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1. Introduction and preliminaries

Translation hypersurfaces are special Monge hypersurfaces. Many studies have been carried out
with these hypersurfaces until today [1–11].

In [1], Lima presented a complete description of all translation hypersurfaces with constant scalar
curvature in the Euclidean space. In [2], they showed that every minimal translation and homothetical
lightlike hypersurface is locally a hyperplane. In [3], the minimal translation hypersurfaces of E4

were studied. Yang, Zhang and Fu obtained a characterization of a class of minimal translation
graphs which are the generalization of minimal translation hypersurfaces in the Euclidean space [4].
In [5], the authors studied a characterization of minimal translation graphs in the semi-Euclidean space.
Recently, homothetical and translation lightlike graphs, which are generalizations of homothetical and
translation lightlike hypersurfaces were investigated in the semi-Euclidean space Rn+2

q [6]. Moreover
Sağlam proved that all homothetical and all translation lightlike graphs are locally hyperplanes and
according to this fact, both of these graphs are minimal. In [7], Seo gave a classification of the
translation hypersurfaces with constant mean curvature or constant Gauss–Kronecker curvature in the
Euclidean space and the Lorentz– Minkowski space. Moreover the author characterized the minimal
translation hypersurfaces in the upper half-space model of the hyperbolic space. In 2019, Aydın and
Ogrenmis studied translation hypersurfaces generated by translating planar curves and classified the
translation hypersurfaces with constant Gauss-Kronecker curvature and constant mean curvature in the
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4-dimensional isotropic space [8]. In [9], Ruiz-Hernandez investigated translation hypersurfaces in
the (n+1)-dimensional Euclidean space whose Gauss-Kronecker curvature depends on its variables. In
[10], Sousa, Lima and Vieira studied the geometry of generalized translation hypersurfaces immersed
in Euclidean space equipped with a metric conformal to Euclidean metric and obtained results
that characterize such hypersurfaces. In [11], Lima, Santos and Sousa gave a classification of the
generalized translation graphs with constant mean curvature or constant Gauss–Kronecker curvature
in the Euclidean space.

In the semi-Euclidean space Rn+1
q , a translation hypersurface Mn is a semi-Riemannian manifold

with codimension 1 given by

ψ(x1, . . . , xn) = (x1, . . . , xn, F(x1, . . . , xn)), F(x1, . . . , xn) =

n∑
i=1

fi(xi)

where f1, f2, . . . , fn are smooth functions. Each function fi depends on the real variable xi and is
different from zero for 1 ≤ i ≤ n. Or else it is a hyperplane.

In [1], Lima gave the parameterization of translation hypersurfaces with zero scalar curvature into
Rn+1 for n ≥ 3. Moreover they showed that every translation hypersurface with constant scalar
curvature must have zero scalar curvature in the Euclidean space Rn+1 for n ≥ 3 and proved the
following theorem.

Theorem 1.1. Let Mn be a translation hypersurface of Rn+1 given by ψ = (x1, . . . , xn, F) for n ≥ 3.
Then Mn has zero scalar curvature iff it is congruent to the graph of the following functions:

1. F(x1, . . . , xn) =
∑n−1

i=1 aixi + fn(xn) + b, on Rn−1 × J, for some interval J and fn : J ⊂ R→ R is a
smooth function, which defines, after a suitable linear change of variables, a vertical cylinder.

2. A generalized periodic Enneper hypersurface given by

F(x1, . . . , xn) =

n−3∑
i=1

aixi +

√
β

a
ln

∣∣∣∣∣∣∣∣∣∣∣∣
cos

(
−

ab
a + b

√
βxn + c

)
cos

(
a
√
βxn−2 + a0

)
∣∣∣∣∣∣∣∣∣∣∣∣

+

√
β

b
ln

∣∣∣∣∣∣∣∣∣∣∣∣
cos

(
−

ab
a + b

√
βxn + c

)
cos

(
b
√
βxn−1 + b0

)
∣∣∣∣∣∣∣∣∣∣∣∣ + d, (1.1)

on Rn−3 × I1 × I2 × I3, where a, a1, . . . , an−3, b, b0, c, d are real constants with a, b, a + b , 0, β =

1 +
∑n−3

i=1 a2
i and I1, I2, I3 are the open intervals defined, respectively, by the conditions

∣∣∣a√βxn−2 + a0

∣∣∣ <
π/2,

∣∣∣b√βxn−1 + b0

∣∣∣ < π/2 and
∣∣∣∣∣− ab

a + b
√
βxn + c

∣∣∣∣∣ < π/2.
In this paper, we obtain the parameterization of translation hypersurfaces with zero scalar curvature

into Rn+1
q . In addition we prove that translation hypersurfaces with constant scalar curvature must have

zero scalar curvature in the semi-Euclidean space Rn+1
q for n ≥ 3.

2. Translation hypersurfaces of semi-Euclidean spaces with constant scalar curvature

Let Mn be a semi-Riemannian manifold and gi j be the components of the metric tensor of Mn and
gi j be inverse of the functions gi j for 1 ≤ i, j ≤ n. The Christoffel symbols or the affine connection of
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Mn are given by

Γk
i j =

1
2

n∑
m=1

gkm

(
∂g jm

∂xi
+
∂gim

∂x j
−
∂gi j

∂xm

)
, (2.1)

for 1 ≤ i, j, k ≤ n. The Components of the Riemannian curvature tensor R of a semi-Riemannian
manifold Mn are given by

Ri
jkl =

∂Γi
k j

∂xl
−
∂Γi

l j

∂xk
+

n∑
m=1

Γi
lmΓm

k j −

n∑
m=1

Γi
kmΓm

l j, (2.2)

for 1 ≤ i, j, k, l ≤ n. The Components of the Ricci curvature tensor Ric of a semi-Riemannian manifold
Mn are given by

Ri j =

n∑
m=1

Rm
i jm, (2.3)

for 1 ≤ i, j ≤ n. The scalar curvature S of a semi-Riemannian manifold Mn are given by

S =

n∑
i, j=1

gi jRi j =

n∑
i, j,k=1

gi jRk
i jk. (2.4)

Theorem 2.1. Let Mn be a n−dimensional translation hypersurface of the semi-Euclidean space
Rn+1

q with a natural orthonormal basis {e1, . . . en+1} determined by the following equations

ψ(x1, . . . , xn) = (x1, . . . , xn, F(x1, . . . , xn)), F(x1, . . . , xn) =

n∑
i=1

fi(xi). (2.5)

Then the scalar curvature of Mn given by

S =
2(

εn+1 +
n∑

i=1
εi f ′2i

)2

∑
1≤i< j≤n

εiε j f
′′

i f
′′

j

εn+1 +
∑

1≤k≤n
k,i, j

εk f
′2
k

 , (2.6)

where εi = 〈ei, ei〉 = ±1 for 1 ≤ i ≤ n + 1.
Proof. It is easy to check that

gi j =
〈
ψi, ψ j

〉
=

{
εi + εn+1 f

′2
i , for i = j

εn+1 f
′

i f
′

j , for i , j (2.7)

and their inverse

gi j =


εi

εn+1 +
n∑

k=1
k,i

εk f
′2
k


Q

, for i = j

−
εiε j f

′

i f
′

j

Q
, for i , j

(2.8)
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with Q = εn+1 +
n∑

k=1
εk f

′2
k and i, j = 1, ..., n. By the direct calculation from the equations (2.1)–(2.4), we

get (2.6).
Theorem 2.2. Let Mn be a n−dimensional translation hypersurface of the semi-Euclidean space

Rn+1
q for n ≥ 3 determined by the following equations

ψ(x1, . . . , xn) = (x1, . . . , xn, F(x1, . . . , xn)), F(x1, . . . , xn) =

n∑
i=1

fi(xi).

Then Mn has zero scalar curvature iff it is locally a hyperplane or it is parameterized by one of the
following functions.

1.

F(x1, . . . , xn) =

n−1∑
i=1

aixi + fn(xn) + b, (2.9)

on Rn−1 × I, for some open interval I, where ai, b ∈ R, 1 ≤ i ≤ n − 1 and fn : I ⊂ R→ R is a smooth
function. With a appropiate translation, it is a vertical hypercylinder.

2.

F(x1, . . . , xn) =

n−2∑
i=1

aixi + fn−1(xn−1) + fn(xn) + b, (2.10)

on Rn−2 × I1 × I2, for some open intervals I1, I2, where ai, b ∈ R, 1 ≤ i ≤ n − 2 with
∑n−2

i=1 εia2
i = −εn+1

and fn−1 : I1 ⊂ R→ R, fn : I2 ⊂ R→ R are smooth functions.
3. Let a, a0, a1, . . . , an−3, b, b0, c0, d be real constants with a , 0, b , 0, a + b , 0, b − a , 0, β =

εn+1 +
∑n−3

i=1 εia2
i > 0 and I1, I2, I3, I4,I5 be some open intervals defined, respectively, by the conditions∣∣∣a√βxn−2 + a0

∣∣∣ < π/2,
∣∣∣b√βxn−1 + b0

∣∣∣ < π/2,
∣∣∣∣∣ ab
a + b

√
βxn + c0

∣∣∣∣∣ < π/2,
∣∣∣∣∣ ab
b − a

√
βxn + c0

∣∣∣∣∣ < π/2 and∣∣∣∣∣− ab
a + b

√
βxn + c0

∣∣∣∣∣ < π/2.

a. If εn−1εn = 1 and εn−2εn = 1, then

F(x1, . . . , xn) =

n−3∑
i=1

aixi +
1
a

ln

∣∣∣∣∣∣∣∣∣∣∣∣
cos

(
ab

a + b
√
βxn + c0

)
cos

(
a
√
βxn−2 + a0

)
∣∣∣∣∣∣∣∣∣∣∣∣

+
1
b

ln

∣∣∣∣∣∣∣∣∣∣∣∣
cos

(
ab

a + b
√
βxn + c0

)
cos

(
b
√
βxn−1 + b0

)
∣∣∣∣∣∣∣∣∣∣∣∣ + d, (2.11)

on Rn−3 × I1 × I2 × I3.
b. If εn−1εn = −1 and εn−2εn = 1, then

F(x1, . . . , xn) =

n−3∑
i=1

aixi +
1
a

ln

∣∣∣∣∣∣∣∣∣∣∣∣
cos

(
ab

b − a
√
βxn + c0

)
cos

(
a
√
βxn−2 + a0

)
∣∣∣∣∣∣∣∣∣∣∣∣
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−
1
b

ln

∣∣∣∣∣∣cos
(

ab
b − a

√
βxn + c0

)
cos

(
b
√
βxn−1 + b0

)∣∣∣∣∣∣ + d, (2.12)

on Rn−3 × I1 × I2 × I4.
c. If εn−1εn = 1 and εn−2εn = −1, then

F(x1, . . . , xn) =

n−3∑
i=1

aixi −
1
a

ln

∣∣∣∣∣∣cos
(

ab
b − a

√
βxn + c0

)
cos

(
a
√
βxn−2 + a0

)∣∣∣∣∣∣
+

1
b

ln

∣∣∣∣∣∣∣∣∣∣∣∣
cos

(
ab

b − a
√
βxn + c0

)
cos

(
b
√
βxn−1 + b0

)
∣∣∣∣∣∣∣∣∣∣∣∣ + d, (2.13)

on Rn−3 × I1 × I2 × I4.

d. If εn−1εn = −1 and εn−2εn = −1, then

F(x1, . . . , xn) =

n−3∑
i=1

aixi −
1
a

ln

∣∣∣∣∣∣cos
(
−ab
a + b

√
βxn + c0

)
cos

(
a
√
βxn−2 + a0

)∣∣∣∣∣∣
−

1
b

ln

∣∣∣∣∣∣cos
(
−ab
a + b

√
βxn + c0

)
cos

(
b
√
βxn−1 + b0

)∣∣∣∣∣∣ + d, (2.14)

on Rn−3 × I1 × I2 × I5.

If β = 0, then Mn is locally a hyperplane.
Proof. From Theorem 1.1, Mn has zero scalar curvature iff

∑
1≤i< j≤n

εiε j f
′′

i f
′′

j

εn+1 +
∑

1≤k≤n
k,i, j

εk f
′2
k

 = 0. (2.15)

We will examine the proof according to the following cases.
Case 1. Let εn+1 +

∑
1≤k≤n
k,i, j

εk f
′2
k = 0 for all 1 ≤ i < j ≤ n, then the functions f

′

k are constant for all

1 ≤ k ≤ n. Consequently Mn is locally a hyperplane.
Case 2. Let f

′′

i (xi) = 0 for all i = 1, . . . n − 1, then Mn is parameterized by the equation (2.9).
Case 3. Let f

′′

i (xi) = 0 for all i = 1, . . . n − 2, then f
′

i (xi) = ai, ai ∈ R. Also we can rewrite (2.15) by
the following equation

εn−1εn f
′′

n−1 f
′′

n

εn+1 +

n−2∑
k=1

εka2
k

 .
According to this equation, we have the following cases:

i. If f
′′

n−1 = 0, corresponding to Case 1.
ii. If f

′′

n = 0, corresponding to Case 1.

iii. If εn+1 +
n−2∑
k=1

εka2
k = 0, then Mn is parameterized by the equation (2.10).
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Case 4. Let f
′′

i (xi) = 0 for all i = 1, . . . n− 3, then f
′

i (xi) = ai, ai ∈ R. Also we can rewrite (2.15) by
the following equation

εn−2εn−1 f
′′

n−2 f
′′

n−1(β + f
′2
n ) + εn−2εn f

′′

n−2 f
′′

n (β + f
′2
n−1) + εn−1εn f

′′

n−1 f
′′

n (β + f
′2
n−2) = 0,

where β = εn+1 +
n−3∑
k=1

εka2
k . If we multiply both sides of the above equation by εn−2εn−1εn, then we obtain

εn f
′′

n−2 f
′′

n−1(β + f
′2
n ) + εn−1 f

′′

n−2 f
′′

n (β + f
′2
n−1) + εn−2 f

′′

n−1 f
′′

n (β + f
′2
n−2) = 0. (2.16)

According to the assumption, the functions f
′′

n−2, f
′′

n−1 and f
′′

n are different from zero. Also we get
β + f

′2
k , 0 for k = n − 2, n − 1, n. Hence we rewrite (2.16)

εn
f
′′

n−2 f
′′

n−1

(β + f ′2n−2)(β + f ′2n−1)
+ εn−1

f
′′

n−2 f
′′

n

(β + f ′2n−2)(β + f ′2n )
+ εn−2

f
′′

n−1 f
′′

n

(β + f ′2n−1)(β + f ′2n )
= 0. (2.17)

Differentiating the equation with respect to xn−2 and xn−1, we find f
′′

n−2

β + f ′2n−2

′ = 0 or
 f

′′

n−1

β + f ′2n−1

′ = 0.

If
 f

′′

n−2

β + f ′2n−2

′ = 0, then there is a constant a , 0 such that

f
′′

n−2 = a
(
β + f

′2
n−2

)
. (2.18)

Substituting this equation into (2.17), we obtain

εn
f
′′

n−1

β + f ′2n−1

a + εn−1
f
′′

n

β + f ′2n
a + εn−2

f
′′

n−1 f
′′

n

(β + f ′2n−1)(β + f ′2n )
= 0. (2.19)

Differentiating the equation with respect to xn−1 and xn, we find f
′′

n−1

β + f ′2n−1

′ = 0 or
(

f
′′

n

β + f ′2n

)′
= 0.

If
 f

′′

n−1

β + f ′2n−1

′ = 0, then there is a constant b , 0 such that

f
′′

n−1 = b
(
β + f

′2
n−1

)
. (2.20)

Substituting this equation into (2.19), we obtain

εnab +
f
′′

n

β + f ′2n
(εn−1a + εn−2b) = 0. (2.21)
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Since ab , 0, from (2.21), then εn−1a + εn−2b , 0. If we rearrange the equation, then we get

f
′′

n

β + f ′2n
= −

εnab
εn−1a + εn−2b

. (2.22)

If we integrate the equations (2.18), (2.20) and (2.22), then we obtain

arctan
 f

′

n−2(xn−2)
√
β

 = a
√
βxn−2 + a0,

arctan
 f

′

n−1(xn−1)
√
β

 = a
√
βxn−1 + b0,

arctan
(

f
′

n(xn)
√
β

)
= −

εnab
√
β

εn−1a + εn−2b
xn + c0,

where a0, b0 and c0 are constants. From these equations, we get

fn−2(xn−2) = −
1
a

ln
∣∣∣∣cos

(
a
√
βxn−2 + a0

)∣∣∣∣ + a1,

fn−1(xn−1) = −
1
b

ln
∣∣∣∣cos

(
b
√
βxn−1 + b0

)∣∣∣∣ + b1,

fn(xn) =
εn−1a + εn−2b

εnab
ln

∣∣∣∣∣∣cos
(

εnab
√
β

εn−1a + εn−2b
xn + c0

)∣∣∣∣∣∣ + c1,

where a1, b1 and c1 are constants. Therefore Mn is parameterized by the equation

ψ(x1, . . . , xn) = (x1, . . . , xn,

n−3∑
i=1

aixi −
1
a

ln
∣∣∣∣cos

(
a
√
βxn−2 + a0

)∣∣∣∣
−

1
b

ln
∣∣∣∣cos

(
b
√
βxn−1 + b0

)∣∣∣∣
+

(
εn−2εn

a
+
εn−1εn

b

)
ln

∣∣∣∣∣∣cos
(

εnab
√
β

εn−1a + εn−2b
xn + c0

)∣∣∣∣∣∣ + d) (2.23)

where d = a1 + b1 + c1 is a constant. According to the values of εn−2, εn−1 and εn, if we rearrange the
equation (2.23), then we get the following parameterizations.

i. If εn−1εn = 1 and εn−2εn = 1, then the translation hypersurface Mn is given by (2.11).
ii. If εn−1εn = −1 and εn−2εn = 1, then the translation hypersurface Mn is given by (2.12).
iii. If εn−1εn = 1 and εn−2εn = −1, then the translation hypersurface Mn is given by (2.13).
iv. If εn−1εn = −1 and εn−2εn = −1, then the translation hypersurface Mn is given by (2.14).
Case 5. Let f

′′

i (xi) = 0 for 1 ≤ i ≤ k ≤ n − 4, and f
′′

j (x j) , 0 for any j > k. We prove that this is not
possible. Also we can rewrite (2.15) for any fixed l ≥ k + 1 by the following equation

∑
1≤i< j≤n

εiε j f
′′

i f
′′

j

εn+1 +
∑

1≤m≤n
m,i, j

εm f
′2
m

 = εl f
′′

l

∑
k+1≤ j≤n

j,l

ε j f
′′

j

εn+1 +
∑

1≤m≤n
m,l, j

εm f
′2
m
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+
∑

k+1≤i< j≤n
i, j,l

εiε j f
′′

i f
′′

j

εn+1 +
∑

1≤m≤n
m,i, j

εm f
′2
m

 . (2.24)

Differentiating the equation (2.24) with respect to xl, we obtain

f
′′′

l

∑
k+1≤ j≤n

j,l

ε j f
′′

j

εn+1 +
∑

1≤m≤n
m,l, j

εm f
′2
m

 + 2 f
′

l f
′′

l

∑
k+1≤i< j≤n

i, j,l

εiε j f
′′

i f
′′

j = 0. (2.25)

According to the equation (2.25), we define

Al =
∑

k+1≤ j≤n
j,l

ε j f
′′

j

εn+1 +
∑

1≤m≤n
m,l, j

εm f
′2
m

 , Bl =
∑

k+1≤i< j≤n
i, j,l

εiε j f
′′

i f
′′

j . (2.26)

Al and Bl are not dependent on xl. From (2.25) and (2.26), we have

Al f
′′′

l + 2Bl f
′

l f
′′

l = 0. (2.27)

Also there are two cases.
i. Let Al = 0 for l ≥ k + 1. From (2.26), we get

∑
k+1≤ j≤n

j,l

ε j f
′′

j

εn+1 +
∑

1≤m≤n
m,l, j

εm f
′2
m

 = 0. (2.28)

Differentiating the equation (2.28) with respect to xp for p ≥ k + 1 and p , l, we find

f
′′′

p

εn+1 +
∑

1≤m≤n
m,l,p

εm f
′2
m

 + 2 f
′

p f
′′

p

∑
k+1≤ j≤n

j,l,p

ε j f
′′

j = 0. (2.29)

According to this equation, one must have

εn+1 +
∑

1≤m≤n
m,l,p

εm f
′2
m , 0. (2.30)

Otherwise the functions f
′

m are constant and we conclude that f
′′

m = 0 for 1 ≤ m ≤ n, m , l, p. This is a
contradiction with the assumption in Case 5. Since Al = 0, according to (2.25), we get

2εl f
′

l f
′′

l

∑
k+1≤i< j≤n

i, j,l

εiε j f
′′

i f
′′

j = 0. (2.31)
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Since εl , 0 and f
′′

l , 0, we have ∑
k+1≤i< j≤n

i, j,l

εiε j f
′′

i f
′′

j = 0. (2.32)

Differentiating the equation (2.32) with respect to xp for p ≥ k + 1 and p , l, we obtain

f
′′′

p

∑
k+1≤ j≤n

j,l,p

ε j f
′′

j = 0. (2.33)

Differentiating the equation (2.33) with respect to xq for q ≥ k + 1 and q , l, p, we find f
′′′

p f
′′′

q = 0.
Therefore, at most one of the indexes p ≥ k + 1 and p , l is nonzero, denoted by p. Also we can get
f
′′′

p , 0 and f
′′′

q = 0 for all q ≥ k + 1 and q , l, p. From f
′′′

p , 0 and the equation (2.33), we have∑
k+1≤ j≤n

j,l,p

ε j f
′′

j = 0. (2.34)

Substituting this equation into (2.29), since εn+1+
∑

1≤m≤n
m,l,p

εm f
′2
m , 0,we get f

′′′

p = 0. This is a contradiction

with f
′′′

p , 0. Also we get f
′′′

p = 0 for all p ≥ k + 1 and p , l. From (2.29), we conclude that∑
k+1≤ j≤n

j,l,p

ε j f
′′

j = 0, (2.35)

for all p ≥ k + 1 and p , l. The above linear system has unique solution such that f
′′

j = 0 for all
k + 1 ≤ j ≤ n and j , l. This is a contradiction with the assumption in Case 5. Consequently, if Al = 0,
then Case 5 is not possible.

ii. Let Al , 0 for l ≥ k + 1. Since Al , 0, from (2.27), we get

f
′′′

l + 2αl f
′

l f
′′

l = 0, (2.36)

where αl =
Bl

Al
is a constant for l ≥ k + 1. Substituting this equation into (2.25), we find

αl f
′

l f
′′

l

∑
k+1≤ j≤n

j,l

ε j f
′′

j

εn+1 +
∑

1≤m≤n
m,l, j

εm f
′2
m

 − f
′

l f
′′

l

∑
k+1≤i< j≤n

i, j,l

εiε j f
′′

i f
′′

j = 0.

Since f
′′

l (xl) , 0 for l ≥ k + 1, we obtain

αl

∑
k+1≤ j≤n

j,l

ε j f
′′

j

εn+1 +
∑

1≤m≤n
m,l, j

εm f
′2
m

 −
∑

k+1≤i< j≤n
i, j,l

εiε j f
′′

i f
′′

j = 0. (2.37)
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Differentiating the equation (2.37) with respect to xs for s ≥ k + 1 and s , l, we obtain

αl f
′′′

s

εn+1 +
∑

1≤m≤n
m,l,s

εm f
′2
m

 + 2αl f
′

s f
′′

s

∑
k+1≤ j≤n

j,l,s

ε j f
′′

j − f
′′′

s

∑
k+1≤ j≤n

j,l,s

ε j f
′′

j = 0.

From (2.36), f
′′′

s + 2αs f
′

s f
′′

s = 0 for s ≥ k + 1. Also we can rewrite the above equation

−αlαs f
′

s f
′′

s

εn+1 +
∑

1≤m≤n
m,l,s

εm f
′2
m

 + αl f
′

s f
′′

s

∑
k+1≤ j≤n

j,l,s

ε j f
′′

j + αs f
′

s f
′′

s

∑
k+1≤ j≤n

j,l,s

ε j f
′′

j = 0.

Since f
′′

s (xs) , 0 for s ≥ k + 1, we get

− αlαs

εn+1 +
∑

1≤m≤n
m,l,s

εm f
′2
m

 + αl

∑
k+1≤ j≤n

j,l,s

ε j f
′′

j + αs

∑
k+1≤ j≤n

j,l,s

ε j f
′′

j = 0. (2.38)

Differentiating the equation (2.38) with respect to xt for t ≥ k + 1 and t , l and t , s, we obtain

−2αlαs f
′

t f
′′

t + αl f
′′′

t + αs f
′′′

t = 0.

From (2.36), f
′′′

t + 2αt f
′

t f
′′

t = 0 for t ≥ k + 1. Since f
′′

t (xt) , 0 for t ≥ k + 1, we obtain the above
equation

αlαs + αlαt + αsαt = 0, (2.39)

with t , l, t , s and l , s. From [1], in a similar way to the proof of Theorem 1.2, this equality imply
that at most one of the constants αl is nonzero for l ≥ k +1. We assume that αl = 0 for k +1 ≤ l ≤ n−1.
From (2.36), f

′′′

l = 0, then f
′′

l is constant for k + 1 ≤ l ≤ n − 1. From (2.37), we obtain∑
k+1≤i< j≤n

i, j,l

εiε j f
′′

i f
′′

j = 0

for l , n. Therefore f
′′

n is constant and so αn = 0. Thus, from (2.37), we get∑
k+1≤i< j≤n

i, j,l

εiε j f
′′

i f
′′

j = 0.

According to the equality, at most one of the functions f
′′

l is nonzero for k + 1 ≤ l ≤ n. This is a
contradiction with the assumption in Case 5. Consequently, if Al , 0, then Case 5 is not possible.

Theorem 2.3. Let Mn be a n−dimensional translation hypersurface of the semi-Euclidean space
Rn+1

q for n ≥ 3 determined by the following equations

ψ(x1, . . . , xn) = (x1, . . . , xn, F(x1, . . . , xn)), F(x1, . . . , xn) =

n∑
i=1

fi(xi).
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Assume further that Mn has constant scalar curvature. Then its constant scalar curvature must be zero.
Proof. We assume that a translation hypersurface Mn has nonzero constant scalar curvature S . From

(2.6) the scalar curvature of Mn is given by

S =
2

Q2

∑
1≤i< j≤n

εiε j f
′′

i f
′′

j

εn+1 +
∑

1≤k≤n
k,i, j

εk f
′2
k

 (2.40)

where Q = εn+1 +
n∑

i=1
εi f

′2
i . Differentiating the equation (2.40) with respect to xl, we obtain

0 =
1

Q2

 f
′′′

l

∑
1≤ j≤n

j,l

ε j f
′′

j

εn+1 +
∑

1≤k≤n
k,l, j

εk f
′2
k

 + 2 f
′

l f
′′

l

∑
1≤i< j≤n

i, j,l

εiε j f
′′

i f
′′

j


−

4 f
′

l f
′′

l

Q3

∑
1≤i< j≤n

εiε j f
′′

i f
′′

j

εn+1 +
∑

1≤k≤n
k,i, j

εk f
′2
k

 .
If we rearrange this equation, then we get

2 f
′

l f
′′

l S =
1
Q

 f
′′′

l

∑
1≤ j≤n

j,l

ε j f
′′

j

εn+1 +
∑

1≤k≤n
k,l, j

εk f
′2
k

 + 2 f
′

l f
′′

l

∑
1≤i< j≤n

i, j,l

εiε j f
′′

i f
′′

j

 . (2.41)

Differentiating the equation (2.41) with respect to xs and s , l, we find

0 =
1
Q

 f
′′′

l f
′′′

s

εn+1 +
∑

1≤k≤n
k,l,s

εk f
′2
k

 + 2 f
′′′

l f
′

s f
′′

s

∑
1≤ j≤n
j,l,s

ε j f
′′

j + 2 f
′

l f
′′

l f
′′′

s

∑
1≤ j≤n
j,l,s

ε j f
′′

j


−

2 f
′

s f
′′

s

Q2

 f
′′′

l

∑
1≤ j≤n

j,l

ε j f
′′

j

εn+1 +
∑

1≤k≤n
k,l, j

εk f
′2
k

 + 2 f
′

l f
′′

l

∑
1≤i< j≤n

i, j,l

εiε j f
′′

i f
′′

j

 .
From this equation, we get

4 f
′

l f
′′

l f
′

s f
′′

s S = f
′′′

l f
′′′

s

εn+1 +
∑

1≤k≤n
k,l,s

εk f
′2
k

 + 2( f
′′′

l f
′

s f
′′

s + f
′

l f
′′

l f
′′′

s )
∑

1≤ j≤n
j,l,s

ε j f
′′

j . (2.42)

Differentiating the equation (2.42) with respect to xt, t , l and t , s, we have

f
′′′

l f
′′′

s f
′

t f
′′

t + f
′′′

l f
′′′

t f
′

s f
′′

s + f
′′′

s f
′′′

t f
′

l f
′′

l = 0. (2.43)
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We assume that f
′′

l f
′′

s f
′′

t , 0 and f
′′′

l = 0. According to (2.43), we get f
′′′

s = 0 or f
′′′

t = 0. From (2.42),
we have 4 f

′

l f
′′

l f
′

s f
′′

s S = 0. This contradicts f
′′

l f
′′

s f
′′

t , 0 and S , 0. Also f
′′′

l , 0 and likewise f
′′′

s , 0
and f

′′′

t , 0. From f
′′

l f
′′

s f
′′

t , 0 and (2.43), we find

f
′′′

l

f ′l f ′′l

f
′′′

s

f ′s f ′′s
+

f
′′′

l

f ′l f ′′l

f
′′′

t

f ′t f ′′t
+

f
′′′

s

f ′s f ′′s

f
′′′

t

f ′t f ′′t
= 0. (2.44)

From (2.44), we get f
′′′

l = αl f
′

l f
′′

l , with a nonzero constant αl. Substituting this equation into (2.41),
we find

2S Q = αl

∑
1≤ j≤n

j,l

ε j f
′′

j

εn+1 +
∑

1≤k≤n
k,l, j

εk f
′2
k

 + 2
∑

1≤i< j≤n
i, j,l

εiε j f
′′

i f
′′

j . (2.45)

Differentiating the equation (2.45) with respect to xl, we have f
′

l f
′′

l S = 0. This contradicts f
′′

l f
′′

s f
′′

t , 0
and S , 0. Hence, it must be f

′′

l f
′′

s f
′′

t = 0. Also, at most two of the functions f
′′

l are nonzero for
1 ≤ l ≤ n. Without loss of generality, we assume that f

′′

n−1 , 0, f
′′

n , 0 and f
′′

l = 0 for 1 ≤ l ≤ n − 2,
then f

′

l = al for 1 ≤ l ≤ n − 2 and we arrange (2.6)

0 , Q2S = f
′′

n−1 f
′′

n α, (2.46)

where α = 2εn−1εn

(
εn+1 +

n−2∑
k=1

εka2
k

)
is a nonzero constant. Differentiating the equation (2.46) with

respect to xn−1, we have
0 , 4εn−1 f

′

n−1 f
′′

n−1QS = f
′′′

n−1 f
′′

n α. (2.47)

Differentiating the equation with respect to xn, we get

0 , 8εn−1εn f
′

n−1 f
′′

n−1 f
′

n f
′′

n S = f
′′′

n−1 f
′′′

n α. (2.48)

Also, there is a nonzero constant β such that f
′′′

n−1 = β f
′

n−1 f
′′

n−1 , 0 and from (2.47)

0 , 4εn−1QS = f
′′

n αβ. (2.49)

Differentiating the equation (2.49) with respect to xn−1, we get

8 f
′

n−1 f
′′

n−1S = 0.

This is a contradiction with f
′′

n−1 , 0. Thus the constant scalar curvature must be zero.

3. Conclusions

Translation hypersurfaces are special Monge hypersurfaces defined by the following equations

ψ(x1, . . . , xn) = (x1, . . . , xn, F(x1, . . . , xn)), F(x1, . . . , xn) =

n∑
i=1

fi(xi).

In this paper, we obtain the parameterization of translation hypersurfaces with zero scalar curvature
into Rn+1

q . Moreover we prove that translation hypersurfaces with constant scalar curvature must have
zero scalar curvature in the semi-Euclidean space Rn+1

q for n ≥ 3.
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