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Abstract: In this paper, we study a system of nonlinear partial differential equations that models
the population dynamics of two competitive species both under Allee effects. The consideration of
the model includes Logistic growth with Allee effects, Lotka-Volterra competition, diffusion, initial
density and boundary conditions on the habitat. In the reaction-diffusion system, we employ the
method of upper and lower solutions to address questions on self-elimination or persistence, as well as
permanence or competitive exclusion. Specific conditions on biological parameters are explicitly given
for extinction, coexistence and competitive exclusion of the species under various boundary conditions.
Numerical simulations for the model are demonstrated to illustrate our results from mathematical
analysis.
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1. Introduction

In traditional methods of estimating population growth rates, people consider that most species
reproduce and die proportionally to the current population size. A simple representation of this concept
can be expressed with the exponential growth of the populations. There are at least two major reasons
to further modify the system: 1) Infinite growth is impossible due to limitation of habitat and resources;
2) Competition between various species should be addressed. We can now introduce the Lotka-Volterra
system to address inter-species competition, where u(t) and v(t) represent the population size of two
biological species, bu and bv are intrinsic birth rates, du and dv are death rates. Throughout this paper
we will assume that for all species considered the intrinsic birth rate is larger than death rate. This type
of competition, known as Lotka-Volterra competition [2,5], implies that species v diminishes resources

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023391


7788

available to u by a factor of α, and u diminishes resources available to v by the factor β.

du
dt

= u[bu(1 − (u + αv)) − du], (1.1)

dv
dt

= v[bv(1 − (v + βu)) − dv]. (1.2)

Due to the possibility that small population size can make a species vulnerable to extinction,
further modifications can be made to the above equations. The Allee effect (given as early as 1932, by
Allee [1]) models this possibility and was introduced to the multi-species models in recent
years [9, 14, 17, 18, 20, 21].

du
dt

= u
[
bu(1 − u − αv)

( u
u + ku

)
− du

]
, (1.3)

dv
dt

= v
[
bv(1 − v − βu)

( v
v + kv

)
− dv

]
, (1.4)

where ku and kv are called half-saturation constants. We see that, for large population sizes (u and v
much larger than ku and kv respectively) the Allee term,

(
u

u+ku

)
or

(
v

v+kv

)
, approaches 1 and has little

effect on the modeled change in population. As population size u or v approaches 0, the Allee effect
term gets near 0 and the death rate (du or dv) dominates the differential equation, which drives a small
population toward extinction.

We now have the above system of ordinary differential equations that addresses total population
sizes, boundedness, and the vulnerability of species for sizes getting too small, as well as the
competitive nature of the two species. Our final extension of the system (1.4) is to include the
diffusion of both populations, local density and migration, as well as boundary conditions on the
habitat. This leads to the following reaction-diffusion system for density functions u(t, x) and v(t, x)
with respective diffusion rates Du, Dv > 0 for both species:

∂u
∂t
− Du∇

2u = u
[
bu(1 − u − αv)

( u
u + ku

)
− du

]
in (0,∞) ×Ω,

∂v
∂t
− Dv∇

2v = v
[
bv(1 − v − βu)

( v
v + kv

)
− dv

]
in (0,∞) ×Ω,

Bu[u] = 0 and Bv[v] = 0 on (0,∞) × ∂Ω, (1.5)

u(0, x) = u0(x) and v(0, x) = v0(x) on Ω.

Here the boundary conditions are given as

Bu[u] = u or Bu[u] =
∂u
∂ν

+ γu(x)u, and Bv[v] = v or Bv[v] =
∂v
∂ν

+ γv(x)v, (1.6)

with ν as the normal vector on ∂Ω, γu and γv ∈ C1+α(∂Ω), and γu(x), γv(x) ≥ 0 on ∂Ω. This way, we
include three commonly used types of boundary conditions: Dirichlet, Neumann, and Robin types.

The above reaction-diffusion system (with one-side Allee effect) on infinite spatial domain was
recently studied in [9] where the asymptotic stability of the equilibria are given and the existence of
traveling wave solutions are proven. In research studies on reaction-diffusion systems modeling
multi-species population dynamics in bounded spatial domain (competition, predator-prey, food
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chain, etc.), much attention has been given to extinction, permanence, and competition or predation
caused exclusion [3, 6, 7, 10–13, 15, 17, 19]. These discussions are also extended to many variations of
the Lotka-Volterra models under different boundary conditions [4, 8, 9]. In this paper, we apply the
method of upper-lower solutions to the reaction-diffusion system 1.5 and find conditions for the
competing species to self-eliminate (because of Allee effect), coexist (with balanced biological
parameters and initial density functions), or competitively exclude (through resource competition and
Allee effect). It is seen that the ultimate outcomes in the biological system also depend on the size of
the habitat and boundary conditions for both species. According to the theoretical results on
permanence and competitive exclusion, we will demonstrate numerical simulations under parameters
satisfying conditions obtained.

Examining the reaction functions in system (1.5) by taking the partial derivative of

f (u, v) = u
[
bu(1 − u − αv)

( u
u + ku

)
− du

]
with respect to v, and the partial derivative of

g(u, v) = v
[
bv(1 − v − βu)

( v
v + kv

)
− dv

]
with respect to u, we find that (for u and v ≥ 0):

∂ f
∂v

=
−αbuu2

(u + ku)
≤ 0 and

∂g
∂u

=
−βbvv2

(v + kv)
≤ 0. (1.7)

As defined in ( [15], page 383), the system (1.5) is quasi-monotone non-increasing. The upper-
lower solutions (ũ, ṽ) and (û, v̂) defined as following ensure the existence-comparison result given in
the below lemma.

Definition 1.1. Upper and lower solutions [16].
A pair of smooth functions in Ũ = (ũ, ṽ), and Û = (û, v̂) in C((0,∞) × Ω̄) ∩ C1,2((0,∞) × Ω) are

ordered upper and lower solutions of system (1.5) if they satisfy the relation Ũ ≥ Û and if:

ũt − Du∇
2ũ ≥ ũ

[
bu(1 − ũ − αv̂)

( ũ
ũ + ku

)
− du

]
in (0,∞) ×Ω,

ṽt − Dv∇
2ṽ ≥ ṽ

[
bv(1 − ṽ − βû)

( ṽ
ṽ + kv

)
− dv

]
in (0,∞) ×Ω,

ût − Du∇
2û ≤ û

[
bu(1 − û − αṽ)

( û
û + ku

)
− du

]
in (0,∞) ×Ω,

v̂t − Dv∇
2v̂ ≤ v̂

[
bv(1 − v̂ − βũ)

( v̂
v̂ + kv

)
− dv

]
in (0,∞) ×Ω, (1.8)

Bu[ũ] ≥ 0 ≥ Bu[û] and Bv[ṽ] ≥ 0 ≥ Bv[v̂] on (0,∞) × ∂Ω,

ũ(0, x) ≥ u0(x) ≥ û(0, x) and ṽ(0, x) ≥ v0(x) ≥ v̂(0, x) on Ω.

Lemma 1.2. Existence and comparison [16].
If there are a pair of smooth functions Ũ = (ũ, ṽ) and Û = (û, v̂) as ordered upper and lower

solutions of (1.5) (defined in Definition 1.1), then the reaction-diffusion system (1.5) has a unique
solution U = (u, v) with (ũ, ṽ) ≥ (u, v) ≥ (û, v̂) on (0,∞) × Ω̄.
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It can be easily verified that for any constants M1 and M2 satisfying the relations

M1 = max{ ‖u0‖∞,
bu − du

bu
}, M2 = max{ ‖v0‖∞,

bv − dv

bv
}, (1.9)

the constant functions (M1,M2) and (0, 0) are a pair of ordered upper and lower solutions of (1.5) on
(0,∞) ×Ω under any combination of the boundary conditions given in (1.6).

Theorem 1.3. Global existence and boundedness.
For any smooth function u0(x), v0(x) on Ω the reaction-diffusion system (1.5) has a unique solution

U = (u, v) with (M1,M2) ≥ (u, v) ≥ (0, 0) on (0,∞) × Ω̄, with constants M1 and M2 given in (1.9).

2. Self-elimination by Allee effect

Throughout this paper, for each type of the boundary conditions in (1.6), say B[·], We let λ0 and
φ0(x) (with ‖φ0‖∞ = 1) be the principal eigenvalue and associated eigenfunction of the eigenvalue
problem

∇2φ + λφ = 0 in Ω, B[φ] = 0 on ∂Ω. (2.1)

It is well-known that for Neumann Boundary condition, φ0(x) = 1 on Ω̄ with λ0 = 0. Also, for
Dirichlet or Robin boundary condition we have φ0(x) > 0 in Ω with λ0 > 0. We demonstrate how
the Allee effect, birth and death rates, as well as diffusion rates affect the long-term survival of each
species with relatively small initial population size.

Theorem 2.1. Self-elimination by Allee effect (Neumann boundary condition).
Under the Neumann boundary conditions for the u-species

∂u(t, x)
∂ν

= 0 on (0,∞) × ∂Ω,

if 0 ≤ u0(x) < kudu
bu−du

then limt→∞ u(t, x) = 0 uniformly on Ω̄.

Proof. For some σ > 0, let ũ = Me−σt and û = 0, ṽ = (bv−dv)/bv and v̂ = 0. Since all the defined upper
and lower solutions are independent of x, they satisfy the boundary condition inequalities in (1.8) with
nonnegative function values and normal derivatives as 0. Also, ũ ≥ û and ṽ ≥ v̂ on [0,∞) × Ω̄. It is
obvious that the differential inequalities for û, ṽ and v̂ are satisfied in (1.8).

To verify that ũ = Me−σt satisfies the corresponding differential inequality in (1.8), we find that the
following relation must be satisfied:

−σMe−σt ≥ Me−σt
[
bu(1 − Me−σt)

( Me−σt

Me−σt + ku

)
− du

]
.

After simplifying, the following must hold for all t ∈ (0,∞):

−σ ≥ bu(1 − Me−σt)
( Me−σt

Me−σt + ku

)
− du. (2.2)

It suffices to have

−σ ≥ bu

( M
M + ku

)
− du. (2.3)
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Allowing for a small and positive σ, for ũ to function as an upper solution defined in (1.8) we just
need:

M <
kudu

bu − du
. (2.4)

By Definition 1.1 and Theorem 1.2, for any initial density function u0(x) with 0 ≤ u0(x) < kudu
bu−du

on
Ω, we have

0 ≤ u(t, x) < Me−σt on [0,∞) × Ω̄,

with M = ‖u0‖∞ <
kudu

bu−du
. Therefore, limt→∞ u(t, x) = 0 uniformly on Ω̄. �

We now analyze the self-elimination by Allee effect of one species (say u) under Dirichlet or Robin
boundary condition. For this case, the principal eigenvalue for Bu[·] is λ0 > 0 and the corresponding
eigenfunction φ0(x) > 0 in Ω (with ||φ0||∞ = 1).

Theorem 2.2. Self-elimination by Allee effect (Dirichlet or Robin boundary condition).
Under the Dirichlet or Robin (with non-trivial γu(x)) boundary condition for the u-species

u(t, x) = 0 or
∂u(t, x)
∂ν

+ γu(x)u(t, x) = 0 on ∂Ω,

a) If Duλ0 ≥ bu − du, then for any positive M > 0 with initial density u0(x) ≤ MΦ0(x), we have
limt→∞ u(t, x) = 0 uniformly on Ω̄.

b) If Duλ0 < bu − du and 0 ≤ u0(x) ≤ MΦ0(x) for some M < ku(λ0Du+du)
bu−du−λ0Du

, then limt→∞ u(t, x) = 0
uniformly on Ω̄.

Proof. For some positive σ, Let ũ = Mφ0e−σt, and û = 0, ṽ = (bv − dv)/bv and v̂ = 0, so (ũ, ṽ) ≥ (û, v̂)
on [0,∞)× Ω̄. Since φ0(x) = 0 on ∂Ω, the boundary inequality in (1.8) for ũ is satisfied. As seen in the
proof of the previous theorem, the differential and boundary inequalities in (1.8) for û, ṽ and v̂ are also
satisfied.

For part a), assume that Duλ0 > bu − du. To satisfy the differential inequality in (1.8) for ũ we need:

−σMφ0e−σt + Duλ0Mφ0e−σt ≥ Mφ0e−σt
[
bu(1 − Mφ0e−σt)

( Mφ0e−σt

Mφ0e−σt + ku

)
− du

]
. (2.5)

Simplifying above and allowing for a small positive σ, it is suffice to have the following hold for any
t > 0:

Duλ0 > bu(1 − Mφ0e−σt)
( Mφ0e−σt

Mφ0e−σt + ku

)
− du. (2.6)

We recognize that 1 − Mφ0e−σt < 1 and 0 < Mφ0e−σt

Mφ0e−σt+ku
< 1, so we can ensure that:

Duλ0 > bu − du > bu(1 − Mφ0e−σt)
( Mφ0e−σt

Mφ0e−σt + ku

)
− du. (2.7)

Hence the differential inequality for the upper solution is satisfied by any ũ = Mφ0e−σt with any M > 0.
This proves part a).
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For part b), assume that Duλ0 < bu − du. As in part a), the differential inequality for ũ in (1.8 needs
to be satisfied for all t > 0:

Duλ0 − σ ≥
[
bu(1 − Mφ0e−σt)

( Mφ0e−σt

Mφ0e−σt + ku

)
− du

]
, (2.8)

which can be ensured by

Duλ0 − σ ≥ bu

( M
M + ku

)
− du. (2.9)

The above relation holds for a small and positive σ, and constant M:

M <
ku(λ0Du + du)
bu − du − λ0Du

. (2.10)

By Definition 1.1 and Theorem 1.2, for any initial density function u0(x) with
0 ≤ u0(x) ≤ Mφ0(x) on Ω̄, we have 0 ≤ u(t, x) ≤ Mφ0e−σt and limt→∞ u(t, x) = 0 uniformly on Ω̄. �

Theorems 2.1 and 2.2 shows that larger Allee effect coefficient, higher death rate, and faster
diffusion will drive a population to extinction as long as the initial density is within the given ranges
for self-elimination.

In the next theorem, we give a result of global extinction under the significance of the Allee effect,
for one of the competing species (say u) with any initial density size and boundary condition.

Theorem 2.3. Global extinction of u-species under Allee effect (any boundary condition).
For the boundary condition Bu[·] = 0, let λ0 ≥ 0 be the principal eigenvalue with the corresponding

eigenfunction φ0(x) > 0 in Ω. If

du + Duλ0 >
bu

(
1 + ku −

√
ku(1 + ku)

)(√
ku(1 + ku) − ku

)
√

ku(ku + 1)
, (2.11)

then limt→∞ u(t, x) = 0 uniformly on Ω̄ with all initial density 0 ≤ u0(x) ≤ Nφ0(x) for any N > 0.

Proof. Again, for any N > 0 and some small σ > 0, Let ũ = Nφ0e−σt, and û = 0, ṽ = (bv − dv)/bv and
v̂ = 0, so (ũ, ṽ) ≥ (û, v̂) on [0,∞) × Ω̄. We can show see that the differential and boundary inequalities
are satisfied are all satisfied for û, ṽ, and v̂ under any boundary conditions for u and v, as in the proofs
for previous theorems.

Also, as seen in (2.6), for the upper solution ũ to satisfy the required differential inequality given
in (1.8), we need to ensure that for all t > 0,

bu(1 − Nφ0e−σt)Nφ0e−σt

Nφ0e−σt + ku
< du + Duλ0.

We now examine the positive maximum of G(X) =
bu(1−X)X

X+ku
for X ∈ [0,∞). Note that G(0) = G(1) = 0,

and G(X) < 0 for X > 1.

G′(X) =
bu(−X2 − 2kuX + ku)

(X + ku)2 ,
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so G′(X) = 0 when X = −ku±
√

ku(ku + 1). We then allocate the only positive maximum point of G(X),
at X =

√
ku(ku + 1) − ku ∈ (0, 1). This implies that for all t > 0,

bu(1 − Nφ0e−σt)Nφ0e−σt

Nφ0e−σt + ku
≤ G(

√
ku(ku + 1) − ku)

=
bu

(
1 + ku −

√
ku(1 + ku)

)(√
ku(1 + ku) − ku

)
√

ku(ku + 1)
. (2.12)

We can now conclude that if

du + Duλ0 >
bu

(
1 + ku −

√
ku(1 + ku)

)(√
ku(1 + ku) − ku

)
√

ku(ku + 1)
,

then for any positive N and some small positive σ, 0 ≤ u(t, x) ≤ Nφ0e−σt on [0,∞) × Ω̄ as long as
0 ≤ u0(x) ≤ Nφ0(x) on Ω̄. The global extinction of u-species given in the theorem then follows. �

3. Permanence

In this section, we explore on conditions for permanence (long-term survival of both species) in
the competition model (1.5). Our approach is to find the possibility of a pair of upper-lower solutions
given in Definition 1.1 with nontrivial lower solutions for both u and v.

Theorem 3.1. Permanence of both species (Neumann boundary condition).
Let u and v both satisfy the no-flux boundary condition ∂u

∂ν
= ∂v

∂ν
= 0 on ∂Ω. If

0 < α <
bv(bu − du)
bu(bv − dv)

and 0 < β <
bu(bv − dv)
bv(bu − du)

,

ku ≤
bu

4du

(bu − du

bu
− α

bv − dv

bv

)2
and kv ≤

bv

4dv

(bv − dv

bv
− β

bu − du

bu

)2
, (3.1)

then the competition model (1.5) is permanent as long as the initial density functions satisfy

1
2

(bu − du

bu
− α

bv − dv

bv

)
< u0(x) <

bu − du

bu
on Ω̄, (3.2)

and

1
2

(bv − dv

bv
− β

bu − du

bu

)
< v0(x) <

bv − dv

bv
on Ω̄. (3.3)

Proof. Let the conditions in (3.1) and (3.2) hold. We will show that (ũ, ṽ) = ( bu−du
bu

, bv−dv
bv

) and (û, v̂) =

(εu, εv) , where bu−du
bu

> εu > 0 and bv−dv
bv

> εv > 0, are a pair of ordered upper and lower solutions given
in Definition 1.1. It is clear that (ũ, ṽ) ≥ (û, v̂). Since ũ, û, ṽ, and v̂ are all independent of x, so they
satisfy the boundary condition inequalities in (1.8).

In order to satisfy the differential inequalities in (1.8), we need the following relations to hold:

0 ≥
bu − du

bu

[
bu

(
1 −

bu − du

bu
− αεv

)( bu−du
bu

bu−du
bu

+ ku

)
− du

]
,
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0 ≥
bv − dv

bv

[
bv

(
1 −

bv − dv

bv
− βεu

)( bv−dv
bv

bv−dv
bv

+ kv

)
− dv

]
,

0 ≤ εu

[
bu(1 − εu − α

bv − dv

bv
)
( εu

εu + ku

)
− du

]
,

0 ≤ εv

[
bv(1 − εv − β

bu − du

bu
)
( εv

εv + kv

)
− dv

]
.

Consider the following factors in the first two inequalities for upper solutions:

bu
(
1 −

bu − du

bu
− αεv

) bu − du

(1 + ku)bu − du
< du − αεvbu < du,

and
bv

(
1 −

bv − dv

bv
− αεu

) bv − dv

(1 + kv)bv − dv
< dv − αεubv < dv.

It’s clear to see that the right-hand sides of the first two inequalities are strictly negative, so the
differential inequalities for the upper solutions are satisfied.

According to the required differential inequalities for the lower solutions, we need the following to
hold:

bu

(
1 − εu − α

bv − dv

bv

)( εu

εu + ku

)
− du ≥ 0, (3.4)

bv

(
1 − εv − β

bu − du

bu

)( εv

εv + kv

)
− dv ≥ 0.

Multiplying the inequalities in (3.4) by − εu+ku
bu

and − εv+kv
bv

respectively, we now need to analyze the
following functions to find εu > 0 and εv > 0 to ensure

F1(εu) = ε2
u + (α

bv − dv

bv
+

du

bu
− 1)εu +

kudu

bu
≤ 0, (3.5)

F2(εv) = ε2
v + (β

bu − du

bu
+

dv

bv
− 1)εv +

kvdv

bv
≤ 0.

The functions F1 and F2 (as parabolas opening upward and with F1(0), F2(0) > 0) have their
respective vertices at:

ε∗u =
1
2
(bu − du

bu
− α

bv − dv

bv

)
<

bu − du

bu
, (3.6)

ε∗v =
1
2
(bv − dv

bv
− β

bu − du

bu

)
<

bv − dv

bv
.

We then see that the following conditions on competition coefficients α and β ensure that ε∗u and
ε∗v > 0 in (3.6):

0 < α <
bv(bu − du)
bu(bv − dv)

, and 0 < β <
bu(bv − dv)
bv(bu − du)

. (3.7)
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Finally, we place a constraint on F1 and F2 for the function values at the vertices to be negative. For

F1(ε∗u) =
1
4
(bu − du

bu
− α

bv − dv

bv

)2
−

1
2
(bu − du

bu
− α

bv − dv

bv

)2
+

kudu

bu
< 0,

and doing the same computation for F2(ε∗v ) < 0, we can now find the permanence conditions with
respect to the Allee effect coefficients ku and kv:

ku <
bu

4du

(bu − du

bu
− α

bv − dv

bv

)2
and kv <

bv

4dv

(bv − dv

bv
− β

bu − du

bu

)2
. (3.8)

Given constraints (3.7) and (3.8), by Definition 1.1 and Lemma 1.2, for any initial density functions
u0(x) and v0(x) with ε∗u ≤ u0(x) ≤ bu−du

bu
and ε∗v ≤ v0(x) ≤ bv−dv

bv
, the unique solution of (1.5) exists in

〈(û, v̂), (ũ, ṽ)〉. This implies permanence in the ecological system and proves the theorem. �

In model (1.5), to secure long-term survival of both species we have obtained constraints (3.1) on α,
β (the Lotka-Volterra competition coefficients from one species to another) and ku, kv (the Allee effect
coefficients for each species) in relation with the birth and death rates. Also, the initial density functions
need to balanced in ranges given in (3.3). To demonstrate a numerical example (in Figure 1), we make
the following choices on the biological parameters which satisfy all conditions for permanence in (3.1):

bu = 0.8, bv = 0.6, du = 0.4, dv = 0.2, ku = 0.045, kv = 0.12, α = 0.3, β = 0.5,

D1 = 0.08, D2 = 0.03.

Also, we set the initial density functions as follows to satisfy the permanence conditions (3.3) on
Ω = [0, 1] and the no-flux boundary condition on ∂Ω:

u0(x) = 0.2 − 0.05 cos(2πx), v0(x) = 0.26 − 0.05 cos(2πx).

Figure 1. Theorem 3.1, permanence under Neumann boundary condition.

4. Competitive exclusion

In previous sections, we have studied criteria for self-elimination of each species and long-term
survival of both species. Now in this section, we examine conditions for competitive exclusion, that is,
one species survives and forces the other species into extinction in (1.5). Various competitive exclusion
results can be derived from different combinations of boundary conditions for the two species.
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Theorem 4.1. Competitive exclusion of one species (u) (Neumann boundary condition).
Let u and v both satisfy the no-flux boundary condition ∂u

∂ν
= ∂v

∂ν
= 0 on ∂Ω.Assume that the following

inequalities are satisfied

0 < β <
bu(bv − dv)
bv(bu − du)

and kv ≤
bv

4dv

(bv − dv

bv
− β

bu − du

bu

)2
. (4.1)

If

v0(x) ≥ ε∗v =
1
2
(bv − dv

bv
− β

bu − du

bu

)
and Ω̄,

then
lim
t→∞

u(t, x) = 0 and u0(x) < min
{bu − du

bu
,

kudu

bu − du − αbuε∗v

}
on Ω̄,

then
lim
t→∞

u(t, x) = 0 and lim inf
t→∞

v(t, x) ≥
1
2
(bv − dv

bv
− β

bu − du

bu

)
uniformly on Ω̄.

Proof. Let inequalities in (4.1) be satisfied. We have

M1 < min{
bu − du

bu
,

kudu

bu − du − αbuε∗v
},

where M1 is the maximum value of u0(x) on Ω̄. We are going to verify that for some σ1 > 0 (to be
determined), (ũ, ṽ) = (M1e−σ1t, bv−dv

bv
), and (û, v̂) = (0, ε∗v ) are a pair of ordered upper-lower solutions.

It is obvious that (ũ, ṽ) ≥ (û, v̂) in [0,∞) × Ω̄. ũ, û, ṽ, and v̂ are all independent of x, so their normal
derivatives are equal to 0 on ∂Ω and the boundary inequalities in (1.8) are satisfied.

In order to satisfy the differential inequalities in (1.8), first notice that the differential inequality for
û = 0 trivially holds. For the rest, we need the following relations to hold:

−σ1M1e−σ1t ≥ M1e−σ1t
[
bu

(
1 − M1e−σ1t − αε∗v

)( M1e−σ1t

M1e−σ1t + ku

)
− du

]
,

0 ≥
bv − dv

bv

[
bv

(
1 −

bv − dv

bv

)( bv−dv
bv

bv−dv
bv

+ kv

)
− dv

]
, (4.2)

0 ≤ ε∗v
[
bv(1 − ε∗v − βM1e−σ1t)

( ε∗v
ε ∗v +kv

)
− dv

]
.

We now analyze the differential inequalities in (4.2). The second of these inequalities is clearly
satisfied by the fact that

bv
(
1 −

bv − dv

bv

)( bv−dv
bv

bv−dv
bv

+ kv

)
− dv = dv

( bv−dv
bv

bv−dv
bv

+ kv

)
− dv ≤ 0.

Also, by the fact that M1e−σ1t ≤
bu−du

bu
and the argument related to ε∗v in the proof of Theorem 3, we can

conclude that the condition kv ≤
bv
4dv

(
bv−dv

bv
− βbu−du

bu

)2
ensures the third inequality in (4.2).
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We further analyze the first inequality in (4.2). By the fact that 0 ≤ e−σ1t ≤ 1, it suffices to have the
following holds and allow a small σ1 > 0:

bu
(
1 − αε∗v

)( M1

M1 + ku

)
< du.

Solving for M from above, we conclude that for M1 <
kudu

bu−du−αbuε
∗
v

and a positive number σ1 which is
small enough, the first inequality in (4.2) will also be satisfied. Hence we have verified all required
inequalities for the coupled upper-lower solutions.

By Definition 1.1 and Lemma 1.2, for any smooth initial density function u0(x) and v0(x) with
u0(x) < M1 and v0(x) ≥ ε∗v , there is a unique solution of (1.5) with

(0, ε∗v ) ≤ (u(t, x), v(t, x)) ≤ (M1e−σ1t,
bv − dv

bv
).

This implies that: limt→∞ u(t, x) = 0 uniformly on Ω̄ and v(t, x) ≥ 1
2

(bv−dv
bv
− β bu−du

bu

)
in [0,∞) × Ω̄. �

To demonstrate a numerical example (in Figure 2) for competitive exclusion of u-species given
above, we make the following choices on the biological parameters which satisfy all conditions given
in (4.1):

bu = 0.5, bv = 0.8, du = 0.1, dv = 0.2, ku = 0.7, kv = 0.25, α = 0.5, β = 0.3,

D1 = 0.06, D2 = 0.04.

Also, we set the initial density functions as follows to satisfy the conditions given in Theorem 4.1 on
Ω = [0, 1] and the no-flux boundary condition on ∂Ω:

u0(x) = 0.178 − 0.03 cos(2πx), v0(x) = 0.27 − 0.015 cos(2πx).

Figure 2. Theorem 4.1, competitive exclusion of u under Neumann boundary condition.

As seen in the theorem above, from the Allee coefficient ku and death rate bu for u-species and
the persistence strength ε∗v for v-species, we can determine the magnitude M1 of ‖u0(·)‖∞ which will
drive the u population to extinction. Moreover, with the presence of a competitor, large competition
coefficient (α) and small difference between the birth and death rates (ratio du

bu
being close to 1) also
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will drive the population (u) with larger initial size to extinction. The following theorem shows those
detrimental effects to the survival of u-species under reasonably large initial population size. We now
examine conditions for competitive exclusion of u-species globally for 0 ≤ u0(x) ≤ bu−du

bu
.

Theorem 4.2. Global exclusion of one species (u) under stronger competitor (v) (Neumann boundary
condition).

Let u and v both satisfy the no-flux boundary condition ∂u
∂ν

= ∂v
∂ν

= 0 on ∂Ω. Assume that the
inequalities in (4.1) hold. If

du >
bu(1 − αε∗v −

√
k2

u + ku − αε∗v ku + ku)(
√

k2
u + ku − αε∗v ku − ku)√

k2
u + ku − αε∗v ku

, (4.3)

with ε∗v = 1
2

(bv−dv
bv
− β bu−du

bu

)
, and the initial population functions satisfy v0(x) ≥ ε∗v and u0(x) < bu−du

bu
,

then limt→∞ u(t, x) = 0 and lim inft→∞ v(t, x) ≥ 1
2

(bv−dv
bv
− β bu−du

bu

)
uniformly on Ω̄.

Proof. As in the proof of Theorem 4.1, we will verify that for some small σ1 > 0 and the maximum
of u0(x) M1 < bu−du

bu
, (ũ, ṽ) = (M1e−σ1t, bv−dv

bv
), and (û, v̂) = (0, ε∗v ) are a pair of ordered upper-lower

solutions. It is already known that (ũ, ṽ) ≥ (û, v̂) in [0,∞)× Ω̄, and all the boundary inequalities in (1.8)
are satisfied. Among the four differential inequalities for upper-lower solution given in (4.2), we also
know from the previous proof that the second, third, and fourth inequalities already hold.

We now focus on analyzing the first differential inequality in (4.2). Let M1e−σ1t = X, we need to
find a condition for

du − σ1 ≥ bu(1 − X − αε∗v )
( X
X + ku

)
with all X > 0 and some σ1 > 0 . Define the function

H(X) =
bu[(1 − αε∗v ) − X]X

X + ku
,

and note that H(0) = H(1 − αε∗v ) = 0, and H(X) < 0 for X > 1 − αε∗v . Since H(x) > 0 in the interval
(0, 1 − αε∗v ), we look for the maximum value of H(X) there. Setting

H′(X) =
[bu[(1 − αε∗v ) − 2X](X + ku) − bu(1 − αε∗v − X)X

(X + ku)2 = 0,

we find the local extremum at
√

k2
u + ku − αε∗v ku − ku in the interval [0, 1 − αε∗v ].

Since

H(
√

k2
u + ku − αε∗v ku − ku) (4.4)

=
bu(1 − αε∗v −

√
k2

u + ku − αε∗v ku + ku)(
√

k2
u + ku − αε∗v ku − ku)√

k2
u + ku − αε∗v ku

,

allowing for a small σ1 > 0, the first differential inequality (4.2) is satisfied if

bu(1 − αε∗v −
√

k2
u + ku − αε∗v ku + ku)(

√
k2

u + ku − αε∗v ku − ku)√
k2

u + ku − αε∗v
< du.
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By Definition 1.1 and Lemma 1.2, for any smooth initial density function u0(x) and v0(x) with
u0(x) < bu−du

bu
and v0(x) ≥ ε∗v , there is a unique solution of (1.5) with (0, ε∗v ) ≤ (u(t, x), v(t, x)) ≤

(M1e−σ1t, bv−dv
bv

). This implies that: limt→∞ u(t, x) = 0 uniformly on Ω̄ and v(t, x) ≥ 1
2

(bv−dv
bv
− βbu−du

bu

)
on

[0,∞) × Ω̄. �

We now examine an numerical example (in Figure 3) for the above global exclusion result, which
shows competitive exclusion of u-species with any initial density u0(x) < (bu − du)/bu. We choose the
following biological parameters that satisfy all the conditions in (4.1) and (4.3). Also, we use initial
density functions with relatively larger u0(x) which satisfy the conditions given in Theorem 4.2 on
Ω = [0, 1] and the no-flux boundary condition on ∂Ω.

bu = 0.8, bv = 0.6, du = 0.18, dv = 0.2, ku = 0.5, kv = 0.12, α = 0.5, β = 0.2,

D1 = 0.03, D2 = 0.08. u0(x) = 0.5 − 0.27 cos(2πx), v0(x) = 0.3 − 0.044 cos(2πx).

Figure 3. Theorem 4.2, global exclusion of u under Neumann boundary condition.

At last, we consider the case that the population density function u(t, x) is subject to the Dirichlet
or Robin boundary condition (with λ0 > 0) and the population density function v(t, x) is subject to the
Neumann boundary condition. This way, the u-species will be under greater strain at the boundary, so
we study the conditions that will drive u-species to extinction under Allee effect and competition from
v-species.

Theorem 4.3. Competitive exclusion of one species (mixed boundary conditions).
Let u and v satisfy the boundary condition

∂v(t, x)
∂ν

= 0, u(t, x) = 0 or
∂u(t, x)
∂ν

+ γu(x)u(t, x) = 0 on ∂Ω,

with nontrivial γu(x) on ∂Ω.
Assume that the inequalities in (4.1) hold and v0(x) ≥ ε∗v = 1

2

(bv−dv
bv
− β bu−du

bu

)
, u0(x) ≤ Mφ0(x) on

Ω̄ for some M > 0, with eigenfunction φ0(x) and eigenvalue λ0 for Bu[·] given in (2.1). If one of the
following conditions holds:
a)

bu(1 − αε∗v ) ≤ Duλ0 + du
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and M ≤ bu−du
bu

, or
b)

bu(1 − αε∗v ) > Duλ0 + du

and M < ku(Duλ0+du
bu(1−αε∗v )−Duλ0−du

, or
c)

Duλ0 + du > ku
bu(1 − αε∗v −

√
k2

u + ku − αε∗v ku + ku)(
√

k2
u + ku − αε∗v ku − ku)√

k2
u + ku − αε∗v

and M ≤ bu−du
bu

, then limt→∞ u(t, x) = 0 uniformly on Ω̄ and v(t, x) > 1
2

(bv−dv
bv
− βbu−du

bu

)
in [0,∞) × Ω̄.

Proof. Once again, for M and σ > 0, we set up the ordered upper and lower solutions
(ũ, ṽ) = (Mφ0e−σt, bv−dv

bv
), and (û, v̂) = (0, ε∗v). Noting that ṽ and v̂ are independent of x, with

respective normal derivatives = 0 on ∂Ω. û = 0 on Ω̄ and Bu[φ0] = 0 on ∂Ω. Therefore all boundary
inequalities in (1.8) are satisfied.

As seen in the proofs of previous theorems, the differential inequalities in (1.8) for ṽ, û and v̂ also
hold as long as M ≤ bu−du

bu
.

We now analyze the differential inequality (1.8) for ũ = Mφ0e−σt:

− σMe−σt + Duλ0Mφ0e−σt

≥ Mφ0e−σt
[
bu(1 − Mφ0e−σt − αε∗v ))

( Mφ0e−σt

Mφ0e−σt + ku

)
− du

]
. (4.5)

To satisfy (4.5), it suffices to have the following relation hold which allows a small σ > 0:

Duλ0 + du > bu(1 − αε∗v )
( M

M + ku

)
. (4.6)

If bu(1 − αε∗v ) ≤ Duλ0 + du, the first differential inequality (4.5) is satisfied for all M > 0. Therefore
the condition a) will ensure that (ũ, ṽ) = (Mφ0e−σt, bv−dv

bv
) and (û, v̂) = (0, ε∗v) are a pair of ordered

upper-lower solutions under the mixed boundary conditions.
On the other hand, if bu(1 − αε∗v ) > Duλ0 + du, solving for M from the inequality (4.6) leads

to M < ku(Duλ0+du
bu(1−αε∗v )−Duλ0−du

. Hence the condition b) also ensures the ordered upper-lower solutions as
designed.

Furthermore, the first differential inequality (4.5) is satisfied if the following holds for any X > 0:

Duλ0 + du > bu(1 − X − αε∗v )
( X
X + ku

)
. (4.7)

Maximizing the right side of the inequality as in the proof of Theorem 4.2, we can conclude that
condition c) and a small σ > 0 ensures the first differential inequality in (4.5) and verifies the ordered
upper-lower solutions as designed.

By Definition 1.1 and Lemma 1.2, under the assumptions given and with one condition from a),
b), or c), there exists a unique solution of (1.5) with (0, ε∗v ) ≤ (u(t, x), v(t, x)) ≤ (Mφ0e−σt, bv−dv

bv
). This

concludes that: limt→∞ u(t, x) = 0 uniformly on Ω̄ and v(t, x) ≥ 1
2

(bv−dv
bv
− βbu−du

bu

)
in [0,∞) × Ω̄. �
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We will end this section with two numerical examples for Theorem 4.3 on competitive exclusion of
one species (u) which is under Dirichlet or Robin boundary condition. Setting Ω = (0, 1), we let u(t, x)
be under the Dirichlet boundary condition u(t, 0) = u(t, 1) = 0. This way, the principal eigenvalue
λ0 = π2 with corresponding eigenfunction φ0(x) = sin(πx). For condition b) to be satisfied, we choose
the following biological parameters and initial functions to demonstrate our numerical simulation (in
Figure 4):

bu = 0.8, bv = 0.6, du = 0.3, dv = 0.2, ku = 0.3, kv = 0.1, α = 0.5, β = 0.3,

D1 = 0.04, D2 = 0.1. u0(x) = 0.9 sin(πx), v0(x) = 0.3 − 0.06 cos(2πx).

Figure 4. Theorem 4.3 b), competitive exclusion of u under mixed boundary condition.

For condition c) to be satisfied, we choose the following biological parameters and initial functions
to demonstrate our numerical simulation (in Figure 5):

bu = 0.5, bv = 0.8, du = 0.2, dv = 0.2, ku = 0.5, kv = 0.2, α = 0.3, β = 0.5,

D1 = 0.3, D2 = 0.1. u0(x) = 0.6 sin(πx), v0(x) = 0.28 − 0.04 cos(2πx).

Figure 5. Theorem 4.3 c), competitive exclusion of u under mixed boundary condition.
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5. Conclusions and discussion

The results shown in this article demonstrate how the all the biological parameters in the model,
especially the coefficients representing Allee effects, ultimately determine the long-term survival of
each competing species. We also pay special attention to the impacts of the dimensions of the habitat
Ω and boundary conditions for both species on ∂Ω. As we know, Dirichlet boundary condition (u = 0
on ∂Ω) indicates the biological species diminishes on the boundary of the habitat, while Neumann
boundary condition (∂u

∂ν
= 0 on ∂Ω) indicates no flux on the boundary of the habitat as the advection

and diffusion fluxes of the population are exactly balanced. And, the Robin boundary condition in (1.6)
is a linear combination of those two.

In Section 2, we give several results on self-elimination by Allee effect of one species despite the
behavior of other. In Theorem 2.1 (Neumann boundary condition) and Theorem 2.2 (Dirichlet or Robin
boundary condition), we find ranges for initial density function u0

0 ≤ u0(x) <
kudu

bu − du
or 0 ≤ u0(x) <

ku(λ0Du + du)
bu − du − λ0Du

Φ0(x)

which ensure extinction of species u. And, in Theorem 2.3, the following self-elimination condition on
all the biological parameters is obtained under all boundary conditions and any feasible initial density
(global elimination):

du + Duλ0 >
bu

(
1 + ku −

√
ku(1 + ku)

)(√
ku(1 + ku) − ku

)
√

ku(ku + 1)
.

We note that

lim
ku→∞

bu(1 − (
√

ku(ku + 1) − ku))(
√

ku(ku + 1) − ku)
√

ku(ku + 1)
= 0.

Therefore, for sufficiently large Allee effect coefficient ku, relatively large death rate and limited birth
rate, as well as faster diffusion that makes the global elimination condition hold, a species with any
nonnegative initial density will be driven to extinction under all three boundary conditions.

In section 3, we explore the possibility of permanence for both species under Neumann (no flux)
boundary conditions. This requires balanced constraints on birth, death, and competition rates, as well
as the Allee effect coefficients:

0 < α <
bv(bu − du)
bu(bv − dv)

and 0 < β <
bu(bv − dv)
bv(bu − du)

,

ku ≤
bu

4du

(bu − du

bu
− α

bv − dv

bv

)2
and kv ≤

bv

4dv

(bv − dv

bv
− β

bu − du

bu

)2
.

Also, the initial density functions are required to be above some minimum thresholds:

1
2

(bu − du

bu
− α

bv − dv

bv

)
< u0(x) <

bu − du

bu
on Ω̄,

and

1
2

(bv − dv

bv
− β

bu − du

bu

)
< v0(x) <

bv − dv

bv
on Ω̄.
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In Section 4, conditions for competitive exclusion are investigated under various boundary
conditions. Under Neumann boundary conditions for both species and with the persistence constraints
for v-species hold, we give the range for initial density u0 ensuring extinction of u-species and
survival of v species in Theorem 4.1:

u0(x) < min
{bu − du

bu
,

kudu

bu − du − αbuε∗v

}
.

In Theorems 4.2 and 4.3, under Neumann boundary condition for v-species and any boundary
condition for u-species, global exclusion of u-species are ensured by the following condition for all
feasible initial density u0:

Duλ0 + du > ku
bu(1 − αε∗v −

√
k2

u + ku − αε∗v ku + ku)(
√

k2
u + ku − αε∗v ku − ku)√

k2
u + ku − αε∗v

.

Here for the u-species, λ0 = 0 under Neumann boundary condition and λ0 > 0 under Dirichlet or Robin
boundary condition. Specifically, with Dirichlet or Robin boundary condition, limited habitat size can
also be detrimental to the persistence of the u-species. Examining a special case of the eigenvalue
problem with Dirichlet boundary condition on a 1-dimensional habitat Ω = (0, L):

∇2φ0 + λ0φ0 = 0 in (0, L), φ0(0) = φ0(L) = 0,

we see that

λ0 =
π2

L2 and φ0(x) = sin(πx/L).

This shows that smaller habitat size (L) makes much bigger λ0 which validates the above competitive
exclusion condition while all other biological parameters remaining unchanged. In addition to the self-
elimination and competitive exclusion constraints on all biological parameters mentioned in Sections 2
and 4, this example illustrates that limited habitat size can also drive a biological population into
extinction under Dirichlet or Robin boundary condition.
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