Research article

Translation hypersurfaces of semi-Euclidean spaces with constant scalar curvature

Derya Sağlam*and Cumali Sunar
Kırıkkale University, Faculty of Art and Science, Department of Mathematics, Turkey

* Correspondence: Email: deryasaglam@kku.edu.tr.

Abstract

In this paper, we present translation hypersurfaces of semi-Euclidean spaces with zero scalar curvature. In addition, we prove that translation hypersurfaces with constant scalar curvature must have zero scalar curvature in the semi-Euclidean space \mathbb{R}_{q}^{n+1} for $n \geq 3$.

Keywords: translation hypersurfaces; scalar curvature; semi-Euclidean space
Mathematics Subject Classification: 53A04, 53A25, 53A40

1. Introduction and preliminaries

Translation hypersurfaces are special Monge hypersurfaces. Many studies have been carried out with these hypersurfaces until today [1-11].

In [1], Lima presented a complete description of all translation hypersurfaces with constant scalar curvature in the Euclidean space. In [2], they showed that every minimal translation and homothetical lightlike hypersurface is locally a hyperplane. In [3], the minimal translation hypersurfaces of E^{4} were studied. Yang, Zhang and Fu obtained a characterization of a class of minimal translation graphs which are the generalization of minimal translation hypersurfaces in the Euclidean space [4]. In [5], the authors studied a characterization of minimal translation graphs in the semi-Euclidean space. Recently, homothetical and translation lightlike graphs, which are generalizations of homothetical and translation lightlike hypersurfaces were investigated in the semi-Euclidean space \mathbb{R}_{q}^{n+2} [6]. Moreover Sağlam proved that all homothetical and all translation lightlike graphs are locally hyperplanes and according to this fact, both of these graphs are minimal. In [7], Seo gave a classification of the translation hypersurfaces with constant mean curvature or constant Gauss-Kronecker curvature in the Euclidean space and the Lorentz- Minkowski space. Moreover the author characterized the minimal translation hypersurfaces in the upper half-space model of the hyperbolic space. In 2019, Aydın and Ogrenmis studied translation hypersurfaces generated by translating planar curves and classified the translation hypersurfaces with constant Gauss-Kronecker curvature and constant mean curvature in the

4-dimensional isotropic space [8]. In [9], Ruiz-Hernandez investigated translation hypersurfaces in the ($\mathrm{n}+1$)-dimensional Euclidean space whose Gauss-Kronecker curvature depends on its variables. In [10], Sousa, Lima and Vieira studied the geometry of generalized translation hypersurfaces immersed in Euclidean space equipped with a metric conformal to Euclidean metric and obtained results that characterize such hypersurfaces. In [11], Lima, Santos and Sousa gave a classification of the generalized translation graphs with constant mean curvature or constant Gauss-Kronecker curvature in the Euclidean space.

In the semi-Euclidean space \mathbb{R}_{q}^{n+1}, a translation hypersurface M^{n} is a semi-Riemannian manifold with codimension 1 given by

$$
\psi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, F\left(x_{1}, \ldots, x_{n}\right)\right), \quad F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right)
$$

where $f_{1}, f_{2}, \ldots, f_{n}$ are smooth functions. Each function f_{i} depends on the real variable x_{i} and is different from zero for $1 \leq i \leq n$. Or else it is a hyperplane.

In [1], Lima gave the parameterization of translation hypersurfaces with zero scalar curvature into \mathbb{R}^{n+1} for $n \geq 3$. Moreover they showed that every translation hypersurface with constant scalar curvature must have zero scalar curvature in the Euclidean space \mathbb{R}^{n+1} for $n \geq 3$ and proved the following theorem.

Theorem 1.1. Let M^{n} be a translation hypersurface of \mathbb{R}^{n+1} given by $\psi=\left(x_{1}, \ldots, x_{n}, F\right)$ for $n \geq 3$. Then M^{n} has zero scalar curvature iff it is congruent to the graph of the following functions:

1. $F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n-1} a_{i} x_{i}+f_{n}\left(x_{n}\right)+b$, on $\mathbb{R}^{n-1} \times J$, for some interval J and $f_{n}: J \subset \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function, which defines, after a suitable linear change of variables, a vertical cylinder.
2. A generalized periodic Enneper hypersurface given by

$$
\begin{array}{r}
F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n-3} a_{i} x_{i}+\frac{\sqrt{\beta}}{a} \ln \left|\frac{\cos \left(-\frac{a b}{a+b} \sqrt{\beta} x_{n}+c\right)}{\cos \left(a \sqrt{\beta} x_{n-2}+a_{0}\right)}\right| \\
+\frac{\sqrt{\beta}}{b} \ln \left|\frac{\cos \left(-\frac{a b}{a+b} \sqrt{\beta} x_{n}+c\right)}{\cos \left(b \sqrt{\beta} x_{n-1}+b_{0}\right)}\right|+d, \tag{1.1}
\end{array}
$$

on $R^{n-3} \times I_{1} \times I_{2} \times I_{3}$, where $a, a_{1}, \ldots, a_{n-3}, b, b_{0}, c, d$ are real constants with $a, b, a+b \neq 0, \beta=$ $1+\sum_{i=1}^{n-3} a_{i}^{2}$ and I_{1}, I_{2}, I_{3} are the open intervals defined, respectively, by the conditions $\left|a \sqrt{\beta} x_{n-2}+a_{0}\right|<$ $\pi / 2,\left|b \sqrt{\beta} x_{n-1}+b_{0}\right|<\pi / 2$ and $\left|-\frac{a b}{a+b} \sqrt{\beta} x_{n}+c\right|<\pi / 2$.

In this paper, we obtain the parameterization of translation hypersurfaces with zero scalar curvature into \mathbb{R}_{q}^{n+1}. In addition we prove that translation hypersurfaces with constant scalar curvature must have zero scalar curvature in the semi-Euclidean space \mathbb{R}_{q}^{n+1} for $n \geq 3$.

2. Translation hypersurfaces of semi-Euclidean spaces with constant scalar curvature

Let M^{n} be a semi-Riemannian manifold and $g_{i j}$ be the components of the metric tensor of M^{n} and $g^{i j}$ be inverse of the functions $g_{i j}$ for $1 \leq i, j \leq n$. The Christoffel symbols or the affine connection of
M^{n} are given by

$$
\begin{equation*}
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{m=1}^{n} g^{k m}\left(\frac{\partial g_{j m}}{\partial x_{i}}+\frac{\partial g_{i m}}{\partial x_{j}}-\frac{\partial g_{i j}}{\partial x_{m}}\right), \tag{2.1}
\end{equation*}
$$

for $1 \leq i, j, k \leq n$. The Components of the Riemannian curvature tensor R of a semi-Riemannian manifold M^{n} are given by

$$
\begin{equation*}
R_{j k l}^{i}=\frac{\partial \Gamma_{k j}^{i}}{\partial x_{l}}-\frac{\partial \Gamma_{l j}^{i}}{\partial x_{k}}+\sum_{m=1}^{n} \Gamma_{l m}^{i} \Gamma_{k j}^{m}-\sum_{m=1}^{n} \Gamma_{k m}^{i} \Gamma_{l j}^{m}, \tag{2.2}
\end{equation*}
$$

for $1 \leq i, j, k, l \leq n$. The Components of the Ricci curvature tensor Ric of a semi-Riemannian manifold M^{n} are given by

$$
\begin{equation*}
R_{i j}=\sum_{m=1}^{n} R_{i j m}^{m}, \tag{2.3}
\end{equation*}
$$

for $1 \leq i, j \leq n$. The scalar curvature S of a semi-Riemannian manifold M^{n} are given by

$$
\begin{equation*}
S=\sum_{i, j=1}^{n} g^{i j} R_{i j}=\sum_{i, j, k=1}^{n} g^{i j} R_{i j k}^{k} . \tag{2.4}
\end{equation*}
$$

Theorem 2.1. Let M^{n} be a n-dimensional translation hypersurface of the semi-Euclidean space \mathbb{R}_{q}^{n+1} with a natural orthonormal basis $\left\{e_{1}, \ldots e_{n+1}\right\}$ determined by the following equations

$$
\begin{equation*}
\psi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, F\left(x_{1}, \ldots, x_{n}\right)\right), \quad F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right) \tag{2.5}
\end{equation*}
$$

Then the scalar curvature of M^{n} given by

$$
\begin{equation*}
S=\frac{2}{\left(\varepsilon_{n+1}+\sum_{i=1}^{n} \varepsilon_{i} f_{i}^{\prime 2}\right)^{2}} \sum_{1 \leq i<j \leq n} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq k \leq n \\ k \neq i, j}} \varepsilon_{k} f_{k}^{\prime 2}\right), \tag{2.6}
\end{equation*}
$$

where $\varepsilon_{i}=\left\langle e_{i}, e_{i}\right\rangle= \pm 1$ for $1 \leq i \leq n+1$.
Proof. It is easy to check that

$$
g_{i j}=\left\langle\psi_{i}, \psi_{j}\right\rangle=\left\{\begin{array}{l}
\varepsilon_{i}+\varepsilon_{n+1} f_{i}^{\prime 2}, \text { for } i=j \tag{2.7}\\
\varepsilon_{n+1} f_{i}^{\prime} f_{j}^{\prime}, \text { for } i \neq j
\end{array}\right.
$$

and their inverse

$$
g^{i j}=\left\{\begin{array}{l}
\varepsilon_{i} \frac{\left(\varepsilon_{n+1}+\sum_{\substack{k=1 \\
k \neq i}}^{n} \varepsilon_{k} f_{k}^{\prime 2}\right)}{Q}, \text { for } i=j \tag{2.8}\\
\varepsilon_{i} \frac{\varepsilon_{i} \varepsilon_{j} f_{i}^{\prime} f_{j}^{\prime}}{Q}, \text { for } i \neq j
\end{array}\right.
$$

with $Q=\varepsilon_{n+1}+\sum_{k=1}^{n} \varepsilon_{k} f_{k}^{\prime 2}$ and $i, j=1, \ldots, n$. By the direct calculation from the equations (2.1)-(2.4), we get (2.6).

Theorem 2.2. Let M^{n} be a n-dimensional translation hypersurface of the semi-Euclidean space \mathbb{R}_{q}^{n+1} for $n \geq 3$ determined by the following equations

$$
\psi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, F\left(x_{1}, \ldots, x_{n}\right)\right), \quad F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right)
$$

Then M^{n} has zero scalar curvature iff it is locally a hyperplane or it is parameterized by one of the following functions.
1.

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n-1} a_{i} x_{i}+f_{n}\left(x_{n}\right)+b \tag{2.9}
\end{equation*}
$$

on $\mathbb{R}^{n-1} \times I$, for some open interval I, where $a_{i}, b \in \mathbb{R}, 1 \leq i \leq n-1$ and $f_{n}: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function. With a appropiate translation, it is a vertical hypercylinder.
2.

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n-2} a_{i} x_{i}+f_{n-1}\left(x_{n-1}\right)+f_{n}\left(x_{n}\right)+b \tag{2.10}
\end{equation*}
$$

on $\mathbb{R}^{n-2} \times I_{1} \times I_{2}$, for some open intervals I_{1}, I_{2}, where $a_{i}, b \in \mathbb{R}, 1 \leq i \leq n-2$ with $\sum_{i=1}^{n-2} \varepsilon_{i} a_{i}^{2}=-\varepsilon_{n+1}$ and $f_{n-1}: I_{1} \subset \mathbb{R} \rightarrow \mathbb{R}, f_{n}: I_{2} \subset \mathbb{R} \rightarrow \mathbb{R}$ are smooth functions.
3. Let $a, a_{0}, a_{1}, \ldots, a_{n-3}, b, b_{0}, c_{0}, d$ be real constants with $a \neq 0, b \neq 0, a+b \neq 0, b-a \neq 0, \beta=$ $\varepsilon_{n+1}+\sum_{i=1}^{n-3} \varepsilon_{i} a_{i}^{2}>0$ and $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}$ be some open intervals defined, respectively, by the conditions $\left|a \sqrt{\beta} x_{n-2}+a_{0}\right|<\pi / 2,\left|b \sqrt{\beta} x_{n-1}+b_{0}\right|<\pi / 2,\left|\frac{a b}{a+b} \sqrt{\beta} x_{n}+c_{0}\right|<\pi / 2,\left|\frac{a b}{b-a} \sqrt{\beta} x_{n}+c_{0}\right|<\pi / 2$ and $\left|-\frac{a b}{a+b} \sqrt{\beta} x_{n}+c_{0}\right|<\pi / 2$.
a. If $\varepsilon_{n-1} \varepsilon_{n}=1$ and $\varepsilon_{n-2} \varepsilon_{n}=1$, then

$$
\begin{array}{r}
F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n-3} a_{i} x_{i}+\frac{1}{a} \ln \left|\frac{\cos \left(\frac{a b}{a+b} \sqrt{\beta} x_{n}+c_{0}\right)}{\cos \left(a \sqrt{\beta} x_{n-2}+a_{0}\right)}\right| \\
+\frac{1}{b} \ln \left|\frac{\cos \left(\frac{a b}{a+b} \sqrt{\beta} x_{n}+c_{0}\right)}{\cos \left(b \sqrt{\beta} x_{n-1}+b_{0}\right)}\right|+d, \tag{2.11}
\end{array}
$$

on $\mathbb{R}^{n-3} \times I_{1} \times I_{2} \times I_{3}$.
b. If $\varepsilon_{n-1} \varepsilon_{n}=-1$ and $\varepsilon_{n-2} \varepsilon_{n}=1$, then

$$
F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n-3} a_{i} x_{i}+\frac{1}{a} \ln \left|\frac{\cos \left(\frac{a b}{b-a} \sqrt{\beta} x_{n}+c_{0}\right)}{\cos \left(a \sqrt{\beta} x_{n-2}+a_{0}\right)}\right|
$$

$$
\begin{equation*}
-\frac{1}{b} \ln \left|\cos \left(\frac{a b}{b-a} \sqrt{\beta} x_{n}+c_{0}\right) \cos \left(b \sqrt{\beta} x_{n-1}+b_{0}\right)\right|+d \tag{2.12}
\end{equation*}
$$

on $\mathbb{R}^{n-3} \times I_{1} \times I_{2} \times I_{4}$.
c. If $\varepsilon_{n-1} \varepsilon_{n}=1$ and $\varepsilon_{n-2} \varepsilon_{n}=-1$, then

$$
\begin{align*}
F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n-3} a_{i} x_{i} & -\frac{1}{a} \ln \left|\cos \left(\frac{a b}{b-a} \sqrt{\beta} x_{n}+c_{0}\right) \cos \left(a \sqrt{\beta} x_{n-2}+a_{0}\right)\right| \\
& +\frac{1}{b} \ln \left|\frac{\cos \left(\frac{a b}{b-a} \sqrt{\beta} x_{n}+c_{0}\right)}{\cos \left(b \sqrt{\beta} x_{n-1}+b_{0}\right)}\right|+d, \tag{2.13}
\end{align*}
$$

on $\mathbb{R}^{n-3} \times I_{1} \times I_{2} \times I_{4}$.
d. If $\varepsilon_{n-1} \varepsilon_{n}=-1$ and $\varepsilon_{n-2} \varepsilon_{n}=-1$, then

$$
\begin{array}{r}
F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n-3} a_{i} x_{i}-\frac{1}{a} \ln \left|\cos \left(\frac{-a b}{a+b} \sqrt{\beta} x_{n}+c_{0}\right) \cos \left(a \sqrt{\beta} x_{n-2}+a_{0}\right)\right| \\
-\frac{1}{b} \ln \left|\cos \left(\frac{-a b}{a+b} \sqrt{\beta} x_{n}+c_{0}\right) \cos \left(b \sqrt{\beta} x_{n-1}+b_{0}\right)\right|+d \tag{2.14}
\end{array}
$$

on $\mathbb{R}^{n-3} \times I_{1} \times I_{2} \times I_{5}$.
If $\beta=0$, then M^{n} is locally a hyperplane.
Proof. From Theorem 1.1, M^{n} has zero scalar curvature iff

$$
\begin{equation*}
\sum_{1 \leq i<j \leq n} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq k \leq n \\ k \neq i, j}} \varepsilon_{k} f_{k}^{\prime 2}\right)=0 \tag{2.15}
\end{equation*}
$$

We will examine the proof according to the following cases.
Case 1. Let $\varepsilon_{n+1}+\sum_{\substack{1 \leq k \leq n \\ k \neq i, j}} \varepsilon_{k} f_{k}^{\prime 2}=0$ for all $1 \leq i<j \leq n$, then the functions f_{k}^{\prime} are constant for all $1 \leq k \leq n$. Consequently M^{n} is locally a hyperplane.

Case 2. Let $f_{i}^{\prime \prime}\left(x_{i}\right)=0$ for all $i=1, \ldots n-1$, then M^{n} is parameterized by the equation (2.9).
Case 3. Let $f_{i}^{\prime \prime}\left(x_{i}\right)=0$ for all $i=1, \ldots n-2$, then $f_{i}^{\prime}\left(x_{i}\right)=a_{i}, a_{i} \in \mathbb{R}$. Also we can rewrite (2.15) by the following equation

$$
\varepsilon_{n-1} \varepsilon_{n} f_{n-1}^{\prime \prime} f_{n}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{k=1}^{n-2} \varepsilon_{k} a_{k}^{2}\right)
$$

According to this equation, we have the following cases:
i. If $f_{n-1}^{\prime \prime}=0$, corresponding to Case 1 .
ii. If $f_{n}^{\prime \prime}=0$, corresponding to Case 1 .
iii. If $\varepsilon_{n+1}+\sum_{k=1}^{n-2} \varepsilon_{k} a_{k}^{2}=0$, then M^{n} is parameterized by the equation (2.10).

Case 4. Let $f_{i}^{\prime \prime}\left(x_{i}\right)=0$ for all $i=1, \ldots n-3$, then $f_{i}^{\prime}\left(x_{i}\right)=a_{i}, a_{i} \in \mathbb{R}$. Also we can rewrite (2.15) by the following equation

$$
\varepsilon_{n-2} \varepsilon_{n-1} f_{n-2}^{\prime \prime} f_{n-1}^{\prime \prime}\left(\beta+f_{n}^{\prime 2}\right)+\varepsilon_{n-2} \varepsilon_{n} f_{n-2}^{\prime \prime} f_{n}^{\prime \prime}\left(\beta+f_{n-1}^{\prime 2}\right)+\varepsilon_{n-1} \varepsilon_{n} f_{n-1}^{\prime \prime} f_{n}^{\prime \prime}\left(\beta+f_{n-2}^{\prime 2}\right)=0
$$

where $\beta=\varepsilon_{n+1}+\sum_{k=1}^{n-3} \varepsilon_{k} a_{k}^{2}$. If we multiply both sides of the above equation by $\varepsilon_{n-2} \varepsilon_{n-1} \varepsilon_{n}$, then we obtain

$$
\begin{equation*}
\varepsilon_{n} f_{n-2}^{\prime \prime} f_{n-1}^{\prime \prime}\left(\beta+f_{n}^{\prime 2}\right)+\varepsilon_{n-1} f_{n-2}^{\prime \prime} f_{n}^{\prime \prime}\left(\beta+f_{n-1}^{\prime 2}\right)+\varepsilon_{n-2} f_{n-1}^{\prime \prime} f_{n}^{\prime \prime}\left(\beta+f_{n-2}^{\prime 2}\right)=0 \tag{2.16}
\end{equation*}
$$

According to the assumption, the functions $f_{n-2}^{\prime \prime}, f_{n-1}^{\prime \prime}$ and $f_{n}^{\prime \prime}$ are different from zero. Also we get $\beta+f_{k}^{\prime 2} \neq 0$ for $k=n-2, n-1, n$. Hence we rewrite (2.16)

$$
\begin{equation*}
\varepsilon_{n} \frac{f_{n-2}^{\prime \prime} f_{n-1}^{\prime \prime}}{\left(\beta+f_{n-2}^{\prime 2}\right)\left(\beta+f_{n-1}^{\prime 2}\right)}+\varepsilon_{n-1} \frac{f_{n-2}^{\prime \prime} f_{n}^{\prime \prime}}{\left(\beta+f_{n-2}^{\prime 2}\right)\left(\beta+f_{n}^{\prime 2}\right)}+\varepsilon_{n-2} \frac{f_{n-1}^{\prime \prime} f_{n}^{\prime \prime}}{\left(\beta+f_{n-1}^{\prime 2}\right)\left(\beta+f_{n}^{\prime 2}\right)}=0 . \tag{2.17}
\end{equation*}
$$

Differentiating the equation with respect to x_{n-2} and x_{n-1}, we find

$$
\left(\frac{f_{n-2}^{\prime \prime}}{\beta+f_{n-2}^{\prime 2}}\right)^{\prime}=0 \quad \text { or }\left(\frac{f_{n-1}^{\prime \prime}}{\beta+f_{n-1}^{\prime 2}}\right)^{\prime}=0
$$

If $\left(\frac{f_{n-2}^{\prime \prime}}{\beta+f_{n-2}^{\prime 2}}\right)^{\prime}=0$, then there is a constant $a \neq 0$ such that

$$
\begin{equation*}
f_{n-2}^{\prime \prime}=a\left(\beta+f_{n-2}^{\prime 2}\right) \tag{2.18}
\end{equation*}
$$

Substituting this equation into (2.17), we obtain

$$
\begin{equation*}
\varepsilon_{n} \frac{f_{n-1}^{\prime \prime}}{\beta+f_{n-1}^{\prime 2}} a+\varepsilon_{n-1} \frac{f_{n}^{\prime \prime}}{\beta+f_{n}^{\prime 2}} a+\varepsilon_{n-2} \frac{f_{n-1}^{\prime \prime} f_{n}^{\prime \prime}}{\left(\beta+f_{n-1}^{\prime 2}\right)\left(\beta+f_{n}^{\prime 2}\right)}=0 \tag{2.19}
\end{equation*}
$$

Differentiating the equation with respect to x_{n-1} and x_{n}, we find

$$
\left(\frac{f_{n-1}^{\prime \prime}}{\beta+f_{n-1}^{\prime 2}}\right)^{\prime}=0 \quad \text { or }\left(\frac{f_{n}^{\prime \prime}}{\beta+f_{n}^{\prime 2}}\right)^{\prime}=0
$$

If $\left(\frac{f_{n-1}^{\prime \prime}}{\beta+f_{n-1}^{\prime 2}}\right)^{\prime}=0$, then there is a constant $b \neq 0$ such that

$$
\begin{equation*}
f_{n-1}^{\prime \prime}=b\left(\beta+f_{n-1}^{\prime 2}\right) \tag{2.20}
\end{equation*}
$$

Substituting this equation into (2.19), we obtain

$$
\begin{equation*}
\varepsilon_{n} a b+\frac{f_{n}^{\prime \prime}}{\beta+f_{n}^{\prime 2}}\left(\varepsilon_{n-1} a+\varepsilon_{n-2} b\right)=0 \tag{2.21}
\end{equation*}
$$

Since $a b \neq 0$, from (2.21), then $\varepsilon_{n-1} a+\varepsilon_{n-2} b \neq 0$. If we rearrange the equation, then we get

$$
\begin{equation*}
\frac{f_{n}^{\prime \prime}}{\beta+f_{n}^{\prime 2}}=-\frac{\varepsilon_{n} a b}{\varepsilon_{n-1} a+\varepsilon_{n-2} b} . \tag{2.22}
\end{equation*}
$$

If we integrate the equations (2.18), (2.20) and (2.22), then we obtain

$$
\begin{gathered}
\arctan \left(\frac{f_{n-2}^{\prime}\left(x_{n-2}\right)}{\sqrt{\beta}}\right)=a \sqrt{\beta} x_{n-2}+a_{0}, \\
\arctan \left(\frac{f_{n-1}^{\prime}\left(x_{n-1}\right)}{\sqrt{\beta}}\right)=a \sqrt{\beta} x_{n-1}+b_{0}, \\
\arctan \left(\frac{f_{n}^{\prime}\left(x_{n}\right)}{\sqrt{\beta}}\right)=-\frac{\varepsilon_{n} a b \sqrt{\beta}}{\varepsilon_{n-1} a+\varepsilon_{n-2} b} x_{n}+c_{0},
\end{gathered}
$$

where a_{0}, b_{0} and c_{0} are constants. From these equations, we get

$$
\begin{gathered}
f_{n-2}\left(x_{n-2}\right)=-\frac{1}{a} \ln \left|\cos \left(a \sqrt{\beta} x_{n-2}+a_{0}\right)\right|+a_{1}, \\
f_{n-1}\left(x_{n-1}\right)=-\frac{1}{b} \ln \left|\cos \left(b \sqrt{\beta} x_{n-1}+b_{0}\right)\right|+b_{1}, \\
f_{n}\left(x_{n}\right)=\frac{\varepsilon_{n-1} a+\varepsilon_{n-2} b}{\varepsilon_{n} a b} \ln \left|\cos \left(\frac{\varepsilon_{n} a b \sqrt{\beta}}{\varepsilon_{n-1} a+\varepsilon_{n-2} b} x_{n}+c_{0}\right)\right|+c_{1},
\end{gathered}
$$

where a_{1}, b_{1} and c_{1} are constants. Therefore M^{n} is parameterized by the equation

$$
\begin{align*}
\psi\left(x_{1}, \ldots, x_{n}\right)= & \left(x_{1}, \ldots, x_{n}, \sum_{i=1}^{n-3} a_{i} x_{i}-\frac{1}{a} \ln \left|\cos \left(a \sqrt{\beta} x_{n-2}+a_{0}\right)\right|\right. \\
& \quad-\frac{1}{b} \ln \left|\cos \left(b \sqrt{\beta} x_{n-1}+b_{0}\right)\right| \\
& \left.+\left(\frac{\varepsilon_{n-2} \varepsilon_{n}}{a}+\frac{\varepsilon_{n-1} \varepsilon_{n}}{b}\right) \ln \left|\cos \left(\frac{\varepsilon_{n} a b \sqrt{\beta}}{\varepsilon_{n-1} a+\varepsilon_{n-2} b} x_{n}+c_{0}\right)\right|+d\right) \tag{2.23}
\end{align*}
$$

where $d=a_{1}+b_{1}+c_{1}$ is a constant. According to the values of $\varepsilon_{n-2}, \varepsilon_{n-1}$ and ε_{n}, if we rearrange the equation (2.23), then we get the following parameterizations.
i. If $\varepsilon_{n-1} \varepsilon_{n}=1$ and $\varepsilon_{n-2} \varepsilon_{n}=1$, then the translation hypersurface M^{n} is given by (2.11).
ii. If $\varepsilon_{n-1} \varepsilon_{n}=-1$ and $\varepsilon_{n-2} \varepsilon_{n}=1$, then the translation hypersurface M^{n} is given by (2.12).
iii. If $\varepsilon_{n-1} \varepsilon_{n}=1$ and $\varepsilon_{n-2} \varepsilon_{n}=-1$, then the translation hypersurface M^{n} is given by (2.13).
iv. If $\varepsilon_{n-1} \varepsilon_{n}=-1$ and $\varepsilon_{n-2} \varepsilon_{n}=-1$, then the translation hypersurface M^{n} is given by (2.14).

Case 5. Let $f_{i}^{\prime \prime}\left(x_{i}\right)=0$ for $1 \leq i \leq k \leq n-4$, and $f_{j}^{\prime \prime}\left(x_{j}\right) \neq 0$ for any $j>k$. We prove that this is not possible. Also we can rewrite (2.15) for any fixed $l \geq k+1$ by the following equation

$$
\sum_{1 \leq i<j \leq n} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq m \leq n \\ m \neq i, j}} \varepsilon_{m} f_{m}^{\prime 2}\right)=\varepsilon_{l} f_{l}^{\prime \prime} \sum_{\substack{k+1 \leq j \leq n \\ j \neq l}} \varepsilon_{j} f_{j}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq m \leq n \\ m \neq l, j}} \varepsilon_{m} f_{m}^{\prime 2}\right)
$$

$$
\begin{equation*}
+\sum_{\substack{k+1 \leq i<j \leq n \\ i, j \neq l}} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq m \leq n \\ m \neq i, j}} \varepsilon_{m} f_{m}^{\prime 2}\right) . \tag{2.24}
\end{equation*}
$$

Differentiating the equation (2.24) with respect to x_{l}, we obtain

$$
\begin{equation*}
f_{l}^{\prime \prime \prime} \sum_{\substack{k+1 \leq j \leq n \\ j \neq l}} \varepsilon_{j} f_{j}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq m \leq n \\ m \neq l, j}} \varepsilon_{m} f_{m}^{\prime 2}\right)+2 f_{l}^{\prime} f_{l}^{\prime \prime} \sum_{\substack{k+1 \leq i \leq j \leq n \\ i, j \neq l}} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime}=0 . \tag{2.25}
\end{equation*}
$$

According to the equation (2.25), we define

$$
\begin{equation*}
A_{l}=\sum_{\substack{k+1 \leq j \leq n \\ j \neq l}} \varepsilon_{j} f_{j}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq m \leq n \\ m \neq l, j}} \varepsilon_{m} f_{m}^{\prime 2}\right), \quad B_{l}=\sum_{\substack{k+1 \leq i<j \leq n \\ i, j \neq l}} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime} \tag{2.26}
\end{equation*}
$$

A_{l} and B_{l} are not dependent on x_{l}. From (2.25) and (2.26), we have

$$
\begin{equation*}
A_{l} f_{l}^{\prime \prime \prime}+2 B_{l} f_{l}^{\prime} f_{l}^{\prime \prime}=0 \tag{2.27}
\end{equation*}
$$

Also there are two cases.
i. Let $A_{l}=0$ for $l \geq k+1$. From (2.26), we get

$$
\begin{equation*}
\sum_{\substack{k+1 \leq j \leq n \\ j \neq l}} \varepsilon_{j} f_{j}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq m \leq n \\ m \neq l, j}} \varepsilon_{m} f_{m}^{\prime 2}\right)=0 \tag{2.28}
\end{equation*}
$$

Differentiating the equation (2.28) with respect to x_{p} for $p \geq k+1$ and $p \neq l$, we find

$$
\begin{equation*}
f_{p}^{\prime \prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq m \leq n \\ m \neq l, p}} \varepsilon_{m} f_{m}^{\prime 2}\right)+2 f_{p}^{\prime} f_{p}^{\prime \prime} \sum_{\substack{k+1 \leq j \leq n \\ j \neq l, p}} \varepsilon_{j} f_{j}^{\prime \prime}=0 \tag{2.29}
\end{equation*}
$$

According to this equation, one must have

$$
\begin{equation*}
\varepsilon_{n+1}+\sum_{\substack{1 \leq m \leq n \\ m \neq l, p}} \varepsilon_{m} f_{m}^{\prime 2} \neq 0 \tag{2.30}
\end{equation*}
$$

Otherwise the functions f_{m}^{\prime} are constant and we conclude that $f_{m}^{\prime \prime}=0$ for $1 \leq m \leq n, m \neq l, p$. This is a contradiction with the assumption in Case 5 . Since $A_{l}=0$, according to (2.25), we get

$$
\begin{equation*}
2 \varepsilon_{l} f_{l}^{\prime} f_{l}^{\prime \prime} \sum_{\substack{k+1 \leq i \leq j \leq n \\ i, j \neq l}} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime}=0 . \tag{2.31}
\end{equation*}
$$

Since $\varepsilon_{l} \neq 0$ and $f_{l}^{\prime \prime} \neq 0$, we have

$$
\begin{equation*}
\sum_{\substack{k+1 \leq i<j \leq n \\ i, j \neq l}} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime}=0 \tag{2.32}
\end{equation*}
$$

Differentiating the equation (2.32) with respect to x_{p} for $p \geq k+1$ and $p \neq l$, we obtain

$$
\begin{equation*}
f_{p}^{\prime \prime \prime} \sum_{\substack{k+1 \leq j \leq n \\ j \neq l, p}} \varepsilon_{j} f_{j}^{\prime \prime}=0 . \tag{2.33}
\end{equation*}
$$

Differentiating the equation (2.33) with respect to x_{q} for $q \geq k+1$ and $q \neq l$, p, we find $f_{p}^{\prime \prime \prime} f_{q}^{\prime \prime \prime}=0$. Therefore, at most one of the indexes $p \geq k+1$ and $p \neq l$ is nonzero, denoted by p. Also we can get $f_{p}^{\prime \prime \prime} \neq 0$ and $f_{q}^{\prime \prime \prime}=0$ for all $q \geq k+1$ and $q \neq l, p$. From $f_{p}^{\prime \prime \prime} \neq 0$ and the equation (2.33), we have

$$
\begin{equation*}
\sum_{\substack{k+l \leq j \leq n \\ j \neq l, p}} \varepsilon_{j} f_{j}^{\prime \prime}=0 \tag{2.34}
\end{equation*}
$$

Substituting this equation into (2.29), since $\varepsilon_{n+1}+\sum_{\substack{1 \leq m \leq n \\ m \neq l, p}} \varepsilon_{m} f_{m}^{\prime 2} \neq 0$, we get $f_{p}^{\prime \prime \prime}=0$. This is a contradiction with $f_{p}^{\prime \prime \prime} \neq 0$. Also we get $f_{p}^{\prime \prime \prime}=0$ for all $p \geq k+1$ and $p \neq l$. From (2.29), we conclude that

$$
\begin{equation*}
\sum_{\substack{k+1 \leq j \leq n \\ j \neq l, p}} \varepsilon_{j} f_{j}^{\prime \prime}=0 \tag{2.35}
\end{equation*}
$$

for all $p \geq k+1$ and $p \neq l$. The above linear system has unique solution such that $f_{j}^{\prime \prime}=0$ for all $k+1 \leq j \leq n$ and $j \neq l$. This is a contradiction with the assumption in Case 5 . Consequently, if $A_{l}=0$, then Case 5 is not possible.
ii. Let $A_{l} \neq 0$ for $l \geq k+1$. Since $A_{l} \neq 0$, from (2.27), we get

$$
\begin{equation*}
f_{l}^{\prime \prime \prime}+2 \alpha_{l} f_{l}^{\prime} f_{l}^{\prime \prime}=0 \tag{2.36}
\end{equation*}
$$

where $\alpha_{l}=\frac{B_{l}}{A_{l}}$ is a constant for $l \geq k+1$. Substituting this equation into (2.25), we find

$$
\alpha_{l} f_{l}^{\prime} f_{l}^{\prime \prime} \sum_{\substack{k+1 \leq j \leq n \\ j \neq l}} \varepsilon_{j} f_{j}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq m \leq n \\ m \neq l, j}} \varepsilon_{m} f_{m}^{\prime 2}\right)-f_{l}^{\prime} f_{l}^{\prime \prime} \sum_{\substack{k+1 \leq i<j \leq n \\ i, j \neq l}} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime}=0 .
$$

Since $f_{l}^{\prime \prime}\left(x_{l}\right) \neq 0$ for $l \geq k+1$, we obtain

$$
\begin{equation*}
\alpha_{l} \sum_{\substack{k+1 \leq j \leq n \\ j \neq l}} \varepsilon_{j} f_{j}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq m \leq n \\ m \neq l, j}} \varepsilon_{m} f_{m}^{\prime 2}\right)-\sum_{\substack{k+1 \leq i \leq j \leq n \\ i, j \neq l}} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime}=0 . \tag{2.37}
\end{equation*}
$$

Differentiating the equation (2.37) with respect to x_{s} for $s \geq k+1$ and $s \neq l$, we obtain

$$
\alpha_{l} f_{s}^{\prime \prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq m \leq n \\ m \neq l, s}} \varepsilon_{m} f_{m}^{\prime 2}\right)+2 \alpha_{l} f_{s}^{\prime} f_{s}^{\prime \prime} \sum_{\substack{k+1 \leq j \leq n \\ j \neq l, s}} \varepsilon_{j} f_{j}^{\prime \prime}-f_{s}^{\prime \prime \prime} \sum_{\substack{k+1 \leq j \leq n \\ j \neq l, s}} \varepsilon_{j} f_{j}^{\prime \prime}=0 .
$$

From (2.36), $f_{s}^{\prime \prime \prime}+2 \alpha_{s} f_{s}^{\prime} f_{s}^{\prime \prime}=0$ for $s \geq k+1$. Also we can rewrite the above equation

$$
-\alpha_{l} \alpha_{s} f_{s}^{\prime} f_{s}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq m \leq n \\ m \neq l, s}} \varepsilon_{m} f_{m}^{\prime 2}\right)+\alpha_{l} f_{s}^{\prime} f_{s}^{\prime \prime} \sum_{\substack{k+1 \leq j \leq n \\ j \neq l, s}} \varepsilon_{j} f_{j}^{\prime \prime}+\alpha_{s} f_{s}^{\prime} f_{s}^{\prime \prime} \sum_{\substack{k+1 \leq j \leq n \\ j \neq l, s}} \varepsilon_{j} f_{j}^{\prime \prime}=0
$$

Since $f_{s}^{\prime \prime}\left(x_{s}\right) \neq 0$ for $s \geq k+1$, we get

$$
\begin{equation*}
-\alpha_{l} \alpha_{s}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq m \leq n \\ m \neq l, s}} \varepsilon_{m} f_{m}^{\prime 2}\right)+\alpha_{l} \sum_{\substack{k+1 \leq j \leq n \\ j \neq l, s}} \varepsilon_{j} f_{j}^{\prime \prime}+\alpha_{s} \sum_{\substack{k+1 \leq j \leq n \\ j \neq l, s}} \varepsilon_{j} f_{j}^{\prime \prime}=0 . \tag{2.38}
\end{equation*}
$$

Differentiating the equation (2.38) with respect to x_{t} for $t \geq k+1$ and $t \neq l$ and $t \neq s$, we obtain

$$
-2 \alpha_{l} \alpha_{s} f_{t}^{\prime} f_{t}^{\prime \prime}+\alpha_{l} f_{t}^{\prime \prime \prime}+\alpha_{s} f_{t}^{\prime \prime \prime}=0
$$

From (2.36), $f_{t}^{\prime \prime \prime}+2 \alpha_{t} f_{t}^{\prime} f_{t}^{\prime \prime}=0$ for $t \geq k+1$. Since $f_{t}^{\prime \prime}\left(x_{t}\right) \neq 0$ for $t \geq k+1$, we obtain the above equation

$$
\begin{equation*}
\alpha_{l} \alpha_{s}+\alpha_{l} \alpha_{t}+\alpha_{s} \alpha_{t}=0 \tag{2.39}
\end{equation*}
$$

with $t \neq l, t \neq s$ and $l \neq s$. From [1], in a similar way to the proof of Theorem 1.2, this equality imply that at most one of the constants α_{l} is nonzero for $l \geq k+1$. We assume that $\alpha_{l}=0$ for $k+1 \leq l \leq n-1$. From (2.36), $f_{l}^{\prime \prime \prime}=0$, then $f_{l}^{\prime \prime}$ is constant for $k+1 \leq l \leq n-1$. From (2.37), we obtain

$$
\sum_{\substack{k+1 \leq i<j \leq n \\ i, j \neq l}} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime}=0
$$

for $l \neq n$. Therefore $f_{n}^{\prime \prime}$ is constant and so $\alpha_{n}=0$. Thus, from (2.37), we get

$$
\sum_{\substack{k+1 \leq i<j \leq n \\ i, j \neq l}} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime}=0
$$

According to the equality, at most one of the functions $f_{l}^{\prime \prime}$ is nonzero for $k+1 \leq l \leq n$. This is a contradiction with the assumption in Case 5. Consequently, if $A_{l} \neq 0$, then Case 5 is not possible.

Theorem 2.3. Let M^{n} be a n-dimensional translation hypersurface of the semi-Euclidean space \mathbb{R}_{q}^{n+1} for $n \geq 3$ determined by the following equations

$$
\psi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, F\left(x_{1}, \ldots, x_{n}\right)\right), \quad F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right)
$$

Assume further that M^{n} has constant scalar curvature. Then its constant scalar curvature must be zero.
Proof. We assume that a translation hypersurface M^{n} has nonzero constant scalar curvature S. From (2.6) the scalar curvature of M^{n} is given by

$$
\begin{equation*}
S=\frac{2}{Q^{2}} \sum_{1 \leq i<j \leq n} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq k \leq n \\ k \neq i, j}} \varepsilon_{k} f_{k}^{\prime 2}\right) \tag{2.40}
\end{equation*}
$$

where $Q=\varepsilon_{n+1}+\sum_{i=1}^{n} \varepsilon_{i} f_{i}^{\prime 2}$. Differentiating the equation (2.40) with respect to x_{l}, we obtain

$$
\begin{aligned}
0= & \frac{1}{Q^{2}}\left[f_{l}^{\prime \prime \prime} \sum_{\substack{1 \leq j \leq n \\
j \neq l}} \varepsilon_{j} f_{j}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq k \leq n \\
k \neq l, j}} \varepsilon_{k} f_{k}^{\prime 2}\right)+2 f_{l}^{\prime} f_{l}^{\prime \prime} \sum_{\substack{1 \leq i<j \leq n \\
i, j \neq l}} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime}\right] \\
& -\frac{4 f_{l}^{\prime} f_{l}^{\prime \prime}}{Q^{3}} \sum_{\substack{1 \leq i<j \leq n}} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq k \leq n \\
k \neq i, j}} \varepsilon_{k} f_{k}^{\prime 2}\right)
\end{aligned}
$$

If we rearrange this equation, then we get

$$
\begin{equation*}
2 f_{l}^{\prime} f_{l}^{\prime \prime} S=\frac{1}{Q}\left[f_{l}^{\prime \prime \prime} \sum_{\substack{1 \leq j \leq n \\ j \neq l}} \varepsilon_{j} f_{j}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq k \leq n \\ k \neq l, j}} \varepsilon_{k} f_{k}^{\prime 2}\right)+2 f_{l}^{\prime} f_{l}^{\prime \prime} \sum_{\substack{1 \leq i i j j \leq n \\ i, j \neq l}} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime}\right] \tag{2.41}
\end{equation*}
$$

Differentiating the equation (2.41) with respect to x_{s} and $s \neq l$, we find

$$
\begin{aligned}
0= & \frac{1}{Q}\left[f_{l}^{\prime \prime \prime} f_{s}^{\prime \prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq k \leq n \\
k \neq l, s}} \varepsilon_{k} f_{k}^{\prime 2}\right)+2 f_{l}^{\prime \prime \prime} f_{s}^{\prime} f_{s}^{\prime \prime} \sum_{\substack{1 \leq j \leq n \\
j \neq l, s}} \varepsilon_{j} f_{j}^{\prime \prime}+2 f_{l}^{\prime} f_{l}^{\prime \prime} f_{s}^{\prime \prime \prime} \sum_{\substack{1 \leq j \leq n \\
j \neq l, s}} \varepsilon_{j} f_{j}^{\prime \prime}\right] \\
& -\frac{2 f_{s}^{\prime} f_{s}^{\prime \prime \prime}}{Q^{2}}\left[f_{l}^{\prime \prime \prime} \sum_{\substack{1 \leq j \leq n \\
j \neq l}} \varepsilon_{j} f_{j}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq k \leq n \\
k \neq l, j}} \varepsilon_{k} f_{k}^{\prime 2}\right)+2 f_{l}^{\prime} f_{l}^{\prime \prime} \sum_{\substack{1 \leq i<j \leq n \\
i, j \neq l}} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime}\right] .
\end{aligned}
$$

From this equation, we get

$$
\begin{equation*}
4 f_{l}^{\prime} f_{l}^{\prime \prime} f_{s}^{\prime} f_{s}^{\prime \prime} S=f_{l}^{\prime \prime \prime} f_{s}^{\prime \prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq k \leq n \\ k \neq l, s}} \varepsilon_{k} f_{k}^{\prime 2}\right)+2\left(f_{l}^{\prime \prime \prime} f_{s}^{\prime} f_{s}^{\prime \prime}+f_{l}^{\prime} f_{l}^{\prime \prime} f_{s}^{\prime \prime \prime}\right) \sum_{\substack{1 \leq j \leq n \\ j \neq l, s}} \varepsilon_{j} f_{j}^{\prime \prime} \tag{2.42}
\end{equation*}
$$

Differentiating the equation (2.42) with respect to $x_{t}, t \neq l$ and $t \neq s$, we have

$$
\begin{equation*}
f_{l}^{\prime \prime \prime} f_{s}^{\prime \prime \prime} f_{t}^{\prime} f_{t}^{\prime \prime}+f_{l}^{\prime \prime \prime} f_{t}^{\prime \prime \prime} f_{s}^{\prime} f_{s}^{\prime \prime}+f_{s}^{\prime \prime \prime} f_{t}^{\prime \prime \prime} f_{l}^{\prime} f_{l}^{\prime \prime}=0 \tag{2.43}
\end{equation*}
$$

We assume that $f_{l}^{\prime \prime} f_{s}^{\prime \prime} f_{t}^{\prime \prime} \neq 0$ and $f_{l}^{\prime \prime \prime}=0$. According to (2.43), we get $f_{s}^{\prime \prime \prime}=0$ or $f_{t}^{\prime \prime \prime}=0$. From (2.42), we have $4 f_{l}^{\prime} f_{l}^{\prime \prime} f_{s}^{\prime} f_{s}^{\prime \prime} S=0$. This contradicts $f_{l}^{\prime \prime} f_{s}^{\prime \prime} f_{t}^{\prime \prime} \neq 0$ and $S \neq 0$. Also $f_{l}^{\prime \prime \prime} \neq 0$ and likewise $f_{s}^{\prime \prime \prime} \neq 0$ and $f_{t}^{\prime \prime \prime} \neq 0$. From $f_{l}^{\prime \prime} f_{s}^{\prime \prime} f_{t}^{\prime \prime} \neq 0$ and (2.43), we find

$$
\begin{equation*}
\frac{f_{l}^{\prime \prime \prime}}{f_{l}^{\prime} f_{l}^{\prime \prime}} \frac{f_{s}^{\prime \prime \prime}}{f_{s}^{\prime} f_{s}^{\prime \prime}}+\frac{f_{l}^{\prime \prime \prime}}{f_{l}^{\prime} f_{l}^{\prime \prime}} \frac{f_{t}^{\prime \prime \prime}}{f_{t}^{\prime} f_{t}^{\prime \prime}}+\frac{f_{s}^{\prime \prime \prime}}{f_{s}^{\prime} f_{s}^{\prime \prime}} \frac{f_{t}^{\prime \prime \prime}}{f_{t}^{\prime} f_{t}^{\prime \prime}}=0 . \tag{2.44}
\end{equation*}
$$

From (2.44), we get $f_{l}^{\prime \prime \prime}=\alpha_{l} f_{l}^{\prime} f_{l}^{\prime \prime}$, with a nonzero constant α_{l}. Substituting this equation into (2.41), we find

$$
\begin{equation*}
2 S Q=\alpha_{l} \sum_{\substack{1 \leq j \leq n \\ j \neq l}} \varepsilon_{j} f_{j}^{\prime \prime}\left(\varepsilon_{n+1}+\sum_{\substack{1 \leq k \leq n \\ k \neq l, j}} \varepsilon_{k} f_{k}^{\prime 2}\right)+2 \sum_{\substack{1 \leq i<j \leq n \\ i, j \neq l}} \varepsilon_{i} \varepsilon_{j} f_{i}^{\prime \prime} f_{j}^{\prime \prime} . \tag{2.45}
\end{equation*}
$$

Differentiating the equation (2.45) with respect to x_{l}, we have $f_{l}^{\prime} f_{l}^{\prime \prime} S=0$. This contradicts $f_{l}^{\prime \prime} f_{s}^{\prime \prime} f_{t}^{\prime \prime} \neq 0$ and $S \neq 0$. Hence, it must be $f_{l}^{\prime \prime} f_{s}^{\prime \prime} f_{t}^{\prime \prime}=0$. Also, at most two of the functions $f_{l}^{\prime \prime}$ are nonzero for $1 \leq l \leq n$. Without loss of generality, we assume that $f_{n-1}^{\prime \prime} \neq 0, f_{n}^{\prime \prime} \neq 0$ and $f_{l}^{\prime \prime}=0$ for $1 \leq l \leq n-2$, then $f_{l}^{\prime}=a_{l}$ for $1 \leq l \leq n-2$ and we arrange (2.6)

$$
\begin{equation*}
0 \neq Q^{2} S=f_{n-1}^{\prime \prime} f_{n}^{\prime \prime} \alpha, \tag{2.46}
\end{equation*}
$$

where $\alpha=2 \varepsilon_{n-1} \varepsilon_{n}\left(\varepsilon_{n+1}+\sum_{k=1}^{n-2} \varepsilon_{k} a_{k}^{2}\right)$ is a nonzero constant. Differentiating the equation (2.46) with respect to x_{n-1}, we have

$$
\begin{equation*}
0 \neq 4 \varepsilon_{n-1} f_{n-1}^{\prime} f_{n-1}^{\prime \prime} Q S=f_{n-1}^{\prime \prime \prime} f_{n}^{\prime \prime \prime} \alpha \tag{2.47}
\end{equation*}
$$

Differentiating the equation with respect to x_{n}, we get

$$
\begin{equation*}
0 \neq 8 \varepsilon_{n-1} \varepsilon_{n} f_{n-1}^{\prime} f_{n-1}^{\prime \prime} f_{n}^{\prime} f_{n}^{\prime \prime} S=f_{n-1}^{\prime \prime \prime} f_{n}^{\prime \prime \prime} \alpha \tag{2.48}
\end{equation*}
$$

Also, there is a nonzero constant β such that $f_{n-1}^{\prime \prime \prime}=\beta f_{n-1}^{\prime} f_{n-1}^{\prime \prime} \neq 0$ and from (2.47)

$$
\begin{equation*}
0 \neq 4 \varepsilon_{n-1} Q S=f_{n}^{\prime \prime} \alpha \beta . \tag{2.49}
\end{equation*}
$$

Differentiating the equation (2.49) with respect to x_{n-1}, we get

$$
8 f_{n-1}^{\prime} f_{n-1}^{\prime \prime} S=0
$$

This is a contradiction with $f_{n-1}^{\prime \prime} \neq 0$. Thus the constant scalar curvature must be zero.

3. Conclusions

Translation hypersurfaces are special Monge hypersurfaces defined by the following equations

$$
\psi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, F\left(x_{1}, \ldots, x_{n}\right)\right), \quad F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right) .
$$

In this paper, we obtain the parameterization of translation hypersurfaces with zero scalar curvature into \mathbb{R}_{q}^{n+1}. Moreover we prove that translation hypersurfaces with constant scalar curvature must have zero scalar curvature in the semi-Euclidean space \mathbb{R}_{q}^{n+1} for $n \geq 3$.

References

1. B. P. Lima, Translation hypersurfaces with constant scalar curvature into the Euclidean spaces, Israel J. Math., 201 (2014), 797-811. https://doi.org/10.1007/s11856-014-1083-2
2. I. V. Woestyne, W. Geomans, Translation and homothetical lightlike hypersurfaces of a semiEuclidean space, Kuwait J. Sci.. Eng., 2 (2011), 35-42.
3. M. Moruz, M. I. Munteanu, Minimal translation hypersurfaces in E^{4}, J. Math. Anal. Appl., 439 (2016), 798-812.
4. D. Yang, J. Zhang, Y. Fu, A note on minimal translation graphs in Euclidean space, Mathematics, 7 (2019), 1-12.
5. D. Sağlam, Minimal translation graphs in semi-Euclidean space, AIMS Math., 6 (2021), 1020710221. https://doi.org/10.3934/math. 2021591
6. D. Sağlam, Minimal homothetical and translation lightlike graphs in \mathbb{R}_{q}^{n+2}, AIMS Math., 7 (2022), 17198-17209. https://doi.org/10.3934/math. 2022946
7. K. Seo, Translation hypersurfaces with constant curvature in space forms, Osaka J. Math., 50 (2013), 631-641.
8. M. A. Aydın, A. O. Ogrenmis, Translation hypersurfaces with constant curvature in 4-dimensional isotropic space, Int. J. Maps. Math., 2 (2019), 108-130.
9. G. Ruiz-Hernández, Translation hypersurfaces whose curvature depends partially on its variables, J. Math. Anal. Appl., 497 (2021), 124913. https://doi.org/10.1016/j.jmaa.2020.124913
10. P. A. Sousa, B. P. Lima, B. V. M. Vieira, Generalized translation hypersurfaces in conformally flat spaces, J. Geom., 113 (2022), 1-13. https://doi.org/10.1007/s00022-022-00638-2
11. B. P. Lima, N. L. Santos, P. A. Sousa, Generalized translation hypersurfaces in Euclidean space, J. Math. Anal. Appl., 470 (2019), 1129-1135. https://doi.org/10.1016/j.jmaa.2018.10.053

AIMS Press
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

