225] [624,10000] [624,3500] 

7 [18.9,32.8] [42,88] [357.21,1075.84] [793.8,7744] [793.8,2886.4] 

8 [1.1,36.7] [20,100] [1.21,1346.89] [22,10000] [22,3670] 

9 [19.4,31.7] [53,89] [376.36,1004.89] 1028.2,7921] [1028.2,2821.3] 

10 [12.8,38.3] [32,100] [163.84,1466.89] [409.6,10000] [409.6,3830] 

11 [21.1,35] [40,88] [445.21,1225] [844,7744] [844,3080] 

12 [20.6,35] [44,95] [424.36,1225] [906.4,9025] [906.4,3325] 

13 [2.2,36.1] [26,99] [4.84,1303.21] [57.2,9801] [57.2,3573.9] 

14 [11.1,35.6] [34,100] [123.21,1267.36] [377.4,10000] [377.4,3560] 

Sum [168.9,484.4] [484,1325] [2986.49,16748.2] [18138,125841] [6815.8,45860.3] 
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4. Comparative study 

Now we compare the efficiency of the proposed test over the existing test under neutrosophic 

statistics in terms of a measure of indeterminacy. According to [30], in the neutrosophic theory, a 

method that provides the results in indeterminacy interval is better than classical statistics. 

Neutrosophic statistics is the generalization of classical statistics. The theory of neutrosophic 

statistics reduces to the theory of classical statistics when no indeterminacy is found in recording the 

data. We present the neutrosophic forms along with the measures of indeterminacy for NTSS, NESS, 

and NRSS, and 𝐹𝑁 in Table 3. From the neutrosophic forms, it is clear that these neutrosophic forms 

reduce to classical statistics when 𝐼𝑁 = 0. Note here that the first values in the neutrosophic forms 

represent the values of TSS, ESS, RSS, and F test under classical statistics. The second values of 

neutrosophic forms represent indeterminate values. The measures of indeterminacy are also shown 

along with these sums of the square. From Table 2, it can be noted that all values of the proposed test 

can be presented in the indeterminate interval. For example, the neutrosophic form of 𝐹𝑁 is 𝐹𝑁=

30.15 − 11.17𝐼𝑁; 𝐼𝑁𝜖[0,1.6991]. From this neutrosophic form, it can be noted that values of 

statistics 𝐹𝑁 range from 30.15 to 11.17 with the measure of indeterminacy 1.6991. Based on this 

information, the proposed test is interpreted as the chance of accepting 𝐻0𝑁: 𝛽𝑁 = 0 is 0.95, the 

chance of committing a type-I error is 0.95 and the chance of indeterminacy about 𝐻0𝑁: 𝛽𝑁 = 0 is 

1.6991. From this study, it can be seen that the proposed test gives the neutrosophic in neutrosophic 

form and provides information about the measure of indeterminacy that the existing test cannot 

provide. Therefore, the proposed test has advantages over the existing test under classical statistics. 

Based on this study, it can be concluded that the proposed test is informative, flexible, and 

reasonable to apply when dry bulb temperature and relatively humidity data are given in intervals. 

Table 3. Neutrosophic form. 

 Neutrosophic form 

NTSS 1405.42 − 439.21𝐼𝑁; 𝐼𝑁𝜖[0,2.1998] 

NESS 400.08 − 227.40𝐼𝑁; 𝐼𝑁𝜖[0,0.7593] 

NRSS 1005.35 − 211.80𝐼𝑁; 𝐼𝑁𝜖[0,3.7466] 

𝐹𝑁 30.15 − 11.17𝐼𝑁; 𝐼𝑁𝜖[0,1.6991] 

5. Conclusions 

The F-test under neutrosophic statistics was introduced in the paper. The NANONA was also 

introduced to apply the F-test. The proposed test was the generalization of the F-test of linearity 

under classical statistics. The application of the proposed test is given on real data. From the analysis 

of dry bulb temperature and relatively humidity data, it is found that both variables are linearly 

related. The regression model can be applied for forecasting humidity on the basis of dry bulb 

temperature data. In addition, from the analysis and comparative studies, it is concluded that the 

proposed test gives information about the measure of indeterminacy additionally as compared to the 

existing control chart. The proposed F-test can be applied in business, medical and social sciences to 

check the linearity between the variables under study. The application of the proposed test for big 

data can be considered for future research.  
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