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Abstract: Consider a branching random walk with a mechanism of elimination. We assume that
the underlying Galton-Watson process is supercritical, thus the branching random walk has a positive
survival probability. A mechanism of elimination, which is called a barrier, is introduced to erase the
particles who lie above ri+εiα and all their descendants, where i presents the generation of the particles,
α > 1/3, ε ∈ R and r is the asymptotic speed of the left-most position of the branching random walk.
First we show that the particle system still has a positive survival probability after we introduce the
barrier with ε > 0. Moreover, we show that the decay of the probability is faster than e−β

′εβ as ε ↓ 0,
where β′, β are two positive constants depending on the branching random walk and α. The result in
the present paper extends a conclusion in Gantert et al. (2011) in some extent. Our proof also works
for some time-inhomogeneous cases.
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1. Introduction and results

We consider the branching random walk (BRW) on R. At time 0, an initial ancestor (denoted by
φ) is located at the origin. At time 1, the ancestor dies and reproduces (including the number and
displacement of its children) according to the distribution of a point process L, i.e., φ gives birth to
N(φ) children who are located at ζi(φ), 1 ≤ i ≤ N(φ) (N(φ) can be 0) and the law of the random vector
(N(φ), ζi(φ), 1 ≤ i ≤ N(φ)) is L. These children (also called particles) consist the first generation. Each
of the particles in the first generation reproduces its own children who are thus in the second generation
and are positioned (with respect to their parent) according to the same distribution of L. All particles
reproduce independently according to the same law L as time goes on. The particle system formed in
this way is called a (time-homogeneous) branching random walk. Hence BRW can be viewed as that
we attach a displacement information to each particle in a Galton-Watson tree T. For a given particle
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u ∈ T we write V(u) ∈ R for the position of u and |u| for the generation at which u is alive. In
the present paper, we focus on the barrier problem of BRW and a more general time-inhomogeneous
model. The so-called barrier is in fact a function f : N → R. For any realization of the BRW, if a
particle u satisfies V(u) > f (|u|), then we remove u and all its descendants. The surviving particles
(i.e., which have not been removed) form a new system, which is called a BRW with barrier. For any
i ≤ |u|, we conventionally write ui for the ancestor of u in generation i. It is evident to see that u is
survival if and only if V(ui) ≤ f (i),∀i ≤ |u|. Let κ be the log−Laplace transform of L, that is to say

κ(θ) := logE

∑
l∈L

e−θl
 .

Obviously, another equivalent expression of κ(θ) is κ(θ) = logE(
∑
|u|=1 e−θV(u)). We always assume that

κ(0) ∈ (0,∞), (1.1)

which means that the underlying Galton-Watson process is supercritical, i.e., the survival probability
of the particle system (BRW) is positive. Under the assumption that there exists ϑ > 0 such that

κ(ϑ) = ϑκ′(ϑ), κ(ϑ) < +∞, (1.2)

where κ′ presents the derivative of κ. Hammersley [1], Kingman [2] and Biggins [3] showed that

lim
n→∞

n−1 min
u∈T, |u|=n

V(u) = −κ′(ϑ), non-extinction. (1.3)

The above result enlightens the approach for the barrier problem, which is a topic motivated by the
parallel simulation, see Lubachevsky et al. [4, 5]. We first introduce some notations before we recall
some achieved results on the barrier problem of BRW. On the Galton-Watson tree T we define a partial
order > such that u > v if v is the ancestor of u. We write u ≥ v if u > v or u = v (i.e., the particle u is
exactly the particle v). Define an infinite path u∞ through the tree T as a sequence of particles (ui)i∈N

such that
u0 = φ, ∀i ∈ N, |ui| = i, ui+1 > ui.

We write T∞ the collection of the infinite path. Let

ρ(ε, α) := P(∃u∞ ∈ T∞,∀i ∈ N,V(ui) ≤ εiα − κ′(ϑ)i).

Hence one see that ρ(ε, α) presents the survival probability for the BRW with a barrier

f (i) := εiα − κ′(ϑ)i.

The first result on the the barrier problem of BRW can be found in Biggins et al. [6]. Under
Assumptions (1.1) and (1.2) they claimed that

ρ(ε, 1) > 0 when ε > 0, ρ(ε, 1) = 0 when ε ≤ 0. (1.4)

From the view of (1.3), we can have a better understanding on this conclusion. That is to say, when
critical slope of the barrier is determined by the first order of minu∈T, |u|=n V(u).Under a slightly stronger
assumption, Jaffuel [7] refine the result (1.4). [7] showed that under (1.1), (1.2) and the assumption

∃δ > 0, E(N1+δ(φ)) < +∞, κ(ϑ + δ) < +∞, κ′′(ϑ) ∈ (0,∞). (1.5)
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It is true that

ρ(ε, 1/3) > 0 when ε > aκ′′(ϑ), ρ(ε, 1/3) = 0 when ε < aκ′′(ϑ), (1.6)

where the explicit form of the positive constant aκ′′(ϑ) (depending on κ′′(ϑ)) is obtained.
Combining (1.6) with (1.4), we can prove the following statement.

Proposition 1.1. If (1.1), (1.2) and (1.5) hold, then ρ(ε, α) > 0 when ε > 0, α > 1/3.

Proof. It is obvious when α > 1 since the definition domain of the barrier f is N. Now we deal with
the case α ∈ (1/3, 1). Let ā be a constant such that ā ∈ (aκ′′(ϑ), ε). Define

j := max
n∈N+

{
(ā)

1
α n

1
3α − ε

1
α n

}
.

We see j is finite since α > 1/3. Choose k large enough such that k > jε−
1
α , which ensures that ε(n +

k)α > ān1/3,∀n ∈ N+. Note that
min
n∈N+

(ε(n + k)α − ān1/3) > 0,

we can find a− > 0 small enough such that

ε(n + k)α > a−k + ān1/3, ∀n ∈ N+ and a− < min{εkα−1, ε}.

Hence it is true that εiα > a−i for 1 ≤ i ≤ k and εiα > a−k + ā(i − k)1/3 for i > k. By Markov property
we see

ρ(ε, α) = P(∃u ∈ T∞,∀i ∈ N,V(ui) ≤ εiα + ri)
≥ P(∃|u| = k,∀i ≤ k,V(ui) ≤ a−i + ri)
× P(∃u ∈ T∞,∀i ∈ N,V(ui) ≤ āi1/3 + a−k + r(i + k)|V(φ) = a−k + rk)
:= P1 × P2.

(1.4) tells us that P1 > 0 and (1.6) means that P2 > 0, hence we have ρ(ε, α) > 0. �

The decay rate of ρ(ε, 1) had been obtained in Gantert et al. [8]. When (1.1) and (1.2) hold, [8]
obtained the explicit negative constant c such that

lim
ε↓0

√
ε log ρ(ε, 1) ≤ c.

(We remind that under (1.1), (1.2), (1.5) and some extra assumptions, the lower bound of ρ(ε, 1) had
also been obtained in [8].) In the present paper, we want to extend the upper bound of the rate to some
non-linear barrier. It is evident to see that ρ(ε, α) = 0,∀α > 0 when ε = 0 and ρ(ε, α) is non-decreasing
on ε when the positive constant α is fixed. Combining these two facts with Proposition 1.1, we see
that for any given α > 1/3, it is reasonable and meaningful to ask the question about the decay rate of
ρ(ε, α) as ε ↓ 0. In the present paper, we wonder whether the decay rate of ρ(ε, α) (when α > 1/3) as
ε ↓ 0 will be the same as the one of ρ(ε, 1) (as ε ↓ 0). Furthermore, if they are different, will the order
be different? In other word, we want to investigate the impact of α on the decay rate. Now we give the
first result in the present paper.
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Theorem 1.1. If (1.1) and (1.2) hold, then for α > 1, we have

lim
ε↓0

ε
1

3α−1 log ρ(ε, α) ≤ −ϑ
{(
π2κ′′(ϑ)

2α2ϑ

)α
(3α(α − 1))α−1

} 1
3α−1

(1.7)

and for α ∈ (1/3, 1), we have

lim
ε↓0

ε
1

3α−1 log ρ(ε, α) ≤ −
ϑ(3α − 1)

(3ϑα)
3α

3α−1

(
3π2ϑ2κ′′(ϑ)

2

) α
3α−1

.

Remark 1.1. We remind that the limit of the right-hand-side of (1.7) as α ↓ 1 is the exact value of
the corresponding one in [8], hence our result can be viewed as an extension for the upper bound part
in [8].

In fact, this asymptotic behavior can be shown for a more general model called a branching random
walk with varying environment (BRWve). Let us describe the model as follows. For a sequence
of time-inhomogeneous branching random walks {(T(n),V (n))}n∈N, we only consider the generations
from 0 to n in (T(n),V (n)), where T(n) presents the (time-inhomogeneous) Galton CWatson tree of the
genealogy of this process and V (n) the displacements of the particles in T(n). Let {Lt, t ∈ [0, 1]} be a
family of laws of point processes. All particles reproduce independently but the law of reproduce is
determined in the following way. For particle u ∈ T(n), |u| = i < n, the reproduce law of u is L i+1

n
. This

model has been studied in several papers. Fang and Zeitouni [9] showed that the asymptotic behavior
of the maximal displacement maxu∈T(n),|u|=n V(u) under some special settings (two time intervals) on
the reproduction law {Lt, t ∈ [0, 1]}. Mallein [10] has generalized the result in [9] to more general
reproduction law (a sequence of macroscopic time intervals). For a smoothly varying environment,
Mallein [11] obtained a new asymptotic behavior of the maximal displacement. However, there is no
result on the barrier problem of the BRWve. In the present paper, we want to extend Theorem 1.1 to
some BRWve with special settings on the varying environment. Define

κt(θ) := logE

∑
l∈Lt

e−θl
 .

Assume that there exists ϑ, v > 0 such that for any s, t ∈ [0, 1],

ϑκ′t (ϑ) = κt(ϑ), κt(ϑ) = κs(ϑ) < +∞ (1.8)

and

sup
t∈[0,1]

max{κt(ϑ + v), κt(ϑ − v)} < +∞. (1.9)

Furthermore, we assume that κ′′t (ϑ) satisfies that

κ′′t (ϑ) (as a function of t) is continuous on [0, 1] and min
t∈[0,1]

κ′′t (ϑ) > 0. (1.10)

Obviously, BRW is a special case of BRWve when the family {Lt, t ∈ [0, 1]} is a constant one. In order
to deal with the new model (BRWve), from now on we redefine the survival probability ρ(ε, α) as

ρ(ε, α) := lim
n→+∞

min
k≤n
P(∃u ∈ T(k) : |u| = k,∀i ≤ k,V (k)(ui) ≤ εiα − κ′1(ϑ)i).

Now we give a generalized version of Theorem 1.1.
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Theorem 1.2. Denote σ2
− := mint∈[0,1] ϑ

2κ′′t (ϑ), γσ := π2σ2
−

2 . If (1.8), (1.9) and (1.10) hold, then for
α > 1, we have

lim
ε↓∞

ε
1

3α−1 log ρ(ε, α) ≤ −ϑ
{(

γσ
α2ϑ3

)α
(3α(α − 1))α−1

} 1
3α−1

(1.11)

and for α ∈ (1/3, 1), we have

lim
ε↓∞

ε
1

3α−1 log ρ(ε, α) ≤ −
ϑ(3α − 1)

(3ϑα)
3α

3α−1

(3γσ)
α

3α−1 . (1.12)

2. Preliminary for the proof

Let us give a sketch of the proof. First we give a decomposition of the survival probability
of the BRWve with barrier. Secondly, we transfer BRWve to a triangular array of independent
centered random variables by the version of time-inhomogeneous many-to-one formula which has
been introduced in [10]. Then the survival probability will be dominated by a series of small deviation
probabilities of the triangular array random variables. At last, applying a time-inhomogeneous version
of small deviation principle which has been given in [11], the estimate for the upper bound will
becomes a extremal problem of some continuous functions.

The many-to-one formula, which is essentially a kind of measure transformation, is a basic tool in
the study of the branching random walks, It can be traced down to the early works of Peyrière [12] and
Kahane and Peyrière [13]. We refer to Biggins and Kyprianou [14] for more variations of this result.
Let τn,k be a random measure on R such that for any x ∈ R we have

τn,k ((−∞, x]) = E

∑
l∈Lk/n

1{l≤x}e−ϑl−κk/n(ϑ)

 ,
For any given n, we introduce a series of independent random variables {Xn,k}k∈N+,k≤n whose
distributions are {τn,k}n,k∈N+ and define

S (n)
k :=

k∑
i=1

Xn,i.

The following theorem shows the relationship between S (n)
k and the BRWve.

Theorem 2.1. (Mallein [10]) For any n, k ∈ N+, k ≤ n, and a measurable function f : Rn → [0,+∞),
we have

E

∑
|u|=n

f (V(ui), 1 ≤ i ≤ n)

 = E
[
eϑS n+nκ1(ϑ) f (S i, 1 ≤ i ≤ n)

]
.

By many-to-one formula, the barrier problem of a BRWve becomes equivalently to the small
deviation problem for a time-inhomogeneous random walk.

The small deviation problem is a classic topic which attracts intensive attention for many years. We
refer to Mogul’skiı̆ [15], Borovkov & Mogul’skiı̆ [16], Shao [17] and Lv & Hong [18] as the small
deviation principle for sums of independent random variables. In our proof, a time-inhomogeneous
version of a small deviation principle which has been given in [11] will be used. We state it as follows.
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Theorem 2.2. (Mallein [11]) Let {X̃n,k}n,k∈N,k≤n be a triangular array of independent centered random
variables. We assume that there exists σ ∈ C[0, 1] with σ− := mins∈[0,1] σ(s) > 0 and u > 0 such that
for any n, k ∈ N, k ≤ n,

E(X̃2
n,k) = σ(k/n) (2.1)

and

sup
n,k
E(eu|X̃n,k |) < +∞. (2.2)

Set g, h ∈ C[0, 1] and g(0) < 0 < h(0). Denote S̃ (n)
k := S̃ 0 +

∑k
i=1 X̃n,i. Then we have

lim
n→+∞

sup
x∈R

logP
(
∀i ≤ n, n−1/3S̃ (n)

i ∈
[
g
(

i
n

)
, h

(
i
n

)]
|S̃ 0 = x

)
n1/3

≤−
π2

2

∫ 1

0

σ2(s)
(h(s) − g(s))2 ds.

This conclusion extends the main result in [15] to the time-inhomogeneous case.

3. Proof of Theorem 1.2

Recall the barrier function f (i) := εiα − κ′1(ϑ)i, hence f (i) = εiα − iκ1(ϑ)
ϑ

from (1.8). We define

H j,n := P


∃|u| ∈ T(n) : |u| = j,V (n)(u) ≤

a jα

nα−1/3 −
jκ1(ϑ)
ϑ
− b(n − j)1/3,

∀i < j,V (n)(ui) ∈
[

aiα

nα−1/3 −
iκ1(ϑ)
ϑ
− b(n − i)1/3,

aiα

nα−1/3 −
iκ1(ϑ)
ϑ

]
 ,

H∗,n := P


∃|u| ∈ T(n) : |u| = n,∀i ≤ n,

V(ui) ∈
[

aiα

nα−1/3 −
iκ1(ϑ)
ϑ
− b(n − i)1/3,

aiα

nα−1/3 −
iκ1(ϑ)
ϑ

] ,
where the exact value of positive constants a, b will be given later. From the definition of ρ(ε, α), we
see for any n ∈ N, it is true that

ρ(an1/3−α, α)≤P
(
∃|u| ∈ T(n) : |u| = n,∀i ≤ n,V (n)(ui) ≤

aiα

nα−1/3 −
iκ1(ϑ)
ϑ

)
≤

n∑
j=1

H j,n + H∗,n. (3.1)

Define T (n)
i = ϑS (n)

i + iκ1(ϑ). By Markov inequality and Theorem 2.2, it is true that

H j,n =E

(
eT (n)

j 1{
∀i< j,S (n)

i ∈

[
aiα

nα−1/3 −b(n−i)1/3−
iκ1(ϑ)
ϑ , aiα

nα−1/3 −
iκ1(ϑ)
ϑ

]
,S (n)

j ≤
a jα

nα−1/3 −b(n− j)1/3−
jκ1(ϑ)
ϑ

})
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≤ e
ϑa jα

nα−1/3 −ϑb(n− j)1/3
P

(
∀i < j,T (n)

i ∈

[
ϑaiα

nα−1/3 − ϑb(n − i)1/3,
ϑaiα

nα−1/3

])
.

By the same way we get

H∗,n ≤ eϑan1/3
P

(
∀i ≤ n,T (n)

i ∈

[
ϑaiα

nα−1/3 − ϑb(n − i)1/3,
ϑaiα

nα−1/3

])
.

Note that for any n ∈ [Nk, (N + 1)k], it is true that

log ρ(an1/3−α, α)
n1/3 ≤

log ρ(a(Nk)1/3−α, α)
((N + 1)k)1/3 . (3.2)

Hence we have

lim
n→∞

a
1

3α−1 log ρ(an1/3−α, α)
n1/3 ≤

3√N
3√N + 1

lim
k→∞

a
1

3α−1 log ρ(a(Nk)1/3−α, α)
3√Nk

.

Taking N → ∞, from (3.1) we get

lim
n→∞

a
1

3α−1 log ρ(an1/3−α, α)
n1/3

≤ lim
N→∞

lim
k→∞

a
1

3α−1 log ρ(a(Nk)1/3−α, α)
3√Nk

≤ lim
N→∞

lim
k→∞

a
1

3α−1 log
(∑Nk

j=1 H j,Nk + H∗,Nk

)
3√Nk

. (3.3)

We observe that

Nk∑
j=1

H j,Nk + H∗,Nk

≤

N∑
l=1

(k + 1)
(
e

ϑa(lk)α

(Nk)α−1/3 −ϑb(Nk−lk)1/3
)
×

P

(
∀i ≤ (l − 1)k,T (n)

i ∈

[
ϑaiα

(Nk)α−1/3 − ϑb(Nk − i)1/3,
ϑaiα

(Nk)α−1/3

])
. (3.4)

To apply Theorem 2.2, we need to verify that the sequence {T (n)
i } satisfies all conditions in Theorem 2.2.

According to Theorem 2.1, we see

E(Xn,i) =
E

(∑
l∈Li/n

le−ϑl
)

E
(∑

l∈Li/n
e−ϑl

) = −κ′i/n(ϑ).

We observe that (1.8) and the above equality imply that

E(T (n)
i − T (n)

i−1) =ϑE(Xn,i) + κ1(ϑ) = −ϑκ′i/n(ϑ) + κ1(ϑ) = 0,
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thus we see E(T (n)
i ) = 0,∀i, n ∈ N. Moreover, Theorem 2.1 tells that

κ′′i/n(ϑ) =
E

(∑
l∈Li/n

l2e−ϑl
)
E

(∑
l∈Li/n

e−ϑl
)
−

[
E

(∑
l∈Li/n

le−ϑl
)]2

E
(∑

l∈Li/n
e−ϑl

)2

=E(X2
n,i) − (E(Xn,i))2.

Hence we have

Var(T (n)
i − T (n)

i−1) = ϑ2Var(S (n)
i − S (n)

i−1) = ϑ2Var(Xn,i) = ϑ2κ′′i/n(ϑ),

where Var presents the variation, that is to say, (1.10) ensures that {T (n)
i } meets (2.1). Next we check

(2.2). Note that
E

(
eu|T (n)

i −T (n)
i−1 |

)
≤ euκ1(ϑ)E

(
euϑ|Xn,i |

)
and

E
(
euϑ|Xn,i |

)
≤ E

(
euϑXn,i

)
+ E

(
e−uϑXn,i

)
=
κi/n(ϑ(1 − u))

κi/n(ϑ)
+
κi/n(ϑ(1 + u))

κi/n(ϑ)
.

Therefore, (1.9) ensures that {T (n)
i } meets (2.2). We rewrite the probability in (3.4) as

P

(
∀i ≤ (l − 1)k,T (n)

i ∈

[
ϑaiα

(Nk)α−1/3 − ϑb(Nk − i)1/3,
ϑaiα

(Nk)α−1/3

])
=P

∀i ≤ (l − 1)k,
T (n)

i

[(l − 1)k]1/3 −

(
l − 1

N

)2/3
ϑai

(l − 1)k
∈

−ϑb 3

√
N

l − 1
−

i
(l − 1)k

, 0
 .

Let (l − 1)k play the role as n in Theorem 2.2, from (3.3) and (3.4) we get

lim
n→∞

(an1/3−α)
1

3α−1 log %(an1/3−α, α)

= a
1

3α−1 lim
n→∞

log ρ(an1/3−α, α)
n1/3

≤ lim
N→∞

max
1≤l≤N

ϑa
(

l
N

)α
− ϑb

3

√
1 −

l
N
−
π2

2b2

3

√
l − 1

N

∫ 1

0
κ′′x (ϑ)

( N
l − 1

− x
)− 2

3

dx

 . (3.5)

Recall the definition of σ− and define γσ := π2σ2
−

2 , we get

lim
n→∞

n−
1
3 log ρ(an1/3−α, α)

≤ lim
N→∞

max
1≤l≤N

ϑa
(

l
N

)α
− ϑb

3

√
1 −

l
N
−

3γσ
ϑ2b2

1 − 3

√
1 −

l − 1
N


≤ sup

x∈[0,1]
ϕ(x), (3.6)

where ϕ(x) := ϑaxα +
(

3γσ
ϑ2b2 − ϑb

)
3√1 − x− 3γσ

ϑ2b2 , x ∈ [0, 1]. Because of the monotonicity of ρ(ε, α) on ε,
by a similar argument as (3.2)–(3.3) we can see that for any a > 0,

lim
ε↓0

ε
1

3α−1 log ρ(ε, α) = lim
n→+∞

a
1

3α−1 log ρ(an1/3−α, α)
n1/3 . (3.7)

AIMS Mathematics Volume 8, Issue 2, 5049–5059.



5057

By the light of (3.6) and (3.7), next we need to consider how to take the value of a, b to get the minmum
of supx∈[0,1] ϕ(x).

(i) For the case α > 1, we let positive constants a, b satisfy that

ϑaα +
ϑb
3
−

γσ
ϑ2b2 = 0 and ϑb −

3γσ
ϑ2b2 ≤ 0. (3.8)

Note that

ϕ′(x) = αaϑxα−1 +
1
3

(
ϑb −

3γσ
ϑ2b2

)
1

(1 − x)2/3 .

(3.8) implies that maxx∈[0,1] ϕ
′(x) ≤ 0. That is to say,

sup
x∈[0,1]

ϕ(x) = ϕ(0) = −ϑb.

Combining (3.5), (3.6) with (3.8) we get

lim
n→∞

(an1/3−α)
1

3α−1 log %(an1/3−α, α)≤−ϑba
1

3α−1

=−ϑb
(

b
3α
−

γσ
αϑ3b2

) 1
3α−1

=−ϑ

(
b3α−3

[
γσ
αϑ3 −

b3

3α

]) 1
3α−1

. (3.9)

Noting that
d
[
xα−1

(
3γσ
ϑ3 − x

)]
dx

= xα−2
[
3γσ
ϑ3 (α − 1) − αx

]
,

hence we choose b =
(

3γσ(α−1)
αϑ3

)1/3
, which satisfies the second condition in (3.8) and the last line in (3.9)

will take its maximum. Finally, from (3.7) we complete the proof of (1.11).
(ii) Now we consider the case α ∈ ( 1

3 , 1). Recall that

ϕ(x) := ϑaxα +

(
3γσ
ϑ2b2 − ϑb

)
3√
1 − x −

3γσ
ϑ2b2 .

Hence it is true that

sup
x∈[0,1]

ϕ(x) ≤ ϑa + max
{

0,
3γσ
ϑ2b2 − ϑb

}
−

3γσ
ϑ2b2 ≤ ϑ

(
a −max

{
b,

3γσ
ϑ3b2

})
.

From this point we choose b = (3γσ)1/3/ϑ such that ϑb − 3γσ
ϑ2b2 = 0, hence it is true that

lim
ε↓0

ε
1

3α−1 log ρ(ε) ≤ −ϑa
1

3α−1 (b − a).

By direct caculation we see

d[a
1

3α−1 (b − a)]
da

=
b

3α − 1
a

2−3α
3α−1 −

(
3α

3α − 1

)
a

1
3α−1 = ba−1 − 3α,

thus the best choice of a is a := b
3α . Finally we get

lim
ε↓0

ε
1

3α−1 log ρ(ε) ≤ −
ϑ(3α − 1)

(3α)
3α

3α−1

b
3α

3α−1 = −
ϑ(3α − 1)

(3ϑα)
3α

3α−1

(3γσ)
α

3α−1 ,

which completes the proof of (1.12). �
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