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1. Introduction

Difference equations have a wide range of applications in math, physics and engineering, as well as
in business and other professions. See [1–4] and the references given therein for a list of publications
and books on difference equations theory and applications. The qualitative features of difference
equations of exponential form have recently attracted a lot of attention [5–8]. The authors of [9]
explored the difference equation’s boundedness, asymptotic nature, periodicity of the solutions, and
the stability of the non-negative equilibrium:

un+1 = αun + βun−1e−un , n = 0, 1, · · · ,

wherein α and β are non-negative constants, and the initial values u−1, u0 are non-negative numbers.
Because it comes from models that investigate the amount of litter in perennial grasslands, this equation
can be called a biological model. The authors of [10] looked at similar conclusions for a system of
difference equations:

un+1 = αvn + βun−1e−vn , vn+1 = γun + δvn−1e−un ,

wherein α, β, γ and δ are non-negative constants, and the initial values u−1, u0, v−1, v0 are non-
negative numbers. In addition, the researcher examines the character of boundedness, persistence, and
asymptotic nature of the non-negative solutions of the subsequent exponential difference equations
in [1]:

un+1 = αun + βvn−1e−un , vn+1 = γvn + δun−1e−vn ,

wherein α, β, γ and δ are non-negative constants, and the initial values u−1, u0, v−1, v0 are also
non-negative numbers. We explore the character of boundedness, persistence, and the convergence
rate of the non-negative outcomes of (1.1) to the unique positive equilibrium point of the subsequent
exponential difference equations, motivated by the studies mentioned above:

xn+1 = axn + byn−1e−xn ,

yn+1 = cyn + dzn−1e−yn , (1.1)
zn+1 = ezn + f xn−1e−zn ,

where a, b, c, d, e and f are non-negative real numbers, and the initial values x−1, x0, y−1, y0, z−1, z0

are also non-negative real numbers.

2. Existence and uniqueness of a positive equilibrium for (1.1)

We look at the existence and uniqueness of the non-negative equilibrium point of the system (1.1)
in first theorem.

Theorem 2.1. The foregoing claims are valid.
(i) Assume that

a, b, c, d, e, f ∈ (0, 1), θ =
bd f

(1 − a)(1 − c)(1 − e)
> 1. (2.1)
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This leads to a unique equilibrium (x, y, z) for the system (1.1). However,

ln(θ) − y

1 + f
1−e

≤ x ≤ ln θ,

ln(θ) − z
1 + b

1−a

≤ y ≤ ln θ, (2.2)

ln(θ) − x
1 + d

1−c

≤ z ≤ ln θ.

(ii) Assume that a, b, c, d, e, f are positive real values such that

a, b, c, d, e, f ∈ (0, 1) , θ ≤ 1. (2.3)

The zero equilibrium (0, 0, 0) is the unique equilibrium solution of system (1.1).

Proof. (i) Assume the following set of algebraic equations:

x = ax + bye−x,

y = cy + dze−y,

z = ez + f xe−z,

or equivalently,

(1 − a) x = bye−x,

(1 − c) y = dze−y, (2.4)
(1 − e) z = f xe−z.

Multiplying Eq (2.4),

(1 − a) (1 − c) (1 − e) xyz = bd f xyze−(x+y+z),
(1 − a) (1 − c) (1 − e)

bd f
= e−(x+y+z),

then,

e(x+y+z) =
bd f

(1 − a) (1 − c) (1 − e)
,

x + y + z = ln
bd f

(1 − a) (1 − c) (1 − e)
.

Then, from Eq (2.4), if x , 0, y , 0 and z , 0, we get

x + y + z = ln θ. (2.5)

From Eqs (2.4) and (2.5),

(1 − a) xex

b
= y,
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(1 − c) yey

d
= z,

(1 − e) zez

f
= x.

Put value of y = (1−a)xex

b in Eq (2.5), we get

x =
ln(θ) − z
1 + 1−a

b ex
.

Now, put value of (1−c)yey

d = z in Eq (2.5), we get

y =
ln(θ) − x
1 + 1−c

d ey
.

Similarly, put (1−e)zez

f = x in Eq (2.5), we get

z =
ln(θ) − y
1 + 1−e

f ez
.

We consider the function:
F (x) = x −

ln(θ) − z
1 + 1−a

b ex
.

So, from (2.1), we get that F (0) < 0 and Lim
x→∞

F (x) = ∞. Then, there exist a x ∈ (0, ∞) such that

x =
ln(θ) − z
1 + 1−a

b ex
. (2.6)

Similarly, we can prove that there exists a y ∈ (0, ∞) and z ∈ (0, ∞) such that

y =
ln(θ) − x
1 + 1−c

d ey
, (2.7)

z =
ln(θ) − y
1 + 1−e

f ez
. (2.8)

To find z from z = ez + f xe−z as

z =
f

1 − e
xe−z. (2.9)

So, from (2.5),
x + y + z = ln θ,

x + y +
f

1 − e
xe−z = ln θ,

x
[
1 +

f
1 − e

e−z

]
= ln(θ) − y,

AIMS Mathematics Volume 8, Issue 2, 5016–5035.



5020

x =
ln(θ) − y

1 + f
1−ee−z

.

Now, we will find x at z = 0:

x =
ln(θ) − y

1 + f
1−e

. (2.10)

Similarly, we will prove that

y =
ln(θ) − z
1 + b

1−a

, (2.11)

z =
ln(θ) − x
1 + d

1−c

. (2.12)

Therefore, from (2.1), (2.5) and combining with Eqs (2.6) and (2.10), we obtained

ln(θ) − y

1 + f
1−e

≤
ln(θ) − z
1 + 1−a

b ex
= x ≤ ln θ.

In similar way, we obtained

ln(θ) − z
1 + b

1−a

≤
ln(θ) − x
1 + 1−c

d ey
= y ≤ ln θ,

ln(θ) − x
1 + d

1−c

≤
ln(θ) − y
1 + 1−e

f ez
= z ≤ ln θ.

And thus (2.2) holds. To demonstrate uniqueness, we suppose that another non-negative equilibrium
(x1, y1, z1) of (1.1) exists. We can assume that x < x1 without losing generality. Then we obtain the
following from (2.6):

x =
ln θ − z

1 + 1−a
b ex

< x1 =
ln θ − z

1 + 1−a
b ex1

,

and so ex1 ≤ ex, which is a contradiction.
So,

x = x1,

similarly,
y = y1 and z = z1.

The proof is now completed. □

Proof. (ii) Since (2.3) is still valid, then we can deduce from (2.5) that x + y + z ≤ 0, implying that
(0, 0, 0) is the only non-negative equilibrium point. The proof is now finished. □
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3. Boundedness and persistence of the positive solutions of (1.1)

We explore the boundedness and persistence of the non-negative solutions of (1.1) in the next
proposition.

Theorem 3.1. There are valid arguments for the following:
(i) Assume that

a, b, c, d, e, f ∈ (0, 1) . (3.1)

Then, every positive solution of (1.1) is bounded.
(ii) Suppose that (3.1) holds. Suppose also that

b
1 − a

> 1,
d

1 − c
> 1,

f
1 − e

> 1. (3.2)

Then, every positive solution of (1.1) is bounded and persists.

Proof. Suppose that (xn, yn, zn) be an arbitrarily solution to (1.1).
(i) We will assume M is positive, such that

M ≥ max
{

x−1, y−1, z−1, x0, y0, z0, ln
(

1
1 − a

)
, ln

(
1

1 − c

)
, ln

(
1

1 − e

)}
. (3.3)

The following function is considered:

h (x) = Me−x + ax, x ∈ [0, M].

There is also that
h
′

(x) = −Me−x + a, h
′′

(x) = Me−x > 0.

In light of this, it follows
h (x) ≤ max{h (0) , h (M)}, x ∈ [0, M]. (3.4)

Furthermore, we can deduce the following from (3.3):

h (0) = M, h (M) = Me−M + aM < Me− ln( 1
1−a ) + aM = M (1 − a) + aM = M. (3.5)

From (3.4) and (3.5), we get that
h (x) ≤ M, x ∈ [0, M]. (3.6)

As a result of relations (1.1), (3.1), (3.3) and (3.6), it follows that

x1 = ax0 + by−1e−x0 ≤ ax0 + Me−x0 = h (x0) ≤ M.

So, x1 ≤ M.
Now, consider the function

K (y) = cy + Me−y, y ∈ [0, M],
K′ (y) = c − Me−y,

K′′ (y) = Me−y > 0.
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Therefore, it holds that

K (y) ≤ max{K (0) ,K (M)}, y ∈ [0, M]. (3.7)

Now, from (3.3),

K (0) = M,

K (M) = cM + Me−M < cM + Me− ln( 1
1−c ) = cM + M (1 − c) = M. (3.8)

From (3.7) and (3.8),
K (y) ≤ M, y ∈ [0, M].

Therefore, relations (1.1) , (3.1) , (3.3) and (3.8),

y1 = cy0 + dz−1e−y0 ≤ cy0 + Me−y0 = K (y0) ≤ M, y1 ≤ M.

Similarly, if
g (z) = ez + Me−z,

then, using the same logic as before, we can show that

z1 ≤ M.

As a result of our inductive reasoning, we can demonstrate

xn ≤ M, n = 1, 2, 3, · · · ,
yn ≤ M, n = 1, 2, 3, · · · ,
zn ≤ M, n = 1, 2, 3, · · · .

So, we conclude from above results (xn, yn, zn) is bounded. □

Proof. (ii) We can show that (xn, yn, zn) persists. We look at the numbers for this.

R = ln (b/(1 − a)) , S = ln (d/(1 − c)) , T = ln ( f /(1 − e)) . (3.9)

Let
m = min {x−1, x0, y−1, y0, z−1, z0, R, S , T } .

Then, using (3.2) and arguing as in the proof of (3.1) of [10], we get the following:
If x0 ≤ R, then,

x1 ≥ min{x0, y−1}.

In addition, if x0 > R, y−1 ≤ R, we take

x1 > y−1.

Finally, if x0 > R, y−1 > R, we get
x1 > R.
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So, here is what we’ve got:
x1 ≥ m.

In a similar manner, we can demonstrate that

y1 ≥ m, z1 ≥ m.

We may prove the following by arguing like we did earlier and using the induction method:

xn ≥ m, yn ≥ m, zn ≥ m.

This completes the proof. □

4. Convergence rate

We evaluate the convergence rate of a system (1.1) for all initial values that converge at equilibrium
E(x, y, z) in this segment by existing theory [11]. For various three-dimensional systems, the
convergence rate of solutions that converge to an equilibrium has been determined.

Theorem 4.1. Assume systems (3.1) and (3.2) hold and

max
{

f
1 − e

,
d

1 − c
,

b
1 − a

}
< min

{
e

e
f , e

c
d , e

a
b
}
. (4.1)

Then, each non-negative solution of (1.1) tends to the unique non-negative equilibrium of (1.1).

Proof. Consider (xn, yn, zn) be an arbitrary solution of (1.1). From Theorem 3.1 we get that

l1 = Lim
n→∞

inf xn > 0, L1 = Lim
n→∞

sup xn < ∞,

l2 = Lim
n→∞

inf yn > 0, L2 = Lim
n→∞

sup yn < ∞, (4.2)

l3 = Lim
n→∞

inf zn > 0, L3 = Lim
n→∞

sup zn < ∞.

Then, from (4.2) and for every ϵ > 0, there exist an n0 (ϵ) such that n ≥ n0(ϵ),

l1 − ϵ ≤ xn ≤ L1 + ϵ,

l2 − ϵ ≤ yn ≤ L2 + ϵ, (4.3)
l3 − ϵ ≤ zn ≤ L3 + ϵ,

and so from (1.1) and (4.3) we have for n ≥ n0 that

xn+2 = axn+1 + byne−xn+1 ≤ axn+1 + b (L2 + ϵ) e−xn+1 = gL2+ϵ (xn+1) , (4.4)

where gL2+ϵ (x) = ax + b (L2 + ϵ) e−x.
But we have that

g
′

L2+ϵ
(x) = a − b (L2 + ϵ) e−x,

g
′′

L2+ϵ
(x) = b (L2 + ϵ) e−x > 0.
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Therefore, for x ∈ [l1 − ϵ, L1 + ϵ], we get that

gL2+ϵ (x) ≤ max
{
gL2+ϵ(l1−ϵ), gL2+ϵ(L1+ϵ)

}
.

Then, from (4.4) we take the following:

xn+2 ≤ gL2+ϵ (xn+1) ≤ max
{
gL2+ϵ(l1−ϵ), gL2+ϵ(L1+ϵ)

}
,

which implies that
L1 ≤ max

{
gL2+ϵ(l1−ϵ), gL2+ϵ(L1+ϵ)

}
.

So, for ϵ −→ 0,
L1 ≤ max

{
gL2(l1), gL2(L1)

}
. (4.5)

Similarly, from (1.1) and (4.3) we have for n ≥ n0 that

yn+2 = cyn+1 + dzne−yn+1 ≤ cyn+1 + d (L3 + ϵ) e−yn+1 = hL3+ϵ (yn+1) , (4.6)

where hL3+ϵ (y) = cy + d (L3 + ϵ) e−y.
But we have that

h
′

L3+ϵ
(y) = c − d (L3 + ϵ) e−y,

h
′′

L3+ϵ
(y) = d (L3 + ϵ) e−y > 0.

Therefore, for y ∈ [l2 − ϵ, L2 + ϵ], we get that

hL3+ϵ (y) ≤ max
{
hL3+ϵ (l2 − ϵ) , hL3+ϵ (L2 + ϵ)

}
.

Then, from (4.6) we take

yn+2 ≤ hL3+ϵ (yn+1) ≤ max
{
hL3+ϵ (l2 − ϵ) , hL3+ϵ (L2 + ϵ)

}
,

which implies that
L2 ≤ max

{
hL3+ϵ (l2 − ϵ) , hL3+ϵ (L2 + ϵ)

}
.

So, for ϵ −→ 0,
L2 ≤ max

{
hL3 (l2) , hL3 (L2)

}
. (4.7)

Similarly, from (1.1) and (4.3) we have for n ≥ n0 that if

KL1+ϵ (z) = ez + f (L1 + ϵ) e−z,

we can prove that
L3 ≤ max

{
KL1 (l3) , KL1 (L3)

}
. (4.8)

We claim that

l1 > ln
(
bL2

a

)
, l2 > ln

(
dL3

c

)
, l3 > ln

(
f L1

e

)
. (4.9)
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Suppose on contrary, that either

l1 ≤ ln
(
bL2

a

)
(4.10)

or

l2 ≤ ln
(
dL3

c

)
(4.11)

or

l3 ≤ ln
(

f L1

e

)
. (4.12)

Suppose first that (4.10) valid. Then, since g
′

L2
(x) = a−bL2e−x, we have that gL2 is a non-increasing

for x ≤ ln
(

bL2
a

)
and consequently we obtained from (4.10) that

gL2 (l1) ≤ gL2 (0) = bL2 < L2. (4.13)

Then, from (4.5) and (4.13) we have that

L1 ≤ max
{
L2, gL2 (L1)

}
. (4.14)

Since it hold that h
′

L3
(y) = c−dL3e−y, we conclude that hL3 is non-increasing function for y ≤ ln

(
dL3

c

)
and non-decreasing for y ≥ ln

(
dL3

c

)
. Then, if l2 ≥ ln( dL3

c ), we have that

hL3 (l2) < hL3 (L2) . (4.15)

If l2 ≤ ln
(

dL3
c

)
, we get that

hL3 (l2) < hL3 (0) = dL3 < L3. (4.16)

Relations (4.7) , (4.15) and (4.16) imply that

L2 ≤ max
{
L3, hL3(L2)

}
. (4.17)

Similarly, if (4.12) holds, then,

L3 ≤ max
{
L1, KL1 (L3)

}
. (4.18)

Suppose now that L1 ≤ L2 ≤ L3. Then, from (4.18), we get that

L3 ≤ KL1(L3) = eL3 + f L1e−L3 ,

L3 ≤ eL3 + f L3e−L3 ,

which implies that

L3 ≤ ln
(

f
1 − e

)
. (4.19)

Since (4.10) holds. We get that

l1 ≤ ln
(
bL2

a

)
,
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l1 ≤ ln
(
bL3

a

)
, ∵ L2 ≤ L3,

el1 ≤
bL3

a
,

1 + l1 ≤ el1 ≤
bL3

a
,

1 + l1 ≤
bL3

a
,

and so (4.19) implies that

l1 ≤
bL3

a
− 1 ≤

b
a

ln
(

f
1 − e

)
− 1. (4.20)

We get the following from (4.1):
f

1 − e
< e

a
b ,

and so
b
a

ln
(

f
1 − e

)
− 1 < 0.

Then, from (4.20) we have that l1 < 0, which is a contradiction. So, (4.10) is not true if L1 ≤ L2 ≤ L3.
Suppose now that L1 ≤ L3 ≤ L2. Then from (4.17) we take that

L2 ≤ hL3(L2) = cL2 + dL3e−L2 ,

L2 ≤ cL2 + dL2e−L2 ,

which implies that

L2 ≤ ln
(

d
1 − c

)
. (4.21)

Since (4.10) holds. We get that

l1 ≤ ln
(
bL2

a

)
,

el1 ≤
bL2

a
,

1 + l1 ≤ el1 ≤
bL2

a
,

1 + l1 ≤
bL2

a
,

and so (4.21) implies that

l1 ≤
bL2

a
− 1 ≤

b
a

ln
(

d
1 − c

)
− 1. (4.22)

Moreover, from (4.1) we get
d

1 − c
< e

a
b ,
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so,
b
a

ln
(

d
1 − c

)
− 1 < 0.

Then, from (4.22) we have that l1 < 0, which is a contradiction. So, (4.10) is not true if L1 ≤ L3 ≤ L2.
Now again suppose that L2 ≤ L3 ≤ L1. Then, from (4.14) we take that

L1 ≤ gL2(L1) = aL1 + bL2e−L1 ,

L1 ≤ aL1 + bL1e−L1 ,

and so

L1 ≤ ln
(

b
1 − a

)
. (4.23)

Since (4.10) holds, we get

l1 ≤ ln
(
bL2

a

)
,

l1 ≤ ln
(
bL1

a

)
, ∵ L2 ≤ L1,

el1 ≤
bL1

a
,

1 + l1 ≤ el1 ≤
bL1

a
,

and so (4.23) implies that

l1 ≤
bL1

a
− 1 ≤

b
a

ln
(

b
1 − a

)
− 1. (4.24)

We get from (4.1) that
b

1 − a
< e

a
b ,

and so
b
a

ln
(

b
1 − a

)
− 1 < 0.

Then, from (4.24) we have that l1 < 0, which is a contradiction. So, (4.10) is not true if L2 ≤ L3 ≤ L1.
Now again suppose that L2 ≤ L1 ≤ L3. Then, from (4.18) we take that

L3 ≤ KL1(L3) = eL3 + f L1e−L3 ,

L3 ≤ eL3 + f L3e−L3 ,

and so

L3 ≤ ln
(

f
1 − e

)
. (4.25)

Since (4.10) holds. We get

l1 ≤ ln
(
bL2

a

)
,
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l1 ≤ ln
(
bL3

a

)
, ∵ L2 ≤ L3,

el1 ≤
bL3

a
,

1 + l1 ≤ el1 ≤
bL3

a
,

and so (4.25) implies that

l1 ≤
bL3

a
− 1 ≤

b
a

ln
(

f
1 − e

)
− 1. (4.26)

We get from (4.1) that
f

1 − e
< e

a
b ,

and so
b
a

ln
(

f
1 − e

)
− 1 < 0.

Then, from (4.26) we have that l1 < 0, which is a contradiction. So, (4.10) is not true if L2 ≤ L1 ≤ L3.
Now again suppose that L3 ≤ L2 ≤ L1. Then, from (4.14) we take that

L1 ≤ gL2(L1) = aL1 + bL2e−L1 ,

L1 ≤ aL1 + bL1e−L1 ,

and so

L1 ≤ ln
(

b
1 − a

)
. (4.27)

Since (4.10) holds. We get

l1 ≤ ln
(
bL2

a

)
,

l1 ≤ ln
(
bL1

a

)
, ∵ L2 ≤ L1,

el1 ≤
bL1

a
,

1 + l1 ≤ el1 ≤
bL1

a
.

Therefore, (4.27) implies that

l1 ≤
bL1

a
− 1 ≤

b
a

ln
(

b
1 − a

)
− 1. (4.28)

We get from (4.1) that
b

1 − a
< e

a
b ,

and so
b
a

ln
(

b
1 − a

)
− 1 < 0.
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Then, from (4.28) we have that l1 < 0, which is a contradiction. So, (4.10) is not true if L3 ≤ L2 ≤ L1.
Now again suppose that L3 ≤ L1 ≤ L2. Then, from (4.17) we take that

L2 ≤ hL3(L2) = cL2 + dL3e−L2 ,

L2 ≤ cL2 + dL2e−L2 .

Therefore,

L2 ≤ ln
(

d
1 − c

)
. (4.29)

Since (4.10) holds, we get

l1 ≤ ln
(
bL2

a

)
,

el1 ≤
bL2

a
,

1 + l1 ≤ el1 ≤
bL2

a
,

and so (4.29) implies that

l1 ≤
bL2

a
− 1 ≤

b
a

ln
(

d
1 − c

)
− 1. (4.30)

We get from (4.1) that
d

1 − c
< e

a
b ,

and so
b
a

ln
(

d
1 − c

)
− 1 < 0.

Then, from (4.30) we have that l1 < 0, which is a contradiction. So, (4.10) is not true if L3 ≤ L1 ≤ L2.
Working in a similar manner and using (4.1), we can prove that (4.11) and (4.12) are not true

for each:

L1 ≤ L2 ≤ L3,

L1 ≤ L3 ≤ L2,

L2 ≤ L3 ≤ L1,

L2 ≤ L1 ≤ L3,

L3 ≤ L2 ≤ L1,

L3 ≤ L1 ≤ L2.

So relations (4.9) are satisfied.
Since relations (4.9) hold, gL2 is an increasing function for x ≥ ln

(
bL2

a

)
, hL3 is an increasing function

for y ≥ ln
(

dL3
c

)
, and KL1 is also an increasing function for z ≥ ln

(
f L1
e

)
. We then obtain

gL2 (l1) ≤ gL2 (L1) ,
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hL3 (l2) ≤ hL3 (L2) , (4.31)
KL1 (l3) ≤ KL1 (L3) .

So, from (4.5) , (4.7) , (4.8) and (4.31) we have that

L1 ≤ gL2 (L1) ,
L2 ≤ hL3 (L2) , (4.32)
L3 ≤ KL1 (L3) .

Then relations (4.32) imply that

(1 − a)L1eL1

b
≤ L2,

(1 − c)L2eL2

d
≤ L3,

(1 − e)L3eL3

f
≤ L1,

as a result of (2.4), we can simply deduce

F (L1) ≤ 0 = F (x) .

As F is a non-decreasing function, we obtain

L1 ≤ x. (4.33)

The following can be proved in a similar way:

G (L2) ≤ 0 = G (y) ,
H (L3) ≤ 0 = H (z) ,

where

H (z) =
(1 − a) (1 − c) (1 − e) ez+s(z)+r(x)

bd f
− 1, r (x) =

(1 − a) xex

b
, s (z) =

(1 − e) zez

f
.

Due to the fact that G is a non-decreasing function, we obtain

L2 ≤ y. (4.34)

Similarly, H is a non-decreasing function, we get

L3 ≤ z. (4.35)

We can now demonstrate that

x < l1 < L1 , y < l2 < L2, z < l3 < L3. (4.36)
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We derive the following from (1.1) and (4.3):

xn+1 ≥ axn + b (l2 − ϵ) e−xn , n ≥ no (ϵ) . (4.37)

We look at the following function:

gl2−ϵ (x) = ax + b (l2 − ϵ) e−x,

g
′

l2−ϵ (x) = a − b (l2 − ϵ) e−x.

We have that gl2−ϵ is non-decreasing for x ≥ ln
(

b(l2−ϵ)
a

)
. In addition, since (4.9) valid, then there

exists ϵ > 0 such that

l1 − ϵ > ln
(
bL2

a

)
> ln

(
b (L2 − ϵ)

a

)
. (4.38)

Then, from (4.3) and (4.33) we get

xn ≥ l1 − ϵ > ln
(
b (L2 − ϵ)

a

)
≥ ln

(
b(l2 − ϵ)

a

)
, n ≥ n0 (ϵ) . (4.39)

As a result, relations (4.37) and (4.39) indicate the following:

xn+1 ≥ a (l1 − ϵ) + b (l2 − ϵ) e−(l1−ϵ), n ≥ n0 (ϵ) .

And so,
l1 ≥ a (l1 − ϵ) + b (l2 − ϵ) e−(l1−ϵ).

For ϵ −→ 0, we get
l1 ≥ al1 + bl2e−l1 . (4.40)

Similarly, using (1.1) and (4.9) and arguing as above, we get

l2 ≥ cl2 + dl3e−l2 , (4.41)

and
l3 ≥ el3 + f l1e−l3 . (4.42)

Therefore, from relations (4.33)–(4.35) and (4.40)–(4.42), we have that

l1 = L1 = x, l2 = L2 = y, l3 = L3 = z.

This completes the proof. □

5. Numerical examples

In an effort to our theoretical dialogue, we take into account several interesting numerical examples
on this segment. These examples constitute distinct varieties of qualitative conduct of solutions to the
system (1.1) of nonlinear difference equations. The first example indicates that positive equilibrium
of system (1.1) is unstable with suitable parametric choices. Moreover, from the remaining examples
it is clear that unique positive equilibrium point of system (1.1) is globally asymptotically stable with
different parametric values. All plots on this segment are drawn with the help of MATLAB.
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Example 5.1. Let a = 0.9, b = 27, c = 0.5, d = 94, e = 0.3, f = 67. Then the system (1.1) can be
written as

xn+1 = 0.9xn + 27yn−1e−xn , yn+1 = 0.5yn + 94zn−1e−yn , zn+1 = 0.3zn + 67xn−1e−zn , (5.1)

with initial conditions x−1 = 8, x0 = 7, y−1 = 6, y0 = 5, z−1 = 4, z0 = 3. In this case, the positive
equilibrium point of the system (5.1) is unstable. Moreover, in Figure 1, the graphs of xn, yn and zn

are shown in Figure (1a), (1b) and (1c) respectively, and XY, YZ and ZX attractors of the system (5.1)
are shown in Figure (1d), (1e) and (1f) respectively. Also the combined graph of all respective phase
portrait of system (5.1) is shown in Figure (1g).
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(g) Combined graph of attractors of system (5.1)
Figure 1. Shows solution and phase portraits of system (5.1).
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Example 5.2. Let a = 0.009, b = 0.3, c = 0.005, d = 0.9, e = 0.003, f = 0.7. Then the system (1.1)
can be written as

xn+1 = 0.009xn + 0.yn−1e−xn , yn+1 = 0.005yn + 0.9zn−1e−yn , zn+1 = 0.003zn + 0.7xn−1e−zn , (5.2)

with initial conditions x−1 = 0.008, x0 = 0.007, y−1 = 0.006, y0 = 0.005, z−1 = 0.004, z0 =

0.03. In this case, the positive equilibrium point of the system (5.2) is given by (x, y, z) = (9.404 ×
10−11, 4.993 × 10−10, 1.276 × 10−10). Moreover, in Figure 2, the graphs of xn, yn and zn are shown in
Figure (2a), (2b) and (2c) respectively, and XY, YZ and ZX attractors of the system (5.1) are shown
in Figure (2d), (2e) and (2f) respectively. Also the combined graph of all respective phase portrait of
system (5.2) is shown in Figure (2g).
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(g) Combined graph of attractors of system (5.2)
Figure 2. Shows solution and phase portraits of system (5.2).
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6. Conclusions

In this work, we analyze the qualitative behavior of a system of exponential difference equations.
Using our model (1.1), we have demonstrated that a positive steady state exists and is unique. We verify
the bounds of positive solutions as well as their persistence. We have also established that the positive
equilibrium point of system (1.1) under certain parametric conditions is asymptotically stable locally
as well as globally. In dynamical structures theory, the goal is to look at a system’s global behavior
through knowledge of its current state. It is possible to determine what parametric conditions result
in these long-term behaviors by determining the possible global behavior of the system. Further, the
convergence rate of positive solutions of (1.1) that converge to a unique point of positive equilibrium
is determined.

In our future work, we will study some more qualitative properties such as bifurcation analysis,
chaos control, and Maximum Lyapunov exponent of the said model. Some interesting numerical
simulations with the help of Mathematica presenting bifurcation and chaos control are also part of
our future goal.
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