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1. Introduction

In this paper, we are working with existence and multiplicity of solutions for the following double
phase problem in RN:

− div(|∇v|p−2∇v + a(x)|∇v|q−2∇v) +V(x)(|v|p−2v + a(x)|v|q−2v) = λρ(x) |v|r−2 z + h(x, v) in RN , (1.1)

where N ≥ 2, 1 < p < q < N, 1 < r < p, 0 ≤ a ∈ L1(RN)∩ L∞(RN), h : RN ×R→ R is a Carathéodory
function, andV : RN → (0,∞) is a potential function satisfying

(V) V ∈ L1
loc(R

N), ess in fx∈RNV(x) > 0, and lim|x|→∞V(x) = +∞.

To do this, we assume that

(B1) 1 < r < p < q < γ < p∗;
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(B2) 0 ≤ ρ ∈ L
γ0
γ0−r (RN) ∩ L∞(RN) with meas

{
x ∈ RN : ρ(x) , 0

}
> 0 for any γ0 with p < γ0 < p∗;

(H1) there are s ∈ (p, p∗), 0 ≤ σ1 ∈ Ls′(RN) ∩ L∞(RN) and a positive constant c1 such that

|h(x, t)| ≤ σ1(x) + c1 |t|γ−1

for all t ∈ R and for almost all x ∈ RN;

(H2) there exists ν > q and M0 > 0 such that

h(x, t)t − νH(x, t) ≥ −β0(x)

for all (x, t) ∈ RN × R with |t| ≥ M0 and for some β0 ∈ L1(RN) ∩ L∞(RN) with β0(x) ≥ 0, where
H(x, t) =

´ t
0 h(x, s) ds;

(H3) there exist ν > q, % ≥ 0 and M1 > 0 such that

h(x, t)t − νH(x, t) ≥ −% |t|p − β1(x)

for all (x, t) ∈ RN × R with |t| ≥ M1 and for some β1 ∈ L1(RN) ∩ L∞(RN) with β1(x) ≥ 0;

(H4) there exist C > 0, 1 < κ < p, τ > 1 with p ≤ τ′κ ≤ p∗ and a positive function ξ ∈ Lτ(RN)∩L∞(RN)
such that

lim inf
|t|→0

h(x, t)
ξ(x) |t|κ−2 t

≥ C

uniformly for almost all x ∈ RN .

Remark 1.1. It is clear that the condition (H3) is weaker than (H2), which was initially provided by
the paper [31]. If we consider the function

h(x, `) = σ(x)
(
ξ(x) |`|κ−2 ` + |`|p−2 ` +

2
p

sin `
)

with its primitive function

H(x, `) = σ(x)
(
ξ(x)
κ
|`|κ +

1
p
|`|p −

2
p

cos ` +
2
p

)
,

where σ ∈ C(RN ,R) with 0 < infx∈RN σ(x) ≤ supx∈RN σ(x) < ∞, and κ, ξ are given in (H4), then it is
obvious that this example satisfies the condition (H3) but not (H2). Also the conditions (H1) and (H4)
are satisfied.

The double phase operator, which is the natural generalization of the p-Laplace operator, has been
extensively studied by many researchers. The interest in variational problems with double phase
operator is founded on their popularity in diverse fields of mathematical physics, such as plasma
physics, biophysics and chemical reactions, strongly anisotropic materials, Lavrentiev’s phenomenon,
etc.; see [47, 48]. With regard to regularity theory for double phase functionals, we would like
to mention a series of notable papers by Mingione et al. [4–6, 12–14]. Also, we refer to the
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works of Bahrouni-Rǎdulescu-Repovš [3], Byun-Oh [9], Colasuonno-Squassina [11], Crespo Blanco-
Gasiński-Harjulehto-Winkert [15], Gasiński-Winkert [18, 19], Kim-Kim-Oh-Zeng [27], Liu-Dai [33],
Papageorgiou-Rǎdulescu-Repovš [36, 37], Perera-Squassina [38], Ragusa-Tachikawa [39], Zhang-
Rǎdulescu [46], Zeng-Bai-Gasiński-Winkert [44, 45].

The goal of this paper is to provide several existence results of multiple solutions for Schrödinger-
type problems involving the double phase operator for the case of a combined effect of concave–
convex nonlinearities. The first one is to discuss that problem (1.1) has an infinitely many large energy
solutions (see Theorem 2.14). Second, we obtain the existence of a sequence of infinitely many small
energy solutions to problem (1.1) (see Theorem 2.21). To get such multiplicity results, we employ the
fountain theorem and the dual fountain theorem as the primary tools, respectively. The present paper is
motivated by the work of Stegliński [41]. The author obtained such multiplicity results for the double
phase problem

−div(|∇u|p−2∇u + a(x)|∇u|q−2∇u) +V(x)(|u|p−2u + a(x)|u|q−2u) = h(x, u) in RN .

Here, the Carathéodory function h : RN × R → R fulfills the condition (H4) and the following
assumption:

(MS) There is a positive function η ∈ L1(RN) such that

`h(x, `) − qH(x, `) ≤ ςh(x, ς) − qH(x, ς) + η(x)

for any x ∈ RN , 0 < ` < ς or ς < ` < 0,

which is first provided by Miyagaki and Souto [34]. However, it is clear that the example in Remark 1.1
does not satisfy the condition (MS). Let us consider the function

f (x, `) = σ(x)
(
ξ(x) |`|κ−2 ` + |`|q−2 ` ln (1 + |`|) +

|`|q−1 `

1 + |`|

)
with its primitive function

F(x, `) = σ(x)
(
ξ(x)
κ
|`|κ +

1
q
|`|q ln (1 + |`|)

)
for all ` ∈ R and 1 < κ < p < q for all x ∈ RN , where σ is given in Remark 1.1. Then, this example
fulfills the condition (MS) but not (H3). Such existence results of multiple solutions to double phase
problems are particularly motivated by the contributions in recent studies [1, 10, 20–23, 25, 26, 29–32,
40, 42], and the references therein. However our proof of the existence of a sequence of small energy
solutions is slightly different from those of previous related studies [10,21,25,30,32,42,43]. Roughly
speaking, in view of [10,21,25,30] the conditions on the nonlinear term h near zero and at infinity (see
(H5) and (2.21), which will be specified later) play an important role in verifying assumptions in the
dual fountain theorem, but we ensure them when (H5) is not assumed and (2.21) is replaced by (H4);
see Remark 2.20 for more details and the difference from the papers [32, 42, 43]. For this reason, on a
new class of nonlinear term h we give the existence result of small energy solutions via applying the
dual fountain theorem. As far as we are, although this work is inspired by the papers [10,27], and many
authors have an interest in the investigation of elliptic problems with double phase operator, this paper
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is the first effort to develop the multiplicity results for the concave-convex-type double phase problems
because we assert our results on a new class of nonlinear term h. The main difficulty for establishing our
results under various conditions on the convex term h is to ensure the Cerami compactness condition
of the energy functional corresponding to (1.1). To overcome this, we assume the fact that the potential
function V is coercive.

The outline of this paper is as follows. We present some necessary preliminary knowledge of
function spaces which we will use along the paper. Next, we provide the variational framework related
to problem (1.1), and then we obtain various existence results of infinitely many nontrivial solutions to
the double phase equations with concave-convex type nonlinearities under appropriate conditions on h.

2. Preliminaries

In this section, we briefly demonstrate some definitions and essential properties of Musielak-Orlicz-
Sobolev space. For a deeper treatment of these spaces, we refer to [11, 16, 24, 35].

The functionsH : RN × [0,∞)→ [0,∞) andHV : RN × [0,∞)→ [0,∞) are defined as

H(x, t) := tp + a(x)tq, HV(x, t) := V(x)(tp + a(x)tq), (2.1)

for almost all x ∈ RN and for any t ∈ [0,∞), with 1 < p < q, 0 ≤ a ∈ L1(RN) andV : RN → R. Define
the Musielak-Orlicz space LH (RN) as

LH (RN) :=
{
z : RN → R measurable : %H (z) < ∞

}
,

induced by the Luxemburg norm

||z||H := inf
{
λ > 0 : %H

(
x,

∣∣∣∣ z
λ

∣∣∣∣) ≤ 1
}
,

where %H denotes theH-modular function with

%H (z) :=
ˆ
RN
H(x, |z|)dx =

ˆ
RN

(|z|p + a(x)|z|q) dx. (2.2)

If we replace in the above definition H by HV, we obtain the definition of the Musielak-Orlicz
space (LHV(RN), || · ||HV), i.e.,

LHV(RN) :=
{
z : RN → R measurable : %H

V
(z) < ∞

}
,

induced by the Luxemburg norm

||z||HV := inf
{
λ > 0 : %H

V

(
x,

∣∣∣∣ z
λ

∣∣∣∣) ≤ 1
}
,

where %H
V

denotes theHV-modular function as

%H
V

(z) :=
ˆ
RN
HV(x, |z|)dx =

ˆ
RN
V(x) (|z|p + a(x)|z|q) dx. (2.3)

By [24, 41], the space LH (RN) and LHV(RN) are separable and reflexive Banach spaces.
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Lemma 2.1. ( [41]) For %H
V

(z) given in (2.3) and z ∈ LHV
(
RN

)
, we have the following

(i) for z , 0, ||z||HV = λ iff %H
V

( z
λ
) = 1;

(ii) ||z||HV < 1(= 1;> 1) iff %H
V

(z) < 1(= 1;> 1);

(iii) if ||z||HV > 1, then ||z||p
V,H
≤ %H

V
(z) ≤ ||z||q

HV
;

(iv) if ||z||HV < 1, then ||z||q
HV
≤ %H

V
(z) ≤ ||z||p

HV
.

Also, an analogous results hold for %H (u) given in (2.2) and ‖ · ‖H .

The weighted Musielak-Orlicz-Sobolev space W1,H
V

(RN) is defined by

W1,H
V

(RN) = {z ∈ LHV(RN) : |∇z| ∈ LH (RN)},

and it is equipped with the norm
||z|| = ||∇z||H + ||z||HV .

Note that W1,H
V

(RN) is a separable reflexive Banach space; see [28]. In what follows, the notation
E ↪→ F means that the space E is continuously imbedded into the space F, while E ↪→↪→ F means
that E is compactly imbedded into F.

Lemma 2.2. ( [41]) The following embeddings hold:

(i) LHV(RN) ↪→ LH (RN);

(ii) W1,H
V

(RN) ↪→ Lτ(RN) for τ ∈ [p, p∗];

(iii) W1,H
V

(RN) ↪→↪→ Lτ(RN) for τ ∈ [p, p∗).

Lemma 2.3. ( [41]) Let

ϕ(z) :=
ˆ
RN

(|∇z|p + a(x)|∇z|q) dx +

ˆ
RN
V(x) (|z|p + a(x)|z|q) dx. (2.4)

The following properties hold:

(i) ϕ(z) ≤ ||z||p + ||z||q for all z ∈ W1,H
V

(RN);

(ii) If ||z|| ≤ 1, then 21−q||z||q ≤ ϕ(z) ≤ ||z||p;

(iii) If ||z|| ≥ 1, then 2−p||z||p ≤ ϕ(z) ≤ 2||z||q.

Let us define the functional Φ : X := W1,H
V

(RN)→ R by

Φ(v) =

ˆ
RN

(
1
p
|∇v|p +

a(x)
q
|∇v|q

)
dx +

ˆ
RN
V(x)

(
1
p
|v|p +

a(x)
q
|v|q

)
dx.

Then, it is easy to check that Φ ∈ C1(X,R), and double-phase operator −div(|∇v|p−2∇v + a(x)|∇v|q−2∇v)
is the derivative operator of Φ in the weak sense. We define Φ′ : X→ X∗ with

〈Φ′(v),w〉 =

ˆ
RN

(|∇v|p−2∇v · ∇w + a(x)|∇v|q−2∇v · ∇w) +

ˆ
RN
V(x)(|v|p−2vw + a(x)|v|q−2vw) dx,

for all w, v ∈ X. Here, X∗ denotes the dual space of X, and 〈·, ·〉 denotes the pairing between X and X∗.
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Lemma 2.4. ( [41]) Let the assumption (V) hold. Then, we have the following

(i) Φ′ : X→ X∗ is a bounded, continuous and strictly monotone operator;

(ii) Φ′ : X→ X∗ is a mapping of type (S +), i.e., if vn ⇀ v in X and

lim sup
n→∞

〈Φ′ (vn) − Φ′(v), vn − v〉 ≤ 0,

then vn → v in X;

(iii) Φ′ : X→ X∗ is a homeomorphism.

Definition 2.5. We say that v ∈ X is a weak solution of problem (1.1) if
ˆ
RN

(
|∇v|p−2

∇v · ∇u + a(x) |∇v|q−2
∇v · ∇u

)
dx +

ˆ
RN
V(x)(|v|p−2vu + a(x)|v|q−2vu) dx

= λ

ˆ
RN
ρ(x) |v|r−2 vu dx +

ˆ
RN

h(x, v)u dx,

for any u ∈ X.

Let us define the functional Ψλ : X→ R by

Ψλ(v) =
λ

r

ˆ
RN
ρ(x) |v|r dx +

ˆ
RN

H(x, v) dx.

Then, it is easy to show that Ψλ ∈ C1(X,R), and its Fréchet derivative is〈
Ψ′λ(v),w

〉
= λ

ˆ
RN
ρ(x)|v|r−2vw dx +

ˆ
RN

h(x, v)w dx

for any v,w ∈ X; see [41]. Next, we define the functional Eλ : X→ R by

Eλ(v) = Φ(v) − Ψλ(v).

Then, it follows that the functional Eλ ∈ C1(X,R), and its Fréchet derivative is〈
E′λ(v),w

〉
= 〈Φ′(v),w〉 −

〈
Ψ′λ(v),w

〉
for any v,w ∈ X.

Before going to the proofs of our main consequences, we present some useful preliminary
assertions.

Lemma 2.6. ( [41]) Assume that (V), (B1), (B2) and (H1) hold. Then, Ψλ and Ψ′λ are sequentially
weakly strongly continuous.

Definition 2.7. Suppose that E is a real Banach space. We say that the functional F satisfies the
Cerami condition ((C)-condition for short) in E, if any (C)-sequence {vn} ⊂ E, i.e., {F (vn)} is bounded
and ||F ′(vn)||E∗(1 + ||vn||)→ 0 as n→ ∞, has a convergent subsequence in E.

The following lemmas are the compactness condition for the Palais-Smale type, which plays a
crucial role in obtaining our main result. The basic idea of proofs of these consequences follows the
analogous arguments as in [26].
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Lemma 2.8. Suppose that (V), (B1), (B2), (H1) and (H2) hold. Then, the functional Eλ ensures the
(C)-condition for any λ > 0.

Proof. Let {vn} be a (C)-sequence in X, i.e.,

sup
n∈N
|Eλ(vn)| ≤ K1 and

〈
E′λ(vn), vn

〉
= o(1)→ 0, (2.5)

as n → ∞, and K1 is a positive constant. First, we prove that {vn} is bounded in X. SinceV(x) → +∞

as |x| → ∞, we have(1
q
−

1
ν

) ˆ
RN
HV(x, |vn|) dx −C1

ˆ
|vn |≤M

(|vn|
p + σ1(x) |vn| + c1 |vn|

γ) dx (2.6)

≥
1
2

(1
q
−

1
ν

) ˆ
RN
HV(x, |vn|) dx − K0,

for any positive constant C1 and some positive constants K0, whereHV(x, t) is given in (2.1). Indeed,
by Young’s inequality we know that(1

q
−

1
ν

)ˆ
RN
HV(x, |vn|) dx −C1

ˆ
|vn |≤M

(|vn|
p + σ1(x) |vn| + c1 |vn|

γ) dx

≥
(1
q
−

1
ν

)ˆ
RN
HV(x, |vn|) dx −C1

ˆ
|vn |≤M

(
|vn|

p + σs′
1 (x) + |vn|

s + c1 |vn|
γ
)

dx

≥
1
2

(1
q
−

1
ν

) [ˆ
RN
HV(x, |vn|) dx +

ˆ
|vn |≤M

HV(x, |vn|) dx
]

−C1

ˆ
|vn |≤1

(|vn|
p + |vn|

s + c1 |vn|
γ) dx

−C1

ˆ
1<|vn |≤M

(|vn|
p + |vn|

s + c1 |vn|
γ) dx −C1||σ1||Ls′ (RN )

≥
1
2

(1
q
−

1
ν

) [ˆ
RN
HV(x, |vn|) dx +

ˆ
|vn |≤M

HV(x, |vn|) dx
]

−C1 (2 + c1)
ˆ
|vn |≤1

(|vn|
p + a(x) |vn|

q) dx −C1||σ1||Ls′ (RN )

−C1
(
1 + Ms−p + Mγ−pc1

)ˆ
1<|vn |≤M

(|vn|
p + a(x) |vn|

q) dx

≥
1
2

(1
q
−

1
ν

) [ˆ
RN
HV(x, |vn|) dx +

ˆ
|vn |≤M

HV(x, |vn|) dx
]

− C̃0

ˆ
|vn |≤M

H(x, |vn|) dx − C̃1, (2.7)

whereH(x, t) is given in (2.1), and

C̃0 := C1 max
{
2 + c1, 2Ms−p + Mγ−pc1

}
.

SinceV(x) → +∞ as |x| → ∞, there is r0 > 0 such that |x| ≥ r0 impliesV(x) ≥ 2qνC̃0
ν−q . Then, we know

that

HV(x, |vn|) ≥
2qνC̃0

ν − q
H(x, |vn|) (2.8)
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for |x| ≥ r0. Set Br0 = {x ∈ RN : |x| < r0}. Then, sinceV ∈ L1
loc(R

N) and a ∈ L1(RN)∩ L∞(RN), we infer
ˆ
{|vn |≤M}∩Br0

HV(x, |vn|) dx ≤ C̃2 and
ˆ
{|vn |≤M}∩Br0

H(x, |vn|) dx ≤ C̃3

for some positive constants C̃2, C̃3. This together with (2.7) and (2.8) yields(1
q
−

1
ν

) ˆ
RN
HV(x, |vn|) dx −C1

ˆ
|vn |≤M

(|vn|
p + σ1(x) |vn| + c1 |vn|

γ) dx

≥
ν − q
2qν

[ˆ
RN
HV(x, |vn|) dx +

ˆ
{|vn |≤M}∩Bc

r0

HV(x, |vn|) dx +

ˆ
{|vn |≤M}∩Br0

HV(x, |vn|) dx
]

− C̃0

ˆ
{|vn |≤M}∩Bc

r0

H(x, |vn|) dx +

ˆ
{|vn |≤M}∩Br0

H(x, |vn|) dx

 − C̃1

≥
ν − q
2qν

ˆ
RN
HV(x, |vn|) dx +

ν − q
2qν

ˆ
{|vn |≤M}∩Bc

r0

HV(x, |vn|) dx

− C̃0

ˆ
{|vn |≤M}∩Bc

r0

H(x, |vn|) dx − K0

≥
1
2

(1
q
−

1
ν

) ˆ
RN
HV(x, |vn|) dx − K0,

as claimed. Combining (2.6) with (B1), (B2) and (H1), (H2), one has

K1 + o(1) ≥ Eλ(vn) −
1
ν

〈
E′λ(vn), vn

〉
≥

(1
q
−

1
ν

)ˆ
RN
H(x, |∇vn|) dx +

(1
q
−

1
ν

)ˆ
RN
HV(x, |vn|) dx

− λ

(
1
r
−

1
ν

)ˆ
RN
ρ(x)|vn|

r dx +

ˆ
RN

(
1
ν

h(x, vn)vn − H(x, vn)
)

dx

≥
(1
q
−

1
ν

)ˆ
RN
H(x, |∇vn|) dx +

(1
q
−

1
ν

)ˆ
RN
HV(x, |vn|) dx

− λ

(
1
r
−

1
ν

)ˆ
RN
ρ(x)|vn|

r dx +

ˆ
|vn |>M

(
1
ν

h(x, vn)vn − H(x, vn)
)

dx

−C1

ˆ
|vn |≤M

(|vn|
p + σ1(x) |vn| + c1 |vn|

γ) dx

≥
(1
q
−

1
ν

)ˆ
RN
H(x, |∇vn|) dx +

1
2

(1
q
−

1
ν

)ˆ
RN
HV(x, |vn|) dx

− λ

(
1
r
−

1
ν

)ˆ
RN
ρ(x)|vn|

r dx −
1
ν

ˆ
RN
β0(x) dx − K0

≥
1
2

(1
q
−

1
ν

) (ˆ
RN
H(x, |∇vn|) dx +

ˆ
RN
HV(x, |vn|) dx

)
− λ

(
1
r
−

1
ν

)ˆ
RN
ρ(x)|vn|

r dx −
1
ν

ˆ
RN
β0(x) dx − K0
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≥
(1
q
−

1
ν

) 1
q2p+1 ||vn||

p − λ

(
1
r
−

1
ν

)
||ρ||

L
γ0
γ0−r (RN )

||vn||
r
Lγ0 (RN ) −

1
ν
||β0||L1(RN ) − K0.

Since p > r > 1, we assert that the sequence {vn} is bounded in X, and thus {vn} has a weakly
convergent subsequence in X. Without loss of generality, we suppose that

vn ⇀ v0 in X as n→ ∞.

By Lemma 2.6, we infer that Ψ′λ is compact, and so Ψ′λ(vn)→ Ψ′λ(v0) in X as n→ ∞. Since E′λ(vn)→ 0
as n→ ∞, we know that

〈E′λ(vn), vn − v0〉 → 0 and 〈E′λ(v0), vn − v0〉 → 0,

and thus
〈E′λ(vn) − E′λ(z0), vn − v0〉 → 0

as n→ ∞. From this, we have

〈Φ′(vn) − Φ′(v0), vn − v0〉 = 〈Ψ′λ(vn) − Ψ′λ(v0), vn − v0〉 + 〈E
′
λ(vn) − E′λ(z0), vn − v0〉 → 0,

namely, 〈Φ′(vn)−Φ′(v0), vn − v0〉 → 0 as n→ ∞. Since X is reflexive and Φ′ is a mapping of type (S +)
by Lemma 2.4, we assert that

vn → v0 in X as n→ ∞.

This completes the proof. �

Remark 2.9. As mentioned in Remark 1.1, condition (H3) is weaker than (H2). However, to obtain
the following compactness condition, we need an additional assumption on the nonlinear term h at
infinity.

Lemma 2.10. Suppose that (V), (B1), (B2), (H1) and (H3) hold. In addition,

(H5) lim|t|→∞
H(x,t)
|t|q = ∞ uniformly for almost all x ∈ RN

holds. Then, the functional Eλ fulfils the (C)-condition for any λ > 0.

Proof. Let {vn} be a (C)-sequence in X satisfying (2.5). As in Lemma 2.8, it is sufficient to prove that
{vn} is bounded in X. To this end, suppose to the contrary that ||vn|| > 1 and ||vn|| → ∞ as n → ∞, and
a sequence {yn} is defined by yn = vn/||vn||. Then, up to a subsequence, still denoted by {yn}, we get
yn ⇀ y0 in X as n→ ∞, and due to Lemma 2.2,

yn → y0 a.e. in RN , yn → y0 in Ls(RN) (2.9)

as n→ ∞, for any s with p ≤ s < p∗. Combining (2.6) with (B1), (B2), (H1) and (H3), one has

K1 + o(1) ≥ Eλ(vn) −
1
ν

〈
E′λ(vn), vn

〉
≥

(1
q
−

1
ν

) ˆ
RN
H(x, |∇vn|) dx +

1
2

(1
q
−

1
ν

) ˆ
RN
HV(x, |vn|) dx
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− λ

(
1
r
−

1
ν

)ˆ
RN
ρ(x)|vn|

r dx −
1
ν

ˆ
|vn |>M

(% |vn|
p + β1(x)) dx − K0

≥
1
2

(1
q
−

1
ν

) (ˆ
RN
H(x, |∇vn|) dx +

ˆ
RN
HV(x, |vn|) dx

)
− λ

(
1
r
−

1
ν

)ˆ
RN
ρ(x)|vn|

r dx −
1
ν

ˆ
RN

(% |vn|
p + β1(x)) dx − K0

≥
1
2

(1
q
−

1
ν

) 1
q2p ‖vn‖

p − λ

(
1
r
−

1
ν

)ˆ
RN
ρ(x)|vn|

r dx

−
1
ν

ˆ
RN

(% |vn|
p + β1(x)) dx − K0

≥
(1
q
−

1
ν

) 1
q2p+1 ||vn||

p − λ

(
1
r
−

1
ν

)
||ρ||

L
γ0
γ0−r (RN )

||vn||
r
Lγ0 (RN )

−
%

ν
||vn||

p
Lp(RN ) −

1
ν
||β1||L1(RN ) − K0.

Hence, we know that

K1 + o(1) + λ

(
1
r
−

1
ν

)
||ρ||

L
γ0
γ0−r (RN )

||vn||
r
Lγ0 (RN ) +

%

ν
||vn||

p
Lp(RN ) +

1
ν
||β1||L1(RN ) +K0

≥
(1
q
−

1
ν

) 1
q2p+1 ||vn||

p.

Dividing this by
(

1
q −

1
ν

)
1

q2p+1 ||vn||
p and then taking the limit supremum of this inequality as n → ∞,

we have
1 ≤

%(
1
q −

1
ν

)
ν

q2p+1

lim sup
n→∞

||yn||
p
Lp(RN ) =

%(
1
q −

1
ν

)
ν

q2p+1

||y0||
p
Lp(RN ). (2.10)

Hence, it follows from (2.10) that y0 , 0.
By Lemma 2.3 and the assumption (B2), we have

Eλ(vn) ≥
1
q

( ˆ
RN
H(x, |∇vn|) dx +

ˆ
RN
HV(x, |vn|) dx

)
−
λ

r

ˆ
RN
ρ(x)|vn|

r dx −
ˆ
RN

H(x, vn) dx

≥
1

q2p ||vn||
p −

λ

r
||ρ||

L
γ0
γ0−r (RN )

||vn||
r
Lγ0 (RN ) −

ˆ
RN

H(x, vn) dx

≥
1

q2p ||vn||
p −C2

λ

r
||vn||

r −

ˆ
RN

H(x, vn) dx

for a positive constant C2. Since Eλ(vn) ≤ K1 for all n ∈ N, ||vn|| → ∞ as n → ∞, and r < p, we assert
that ˆ

RN
H(x, vn) dx ≥

1
q2p ||vn||

p −C2
λ

r
||vn||

r − Eλ(vn)→ ∞ as n→ ∞. (2.11)

By Lemma 2.3, we note that

Eλ(vn) ≤
1
p

( ˆ
RN
H(x, |∇vn|) dx +

ˆ
RN
HV(x, |vn|) dx

)
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−
λ

r

ˆ
RN
ρ(x)|vn|

r dx −
ˆ
RN

H(x, vn) dx

≤
2
p
||vn||

q −

ˆ
RN

H(x, vn) dx.

So,
2
p
||vn||

q ≥ Eλ(vn) +

ˆ
RN

H(x, vn) dx. (2.12)

Owing to assumption (H5), there exists a δ > 1 such that H(x, t) > |t|q for all x ∈ RN and |t| > δ. Taking
into account (H1), we get |H(x, t)| ≤ Ĉ for all (x, t) ∈ RN × [−t0, t0] for a constant Ĉ > 0. Therefore,
H(x, t) ≥ C1 for all (x, t) ∈ RN × R and for some C1 ∈ R, and thus

H(x, vn) − C1
2
p ||vn||

q
≥ 0, (2.13)

for all x ∈ RN and n ∈ N. Set A1 =
{
x ∈ RN : y0(x) , 0

}
. By relation (2.9), we infer that |vn(x)| =

|yn(x)| ||vn|| → ∞ as n→ ∞ for all x ∈ A1. Thus, by using (H5),

lim
n→∞

H(x, vn)
||vn||

q = lim
n→∞

H(x, vn)
|vn|

q |yn|
q = +∞, x ∈ A1. (2.14)

Hence, we obtain that meas(A1) = 0. Indeed, if meas(A1) , 0, according to the relations (2.11)–(2.14)
and the Fatou lemma, we have

1 = lim inf
n→∞

´
RN H(x, vn) dx´

RN H(x, vn) dx + Eλ(vn)
≥ lim inf

n→∞

ˆ
RN

H(x, vn)
2
p ||vn||

q
dx

= lim inf
n→∞

ˆ
RN

H(x, vn)
2
p ||vn||

q
dx − lim sup

n→∞

ˆ
RN

C1
2
p ||vn||

q
dx

= lim inf
n→∞

ˆ
A1

H(x, vn) − C1
2
p ||vn||

q
dx

≥

ˆ
A1

lim inf
n→∞

H(x, vn) − C1
2
p ||vn||

q
dx

=

ˆ
A1

lim inf
n→∞

H(x, vn)
2
p ||vn||

q
dx −

ˆ
A1

lim sup
n→∞

C1
2
p ||vn||

q
dx = ∞, (2.15)

which is impossible. Thus, y0(x) = 0 for almost all x ∈ RN . Consequently, we yield a contradiction,
and thus the sequence {vn} is bounded in X. The proof is completed. �

Now, we illustrate two existence results of a sequence of infinitely many solutions to the
problem (1.1). The primary tools for these consequences are the Fountain theorem in [7] and the
Dual Fountain Theorem in [8]. Let E be a real reflexive and separable Banach space, and then it is
known (see [17, 49]) that there exist {en} ⊆ E and { f ∗n } ⊆ E

∗ such that

E = span{en : n = 1, 2, · · · }, E∗ = span{ f ∗n : n = 1, 2, · · · },
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and 〈
f ∗i , e j

〉
=

 1 if i = j,

0 if i , j.

Let us define En = span{en}, Yk =
⊕k

n=1 En, and Zk =
⊕∞

n=k En.

Lemma 2.11. (Fountain Theorem [7, 25, 43]) Assume that (E, || · ||) is a Banach space, the functional
F ∈ C1(E,R) satisfies the (C)c-condition for any c > 0, and F is even. If for each large enough k ∈ N,
there are βk > αk > 0 such that

(1) δk := inf{F (y) : y ∈ Zk, ||y|| = αk} → ∞ as k → ∞,

(2) ρk := max{F (y) : y ∈ Yk, ||y|| = βk} ≤ 0,

then F has unbounded sequence of critical values, i.e., there is a sequence {yn} ⊂ E such that F ′(yn) =

0 and F (yn)→ +∞ as n→ +∞.

Lemma 2.12. Let us define

θt,k = sup
{ˆ
RN
|u|t dx : u ∈ Zk, ||u|| ≤ 1

}
for t > 1,

and
ϑk = max{θγ0,k, θs,k, θγ,k}. (2.16)

Then, ϑk → 0 as k → ∞ (see [25]).

Lemma 2.13. Assume that (V), (B1), (B2), (H1) and (H5) hold. Then, there are βk > αk > 0 such that

(1) δk := inf{Eλ(v) : v ∈ Zk, ||v|| = αk} → ∞ as k → ∞,

(2) ρk := max{Eλ(v) : v ∈ Yk, ||v|| = βk} ≤ 0,

for k large enough.

Proof. The basic idea of the proof is carried out by a similar fashion as in the paper [2] (see also [10]).
For convenience to readers, we give the proof. For any z ∈ Zk, suppose that ||v|| > 1. From the
assumptions (B1) and (B2), (H1) and Lemma 2.3, it follows that

Eλ(v) =

ˆ
RN

(
1
p
|∇v|p +

a(x)
q
|∇v|q

)
dx +

ˆ
RN
V(x)

(
1
p
|v|p +

a(x)
q
|v|q

)
dx (2.17)

−
λ

r

ˆ
RN
ρ(x)|v|r dx −

ˆ
RN

H(x, v) dx

≥
1
q

( ˆ
RN
H(x, |∇v|) dx +

ˆ
RN
HV(x, |v|) dx

)
−
λ

r

ˆ
RN
ρ(x)|v|r dx −

ˆ
RN

H(x, v) dx

≥
1

q2p ||v||
p −

2λ
r
||ρ||

L
γ0
γ0−r (RN )

||v||rLγ0 (RN ) − ||σ1||Ls′ (RN )||v||Ls(RN ) −
c1

γ
||v||γLγ(RN )

≥
1

q2p ||v||
p −

2λ
r
||ρ||

L
γ0
γ0−r (RN )

ϑr
k||v||

r − ||σ1||Ls′ (RN )ϑk||v|| −
c1

γ
ϑ
γ
k ||v||

γ

≥

(
1

q2p −
ϑ
γ
kc1

γ
||v||γ−p

)
||v||p −

2λ
r
||ρ||

L
γ0
γ0−r (RN )

ϑr
k||v||

r − ||σ1||Ls′ (RN )ϑk||v||.
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Since p < γ, we get

αk =
(q2p+1ϑ

γ
kc1

γ

) 1
p−γ
→ ∞

as k → ∞. Hence, if v ∈ Zk and ||v|| = αk, then we arrive

Eλ(v) ≥
1

q2p+1α
p
k −

2λ
r
||ρ||

L
γ0
γ0−r (RN )

ϑr
kα

r
k − ||σ1||Ls′ (RN )ϑkαk → ∞ as k → ∞,

which implies (1) because p > r > 1 and αk → ∞, ϑk → 0 as k → ∞.
Now, we show the condition (2). Suppose to the contrary that there is k ∈ N such that the

condition (2) is not fulfilled. Then, there exists a sequence {vn} in Yk such that

||vn|| → ∞ as n→ ∞ and Eλ(vn) ≥ 0. (2.18)

Let wn = vn/||vn||. Since dimYk < ∞, there is a w ∈ Yk \ {0} such that, up to a subsequence still denoted
by {wn},

||wn − w|| → 0 and wn(x)→ w(x)

for almost all x ∈ RN as n → ∞. We claim that w(x) = 0 for almost all x ∈ RN . If w(x) , 0, then
|vn(x)| → ∞ for all x ∈ RN as n→ ∞. Hence, in accordance with (H5), it follows that

lim
n→∞

H(x, vn)
||vn||

q = lim
n→∞

H(x, vn)
|vn(x)|q

|wn(x)|q = ∞ (2.19)

for all x ∈ B1 :=
{
x ∈ RN : w(x) , 0

}
. In the same fashion as in the proof of Lemma 2.10, we can

choose a C2 ∈ R such that H(x, t) ≥ C2 for all (x, t) ∈ RN × R, and so

H(x, vn) − C2

||vn||
q ≥ 0

for all x ∈ RN and n ∈ N. Using (2.19) and the Fatou Lemma, one has

lim inf
n→∞

ˆ
RN

H(x, vn)
||vn||

q dx ≥ lim inf
n→∞

ˆ
B1

H(x, vn)
||vn||

q dx − lim sup
n→∞

ˆ
B1

C2

||vn||
q dx

= lim inf
n→∞

ˆ
B1

H(x, vn) − C2

||vn||
q dx

≥

ˆ
B1

lim inf
n→∞

H(x, vn) − C2

||vn||
q dx

=

ˆ
B1

lim inf
n→∞

H(x, vn)
||vn||

q dx −
ˆ
B1

lim sup
n→∞

C2

||vn||
q dx.

Thus, we infer ˆ
RN

H(x, vn)
||vn||

q dx→ ∞ as n→ ∞.

We may assume that ||vn|| > 1. Therefore, we have

Eλ(vn) ≤
1
p

( ˆ
RN
H(x, |∇vn|) dx +

ˆ
RN
HV(x, |vn|) dx

)
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−
λ

r

ˆ
RN
ρ(x)|vn|

r dx −
ˆ
RN

H(x, vn) dx

≤
2
p
||vn||

q −

ˆ
RN

H(x, vn) dx

≤ ||vn||
q

(
2
q
−

ˆ
RN

H(x, vn)
||vn||

q dx
)
→ −∞ as n→ ∞,

which is a contradiction to (2.18). This completes the proof. �

With the help of Lemma 2.11, we are ready to establish the existence of infinitely many large energy
solutions.

Theorem 2.14. Assume that (V), (B1), (B2), (H1), (H2) (resp. (H3)) and (H5) hold. If h(x,−t) =

−h(x, t) holds for all (x, t) ∈ RN × R, then, for any λ > 0, the problem (1.1) admits a sequence of
nontrivial weak solutions {vn} in X such that Eλ(vn)→ ∞ as n→ ∞.

Proof. Clearly, Eλ is an even functional and ensures the (C)c-condition by Lemma 2.8 (resp.
Lemma 2.10). From Lemma 2.13, this assertion is immediately derived from the Fountain theorem.
This completes the proof. �

Definition 2.15. Suppose that (E, || · ||) is a real separable and reflexive Banach space. We say that F
satisfies the (C)∗c-condition (with respect to Yn) if any sequence {vn}n∈N ⊂ E for which vn ∈ Yn, for any
n ∈ N,

F (vn)→ c and ||(F |Yn)
′(vn)||E∗(1 + ||vn||)→ 0 as n→ ∞,

possesses a subsequence converging to a critical point of F .

Lemma 2.16. (Dual Fountain Theorem [8, 25]) Assume that (E, || · ||) is a Banach space, F ∈ C1(E,R)
is an even functional. If there is k0 > 0 such that, for each k ≥ k0, there exist βk > αk > 0 such that

(A1) inf{F (y) : y ∈ Zk, ||y|| = βk} ≥ 0,

(A2) δk := max{F (y) : y ∈ Yk, ||y|| = αk} < 0,

(A3) φk := inf{F (y) : y ∈ Zk, ||y|| ≤ βk} → 0 as k → ∞,

(A4) F fulfils the (C)∗c-condition for every c ∈ [φk0 , 0),

then F admits a sequence of negative critical values cn < 0 satisfying cn → 0 as n→ ∞.

From now on, we will check all conditions of the dual fountain theorem.

Lemma 2.17. Assume that (V), (B1), (B2), (H1), (H2) (resp. (H3) and (H5)) hold. Then, the functional
Eλ satisfies the (C)∗c-condition for any λ > 0.

Proof. Since X is a reflexive Banach space, and Φ′ and Ψ′λ are of type (S +), the proof is almost identical
to that in [25]. �

Lemma 2.18. Assume that (V), (B1), (B2) and (H1) hold. Then, there is k0 > 0, such that, for each
k ≥ k0, there exists βk > 0 such that

inf{Eλ(v) : v ∈ Zk, ||v|| = βk} ≥ 0.
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Proof. From (H1), Lemma 2.3 and the definition of ϑk, one has

Eλ(v) ≥
1
q

( ˆ
RN
H(x, |∇v|) dx +

ˆ
RN
HV(x, |v|) dx

)
−
λ

r

ˆ
RN
ρ(x)|v|r dx −

ˆ
RN

H(x, v) dx

≥
1

q2p ||v||
p −

2λ
r
||ρ||

L
γ0
γ0−r (RN )

ϑr
k||v||

r − ||σ1||Ls′ (RN )ϑk||v|| −
c1

γ
ϑ
γ
k ||v||

γ

≥
1

q2p ||v||
p −

(2λ
r
||ρ||

L
γ0
γ0−r (RN )

+
c1

γ

)
ϑr

k||v||
γ − ||σ1||Ls′ (RN )ϑk||v||

for k large enough and ||v|| ≥ 1. Let us choose

βk =

[(
2λ
r
||ρ||

L
γ0
γ0−r (RN )

+
c1

γ

)
q2p+1ϑr

k

] 1
p−2γ

. (2.20)

Let v ∈ Zk with ||v|| = βk > 1 for k large enough. Then, there is k0 ∈ N such that

Eλ(v) ≥
1

q2p ||v||
p −

(
2λ
r
||ρ||

L
γ0
γ0−r (RN )

+
c1

γ

)
ϑr

k||v||
γ − ||σ1||Ls′ (RN )ϑk||v||

≥
1

q2p+1β
p
k − ||σ1||Ls′ (RN )

[(
2λ
r
||ρ||

L
γ0
γ0−r (RN )

+
c1

γ

)
q2p+1

] 1
p−2γ

ϑ
r+p−2γ

p−2γ

k ≥ 0

for all k ∈ N with k ≥ k0, which implies that the conclusion holds since limk→∞ β
p
k = ∞ and ϑk → 0 as

k → ∞. �

Lemma 2.19. Assume that (V), (B1), (B2), (H1) and (H4) hold. Then, for each sufficiently large k ∈ N,
there exists αk > 0 with 0 < αk < βk such that

(1) δk := max{Eλ(v) : v ∈ Yk, ||v|| = αk} < 0,

(2) φk := inf{Eλ(v) : v ∈ Zk, ||v|| ≤ βk} → 0 as k → ∞,

where βk is given in Lemma 2.18.

Proof. (1) Since Yk is finite dimensional, || · ||Lκ(ξ,RN ), || · ||Lγ(RN ) and || · || are equivalent on Yk. Then, there
exist ς1,k > 0 and ς2,k > 0 such that

ς1,k||v|| ≤ ||v||Lκ(ξ,RN ) and ||v||Lγ(RN ) ≤ ς2,k||v||

for any v ∈ Yk. Let v ∈ Yk with ||v|| ≤ 1. From (H1) and (H4), there are C1,C2 > 0 such that

H(x, t) ≥ C1ξ(x)|t|κ − C2|t|γ

for almost all (x, t) ∈ RN × R. Then, we have

Eλ(v) ≤
2
p
||v||p −

ˆ
RN

H(x, v) dx
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≤
2
p
||v||p − C1

ˆ
RN
ξ(x)|v|κdx + C2

ˆ
RN
|v|γdx

≤
2
p
||v||p − C1||v||Lκ(ξ,RN ) + C2||v||Lγ(RN )

≤
2
p
||v||p − C1ς

κ
1,k||v||

κ + C2ς
γ
2,k||v||

γ.

Let f (s) = 2
p sp−C1ς

κ
1,ksκ+C2ς

γ
2,ksγ. Since κ < p < γ, we infer f (s) < 0 for all s ∈ (0, s0) for sufficiently

small s0 ∈ (0, 1). Hence, we can find αk > 0 such that Eλ(v) < 0 for all v ∈ Yk with ||v|| = αk < s0 for k
large enough. If necessary, we can change k0 to a large value, so that βk > αk > 0 and

δk := max{Eλ(v) : v ∈ Yk, ||v|| = αk} < 0

for all k ≥ k0.
(2) Because Yk ∩ Zk , φ and 0 < αk < βk, we have φk ≤ δk < 0 for all k ≥ k0. For any v ∈ Zk with

||v|| = 1 and 0 < t < βk, we have

Eλ(tv) ≥
1
q

(ˆ
RN
H(x, |∇tv|) dx +

ˆ
RN
HV(x, |tv|) dx

)
−
λ

r

ˆ
RN
ρ(x)|tv|r dx −

ˆ
RN

H(x, tv) dx

≥ −
λ

r

ˆ
RN
ρ(x)|tv|r dx −

ˆ
RN

H(x, tv) dx

≥ −
λ

r
||ρ||

L
γ0
γ0−r (RN )

||tv||rLγ0 (RN ) −

ˆ
RN
σ1(x)|tv|dx −

c1

γ

ˆ
RN
|tv|γdx

≥ −
λ

r
||ρ||

L
γ0
γ0−r (RN )

βr
k||v||

r
Lγ0 (RN ) − βk

ˆ
RN
σ1(x)|v|dx −

c1

γ
β
γ
k

ˆ
RN
|v|γdx

≥ −
λ

r
||ρ||

L
γ0
γ0−r (RN )

βr
kϑ

r
k − ||σ1||Ls′ (RN )βkϑk −

c1

γ
β
γ
kϑ

γ
k

for k large enough, where ϑk and βk are given in (2.16) and (2.20), respectively. Hence, it follows from
the definition of βk that

0 > φk ≥ −

λ||ρ||
L

γ0
γ0−r (RN )

r
βr

kϑ
r
k − ||σ1||Ls′ (RN )βkϑk −

c1

γ
β
γ
kϑ

γ
k

= −

λ||ρ||
L

γ0
γ0−r (RN )

r

[(
2λ
r
||ρ||

L
γ0
γ0−r (RN )

+
c1

γ

)
q2p+1

] r
p−2γ

ϑ
(r+p−2γ)r

p−2γ

k

− ||σ1||Ls′ (RN )

[(
2λ
r
||ρ||

L
γ0
γ0−r (RN )

+
c1

γ

)
q2p+1

] 1
p−2γ

ϑ
r+p−2γ

p−2γ

k

−
c1

γ

[(
2λ
r
||ρ||

L
γ0
γ0−r (RN )

+
c1

γ

)
q2p+1

] γ
p−2γ

ϑ
(r+p−2γ)γ

p−2γ

k .

Because p < p + r < 2γ and ϑk → 0 as k → ∞, we derive that limk→∞ φk = 0. �

Remark 2.20. In view of [10, 21, 25, 30], the conditions (H5) and

f (x, t) = o(|t|q−1) as |t| → 0 uniformly for x ∈ RN , (2.21)
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play a decisive role in proving Lemma 2.19. Under these two conditions, the authors in [10,21,25,30]
obtained the existence of two sequences 0 < αk < βk sufficiently large. Unfortunately, by using the same
argument as in [21, 25] we cannot show the property (2) in Lemma 2.19 since βk → ∞ as k → ∞;
see [41]. However the authors in [10, 30] overcome this difficulty from new setting for βk. In contrast,
the existence of two sequences 0 < αk < βk → 0 as k → ∞ is obtained in [32, 42, 43] when (2.21) is
satisfied. On the other hand, we prove Lemma 2.19 when (H5) is not assumed, and (2.21) is replaced
by (H4). For this reason, the proof of Lemma 2.19 is different from that of the papers [10, 21, 25, 30,
32, 42, 43].

With the aid of Lemmas 2.16 and 2.17, we are in a position to establish our final consequence.

Theorem 2.21. Assume (V), (B1), (B2), (H1), (H2) (resp. (H3), (H5)) and (H4). If h(x,−t) = −h(x, t)
holds for all (x, t) ∈ RN ×R, then the problem (1.1) admits a sequence of nontrivial weak solutions {vn}

in X such that Eλ(vn)→ 0 as n→ ∞ for any λ > 0.

Proof. Due to Lemma 2.17, we note that the functional Eλ is even and fulfills the (C)∗c-condition for
every c ∈ [φk0 , 0). Now, from Lemmas 2.18 and 2.19, we ensure that properties (D1)–(D3) in the Dual
Fountain Theorem hold. Therefore, problem (1.1) possesses a sequence of weak solutions {vn} with
large enough n. The proof is complete. �

3. Conclusions

In this paper, we employ the variational methods to ensure the existence of a sequence of infinitely
many energy solutions to Schrödinger-type problems involving the double phase operator. As far as
we can see, in these circumstances the present paper is the first effort to develop the multiplicity results
of nontrivial weak solutions to the concave-convex-type double phase problems because we derive our
results on a new class of nonlinear term. Especially, our proof of the existence of multiple small energy
solutions is slightly different from those of previous related works [10, 21, 25, 30, 32, 42, 43].
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discontinuity property of the spectrum, P. Am. Math. Soc., 147 (2019), 2899–2910.
https://doi.org/10.1090/proc/14466
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44. S. D. Zeng, Y. R. Bai, L. Gasiński, P. Winkert, Existence results for double phase implicit
obstacle problems involving multivalued operators, Calc. Var. Partial Dif., 59 (2020), 176.
https://doi.org/10.1007/s00526-020-01841-2
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