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1. Introduction

In different fields of pure and applied sciences, the analysis of metric spaces has played an essential
role. We can discover various effective and impressive applications of metric spaces in different fields
of sciences such as mathematics, computer science, medicine, economics, physics and biology [1–3].
Various researchers generalized, improved and extended the notion of metric spaces [4] to b-metric
spaces of Czerwik [5], generalized metric spaces of Branciari [6], F -metric spaces of Jleli et al. [7],
orthogonal metric spaces of Gordji et al. [8], orthogonal F -metric spaces of Kanwal et al. [9] and
others.

The famous extensions of the concept of metric spaces have been done by Bakhtin [10] and were
formally defined by Czerwik [5] in 1993. Czerwik [5] gave the idea of a b-metric space, which
broadens the notion of a metric space by improving the triangle inequality metric axiom by putting
a constant s ≥ 1 multiplied on the right-hand side, and it is one of the enormous applied extensions for
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metric spaces. Khamsi et al. [11] reintroduced this notion under the name metric-type and proved some
fixed point results in this newly introduced space. In [6], Branciari gave the notion of a rectangular
metric space and generalized the classical metric space by replacing the triangle inequality with a
more general inequality that is called a rectangular inequality. This inequality involves distances of
four points. In 2018, Jleli et al. [7] gave an important extension of metric space, b-metric space and
rectangular metric space which is known as F -metric space. Subsequently, Kanwal et al. [9] initiated
the theory of orthogonal F -metric spaces and established some common fixed point results. For more
details in this direction, we refer the readers to [12–25].

On the other hand, Stefan Banach [26] introduced the concept of a contraction in the background of
complete metric spaces and proved a fixed point result which is known as the Banach contraction
principle. It has been extremely convenient in numerous fields, such as optimization problems,
differential equations, control theory and many other fields. A number of research articles in this
field have been devoted to the generalization and improvement of this result in different directions
(see [27, 28]).

In 2014, Jleli et al. [29] generalized the concept of a contraction by introducing a new type of
contraction named Θ-contraction in the framework of generalized metric spaces. Ahmad et al. [30]
replaced the third condition of a Θ-contraction with a weaker condition and established some theorems
in the setting of metric spaces. Later on, Hussain et al. [31] extended this notion of Θ-contraction by
adding a general condition in it and obtained some fixed point results. For more characteristics in this
way, we refer the readers to [32–36].

Motivated and inspired by the results of Kanwal et al. [9] and Hussain et al. [31], we give the
concept of a generalized (α,ΘF )-contraction in the context of an orthogonal F -complete metric space
and obtain contemporary common fixed point theorems which enable us to show the uniqueness and
existence of the solution for a fractional differential equation.

2. Preliminaries

Frechet [4] introduced the concept of a metric space in this way.
A metric on ℵ , ∅ is a mapping ν : ℵ × ℵ → [0,+∞) satisfying these properties:

(i) ν(ρ, ς) ≥ 0, and ν(ρ, ς) = 0 if and only if ρ = ς,
(ii) ν(ρ, ς) = ν(ς, ρ),

(iii) ν(ρ, ω) ≤ ν(ρ, ω) + ν(ω, ς),

for all ρ, ς ∈ ℵ. If ν is a metric, then (ℵ, ν) is called a metric space.
In 1993, Czerwik [5] gave the notion of a b-metric by take into consideration this assertion instead

of the triangular inequality:
For all ρ, ς ∈ ℵ and b ≥ 1,

ν(ρ, ω) ≤ b
[
ν(ρ, ω) + ν(ω, ς)

]
.

In 2017, Gordji et al. [8] introduced the notion of the orthogonal set (O-set).

Definition 1. A non empty ℵ is called an orthogonal set if there exists a binary relation ⊥ ⊆ ℵ × ℵ
satisfying the condition

there exists ρ0[(for all ς ∈ ℵ, ς ⊥ ρ0) or (for all ς ∈ ℵ, ρ0 ⊥ ς)],
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Furthermore, ρ0 is called an orthogonal point. We denote this O-set by (ℵ,⊥).

Gordji et al. [8] considered ℵ as an O-set in metric space and gave the concept of an orthogonal
metric space.

Definition 2. (see [8] ) Let (ℵ,⊥) be an O-set. A sequence {ρn} is said to be an orthogonal sequence if

(for all n ∈ N, ρn ⊥ ρn+1) or (for all n ∈ N, ρn+1 ⊥ ρn).

We denote an orthogonal sequence by O-sequence.

Recently, Jleli et al. [7] introduced the notion of an F -metric space in such manner.
Let F be the family of mappings ξ : (0,+∞)→ R satisfying

(F1) 0 < ρ1 < ρ2 ⇒ ξ(ρ1) ≤ ξ(ρ2).
(F2) For all {ρn} ⊆ R

+, limn→∞ ρn = 0 if and only if limn→∞ ξ(ρn) = −∞.

Definition 3. (see [7]) Let ℵ , ∅ and ν : ℵ×ℵ → [0,+∞). Assume that there exists (ξ, α) ∈ F ×[0,+∞)
such that

(D1) (ρ, ς) ∈ ℵ × ℵ, ν(ρ, ς) = 0 if and only if ρ = ς.
(D2) ν(ρ, ς) = ν(ς, ρ), for all ρ, ς ∈ ℵ.
(D3) For all (ρ, ς) ∈ ℵ × ℵ, and (ρi)N

i=1 ⊂ ℵ, with (ρ1, ρN) = (ρ, ς), we have

ν(ρ, ς) > 0⇒ ξ(ν(ρ, ς)) ≤ ξ(
N−1∑
i=1

ν(ρi, ρi+1)) + α.

for all N ≥ 2. Then, (ℵ, ν) is named as an F -metric space.

Example 1. (see [7]) Let ℵ = R. Then, ν : ℵ × ℵ → [0,+∞) is an F -metric defined by

ν(ρ, ς) =

{
(ρ − ς)2 if (ρ, ς) ∈ [0, 3] × [0, 3],
|ρ − ς| if (ρ, ς) < [0, 3] × [0, 3],

with ξ(t) = ln(t) and α = ln(3).

Definition 4. (see [7]) Let (ℵ, ν) be an F -metric space.
(i) A sequence {ρn} ⊆ ℵ is said to be F -convergent if

lim
n→∞

ν(ρn, ρ) = 0.

(ii) A sequence {ρn} is F -Cauchy, if

lim
n,m→∞

ν(ρn, ρm) = 0.

Subsequently, Kanwal et al. [9] integrated both notions of O-set and F -metric space and gave the
concept of an orthogonal F -metric space (OF -metric space) as follows.

Definition 5. (see [9]) Let (ℵ,⊥) be an O-set and ν : ℵ × ℵ → [0,+∞) be an F -metric; then, (ℵ,⊥, ν)
is named as an orthogonal F -metric space (OF -metric space).
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Example 2. (see [9]) Let ℵ = [0, 1]. Define F -metric ν by

ν (ρ, ς) =

{
e(|ρ−ς|), if ρ , ς,

0, if ρ = ς,

for all ρ, ς ∈ ℵ, ξ(t) = −1
t , t > 0, and α = 1. Define ρ⊥ς if ρς ≤ ρ or ρς ≤ ς. Then, for all ρ ∈ ℵ, 0⊥ς,

so (ℵ,⊥) is an O-set. Then, (ℵ, ν,⊥) is an OF -metric space.

Definition 6. (see [9]) Let (ℵ, ν,⊥) be an OF -metric space, and< : (ℵ, ν,⊥)→ (ℵ, ν,⊥). Then,< is
called ⊥-continuous at ρ ∈ ℵ if for each O-sequence {ρn} in ℵ if ρn → ρ, then<ρn → <ρ. Also,< is
⊥-continuous on ℵ if< is ⊥-continuous at each ρ ∈ ℵ.

Definition 7. (see [9]) If every Cauchy O-sequence in OF -metric space (ℵ, ν,⊥) is F -convergent, then
(ℵ, ν,⊥) is called O-F -complete.

Samet et al. [22] began the thought of being α-admissible in this manner.

Definition 8. A mapping< : ℵ × ℵ → [1,∞) is said to be α-admissible if

α(ρ, ς) ≥ 1 implies α(<ρ,<ς) ≥ 1.

Ramezani [23] gave the notion of being orthogonally α-admissible in this way.

Definition 9. A mapping< : ℵ × ℵ → [1,∞) is called an orthogonally α-admissible if

ρ⊥ς and α(ρ, ς) ≥ 1 implies α(<ρ,<ς) ≥ 1.

Recently, Ahmad et al. [12] gave the following property for an orthogonally α-admissible mapping:
(i) α(ρ, ς) ≥ 1 for any ρ, ς ∈

{
ρ∗ ∈ ℵ:ρ∗ = <ρ∗

}
and ρ⊥ς.

In 2014, Jleli and Samet [29] started a state of the art contraction which is called a Θ-contraction
along these lines.

Definition 10. Let Θ : R+ → [1,∞) be a function such that

(†1) Θ(ρ) < Θ(ς) for ρ < ς;
(†2) for all {ρn} ⊆ [0,+∞), limn→∞(ρn) = 0⇔ limn→∞Θ(ρn) = 1;
(†3) there exist 0 < h < 1 and 0 < σ ≤ +∞ such that limρ→0+

Θ(ρ)−1
ρh = σ.

A mapping< : (ℵ, ν) → (ℵ, ν) is called a Θ-contraction if there exist some constant % ∈ (0, 1) and
a mapping Θ : R+ → [1,∞) satisfying (†1)–(†3) such that

ν(<ρ,<ς) > 0 =⇒ +Θ
(
ν(<ρ,<ς)

)
≤

[
Θ(ν(ρ, ς))

]%
for all ρ, ς ∈ ℵ. They proved a result for such contraction in this way.

Theorem 1. (see [29]) If the mapping < is a Θ-contraction on a complete metric space (ℵ, ν), then
there exists ρ∗ ∈ ℵ such that ρ∗ = <ρ∗.

Later on, Hussain et al. [31] added another condition,

(†4) Θ(ρ + ς) ≤ Θ(ρ)Θ(ς),

and extended the above result of Jleli and Samet [7] in complete metric spaces. To be steady with
Hussain et al. [31], we represent by Ψ the family of all functions Θ : R+ → (1,∞) satisfying (†1)–(†4).
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3. Results and discussions

We define the notion of a generalized (α,ΘF )-contraction as follows:

Definition 11. Let (ℵ, ν,⊥) be an OF -metric space. A mapping < : ℵ → ℵ is called a generalized
(α,ΘF )-contraction if there exist Θ ∈ Ψ, α : ℵ×ℵ−→ [1,∞) and nonnegative real numbers %1, %2, %3, %4

with %1 + %2 + %3 + 2%4 < 1 such that

for all ρ, ς ∈ ℵ, ρ ⊥ ς, ν(<ρ,<ς) , 0 =⇒ α (ρ, ς) Θ
(
ν(<ρ,<ς)

)
≤

[
Θ (ν(ρ, ς))

]%1 .

·
[
Θ

(
ν(ρ,<ρ)

)]%2 ·
[
Θ

(
ν(ς,<ς)

)]%3 ·
[
Θ

(
ν(ρ,<ς) + ν(ς,<ρ)

)]%4 . (3.1)

Theorem 2. Let (ℵ, ν,⊥) be an O-complete OF -metric space, and < : ℵ → ℵ is ⊥-continuous, ⊥-
preserving, orthogonally α-admissible and a generalized (α,ΘF )-contraction. If there exists ρ0 ∈ ℵ

such that ρ0 ⊥ <ρ0 and α
(
ρ0,<ρ0

)
≥ 1, then there exists ρ∗ ∈ ℵ such that <ρ∗ = ρ∗. Moreover, if ℵ

has the property (i), then ρ∗ is unique.

Proof. Let there exist ρ0 ∈ ℵ such that ρ0 ⊥ <ρ0 and α
(
ρ0,<ρ0

)
≥ 1, and define the sequence {ρn} as

ρ1 = <ρ0, · · ·, ρn+1 = <ρn = <n+1ρ0,

for all n ≥ 0. Now, using the orthogonal α-admissibility of<, we have

α(<ρn,<ρn+1) ≥ 1,

for all n ≥ 0. If ρn = ρn+1, for any n ∈ N ∪ {0}, then clearly ρn is a fixed point of<. Now, we assume
that ρn , ρn+1, for all n ∈ N ∪ {0}. Thus, we get

ν(<ρn−1,<ρn) = ν(ρn, ρn+1) > 0,

for all n ∈ N ∪ {0}. Since< is ⊥-preserving, so we have

ρn ⊥ ρn+1 or ρn+1 ⊥ ρn

for all n ∈ N ∪ {0}. This means that {ρn} is an O-sequence. Hence, we presume that

0 < ν(ρn,<ρn) = ν(<ρn−1,<ρn), (3.2)

for all n ∈ N ∪ {0}. From (3.1), (3.2) and (†4), we get

1 < Θ (ν(ρn, ρn+1)) = Θ
(
ν(<ρn−1,<ρn)

)
≤ α (ρn−1, ρn) Θ

(
ν(<ρn−1,<ρn)

)
≤

[
Θ (ν(ρn−1, ρn))

]%1 ·
[
Θ

(
ν(ρn−1,<ρn−1)

)]%2

·
[
Θ

(
ν(ρn,<ρn)

)]%3 ·
[
Θ

(
ν(ρn−1,<ρn) + ν(ρn,<ρn−1)

)]%4

=
[
Θ (ν(ρn−1, ρn))

]%1 ·
[
Θ (ν(ρn−1, ρn))

]%2

·
[
Θ (ν(ρn, ρn+1))

]%3 ·
[
Θ (ν(ρn−1, ρn+1) + ν(ρn, ρn))

]%4

=
[
Θ (ν(ρn−1, ρn))

]%1 ·
[
Θ (ν(ρn−1, ρn))

]%2
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·
[
Θ (ν(ρn, ρn+1))

]%3 ·
[
Θ (ν(ρn−1, ρn+1))

]%4

≤
[
Θ (ν(ρn−1, ρn))

]%1 ·
[
Θ (ν(ρn−1, ρn))

]%2

·
[
Θ (ν(ρn, ρn+1))

]%3 ·
[
Θ (ν(ρn−1, ρn) + ν(ρn, ρn+1))

]%4

≤
[
Θ (ν(ρn−1, ρn))

]%1 ·
[
Θ (ν(ρn−1, ρn))

]%2

·
[
Θ (ν(ρn, ρn+1))

]%3 ·
[
Θ (ν(ρn−1, ρn)) Θ (ν(ρn, ρn+1))

]%4

≤
[
Θ (ν(ρn−1, ρn))

]%1 ·
[
Θ (ν(ρn−1, ρn))

]%2

·
[
Θ (ν(ρn, ρn+1))

]%3 ·
[
Θ (ν(ρn−1, ρn))

]%4 ·
[
Θ (ν(ρn, ρn+1))

]%4

which implies
1 < Θ (ν(ρn, ρn+1)) ≤

[
Θ (ν(ρn−1, ρn))

] %1+%2+%4
1−%3−%4 =

[
Θ (ν(ρn−1, ρn))

]% (3.3)

for all n ∈ N ∪ {0}, where % =
%1+%2+%4
1−%3−%4

< 1. Consequently, we have

1 < Θ (ν(ρn, ρn+1)) ≤
[
Θ (ν(ρn−1, ρn))

]%
≤

[
Θ (ν(ρn−1, ρn))

]%2

≤

·

·

·

≤
[
Θ (ν(ρ0, ρ1))

]%n
(3.4)

for all n ∈ N ∪ {0}. Now, taking n→ ∞ and by (†2), we get

lim
n→∞

Θ (ν(ρn, ρn+1)) = 1 ⇔ lim
n→∞

ν(ρn, ρn+1) = 0. (3.5)

By (†3), there exist 0 < h < 1 and l ∈ (0,∞] such that

lim
n→∞

Θ (ν(ρn, ρn+1)) − 1
ν(ρn, ρn+1)h = l. (3.6)

Let l < ∞, and then we take β = l
2 > 0. By definition of the limit, there exists n1 ∈ N such that

|
Θ (ν(ρn, ρn+1)) − 1

ν(ρn, ρn+1)h − l| ≤ β

for all n > n1. It yields
Θ (ν(ρn, ρn+1)) − 1

ν(ρn, ρn+1)h ≥ l − β =
l
2

= β.

Then,
nν(ρn, ρn+1)h ≤ γn[Θ (ν(ρn, ρn+1)) − 1] (3.7)

for all n > n1, where γ = 1
β
. Now, when l = ∞, suppose that β > 0. By definition of the limit, there

exists n1 ∈ N such that

β ≤
Θ (ν(ρn, ρn+1)) − 1

ν(ρn, ρn+1)h .
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It yields
nν(ρn, ρn+1)h ≤ γn[Θ (ν(ρn, ρn+1)) − 1].

Therefore, in all ways, there exists γ > 0 and n1 ∈ N such that

nν(ρn, ρn+1)h ≤ γn[Θ
(
ν(<ρn−1,<ρn)

)
− 1] (3.8)

for all n > n1. Hence, by (3.4) and (3.8), we have

nν(ρn, ρn+1)h ≤ γn([(Θ(ν(ρ0, ρ1))]%
n
− 1).

Taking n→ ∞, we have
lim
n→∞

nν(ρn, ρn+1)h = 0.

Hence, there exists n2 ∈ N such that

ν(ρn, ρn+1) ≤
1

n1/h (3.9)

for all n > n2. This yields
m−1∑
i=n

ν(ρi, ρi+1) ≤
m−1∑
i=n

1
i1/h

for all m > n. As
∑∞

i=n
1

i1/r converges, there exists n2 ∈ N such that

0 <
m−1∑
i=n

1
i1/h <

∞∑
i=n

1
i1/h < δ, (3.10)

for n > n2. Hence, by (3.10) and (F1), we get

ξ

m−1∑
i=n

ν(ρi, ρi+1)

 ≤ ξ  ∞∑
i=n

1
i1/h

 < ξ (ε) − a, (3.11)

m > n ≥ n2. Using (D3) and (3.11), we get

ν(ρn, ρm) > 0, m > n ≥ n2 =⇒ ξ (ν(ρn, ρm)) ≤ ξ

m−1∑
i=n

ν(ρi, ρi+1)

 + a < ξ (ε) ,

which, from (F1), gives that
ν(ρn, ρm) < ε,

for all m > n ≥ n2. Therefore, {ρn} is a Cauchy O-sequence in (ℵ,⊥, ν). Now, since (ℵ,⊥, ν) is O-
complete, there exists ρ∗ ∈ ℵ such that limn→∞ ρn → ρ∗. Now, we show that ρ∗ = <ρ∗. Since < is
⊥-continuous, we have<ρn →<ρ

∗ as n→ ∞. Thus,

<ρ∗ = lim
n→∞
<ρn = lim

n→∞
ρn+1 = ρ∗.

Now, we suppose that ρ/ = <ρ/ is another fixed point of< such that ρ/ , ρ∗. From (i), we have ρ∗⊥ρ/

or ρ/ ⊥ ρ∗ and α
(
ρ∗, ρ/

)
≥ 1. Thus, from (3.1), we have

Θ
(
ν(ρ∗, ρ/)

)
= Θ

(
ν(<ρ∗,<ρ/)

)
≤ α(ρ/, ρ∗)Θ

(
ν(<ρ∗,<ρ/)

)
AIMS Mathematics Volume 8, Issue 3, 5080–5098.



5087

≤
[
Θ

(
ν(ρ/, ρ∗)

)]%1
·
[
Θ

(
ν(ρ/,<ρ/)

)]%2

·
[
Θ

(
ν(ρ∗,<ρ∗)

)]%3 ·
[
Θ

(
ν(ρ/,<ρ∗) + ν(ρ∗,<ρ/)

)]%4

=
[
Θ

(
ν(ρ/, ρ∗)

)]%1
·
[
Θ

(
ν(ρ/, ρ/)

)]%2

·
[
Θ (ν(ρ∗, ρ∗))

]%3 ·
[
Θ

(
ν(ρ/, ρ∗) + ν(ρ∗, ρ/)

)]%4

≤
[
Θ

(
ν(ρ/, ρ∗)

)]%1
·
[
Θ

(
ν(ρ/, ρ∗) · Θ

(
ν(ρ∗, ρ/)

))]%4

=
[
Θ

(
ν(ρ/, ρ∗)

)]%1
·
[
Θ

(
ν(ρ/, ρ∗)

)]%4
·
[
Θ

(
ν(ρ/, ρ∗)

)]%4

=
[
Θ

(
ν(ρ/, ρ∗)

)]%1+2%4

which implies that

Θ
(
ν(ρ∗, ρ/)

)
≤

[
Θ

(
ν(ρ/, ρ∗)

)]%1+2%4
< Θ

(
ν(ρ/, ρ∗)

)
which is a contradiction because %1 + 2%4 < 1. Thus ρ/ = ρ∗. Hence the fixed point is unique. �

Corollary 1. Let (ℵ, ν,⊥) be an O-complete OF -metric space, and < : (ℵ, ν,⊥) → (ℵ, ν,⊥) is ⊥-
continuous and ⊥-preserving. Suppose there exist Θ ∈ Ψ and nonnegative real numbers %1, %2, %3, %4

with %1 + %2 + %3 + 2%4 < 1 such that for all

ρ, ς ∈ ℵ, ρ ⊥ ς, ν(<ρ,<ς) , 0 =⇒ Θ
(
ν(<ρ,<ς)

)
≤

[
Θ (ν(ρ, ς))

]%1 .

·
[
Θ

(
ν(ρ,<ρ)

)]%2 ·
[
Θ

(
ν(ς,<ς)

)]%3 ·
[
Θ

(
ν(ρ,<ς) + ν(ς,<ρ)

)]%4 .

Then, there exists a unique point ρ∗ ∈ ℵ such that<ρ∗ = ρ∗.

Proof. Take α : ℵ×ℵ−→[1,∞) by α (ρ, ς) = 1, for all ρ, ς ∈ ℵ in Theorem 2. �

Corollary 2. Let (ℵ, ν,⊥) be an O-complete OF -metric space, and < : (ℵ, ν,⊥) → (ℵ, ν,⊥)
is ⊥-continuous, ⊥-preserving and orthogonally α-admissible. Suppose there exist Θ ∈ Ψ, α :
ℵ×ℵ−→[1,∞) and some nonnegative real number % ∈ (0, 1) such that

ν(<ρ,<ς) , 0 =⇒ α (ρ, ς) Θ
(
ν(<ρ,<ς)

)
≤

[
Θ (ν(ρ, ς))

]%
for all ρ, ς ∈ ℵ,ρ ⊥ ς. If there exists ρ0 ∈ ℵ such that ρ0 ⊥ <ρ0 and α

(
ρ0,<ρ0

)
≥ 1, then, there exists

ρ∗ ∈ ℵ such that<ρ∗ = ρ∗. Moreover, if ℵ has the property (i), then ρ∗ is unique.

Proof. Take %1 = % < 1 and %2 = %3 = %4 = 0 in Theorem 2. �

Corollary 3. (see [9]) Let (ℵ, ν,⊥) be an O-complete OF -metric space, and< : (ℵ, ν,⊥) → (ℵ, ν,⊥)
is ⊥-continuous and ⊥-preserving. Suppose there exist Θ ∈ Ψ and some nonnegative real number
% ∈ (0, 1) such that

for all ρ, ς ∈ ℵ, ρ ⊥ ς, ν(<ρ,<ς) , 0 =⇒ Θ
(
ν(<ρ,<ς)

)
≤

[
Θ (ν(ρ, ς))

]% (3.12)

holds; then, there exists a unique point ρ∗ ∈ ℵ such that<ρ∗ = ρ∗.

Proof. Take α : ℵ×ℵ−→[1,∞) by α (ρ, ς) = 1, for all ρ, ς ∈ ℵ in Corollary 2. �
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Example 3. Define the sequence {ρn} as follows:

ρ1 = ln(1),
ρ2 = ln(1 + 5),
·

·

·

ρn = ln(1 + 5 + 9 + ... + (4n − 3)) = ln (n(2n − 1))

for all n ≥ 1. Let ℵ= {ρn : n ∈ N} be provided with ν : ℵ × ℵ → [0,+∞), defined by

ν (ρ, ς) =

{
e|ρ−ς|, if ρ , ς,

0, if ρ = ς,

with ξ (t) = −1
t and a = 1. For all ρn, ρm ∈ ℵ, define ρn⊥ρm if and only if (m ≥ 2 ∧ n = 1). Thus,

(ℵ, ν,⊥) is an O-complete OF -metric space. Define< : (ℵ, ν,⊥)→ (ℵ, ν,⊥) by

< (ρn) =

{
ρ1, if n = 1,
ρn−1, if n > 1,

and α : ℵ×ℵ→ [1,+∞) by

α (ρn, ρm) =

{
1, if ρn , ρm,

0, if ρn = ρm.

Clearly,

lim
n−→∞

ν(<(ρn),< (ρ1))
ν(ρn, ρ1)

= 1,

and then< is not a contraction.

It is very simple to show that< is ⊥-preserving and ⊥-continuous. Define Θ : (0,∞)→ R+ by

Θ(t) = e
√

tet
, t > 0.

Then, Θ ∈ Ψ. Now, we prove that< is a generalized (α,Θ)-contraction, i.e.,

ν(<(ρn),< (ρm)) , 0 =⇒ e
√
ν(<(ρn),<(ρm))eν(<(ρn),<(ρm))

≤

[
e
√
ν(ρn,ρm)eν(ρn ,ρm)

]%
for some % ∈ (0, 1). The above condition is equivalent to

ν(<(ρn),< (ρm)) , 0 =⇒ ν(<(ρn),< (ρm))eν(<(ρn),<(ρm)) ≤ %2ν(ρn, ρm)eν(ρn,ρm).

So, we have to check that

ν(<(ρn),< (ρm)) , 0 =⇒
ν(<(ρn),< (ρm))

ν(ρn, ρm)
eν(<(ρn),<(ρm))−ν(ρn,ρm) ≤ %2.
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For m ∈ N, and m ≥ 2, we get

ν(<(ρm),< (ρ1)) , 0 =⇒
ν(<(ρm),< (ρ1))

ν(ρm, ρ1)
eν(<(ρm),<(ρ1))−ν(ρm,ρ1) ≤ %2

ν(ρm−1, ρ1)
ν(ρm, ρ1)

eν(ρm−1,ρ1)−ν(ρm,ρ1)

=
eρm−1−ρ1

eρm−ρ1
eeρm−1−ρ1−eρm−ρ1

=
(m − 1)(2m − 3)

m(2m − 1)
e−4m+3 < e−1.

Thus, the inequality (3.1) is satisfied. Hence, < is a generalized (α,Θ)-contraction. Hence, by
Theorem 2, ρ = ln(1) is a unique fixed point of<.

For particular choices of Θ, we get some noteworthy results. If we take Θ(t) = e
√

t in (2), we get an
extension of Ćirić result [37].

Theorem 3. Let (ℵ, ν,⊥) be an O-complete OF -metric space and < : (ℵ, ν,⊥) → (ℵ, ν,⊥) is ⊥-
continuous, ⊥-preserving and orthogonally α-admissible. Suppose that there exists nonnegative real
numbers %1, %2, %3, %4 with %1 + %2 + %3 + 2%4 < 1 such that these conditions hold:[

ln (α(ρ, ς))
] √

ν(<ρ,<ς) ≤%1

√
ν(ρ, ς) + %2

√
ν(ρ,<ρ)

+ %3

√
ν(ς,<ς) + %4

√
ν(ρ,<ς) + ν(ς,<ρ).

(3.13)

If there exists ρ0 ∈ ℵ such that ρ0 ⊥ <ρ0 and α
(
ρ0,<ρ0

)
≥ 1, then there exists ρ∗ ∈ ℵ such that

ρ∗ = <ρ∗. Moreover, if ℵ has the property (i), then ρ∗ is unique.

Remark 1. If we take the square on both sides, then that condition (3.13) is equivalent to[
ln (α(ρ, ς))

]2 ν(<ρ,<ς) ≤ %2
1ν(ρ, ς) + %2

2ν(ρ,<ρ) + %2
3ν(ς,<ς) + %2

4
(
ν(ρ,<ς) + ν(ς,<ρ)

)
+2%1%2

√
ν(ρ, ς)ν(ρ,<ρ) + 2%1%3

√
ν(ρ, ς)ν(ς,<ς)

+2%1%4

√
ν(ρ, ς)

(
ν(ρ,<ς) + ν(ς,<ρ)

)
+2%2%3

√
ν(ρ,<ρ)ν(ς,<ς) + 2%2%4

√
ν(ρ,<ρ)

(
ν(ρ,<ς) + ν(ς,<ρ)

)
+2%3%4

√
ν(ς,<ς)

(
ν(ρ,<ς) + ν(ς,<ρ)

)
.

Next, in view of Remark 1, by taking %1 = %4 = 0 in Theorem 2, we obtain this result, which is an
extension of Kannan’s result [38].

Theorem 4. Let (ℵ, ν,⊥) be an O-complete OF -metric space and < : (ℵ, ν,⊥) → (ℵ, ν,⊥) is ⊥-
continuous, ⊥-preserving and orthogonally α-admissible. Suppose that there exist nonnegative real
numbers %2, %3 with 0 ≤ %2 + %3 < 1 such that these conditions hold: for all ρ, ς ∈ ℵ, ρ ⊥ ς,

ν(<ρ,<ς) , 0 implies[
ln (α(ρ, ς))

]2 ν(<ρ,<ς) ≤ %2
2ν(ρ,<ρ) + %2

3ν(ς,<ς) + 2%2%3

√
ν(ρ,<ρ)ν(ς,<ς).
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If there exists ρ0 ∈ ℵ such that ρ0 ⊥ <ρ0 and α
(
ρ0,<ρ0

)
≥ 1, then, there exists ρ∗ ∈ ℵ such that

ρ∗ = <ρ∗. Moreover, if ℵ has the property (i), then ρ∗ is unique.
On the other hand, by taking %1 = %2 = %3 = 0 in Theorem 2, we obtain this theorem, which is an

expansion of Chatterjea’s result [39].

Theorem 5. Let (ℵ, ν,⊥) be an O-complete OF -metric space and < : (ℵ, ν,⊥) → (ℵ, ν,⊥) is ⊥-
continuous, ⊥-preserving and orthogonally α-admissible. Suppose that there exists nonnegative real
number %4 ∈

[
0, 1

2

)
such that for all ρ, ς ∈ ℵ, ρ ⊥ ς, ν(<ρ,<ς) , 0 implies[

ln (α(ρ, ς))
]2 ν(<ρ,<ς) ≤ %2

4
(
ν(ρ,<ς) + ν(ς,<ρ)

)
.

If there exists ρ0 ∈ ℵ such that ρ0 ⊥ <ρ0 and α
(
ρ0,<ρ0

)
≥ 1, then, there exists ρ∗ ∈ ℵ such that

ρ∗ = <ρ∗. Moreover, if ℵ has the property (i), then ρ∗ is unique.
From Theorem 2, by taking %4 = 0, we obtain the extension of Reich contraction [40].

Corollary 4. Let (ℵ, ν,⊥) be an O-complete OF -metric space and < : (ℵ, ν,⊥) → (ℵ, ν,⊥) is ⊥-
continuous, ⊥-preserving and orthogonally α-admissible. Suppose that there exist nonnegative real
numbers %1, %2, %3 with 0 ≤ %1 + %2 + %3 < 1 such that for all ρ, ς ∈ ℵ, ρ ⊥ ς, ν(<ρ,<ς) , 0 implies[

ln (α(ρ, ς))
]2 ν(<ρ,<ς) ≤ %2

1ν(ρ, ς) + %2
2ν(ρ,<ρ) + %2

3ν(ς,<ς)

+2%1%2

√
ν(ρ, ς)ν(ρ,<ρ) + 2%1%3

√
ν(ρ, ς)ν(ς,<ς)

+2%2%3

√
ν(ρ,<ρ)ν(ς,<ς).

If there exists ρ0 ∈ ℵ such that ρ0 ⊥ <ρ0 and α
(
ρ0,<ρ0

)
≥ 1, then there exists ρ∗ ∈ ℵ such that

ρ∗ = <ρ∗. Moreover, if ℵ has the property (i), then ρ∗ is unique.
Eventually, if we take Θ(t) = e

n√t in (2), then we derive this corollary.

Corollary 5. Let (ℵ, ν,⊥) be an O-complete OF -metric space and < : (ℵ, ν,⊥) → (ℵ, ν,⊥) is ⊥-
continuous, ⊥-preserving and orthogonally α-admissible. Suppose that there exists nonnegative real
numbers %1, %2, %3, %4 with %1 + %2 + %3 + 2%4 < 1 such that for all ρ, ς ∈ ℵ, ρ ⊥ ς, ν(<ρ,<ς) , 0
implies

ln (α(ρ, ς)) n
√
ν(<ρ,<ς) ≤ %1

n
√
ν(ρ, ς) + %2

n
√
ν(ρ,<ρ) + %3

n
√
ν(ς,<ς) + %4

n
√
ν(ρ,<ς) + ν(ς,<ρ)

If there exists ρ0 ∈ ℵ such that ρ0 ⊥ <ρ0 and α
(
ρ0,<ρ0

)
≥ 1, then, there exists ρ∗ ∈ ℵ such that

ρ∗ = <ρ∗. Moreover, if ℵ has the property (i), then ρ∗ is unique.

4. Consequences

Now, we consider some special cases, where in our result we deduce several well-known fixed point
theorems of the existing literature.

Theorem 6. Let (ℵ, ν) be an F -complete F -metric space and< : ℵ → ℵ be an α-admissible mapping,
and there exist Θ ∈ Ψ, α :ℵ×ℵ−→[1,∞) and nonnegative real numbers %1, %2, %3, %4 with %1 + %2 + %3 +

2%4< 1 such that for all

ρ, ς ∈ ℵ, ν(<ρ,<ς) , 0 =⇒ α (ρ, ς) Θ
(
ν(<ρ,<ς)

)
≤

[
Θ (ν(ρ, ς))

]%1 .
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·
[
Θ

(
ν(ρ,<ρ)

)]%2 ·
[
Θ

(
ν(ς,<ς)

)]%3 ·
[
Θ

(
ν(ρ,<ς) + ν(ς,<ρ)

)]%4 (4.1)

for all ρ, ς ∈ ℵ. Assume that there exists ρ0 ∈ ℵ such that α
(
ρ0,<ρ0

)
≥ 1; then, there exists ρ∗ ∈ ℵ

such that<ρ∗ = ρ∗. Moreover, if ℵ has the property (i), then ρ∗ is unique.

Proof. Assume that
ρ⊥ς if and only if ν(<ρ,<ς) , 0.

Fix ρ0 ∈ ℵ. Since < satisfies the inequality (4.1), for all ς ∈ ℵ, ρ0⊥ς, it yields that (ℵ,⊥) is an O-
set. Then, (ℵ, ν) is O-complete. It is very obvious to prove that < is ⊥-preserving and ⊥-continuous.
Hence, by result 2, there exists a unique point ρ∗ ∈ ℵ such that<ρ∗ = ρ∗. �

Corollary 6. Let (ℵ, ν) be an F -complete F -metric space, < : ℵ → ℵ, and have nonnegative real
numbers %1, %2, %3, %4 with %1 + %2 + %3 + 2%4 < 1 such that

for all ρ, ς ∈ ℵ, ν(<ρ,<ς) , 0 =⇒ Θ
(
ν(<ρ,<ς)

)
≤

[
Θ (ν(ρ, ς))

]%1 .

·
[
Θ

(
ν(ρ,<ρ)

)]%2 ·
[
Θ

(
ν(ς,<ς)

)]%3 ·
[
Θ

(
ν(ρ,<ς) + ν(ς,<ρ)

)]%4

for all ρ, ς ∈ ℵ and Θ ∈ Ψ; then, there exists a unique point ρ∗ ∈ ℵ such that<ρ∗ = ρ∗.

Proof. Take α : ℵ×ℵ−→[1,∞) by α (ρ, ς) = 1 in Theorem 6. �

Theorem 7. Let (ℵ, ν,⊥) be an O-complete metric space, and < : (ℵ, ν,⊥) → (ℵ, ν,⊥) is ⊥-
continuous, ⊥-preserving and orthogonally α-admissible. Assume that there exist Θ ∈ Ψ, α :
ℵ×ℵ−→[1,∞) and nonnegative real numbers %1, %2, %3, %4 with %1 + %2 + %3 + 2%4 < 1 such that

for all ρ, ς ∈ ℵ, ρ ⊥ ς, ν(<ρ,<ς) , 0 =⇒ α (ρ, ς) Θ
(
ν(<ρ,<ς)

)
≤

[
Θ (ν(ρ, ς))

]%1 .

·
[
Θ

(
ν(ρ,<ρ)

)]%2 ·
[
Θ

(
ν(ς,<ς)

)]%3 ·
[
Θ

(
ν(ρ,<ς) + ν(ς,<ρ)

)]%4 .

If there exists ρ0 ∈ ℵ such that ρ0 ⊥ <ρ0 and α
(
ρ0,<ρ0

)
≥ 1, then, there exists ρ∗ ∈ ℵ such

that<ρ∗ = ρ∗. Moreover, if ℵ has the property (i), then ρ∗ is unique.

Proof. Take ξ(t) = ln(t), for t > 0 and α = 1 in Definition 5, and then OF -metric space reduced to O-
metric space. It follows directly from Theorem 2. �

Corollary 7. (see [31]) Let (ℵ, ν) be an complete metric space, < : ℵ → ℵ and nonnegative real
numbers %1, %2, %3, %4 with %1 + %2 + %3 + 2%4 < 1 such that

for all ρ, ς ∈ ℵ, ν(<ρ,<ς) , 0 =⇒ Θ
(
ν(<ρ,<ς)

)
≤

[
Θ (ν(ρ, ς))

]%1 .

·
[
Θ

(
ν(ρ,<ρ)

)]%2 ·
[
Θ

(
ν(ς,<ς)

)]%3 ·
[
Θ

(
ν(ρ,<ς) + ν(ς,<ρ)

)]%4

for all ρ, ς ∈ ℵ and Θ ∈ Ψ; then, there exists a unique point ρ∗ ∈ ℵ such that<ρ∗ = ρ∗.

Proof. Assume that
ρ⊥ς if and only if ν(<ρ,<ς) , 0.

It follows from Theorem 7 by considering α : ℵ×ℵ−→[1,∞) as α (ρ, ς) = 1. �

Remark 2. By using the remark 1 and equating nonnegative real numbers %1, %2, %3 and %4 to zero
appropriately in Theorems 6, 7 and Corollaries 6, 7 one can derive a number of results which are more
general results in the context of F -metric spaces, orthogonal metric spaces and metric spaces.

Remark 3. By taking the functions α : ℵ×ℵ−→[1,∞) and Θ : R+ → [1,∞) in different ways in above
results, one can obtain various results in different generalized metric spaces.
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5. Applications

The field of fractional differential equations has been subjected to a comprehensive evolution of
theory and applications ( [41–43] and references therein). In the present section, we give an application
of result 3 to investigate the existence of a solution for a nonlinear fractional differential equation
considered in [9, 44, 45].

Consider a nonlinear differential equation of fractional order

CDη(ρ(t)) = f (t, ρ(t)) (5.1)

(0 < t < 1, 1 < η ≤ 2) via the integral boundary conditions

ρ(0) = 0 , ρ/(0) = I, (0 < I < 1),

where CDη denotes the Caputo fractional derivative of order η defined by

CDη f (t) =
1

Γ( j − η)

t∫
0

(t − s) j−η−1 f j(s)ds,

(
j − 1 < η < j, j =

[
η
]
+ 1

)
and f is a continuous mapping. We take

ℵ= {ρ : ρ ∈ C ([0, 1],R)}

with supremum norm ‖ρ‖∞ = supt∈[0,1] |ρ(t)| . Thus,
(
ℵ, ‖ρ‖∞

)
is a Banach space. Remember that

Iη f (t) =
1

Γ(η)

t∫
0

(t − s)η−1 f (s)ds, with η > 0

is a Riemann-Liouville fractional integral.

Lemma 1. (see [9]) The Banach space (ℵ, ‖·‖∞) endowed with the F -metric d defined by

d(ρ, ς) = ‖ρ − ς‖∞ = sup
t∈[0,1]

|ρ(t) − ς(t)|

and orthogonal relation ρ⊥ς if and only if ρς ≥ 0, where ρ, ς ∈ ℵ, is an orthogonal F -metric space.

Theorem 8. Assume that f is a continuous mapping satisfying
(i) there exists a constant ϑ such that

| f (t, ρ) − f (t, ς)| ≤ ϑ |ρ − ς|

for t ∈ [0, 1] and for all ρ, ς ∈ ℵ such that ρ(t)ς(t) ≥ 0 and with ϑβ < 1, where

β =
1

Γ(η + 1)
+

2λη+1Γ(η)(
2 − λ2) Γ(η + 1)

,
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(ii) there exists L : (ℵ,⊥, d)→ (ℵ,⊥, d) , which is defined by

<ρ(t) =
1

Γ(η)

t∫
0

(t − s)η−1 f (s, ρ(s)) ds

+
2t(

2 − λ2) Γ(η)

λ∫
0


s∫

0

(s − m)η−1 f (m, ρ(m)) dm

 ds

for all ρ, ς ∈ ℵ such that ρ(t)ς(t) ≥ 0, where (0 < λ < 1). Also, < is orthogonally α-admissible, and
there exists ρ0(t) ∈ (ℵ,⊥, d) such that ρ0(t) ⊥ <ρ0(t) and α

(
ρ0(t),<ρ0(t)

)
≥ 1 Then, (5.1) has a unique

solution.

Proof. It is conventional that ρ ∈ ℵ is a solution of (5.1) iff ρ ∈ ℵ is a solution of the integral equation

ρ(t) =
1

Γ(η)

t∫
0

(t − s)η−1 f (s, ρ(s)) ds

+
2t(

2 − λ2) Γ(η)

λ∫
0


s∫

0

(s − m)η−1 f (m, ρ(m)) dm

 ds.

Then, problem (5.1) is equivalent to finding ρ ∈ ℵ that is a fixed point of< . Assume that ⊥ ⊆ ℵ × ℵ
is defined by

ρ⊥ς if and only if ρ(t)ς(t) ≥ 0

for all t ∈ [0, 1]. Then, ℵ is orthogonal under this relation ⊥, since for ρ ∈ ℵ, there exists ς(t) = 0, for
all t ∈ [0, 1] such that ρ(t)ς(t) = 0. Now, define d : ℵ × ℵ → [0,+∞) by

d(ρ, ς) = ‖ρ − ς‖∞ = sup
t∈[0,1]

|ρ(t) − ς(t)|

for all ρ, ς ∈ ℵ, and then (ℵ, d,⊥) is a complete OF -metric space. This is quite simple from the
definition that< is⊥-continuous. We first show that< is⊥-preserving. Let ρ(t)⊥ς(t), for all t ∈ [0, 1].
Now, we have

<ρ(t) =
1

Γ(η)

t∫
0

(t − s)η−1 f (s, ρ(s)) ds

+
2t(

2 − λ2) Γ(η)

λ∫
0


s∫

0

(s − m)η−1 f (m, ρ(m)) dm

 ds > 0,

which yields that <ρ(t)⊥<ς(t), that is, < is ⊥-preserving. Subsequently, for all t ∈ [0, 1], ρ(t)⊥ς(t),
we have

α (ρ(t), ς(t))
∣∣∣<ρ(t) −<ς(t)

∣∣∣
AIMS Mathematics Volume 8, Issue 3, 5080–5098.
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≤
∣∣∣<ρ(t) −<ς(t)

∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
Γ(η)

t∫
0

(t − s)η−1 f (s, ρ(s)) ds

+ 2t
(2−λ2)Γ(η)

λ∫
0

 s∫
0

(s − m)η−1 f (m, ρ(m)) dm
 ds

− 1
Γ(η)

t∫
0

(t − s)η−1 f (s, ς(s)) ds

− 2t
(2−λ2)Γ(η)

λ∫
0

 s∫
0

(s − m)η−1 f (m, ς(m)) dm
 ds

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤
1

Γ(η)

t∫
0

|t − s|η−1
| f (s, ρ(s)) − f (s, ς(s))| ds

+
2t(

2 − λ2) Γ(η)

λ∫
0


s∫

0

(s − m)η−1
| f (m, ς(m)) − f (m, ρ(m))| dm

 ds,

which yields

α (ρ(t), ς(t))
∣∣∣<ρ(t) −<ς(t)

∣∣∣
≤

 1
Γ(η)

t∫
0

|t − s|η−1 ds +
2t(

2 − λ2) Γ(η)

λ∫
0


s∫

0

|s − m|η−1 dm

 ds

ϑβ ‖ρ − ς‖∞

=

(
1

Γ(η + 1)
+

2λη+1Γ(η)(
2 − λ2) Γ(η + 1)

)
ϑ ‖ρ(s) − ς(s)‖∞

= ϑβ ‖ρ − ς‖∞ .

Take % = ϑβ < 1. By the definition of d, we have

α (ρ, ς) d(<ρ,<ς) ≤ %d(ρ, ς).

Then,

e
√
α(ρ,ς)d(<ρ,<ς) ≤

[
e
√

d(ρ,ς)
]%
,

where % ∈ (0, 1). Now, if Θ(t) = e
√

t, for all t > 0, then Θ ∈ Ψ. Hence, from above,

α (ρ, ς) Θ
(
d(<ρ,<ς)

)
≤

[
Θ (d(ρ, ς))

]%
for all ρ, ς ∈ ℵ and d(<ρ,<ς) > 0. Thus, all the conditions of result 3 are satisfied, and thus Eq (5.1)
has a unique solution. �
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6. Conclusions

In this work, we defined the notion of a generalized (α,ΘF )-contraction in the background of an
orthogonal F -metric space and proved some certain fixed point results. As outcomes of the leading
results, we obtained some fixed point theorems in F -metric spaces and orthogonal metric spaces.
Moreover, a non trivial example is also furnished to validate the originality of the obtained results.
We investigated the existence and uniqueness of a solution for the fractional differential equation as
application of our main results.

For future work, the notion of an F -metric space can be extended to a graphical F -metric space,
and the results proved in this article can be extended to multivalued mappings and fuzzy set valued
mappings. Moreover, we can solve differential and integral inclusions as applications of fixed point
results for multivalued mappings in the setting of F -metric space.
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