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1. Introduction

A ruled surface is a surface which can be generated by the movement of an oriented line along a
space curve. The significance of the ruled surface lies in the fact that it is utilized in numerous areas of
manufacturing and engineering, including the modeling of apparel, automobile components and ship
hulls (see e.g., [1–4]). One of the most convenient methods to consider the movement of line space
seems to establish a relationship among this space and dual numbers. According to the E. Study map
in screw and dual number algebra, the set of all oriented lines in Euclidean 3-space E3 is immediately
connected to the set of points on the dual unit sphere in the dual 3-space D3 [1–3]. More specifics on
the necessary fundamental definitions of the dual elements and the relationship among ruled surfaces
and one-parameter dual spherical movements can be found in [3–7].

In Minkowski 3-space E3
1 the research of ruled surfaces is more motivating than the Euclidean

situation, as Lorentzian distance can be negative, positive or zero whereas the Euclidean distance can
only be positive. Then, if we take the Minkowski 3-space E3

1 as an alternative of the Euclidean 3-
space E3 the E. Study map can be given as The timelike (spacelike) oriented lines with the timelike
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(spacelike) dual points on a hyperbolic (Lorentzian) dual unit sphere in the Lorentzian Dual 3-spaceD3
1.

It means that a regular curve on H2
+ appears as a timelike ruled surface at E3

1. Similarly the spacelike
(timelike) curve on S2

1 appears as a timelike (spacelike) ruled surface at E3
1. In view of its relationships

with engineering, and those with physical sciences in Minkowski space, many geometers and engineers
have studied and gained many ownerships of the ruled surfaces (see [8–14]).

This work is an approach for constructing spacelike ruled surfaces with a stationary spacelike
Disteli-axis by using the E. Study map. Then, we define and study the kinematic geometry of a
spacelike Plücker conoid generated by the spacelike Disteli-axis. In addition, we give some necessary
and sufficient conditions to have constant spacelike dual angles with respect to a constant spacelike
Disteli-axis and we discuss some special cases which lead to some special spacelike ruled surfaces
such as the general spacelike surface, the spacelike helicoidal surface and the spacelike cone.

2. Preliminaries

In this section, we give a short summary of the theory of dual numbers and dual Lorentzian vectors.
(see [1–7, 9–17]). If x and x∗ are real numbers, the number x̂ = x + εx∗ is named a dual number.
Here ε is a dual unit subject to ε , 0, ε2 = 0, ε.1 = 1.ε = ε. The set of dual numbers, D, creates a
commutative ring that have the numbers εx∗(x∗ ∈ R) as divisors of zero, not a field. No number εx∗

has an inverse in the algebra. But, the other lows of the algebra of dual numbers are the same as those
of the complex numbers. Then, the set

D3 = {̂x:= x + εx∗ =(x̂1, x̂2, x̂3)}, (2.1)

together with the Lorentzian scalar product

< x̂, ŷ >= x̂1̂y1 − x̂2̂y2 + x̂3̂y3, (2.2)

forms the dual Lorentzian 3-space D3
1. This yields

< f̂1, f̂1 >= − < f̂2, f̂2 >=< f̂3, f̂3 >= 1,
f̂1 × f̂2 = f̂3, f̂2 × f̂3 = f̂1, f̂3 × f̂1 = −̂f2,

(2.3)

where f̂1, f̂2 and f̂3 the dual base at the origin point 0̂ (0, 0, 0) of the dual Lorentzian 3-space D3
1. Then,

a dual point x̂ = (x̂1, x̂2, x̂3)t has the coordinates x̂i = (xi + εx∗i ) ∈ D. If x , 0 the norm
∥∥∥̂x

∥∥∥ of x̂ is
defined by ∥∥∥̂x

∥∥∥ =

√∣∣∣< x̂, x̂ >
∣∣∣ = ‖x‖ (1+ε

< x, x∗ >
‖x‖2

)

then, the vector x̂ is named a spacelike ( timelike) dual unit vector if
∥∥∥̂x

∥∥∥2
=1 (

∥∥∥̂x
∥∥∥2

= −1). It is evident
that ∥∥∥̂x

∥∥∥2
= ±1⇐⇒ ‖x‖2 = ±1, < x, x∗>=0. (2.4)

The six components xi, x∗i (i = 1, 2, 3) of x and x∗ are named the normed Plücker coordinates of the
line. The hyperbolic and Lorentzian (de Sitter space) dual unit spheres are

H2
+ = {̂x∈D3

1 | x̂
2
1 − x̂2

2 + x̂2
3 = −1, with x̂2 > 0}
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and
S2

1 = {̂x∈D3
1 | x̂

2
1 − x̂2

2 + x̂2
3 = 1},

respectively. Hence, the E. Study’s map can be stated as follows: The dual unit spheres are shaped as a
pair of conjugate hyperboloids. The common asymptotic cone represents the set of null lines, the ring
shaped hyperboloid represents the set of spacelike lines and the oval shaped hyperboloid forms the set
of timelike lines opposite points of each hyperboloid represent the pair of opposite vectors on a line
(see Figure 1). Consequently, a timelike ruled surface is then a regular curve on H2

+, and a timelike (or
spacelike) ruled surface is a regular curve on S2

1.

Figure 1. hyperbolic and dual Lorentzian unit spheres.

Definition 1. For any two non-null dual vectors x̂ and ŷ in D3
1, we have the following basic

relations [9–13]:
i) Let x̂ and ŷ two spacelike dual vectors
• If they span a spacelike dual plane, there is a unique dual number ϕ̂ = ϕ + εϕ∗; 0 ≤ ϕ ≤ π

and ϕ∗ ∈ R such that < x̂, ŷ >=
∥∥∥̂x

∥∥∥ ∥∥∥̂y
∥∥∥ cos ϕ̂. This number is named the spacelike dual angle between

x̂ and ŷ.
• If they span a timelike dual plane, there is a unique dual number ϕ̂ = ϕ + εϕ∗ ≥ 0 such that <

x̂, ŷ >= ε
∥∥∥̂x

∥∥∥ ∥∥∥̂y
∥∥∥ cosh ϕ̂, where ε = +1 or ε = −1 via sign(x̂2) = sign(̂y2) or sign(x̂2) , sign(̂y2),

respectively. This number is named the central dual angle between x̂ and ŷ.
ii) Let x̂ and ŷ two timelike dual vectors, there is a unique dual number ϕ̂ = ϕ + εϕ∗ ≥ 0 such
that < x̂, ŷ >= ε

∥∥∥̂x
∥∥∥ ∥∥∥̂y

∥∥∥ cosh ϕ̂, where ε = +1 or ε = −1 via x̂ and ŷ have different or the same time
orientation, respectively. This dual number is named the Lorentzian timelike dual angle between x̂ and
ŷ.
iii) If x̂ is spacelike dual and ŷ is timelike dual, then there is a unique dual number ϕ̂ = ϕ+εϕ∗ ≥ 0 such
that < x̂, ŷ >= ε

∥∥∥̂x
∥∥∥ ∥∥∥̂y

∥∥∥ sinh ϕ̂, where ε = +1 or ε = −1 via sign(x̂2) = sign(̂y1) or sign(x̂2) , sign(̂y1).
This number is named the Lorentzian timelike dual angle between x̂ and ŷ.

Definition 2. A set of non-null oriented lines â = (a, a∗) ∈ E3
1 satisfying

C : < a∗, x > + < x∗, a >=0, (2.5)

where
∥∥∥̂x

∥∥∥2
=1 (

∥∥∥̂x
∥∥∥2

= −1) is referred to as a spacelike ( timelike) line complex when < x, x∗ >, 0 is

a spacelike ( timelike) singular line complex when < x∗, x >=0 and
∥∥∥̂x

∥∥∥2
= ±1.
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Geometrically, a non-null singular line complex is a set of all non-null lines â = (a, a∗) intersecting
the non-null line x̂ = (x, x∗). Then, we can define a non-null line congruence by intersecting any two
non-null line complexes. The intersection of two non-null line congruences forms a differentiable set
of non-null lines in E3

1 defined as a non-null ruled surface. Non-null ruled surfaces (such as cones
and cylinders ) include non-null lines in which the tangent plane touches the surface over the non-null
generator. Such non-null lines are mentioned as non-null torsal lines.

2.1. One-parameter Lorentzian dual spherical movements

Let S2
1m and S2

1 f be two Lorentzian dual unit spheres with a mutual center ô in D3
1. We choose {̂e} =

{̂o; ê1, ê2(timelike), ê3} and {̂f} = {̂o; f̂1, f̂2(timelike), f̂3} as two orthonormal dual frames associated
with S2

1m and S2
1 f , respectively. Set {̂f} is stationary, whereas the elements of the set {̂e} are functions of a

real parameter t ∈ R (say the time). Then, we say that S2
1m moves with respect to S2

1 f . Such movement is
named a one-parameter Lorentzian dual spherical movement and indicated by S2

1m/S
2
1 f . If S2

1m and S2
1 f

correspond to the Lorentzian line spaces Lm and L f , respectively, then S2
1m/S

2
1 f represents the one-

parameter Lorentzian spatial movements Lm/L f . Therefore, Lm is the movable Lorentzian space with
respect to the stationary Lorentzian space L f in E3

1.
By putting < f̂i, ê j >= l̂i j and introducing the dual matrix l̂ = (li j) + ε(l∗i j), we can express the E.

Study map in the matrix form as follows:

S2
1m/S

2
1 f :


f̂1

f̂2

f̂3

 =


l̂11 l̂12 l̂13

l̂21 l̂22 l̂23

l̂31 l̂32 l̂33




ê1

ê2

ê3

 . (2.6)

From Eq (2.6), the signature matrix ε characterizing the inner product in D3
1 is given by

ε =


1 0 0
0 −1 0
0 0 1

 . (2.7)

The dual matrix l̂ has the possession that l̂T = ε̂l−1ε, l̂−1 = ε̂lT ε̂l. So, we get

l̂̂l−1 = l̂ε̂lT ε = l̂−1̂l = ε̂lT ε̂l = I, (2.8)

where I is the 3 × 3 unit matrix. Therefore, when a one-parameter Lorentzian spatial movement is
given in E3

1, we can find a Lorentzian dual orthogonal 3×3 matrix l̂(t) = (̂li j), where (̂li j) dual functions
of one variable t ∈ R. As the set of real Lorentzian orthogonal matrices, the set of Lorentzian dual
orthogonal 3×3 matrices, indicated by O(D3×3

1 ), define a group with matrix multiplication as the group
operation ( real Lorentzian orthogonal matrices are a subgroup of Lorentzian dual orthogonal matrices).
The identity element of O(D3×3

1 ) is the 3 × 3 unit matrix. Since the center of the Lorentzian dual unit
sphere in D3

1 have to stay stationary, the transformation group in D3
1 ( the representation of Lorentzian

movements in the Minkowski 3-space E3
1) does not consist of any translations.

The Lie algebra L(OD3×3
1

) of the group GL of 3× 3 positive orthogonal dual matrices l̂ is the algebra
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of skew-adjoint 3 × 3 dual matrices

ω̂(t) := l̂
′

ε̂lT ε =


0 ω̂3 ω̂2

ω̂3 0 ω̂1

−ω̂2 ω̂1 0

 . (2.9)

Here, “dash” indicates the derivative with respect to t ∈ R. Then, the movement S2
1m/S

2
1 f is

ê′1
ê′2
ê′3

 =


0 ω̂3 ω̂2

ω̂3 0 ω̂1

−ω̂2 ω̂1 0




ê1

ê2

ê3

 = ω̂×


ê1

ê2

ê3

 (2.10)

where ω̂(t) = ω( t)+εω∗(t) = (ω̂1, ω̂2,−ω̂3) is named the instantaneous dual rotation vector
of S2

1m/S
2
1 f . ω and ω∗, respectively, are the instantaneous rotational differential velocity vector and

the instantaneous translational differential velocity vector of the movement Lm/L f .

3. Spacelike ruled surfaces with stationary Disteli-axis

In general, any stationary point x̂ ∈ S2
1m at the movement S2

1m/S
2
1 f traces a dual curve x̂(t) on S2

1 f
corresponds to a spacelike or timelike ruled surface in L f . Assume a spacelike ruled surface in our
study, and let us indicate it by (x̂). Therefore, (x̂) is parametrized by a timelike dual curve x̂(t) ∈ S2

1.
Then, the Blaschke frame can be set up:

x̂=̂x(t), t̂(t) = x̂
′
∥∥∥̂x
′
∥∥∥−1

, and ĝ(t) = x̂ × t̂, (3.1)

where
< x̂, x̂ >=< ĝ, ĝ >= 1, < t̂, t̂ >= −1,

x̂ × t̂ = ĝ, x̂ × ĝ = t̂, t̂ × ĝ = x̂.

The dual unit vectors x̂, t̂ and ĝ correspond to three concurrent mutually orthogonal oriented lines
in L f . Their point of intersection is the central point c on the ruling x̂. ĝ is the limit position of the
mutual perpendicular to x̂(t) and x̂(t + dt), and it is named the central tangent of the ruled surface at
the central point. The locus of the central points is named the striction curve. t̂ is named the central
normal of x̂ at the central point. The Blaschke formula of x̂(t) is

x̂′

t̂′

ĝ′

 =


0 p̂ 0
p̂ 0 q̂
0 q̂ 0




x̂
t̂
ĝ

 = ω̂×


x̂
t̂
ĝ

 , (3.2)

where ω̂(t)=(̂q, 0,− p̂) and

p̂(t) = p(t) + εp∗(t) =
∥∥∥̂x
′
∥∥∥ , q̂ = q + εq∗ = − det(̂x,̂x

′

, x̂
′′

)

p̂(t) and q̂(t) are the Blaschke invariants of the timelike dual curve x̂(t) ∈ S2
1 f . It can be shown that the

tangent of the striction curve is given by

c
′

(t) = q∗(t)x(t)+p∗(t)g(t). (3.3)
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Under the assumption that p(t) , 0, we have the functions

γ(t) =
q(t)
p(t)

, Γ(t) =
q∗(t)
p(t)

and µ(t) =
p∗(t)
p(t)

. (3.4)

The geometric clarifications of these functions are as follows: γ is the geodesic curvature of the
spherical image curve x = x(t); Γ characterizes the angle of the tangent to the striction curve and
the ruling of (x̂); µ is its distribution parameter at the ruling. These functions define spacelike ruled
surfaces with a given striction spacelike curve via the equation

(x̂) : y(t, v) =

t∫
0

(q∗(t)x(t)+p∗(t)g(t)) dt + vx(t). (3.5)

3.1. Spacelike Disteli-axis

In view of Eq (2.8), the spacelike Disteli-axis of (x̂) in L f is

b̂(t) = b(t) + εb∗(t) =
ω̂(t)∥∥∥ω̂(t)

∥∥∥ =
q̂̂x − p̂̂x√

q̂2 + p̂2
. (3.6)

As per the above illustrations, Eq (3.2) can be written as
x̂′

t̂′

ĝ′

 =
∥∥∥ω̂∥∥∥ b̂×


x̂
t̂
ĝ

 .
Then, at any instant t ∈ R, we get

ω∗(t) =
pp∗ + qq∗√

q2 + p2
, and ω(t) =

√
p2 + q2. (3.7)

ω∗ and ω are the translational angular speed and the rotational angular speed of the movement Lm/L f

along b̂, respectively. So, the spacelike Disteli-axis is the instantaneous screw axis of the movement
Lm/L f .

Proposition 1. At any instant t ∈ R, the pitch of the one-parameter spatial movement Lm/L f is given
by

h(t) :=
< ω, ω∗>

‖ω‖2
=

pp∗ + qq∗

p2 + q2 . (3.8)

However, the Disteli-axis b̂(t) can be determined by Eq (3.1), and one has the following:
(1) The dual angular speed can be specified as

∥∥∥ω̂(t)
∥∥∥ = ω(t)(1 + εh(t)).

(2) If r is a point on the spacelike Disteli-axis b̂(t), then we get

r(t, v)= b(t) × b∗(t) + vb(t), v ∈ R. (3.9)

This parametrization defines a non-developable spacelike ruled surface (̂b).
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In the case the movement Lm/L f is pure rotation (h(u) = 0), then

b̂(t)= b(t) + εb∗(t) =
1
‖ω‖

(ω + εω∗), (3.10)

whereas if h(t) = 0 and ‖ω(t)‖2 = 1, then ω̂(t) is a spacelike line. However, if ω̂(t)= 0+εω∗(t), that is
the movement Lm/L f is pure translational, we let ω∗(t) = ‖ω∗(t)‖ ; ω∗b(t) =ω∗ for arbitrary b∗(t) such
that ω∗(t) , 0 , b(t) can be arbitrarily, too.

According to Eq (3.1), the spacelike Disteli-axis is perpendicular to the timelike central normal t̂
and parallel to the tangent plane of the spacelike ruled surface (x̂). Let ψ̂(t) = ψ(t) + εψ∗(t) be the
spacelike dual angle (dual radius of curvature) between b̂ and x̂. Then, we define the spacelike Disteli
axis of (x̂) as

b̂(t) = cos ψ̂̂x − sin ψ̂̂g, (3.11)

where

cot ψ̂ = cotψ − ε
ψ∗

sin2 ψ
=

q̂
p̂
. (3.12)

Consequently, from the real and dual parts, we have

ψ∗(t) =
1
2

(µ − Γ) sin 2ψ, (3.13)

where ψ∗ is measured along the timelike central normal t̂ (see Figure 2). From Eqs (3.4), (3.8) and (3.9),
we obtain

h(t) = µ cos2 ψ + Γ sin2 ψ,

ψ∗(t) = 1
2 (µ − Γ) sin 2ψ.

}
(3.14)

These formulae are Lorentzian versions of the Hamilton and Mannhiem formulae of surface theory in
Euclidean 3-space E3, respectively [1–4].

Figure 2. b̂(t) = cos ψ̂̂x − sin ψ̂̂g.

3.2. Spacelike Plücker’s conoid

In this subsection we examine and study the geometrical explanations of the Hamilton and
Mannhiem formulae as follows. The surface defined by ψ∗ is the spacelike version of the well-known
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Plücker’s conoid or cylindroid as follows: let t̂ and the y axis of a fixed Lorentzian frame (oxyz) be
coincident and the location of the spacelike dual unit vector b̂ be defined by the angle ψ and distance ψ∗

on the positive orientation of the y axis. The spacelike dual unit vectors x̂ and ĝ can be taken in along
the x and z axes, respectively. This leads to x̂ and ĝ together with t̂ constitute the coordinate system of
the spacelike Plücker’s conoid (Figure 2).

Let r(x, y, z) be a point on (̂b), we have

(̂b) : r(ψ, v)=(0,−ψ∗, 0) + v(cosψ, 0,− sinψ), v ∈ R. (3.15)

Consequently, we get

ψ∗ := y = −
1
2

(µ − Γ) sin 2ψ, x = v cosψ, z = −v sinψ. (3.16)

By an easy calculation, we obtain

(̂b) :
(
x2 + z2

)
y − (µ − Γ) xz = 0, (3.17)

which is the Cartesian equation for (̂b). The Eq (3.13) based only on the variation of its two integral
invariants of the first order; µ − Γ = −2, 0 ≤ ψ ≤ 2π, 0 ≤ υ ≤ 2 (Figure 3). Further, one can get a
second-order equation in x/z in which its solutions are given by

x
z

=
1
2y

[
µ − Γ ±

√
(Γ − µ)2

− 4y2

]
. (3.18)

By equating the discriminant of Eq (3.14) to zero, we define the limits of (̂b). Then, the two limits of
(̂b) are given by

y = ± (Γ − µ) /2. (3.19)

Equation (3.14) shows the locations of the two torsal spacelike planes, each of which contains one
torsal spacelike line L.

Figure 3. Spacelike Plücker’s conoid.

On the other hand, the function h(u) in Eq (3.10) is a periodic function with at most two extreme
values, the curvature functions µ and Γ. However, the spacelike dual unit vectors x̂ and ĝ are principal
axes of (̂b). Also, the geometric aspects of (̂b) are as follows:
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(i). If h(t) , 0, then we have two rulings that are movable through the point (0, y, 0) if y < (Γ − µ) /2;
and for the two limit points y = ± (Γ − µ) /2, the rulings and the spacelike principal axes x̂ and ĝ are
coincident.
(ii). If h(t) = 0, then we have two torsal lines L1 and L2 given by

L1, L2 :
x
z

= cotψ = ±

√
−
µ

Γ
, y = ± (Γ − µ) /2. (3.20)

Equation (3.16) shows that the two torsal lines L1 and L2 are orthogonal to each other. So, if µ and Γ

are equal, then the spacelike Plücker’s conoid degenerates to a pencil of spacelike lines through the
origin “o” in the spacelike torsal plane y = 0. In this case L1 and L2 are the principal axes of an
elliptic spacelike line congruence. However, if µ and Γ have opposite signs, then L1 and L2 are real and
coincident with the principal axes of a spacelike hyperbolic line congruence. If either µ or Γ is zero,
then the lines L1 and L2 both coincide with the timelike y axis; for µ , 0,Γ = 0 or Γ , 0, µ = 0, they
coincide with the spacelike z axis.

Furthermore, to convert from polar coordinates to Cartesian, we use

x =
cosψ
√

h
, z =

sinψ
√

h

at Hamilton’s formula to obtain
D : |µ| x2 + |Γ| z2 = 1

of a conic section. This conic section is a Minkowski version of the Dupin indicatrix of the surface
theory in Euclidean 3-space E3 [1–3].

3.2.1. Serret-Frenet motion

In Eq (2.9): (a) If p∗ = 0, then (x̂) is a spacelike tangential developable ruled surface, that is, c
′

= x.
In this case, the Blaschke frame {x, t, g} coincides with the classical Serret-Frenet frame and then the
striction curve c becomes the edge of regression of (x̂). Hence, p and q are the curvature κ and the
torsion τ of c, respectively. Moreover, q∗ = 1 and Γ = 1/τ. Thus, Γ is the radius of torsion of c. In this
case, we get

h(t) =
1
τ

sin2 ψ, ψ∗(t) = −
1
2τ

sin 2ψ, with cotψ =
τ

κ
.

Also, the corresponding spacelike Plücker conoid is

(̂b) :
(
x2 + z2

)
y +

1
τ

xz = 0

Based on [17], we have the following:

Theorem 1. Any spacelike ruled surface (x̂) with the curvature function

Γ(t) = b sinh θ − b cosh θ; θ =

t∫
0

τdt,

with real constants (a, b) , (0, 0) is a spacelike tangential surface of a spacelike curve that lies on a
Lorentzian sphere of radius

√
b2 − a2.
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Corollary 1. The curvature function κ(t) and torsion function τ(t) of the spherical curve in Theorem 1,
respectively, are

κ(t) =
1

b sinh θ − b cosh θ
, τ(t) =

γ(t)
b sinh θ − b cosh θ

.

(b) If Γ(t) = 0, then the striction curve is tangent to g; it is normal to the ruling through c(t). In this
case (x̂) is a spacelike binormal ruled surface and

κ(t) =
γ(t)
µ(t)

, τ(t) =
1
µ(t)

, with µ(t) , 0.

Therefore, the curvature function µ(t) is the radius of torsion of the spacelike striction curve c(t) of the
binormal surface. Similarly, we get

h(t) =
1
τ(t)

cos2 ψ, ψ∗(t) =
1

2τ(t)
sin 2ψ,

where cotψ = τ
κ

and

(̂b) :
(
x2 + z2

)
y −

1
τ(t)

xz = 0.

By similar arguments, we summarize this result :

Theorem 2. Any spacelike ruled surface (x̂) with the curvature function

µ(t) = γ(t) (b sinh θ − b cosh θ) ; θ =

t∫
0

τdt,

with real constants (a, b) , (0, 0) is a spacelike binormal surface of a spacelike curve that lies on a
Lorentzian sphere of radius

√
b2 − a2.

Corollary 2. The curvature function κ(t) and torsion function τ(t) of the spherical curve in Theorem 2,
respectively, are

κ(t) =
γ(t)

b sinh θ − b cosh θ
, τ(t) =

1
γ(t) (b sinh θ − b cosh θ)

.

3.3. Special spacelike ruled surfaces

We give some characterizations and equations of special spacelike ruled surfaces undergoing one-
parameter Lorentzian screw movement.

Let dŝ = ds + εds∗ indicate the dual arc length of x̂(t) Then, we have

ŝ(t) =

t∫
0

p̂dt =

t∫
0

p(1 + εµ)dt. (3.21)

In fact, it is significant to research the dual curvature κ̂(̂s) and the dual torsion τ̂(̂s). Then, the Serret-
Frenet frame can be set up:

− < t̂, t̂ >=< n̂, n̂ >=< b̂, b̂ >= 1,
t̂×n̂ = b̂, t̂ × b̂= − n̂, n̂ × b̂ = − t̂.
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In fact, the relative orientation is given by
t̂
n̂
b̂

 =


0 1 0

sin ψ̂ 0 cos ψ̂
cos ψ̂ 0 − sin ψ̂




x̂
t̂
ĝ

 . (3.22)

Then, by differentiating with respect to s and using the Blaschke frame derivative formulae, one can
obtain 

t̂′

n̂′

b̂′

 =


0 κ̂ 0
κ̂ 0 τ̂

0 −̂τ 0




t̂
n̂
b̂

 ; (
d
dŝ

=′), (3.23)

where
γ̂(̂s) = γ + ε (Γ − γµ) = cotψ − εψ∗(1 + cot2 ψ),
κ̂(̂s) := κ + εκ∗ =

√
1 + γ̂2 = 1

sin ψ̂
= 1

ρ̂(̂s) ,

τ̂(̂s) := τ + ετ∗ = ±ψ̂
′

= ±
γ̂
′

1+γ̂2 .

 (3.24)

The functions found in Eq (3.20) are analogous to their equivalents in 3-dimensional Euclidean
spherical geometry.

Proposition 2. If the dual geodesic curvature function γ̂(̂s)=constant, x̂(̂s) is a timelike dual circle
on S2

1.

Proof. From Eq (3.20), we can find that γ̂(̂s)=constant yields that τ̂(̂s) = 0 (ψ̂=constant) and
κ̂(̂s)=constant, which implies that x̂(̂s) is a timelike dual circle on S2

1. �

Definition 3. A non-developable spacelike ruled surface (x̂) is a stationary Disteli-axis spacelike ruled
surface if γ̂(̂s)=constant.

In view of the E. Study map, the spacelike ruled surfaces with the stationary Disteli-axis (x̂) is
created by a one-parameter Lorentzian screw motion with the stationary pitch h along its Disteli-axis
b̂ by using the spacelike line x̂ determined at a spacelike fixed distance ψ∗ and spacelike fixed angle ψ
with respect to the spacelike Disteli-axis b̂. In the special case, if γ̂(̂s) = 0, then x̂(̂s) is a timelike great
dual circle on S2

1, that is,
ĉ = {̂x∈S2

1 |< x̂, b̂ >= 0, with
∥∥∥∥̂b

∥∥∥∥ = 1}. (3.25)

In this case, all rulings of (x̂) intersected orthogonally with the spacelike Disteli-axis b̂, that is, ψ = π
2

and ψ∗ = 0. Thus, we have that γ̂(̂s) = 0 ⇔(x̂) is a spacelike helicoidal surface. The ruled surfaces
with a stationary Disteli-axis and the helicoidal surface are essential to the curvature theory of ruled
surfaces. We will therefore inspect them in some detail.
Example. We attain the spacelike ruled surfaces with a stationary Disteli-axis. Since γ̂(̂s) is constant,
from Eq (3.19), we have the ODE t̂

′′

− κ̂2̂t = 0. Without loss of generalization, we may let t̂(0) =

(0, 1, 0) the general solution of the ODE becomes

t̂(̂s) =
(̂
a1 sinh

(̂
κ ŝ

)
, cosh

(̂
κ ŝ

)
+ a2 sinh

(̂
κ ŝ

)
, â3 sinh

(̂
κ ŝ

))
,

where â1, â2 and â3 are dual constants. Since
∥∥∥̂t

∥∥∥2
= −1, we get â2 = 0 and â2

1 + â2
3 = 1. It follows that

x̂(̂s) is given by
x̂(̂s) =

(̂
a1ρ̂ cosh

(̂
κ ŝ

)
+ b̂1, ρ̂ sinh

(̂
κ ŝ

)
, â3ρ̂ cosh

(̂
κ ŝ

)
+ b̂3

)
,
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where b̂2 and b̂3 are dual constants satisfying â1̂b1 + â3̂b3 = 0 and b̂2
1 + b̂2

3 = 1 − ρ̂2. We now replace
the coordinates by 

x̃1

x̃2

x̃3

 =


â1 0 â3

0 1 0
−̂a3 0 â1




x̂1

x̂2

x̂3

 .
Then, x̂(̂s) becomes

x̂(̂s) =
(
sin ψ̂ cosh

(̂
κ ŝ

)
, sin ψ̂ sinh

(̂
κ ŝ

)
, d̂

)
(3.26)

for a dual constant b̂ = â1̂b3 − â3̂b1, with b̂ = ± cos ψ̂. Notice that x̂(̂s) is not based on the choice of the
lower sign or upper sign of ±. Therefore, we may choose upper sign, that is,

x̂(ϕ̂) =
(
sin ψ̂ cosh ϕ̂, sin ψ̂ sinh ϕ̂, cos ψ̂

)
, (3.27)

where ϕ̂ = κ̂ ŝ. It is a timelike dual spherical curve with the dual curvature κ̂ =
√
γ̂2 + 1 on the

Lorentzian dual unit sphere S2
1. Let ϕ̂ = ϕ(1 + εh), h be the stationary pitch of the helical motion and ϕ

the motion parameter. Then, Eq (3.23) is a spacelike ruled surface. In this case, the Blaschke frame is
as follows: 

x̂(ϕ)
t̂(ϕ)
ĝ(ϕ)

 =


sin ψ̂ cosh ϕ̂ sin ψ̂ sinh ϕ̂ cos ψ̂
sinh ϕ̂ cosh ϕ̂ 0
cos ψ̂ cosh ϕ̂ cos ψ̂ sinh ϕ̂ − sin ψ̂




f̂1

f̂2

f̂3

 . (3.28)

It is readily seen that
p̂(ϕ) = (1 + εh) sin ψ̂, q̂(ϕ) = (1 + εh) cos ψ̂,

dŝ = p̂(ϕ)dϕ, γ̂(ϕ) =: q̂(ϕ)
p̂(ϕ) = cot ψ̂.

 (3.29)

From the real and dual parts of Eq (3.25), we find

µ = ψ∗ cotψ + h, and Γ = −ψ∗ + h cotψ. (3.30)

Consequently, from Eqs (3.11) and (3.28), we have

b̂ = cos ψ̂̂x − sin ψ̂̂g = f̂3. (3.31)

This shows that the axis of the Lorentzian screw motion is the stationary spacelike Disteli-axis b̂.
The equation of (x̂) in terms of the point coordinates can be obtained as follows: If we separate x̂(ϕ)

into real and dual parts we reach

x(ϕ) = (sinψ coshϕ, sinψ sinhϕ, cosψ) , (3.32)

and

x∗(ϕ) =


x̃∗1
x̃∗2
x̃∗3

 =


ϕ∗ sinhϕ sinψ + ψ∗ cosψ coshϕ
ϕ∗ coshϕ sinψ + ψ∗ cosψ sinhϕ

−ψ∗ sinψ

 . (3.33)
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Let β(β1, β2, β3) be a point on x̂. Since β×x = x∗ we have the system of linear equations in β1, β2

and β3:
β2 cosψ − β3 sinψ sinhϕ = x̃∗1,
β1 cosψ − β3 sinψ coshϕ = x̃∗2,

(β1 sinhϕ − β2 coshϕ) sinψ = x̃∗3.


The matrix of coefficients unknowns β1, β2 and β3 is

0 cosψ − sinψ sinhϕ
cosψ 0 − sinψ coshϕ
sinψ sinhϕ − sinψ coshϕ 0


its rank is 2 with s , 0, and ϑ , pπ (p is an integer). In addition, the rank of the augmented matrix

0 − sinϑ − cosϑ sinh s x∗1
sinϑ 0 − cosϑ cosh s x∗2
cosϑ sinh s − cosϑ cosh s 0 x∗3


is 2. Then, this system has infinitely many solutions represented with

y1 = ψ∗ sinhϕ + (ϕ∗ + y3) tanψ coshϕ,
y2 = ψ∗ coshϕ + (ϕ∗ + y3) tanψ sinhϕ, ,

y1 sinhϕ − y2 coshϕ = −ϕ∗.

(3.34)

Since β3 is taken at random, we may take ϕ∗ + β3 = 0. In this case, Eq (3.26) becomes

β1 = ψ∗ sinhϕ, β2 = ψ∗ coshϕ, β3 = −hϕ. (3.35)

Then, we get
β(ϕ) = (ψ∗ sinhϕ, ψ∗ coshϕ,−hϕ) .

It is clear that < β
′

, x′ >= 0; (′ = d
dϕ ), so the base curve of (x̂) is its striction curve. Then, the spacelike

ruled surface with a stationary Disteli-axis is

(x̂) : y(ϕ, v) =


ψ∗ sinhϕ + v sinψ coshϕ
ψ∗ coshϕ + v sinψ sinhϕ

−hϕ + v cosψ

 . (3.36)

The constants h, ψ and ψ∗ can control the shape of (x̂). Via Eq (3.32), we have
(1) General helicoidal spacelike surface: for h = −2, ψ∗ = −0.5, ψ = π

4 , −3 ≤ ϕ ≤ 3 and −1.5 ≤ v ≤ 1.5
(see Figure 4),
(2) Spacelike helicoidal surface: for h = −2, ψ∗ = 0, ψ = π

2 , −3 ≤ ϕ ≤ 3 and −1.5 ≤ v ≤ 1.5 (see
Figure 5),
(3) Spacelike helicoidal surface: for h = 0, ψ∗ = −0.5, ψ = π

4 , and −1.5 ≤ ϕ, v ≤ 1.5 (see Figure 6),
(4) Spacelike cone: for h = ψ∗ = 0, ψ = π

4 , −1 ≤ ϕ ≤ 1 and −1 ≤ v ≤ 1 (see Figure 7).
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Figure 4. General spacelike surface.

Figure 5. Spacelike helicoidal surface.

Figure 6. Spacelike helicoidial surface.

Figure 7. spacelike cone

4. Conclusions

This paper develops the kinematic geometry for spacelike ruled surfaces with a stationary Disteli-
axis by using the analogy with Lorentzian dual spherical kinematics. This provides the ability to
compute a set of curvature functions which define the local shape of spacelike ruled surfaces. Hence,
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the Lorentzian version of the well known equation of the Plücker’s conoid has been derived and its
kinematic geometry is examined in detail. Finally, a characterization for a spacelike line trajectory to
be a constant Disteli-axis derived and investigated. The study of spatial kinematics in Minkowski 3-
space E3

1 via the geometry of lines may be used to solve some problems and conclude new applications.
For future research, we will design of spacelike ruled surfaces as tooth flanks for gears with skew

spacelike axes such that, at any instant, the contact points located on a spacelike line, and so forth, as
offered in [18–20].
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