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Abstract: The summation inequality is essential in creating delay-dependent criteria for discrete-
time systems with time-varying delays and developing other delay-dependent standards. This paper
uses our rebuilt summation inequality to investigate the robust stability analysis issue for discrete-time
neural networks that incorporate interval time-varying leakage and discrete and distributed delays. It
is a novelty of this study to consider a new inequality, which makes it less conservative than the well-
known Jensen inequality, and use it in the context of discrete-time delay systems. Further stability
and passivity criteria are obtained in terms of linear matrix inequalities (LMIs) using the Lyapunov-
Krasovskii stability theory, coefficient matrix decomposition technique, mobilization of zero equation,
mixed model transformation, and reciprocally convex combination. With the assistance of the LMI
Control toolbox in Matlab, numerical examples are provided to demonstrate the validity and efficiency
of the theoretical findings of this research.
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1. Introduction

Nature’s vast majority of systems-including the biological nervous system-are dynamic in that
external circumstances influence it to have internal memory and behave in a specific manner. The idea
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of activity development may describe that through time. Time delays, both constant and time-varying,
generally exist in dynamic systems, such as chemical process control systems, man-manufacturing
systems, cooling systems, hydraulic systems, irrigation channels, metallurgical processes, robotics,
and neural networks [1, 6, 8, 10, 11, 13, 14, 19, 22–24, 30–32, 35, 36, 39, 45].

The nonlinear ordinary difference equation in discrete-time state-space form may be used to
explain a general class of discrete-time systems. For discrete-time systems, it is possible to employ
the nonlinear ordinary difference equation in the discrete-time state-space form to describe them.
x(k + 1) = f (x(k), u(k)), y(k) = h(x(k), u(k)) where x(k) ∈ Rn is the internal state vector, u(k) ∈ Rm is
the control input, and y(k) ∈ Rp is the system output. These equations may be obtained from
analyzing the dynamical system or process under study. In contrast, others may be derived from
discretized or sampled continuous-time dynamics of a nonlinear system under investigation.

The study of the stability analysis of discrete-time systems with time-varying delays has emerged
as a popular subject in the area of control theory during the last few
years [7, 12, 15, 17, 21, 25–27, 29, 33, 37, 38, 42, 44, 45]. The stability of neural networks is a
precondition for solving many engineering issues; it has garnered considerable attention in recent
years, and many elegant solutions have been published. [11, 19, 22, 23, 34, 35, 39, 45]. When
implementing continuous-time neural networks for computer simulation, for computational or
experimental reasons, it is necessary to construct a discrete-time system that is analogous to the
continuous-time neural networks that should not be overlooked. [24] points out that discretization
cannot consistently maintain the dynamics of the continuous-time counterpart, even for a short sample
interval. As a result, it is critical to understand the dynamics of discrete-time neural networks.

Human brain activity, particularly that of neural networks, may be viewed as a very sophisticated
parallel computer that is more efficient than any presently existing computer when neural networks
are straightforwardly implemented in computers. In the case of neural networks, one of the most
crucial characteristics is a temporal delay in the leakage term. When it comes to neural networks, the
time delay in the leakage term has a significant impact on their dynamics since the system becomes
unstable when there is a delay in reacting to a negative outcome; this causes the system to become
unstable [5, 6, 15, 18, 20]. [6] investigated neural networks with a time delay in the leakage term and
their findings on the presence and uniqueness of the equilibrium, independent of the time delay and
starting circumstances, to determine whether the equilibrium exists. This means that the existence and
uniqueness of the equilibrium point are unaffected by the delay in the leakage term. As a result of its
importance as a helpful tool for the stability analysis of both linear and nonlinear systems, especially
high-order systems, passivity theory, initially proposed in circuit analysis, has drawn a lot of attention
and has been extensively investigated. Systems with passive qualities maintain their internal stability.
The passivity theory has been widely used in a variety of fields, including signal processing [43], fuzzy
control [16], sliding mode control [41], and networked control [4].

The problems of novel delay-range-dependent robust asymptotic stability and passivity criteria for
uncertain discrete-time neural networks with interval discrete and distributed time-varying delays are
introduced in this paper, which is motivated by earlier discussions. A novel delay-range-dependent
stability and passivity analysis is also investigated for uncertain discrete-time neural networks with
interval discrete, distributed, and leakage time-varying delays. New delay-range-dependent robust
asymptotic stability and passivity criteria in terms of linear matrix inequalities (LMIs) for considered
systems are obtained using a class of novel augmented Lyapunov-Krasovskii functionals (LKFs),
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model transformation, coefficient matrix decomposition technique, reciprocally convex combination,
Leibniz-Newton formula, and use of zero equation. Also presented is an improvement in the stability
and passivity criterion for discrete-time neural networks with interval time-varying delay dependent
on the delay range. Theory may be shown using numerical examples, indicating that it’s more
effective while being less conservative. The main contributions and highlights of this paper are
summarized in the following key points.

(1) The rebuilt summation inequality is used for the robust stability analysis issue for discrete-
time neural networks that incorporate interval time-varying leakage, discrete and distributed delays for
developing the delay-dependent criteria.

(2) We apply new inequalities to improve the stability criteria, such as Jensen inequality,
coefficient matrix decomposition technique, utilization of zero equation, mixed model transformation,
and reciprocally convex combination. Using the above new LKFs and the lemmas leads to less
conservatism of the obtained results than in published literature, as presented via numerical examples.

(3) We present numerical examples to demonstrate the feasibility and effectiveness of the theorem.

Notations: Throughout the paperRn denotes the n-dimensional Euclidean space; Z+ = {0, 1, 2, 3, ...};
N={1,2,3,...}; R(n×m) denotes the set of n×m-real matrices; AT denotes the transpose of the matrix A; A
is symmetric if A = AT ; In is the n× n-identity matrix; matrix A is called semi-positive definite (A ≥ 0)
if xT Ax ≥ 0, for all x ∈ Rn; A is positive definite (A > 0) if xT Ax > 0, for all x , 0; A > B means
A − B > 0(B − A < 0); A ≥ B means A − B ≥ 0(B − A ≤ 0); ρ = max{τ2, h2,M}; ∗ denotes symmetric
terms in a symmetric matrix; [⋆] denote the right-side vector in a symmetric quadratic form.

2. Problem formulation and preliminaries

Consider the following uncertain discrete-time neural network with interval time-varying leakage,
discrete and distributed delays, as shown in the following system:



x(k + 1) = (A + ∆A(k))x(k − τ(k)) + (B + ∆B(k)) f (x(k))
+(C + ∆C(k))g(x(k − h(k)))

+(D + ∆D(k))
M∑

i=1

δ(i)x(k − i) + w(k), k ∈ Z+,

z(k) = Azx(k − τ(k)) + Bz f (x(k)) +Czg(x(k − h(k)))

+Dz

M∑
i=1

δ(i)x(k − i), k ∈ N,

x(s) = ϕ(s), s = −ρ,−ρ + 1, . . . , 0,

(2.1)

where x(k) = [x1(k), x2(k), . . . , xn(k)]T
∈ Rn is the system state vector, z(k) is the output vector of neuron

network, w(k) is the exogenous disturbance input vector, A = diag{a1, a2, ..., an} is the state feedback
coefficient matrix with |ai| < 1, matrices B,C,D, Az, Bz,Cz and Dz are known real constant matrices
with appropriate dimensions, M ∈ N, ϕ(s) is the initial condition of system (2.1), τ(k) represents the
leakage delay satisfying

0 < τ1 ≤ τ(k) ≤ τ2, (2.2)
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where τ1 and τ2 denote the lower and upper bounds of τ(k). The time-varying delay h(k) satisfies

0 < h1 ≤ h(k) ≤ h2, (2.3)

where h1 and h2 are known positive integers. There exists a constant κ > 0 such that function δ(i)
satisfies the following convergence condition

M∑
i=1

δ(i) = κ < +∞. (2.4)

∆A(k), ∆B(k),∆C(k) and ∆D(k) represent the time-varying parameter uncertainties, and are assumed
to satisfy the following linear fractional form

[∆A(k) ∆B(k) ∆C(k) ∆D(k)] = Γ∆(k)[H1 H2 H3 H4], (2.5)

where Γ,H1,H2,H3 and H4 are known real constant matrices with appropriate dimensions. The
uncertain matrix ∆(k) satisfies

∆(k) = [I −Ω(k)E]−1Ω(k), (2.6)

and is said to be admissible, where E is a known matrix satisfying

I − EET > 0, (2.7)

and Ω(k) is an unknown time-varying matrix function satisfying

ΩT (k)Ω(k) ≤ I. (2.8)

Assumption 1. For i ∈ {1, 2, . . . , n}, the neuron activation functions fi(·), gi(·) in system (2.1) are
continuous and bounded.

Assumption 2. For any s1, s2 ∈ R, s1 , s2, the continuous and bounded activation functions fi(·) and
gi(·) satisfy

F−i ≤
fi(s1) − fi(s2)

s1 − s2
≤ F+i , i = 1, 2, . . . , n,

G−i ≤
gi(s1) − gi(s2)

s1 − s2
≤ G+i , i = 1, 2, . . . , n,

and fi(0) = gi(0) = 0, where F−i , F
+
i ,G

−
i , and G+i are known real constants.

Definition 1. [28] The discrete-time system (2.1), with ω(k) = 0, is said to be robust asymptotically
stable if there exists a positive definite scalar function V(x(k)) : Z+ × Rn 7→ R such that

∆V(x(k)) = V(x(k + 1)) − V(x(k)) < 0,

along the solution of the system (2.1) for all uncertainties.
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Definition 2. [36] The discrete-time system (2.1), with ω(k) = 0 and Ω(k) = 0, is said to be
asymptotically stable if there exists a positive definite scalar function V(x(k)) : Z+ × Rn 7→ R+ such
that

∆V(x(k)) = V(x(k + 1)) − V(x(k)) < 0,

along the solution of the system (2.1).

Definition 3. [32] The system (2.1) is called passive if there exists a scalar γ ≥ 0 such that

2
k∑

i=0

zT (i)w(i) ≥ −γ
k∑

i=0

wT (i)w(i),

for all k ∈ Z+ and for all solution of (2.1) with x(0) = 0 holds.

Lemma 1. [17] Suppose that ∆(k) is given by (2.6)–(2.8). Let M, S and N be real constant matrices
of appropriate dimension with M = MT . Then, the inequality

M + S∆(k)N + NT∆(k)T S T < 0,

holds if and only if, for any positive real constant δ,
M S δNT

∗ −δI δNT

∗ ∗ −δI

 < 0.

Lemma 2. [27] Let γ1, γ2, . . . , γN : Rm 7→ R have positive values in an open subset D of Rm. Then,
the reciprocally convex combination of γi over D satisfies

min
{αi |αi>0,

∑
i αi=1}

∑
i

1
αi
γi(k) =

∑
i

γi(k) +max
ϵi, j(k)

∑
i, j

ϵi, j(k),

subject to

ϵi, j : Rm 7→ R, ϵ j,i(k) ∆= ϵi, j(k),
[
γi(k) ϵi, j(k)
ϵi, j(k) γ j(k)

]
≥ 0.

Lemma 3. The following inequality holds for any α ∈ Rn, β ∈ Rm, Ξ,Y ∈ Rn×m, X ∈ Rn×n, and
Z ∈ Rm×m,

−2αTΞβ ≤

[
α

β

]T [
X Y − Ξ
∗ Z

] [
α

β

]
,

where
[
X Y
∗ Z

]
≥ 0.

Lemma 4. [8] For any positive real constant matrix M ∈ Rn×n, M = MT , two constants h2 ≥ h1 > 0,
such that the following inequalities hold:

(1)

 h1∑
i=1

x(i)

T

M

 h1∑
i=1

x(i)

 ≤ h1

h1∑
i=1

xT (i)Mx(i),
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(2)

k−h1−1∑
i=k−h2

k−h1−1∑
j=i

x( j)


T

M

k−h1−1∑
i=k−h2

k−h1−1∑
j=i

x( j)

 ≤ (h2 − h1)(h2 − h1 + 1)
2

k−h1−1∑
i=k−h2

k−h1−1∑
j=i

xT ( j)Mx( j),

(3)

−h1−1∑
i=h2

k−1∑
j=k+i

x( j)


T

M

−h1−1∑
i=−h2

k−1∑
j=k+i

x( j)

 ≤ (h2 − h1)(h2 + h1 + 1)
2

−h1−1∑
i=−h2

k−1∑
j=k+i

xT ( j)Mx( j).

Lemma 5. [25] For a given positive-definite n × n-matrix R, three given non-negative integers α, β, k
satisfying α < β ≤ k, a vector function x(·) ∈ Rn and denoting ∆x(k) = x(k + 1) − x(k), we have

k−α−1∑
i=k−β

∆xT (i)R∆x(i) ≥
1
β − α

(Θ0
α,β)

T RΘ0
α,β +

3
β − α

(Θ1
α,β)

T RΘ1
α,β +

5
β − α

(Θ2
α,β)

T RΘ2
α,β,

where

Θ0
α,β = x(k − α) − x(k − β),

Θ1
α,β = x(k − α) + x(k − β) −

2
β − α + 1

k−α∑
i=k−β

x(i),

Θ2
α,β = x(k − α) − x(k − β) +

6
β − α + 1

k−α∑
i=k−β

x(i) −
12

(β − α + 2)(β − α + 1)

k−α∑
i=k−β

x(i)
−α∑

j=−β

k−α∑
i=k+s

x(i).

Lemma 6. Let ∆x(k) ∈ Rn be a vector-valued function with first-order forward difference entries.
Then, the following integral inequality holds for any constant matrices X,Mi ∈ R

n×n, i = 1, 2, . . . , 5
and h(k) is discrete interval time-varying delays with 0 ≤ h1 ≤ h(k) ≤ h2,

−

k−h1−1∑
i=k−h2

∆xT (i)X∆x(i)

≤


x(k − h1)

x(k − h(k))
x(k − h2)


T 

M1 + MT
1 −MT

1 + M2 0
∗ M1 + MT

1 − M2 − MT
2 −MT

1 + M2

∗ ∗ −M2 − MT
2




x(k − h1)
x(k − h(k))
x(k − h2)


+[h2 − h1]


x(k − h1)

x(k − h(k))
x(k − h2)


T 

M3 M4 0
∗ M3 + M5 M4

∗ ∗ M5




x(k − h1)
x(k − h(k))
x(k − h2)

 , (2.9)

where 
X M1 M2

∗ M3 M4

∗ ∗ M5

 ≥ 0.

Proof. From the discrete analog of the Newton-Leibniz formula, we obtain

0 = x(k − h1) − x(k − h(k)) −
k−h1−1∑
i=k−h(k)

∆x(i), (2.10)
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0 = x(k − h(k)) − x(k − h2) −
k−h(k)−1∑
i=k−h2

∆x(i). (2.11)

For any constant matrices Ξ1,Ξ2 ∈ R
n×n with zero equation (2.10),

0 = 2
[
xT (k − h1) − xT (k − h(k)) −

k−h1−1∑
i=k−h(k)

∆xT (i)
]
[Ξ1x(k − h1) + Ξ2x(k − h(k))]

=

[
x(k − h1)

x(k − h(k))

]T [
Ξ1 + Ξ

T
1 −ΞT

1 + Ξ2

∗ −Ξ2 − Ξ
T
2

] [
x(k − h1)

x(k − h(k))

]
−2

k−h1−1∑
i=k−h(k)

∆xT (i)
[
Ξ1 Ξ2

] [ x(k − h1)
x(k − h(k))

]
. (2.12)

Using Lemma 3 with α = ∆x(i), β =
[

x(k − h1)
x(k − h(k))

]
, Y =

[
M1 M2

]
and Z =

[
M3 M4

∗ M5

]
, we get

−2
k−h1−1∑
i=k−h(k)

∆xT (i)
[
Ξ1 Ξ2

] [ x(k − h1)
x(k − h(k))

]

≤

k−h1−1∑
i=k−h(k)


∆x(i)

x(k − h1)
x(k − h(k))


T 

X M1 − Ξ1 M2 − Ξ2

∗ M3 M4

∗ ∗ M5



∆x(i)

x(k − h1)
x(k − h(k))


≤

k−h1−1∑
i=k−h(k)

∆xT (i)X∆x(i) + [h2 − h1]
[

x(k − h1)
x(k − h(k))

]T [
M3 M4

∗ M5

] [
x(k − h1)

x(k − h(k))

]

+

[
x(k − h1)

x(k − h(k))

]T ([
M1 + MT

1 −MT
1 + M2

∗ −M2 − MT
2

]
−

[
Ξ1 + Ξ

T
1 −ΞT

1 + Ξ2

∗ −Ξ2 − Ξ
T
2

]) [
x(k − h1)

x(k − h(k))

]
. (2.13)

Substituting (2.13) into (2.12), then we obtain

−

k−h1−1∑
i=k−h(k)

∆xT (i)X∆x(i) ≤
[

x(k − h1)
x(k − h(k))

]T [
Ξ1 + Ξ

T
1 −ΞT

1 + Ξ2

∗ −Ξ2 − Ξ
T
2

] [
x(k − h1)

x(k − h(k))

]

+

[
x(k − h1)

x(k − h(k))

]T ([
M1 + MT

1 −MT
1 + M2

∗ −M2 − MT
2

]
−

[
Ξ1 + Ξ

T
1 −ΞT

1 + Ξ2

∗ −Ξ2 − Ξ
T
2

]) [
x(k − h1)

x(k − h(k))

]
+[h2 − h1]

[
x(k − h1)

x(k − h(k))

]T [
M3 M4

∗ M5

] [
x(k − h1)

x(k − h(k))

]
=

[
x(k − h1)

x(k − h(k))

]T [
M1 + MT

1 −MT
1 + M2

∗ −M2 − MT
2

] [
x(k − h1)

x(k − h(k))

]
+[h2 − h1]

[
x(k − h1)

x(k − h(k))

]T [
M3 M4

∗ M5

] [
x(k − h1)

x(k − h(k))

]
. (2.14)
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By Eq (2.11), the following equation is true for any constant matrices Ξ1,Ξ2 ∈ R
n×n

0 = 2

xT (k − h(k)) − xT (k − h2) −
k−h(k)−1∑
i=k−h2

∆xT (i)

 [Ξ1x(k − h(k)) + Ξ2x(k − h2)
]
.

Similarly, we have

−

k−h(k)−1∑
i=k−h2

∆xT (i)X∆x(i) ≤
[
x(k − h(k))
x(k − h2)

]T [
M1 + MT

1 −MT
1 + M2

∗ −M2 − MT
2

] [
x(k − h(k))
x(k − h2)

]

+[h2 − h1]
[
x(k − h(k))
x(k − h2)

]T [
M3 M4

∗ M5

] [
x(k − h(k))
x(k − h2)

]
. (2.15)

Finally, considering (2.14) and (2.15) together, then the summation inequality (2.9) is established. This
brings the proof to a conclusion. □

3. Main results

3.1. Stability analysis for discrete-time neural network

This subsection presents a stability analysis of system (2.1) with ω(k) = 0. The LMI based
conditions will be derived using Lyapunov technique.

Consider the following neural network with interval leakage delay of the form

x(k + 1) = (A + ∆A(k))x(k − τ(k)) + (B + ∆B(k)) f (x(k))
+(C + ∆C(k))g(x(k − h(k)))

+(D + ∆D(k))
M∑

i=1

δ(i)x(k − i), k ∈ Z+

x(s) = ϕ(s), s ∈ {−ρ,−ρ + 1, . . . ,−1, 0, }.

(3.1)

To be more specific, we will present the notations that will be used later

Π =
[
Πi, j

]
21×21
, (3.2)

where Πi, j = Π
T
j,i, i, j = 1, 2, 3, . . . , 21,

Π1,1 = P1J1 + P1J2 + JT
1 P1 + JT

2 P1 + QT
1 (A1 − I) + (AT

1 − I)Q1 + (h12 + 1)P2

+(τ12 + 1)P3 − 9R1 − 9R3 + h1(L1 + LT
1 ) + h2

1L3 + h2(M1 + MT
1 )

+(h2
2)M3 + τ1(S 1 + S T

1 ) + (τ2
1)S 3 + τ2(T1 + T T

1 ) + (τ2
2)T3 + ξP6 − F1Λ1,

Π1,2 = P1 + JT
1 P1 + JT

2 P1 − QT
1 + (A1 − I)Q2,

Π1,3 = −P1J1 + h1(−LT
1 + L2) + (h2

1)L4 + h2(−MT
1 + M2) + (h2

2)M4,

Π1,4 = 3R1, Π1,6 = −P1J1, Π1,7 = −
24

h1 + 1
R1, Π1,8 = −

60
(h1 + 2)(h1 + 1)

R1,

Π1,11 = −P1J2 + QT
1 A2 + (A1 − I)Q3 + τ1(−S T

1 + S 2) + (τ2
1)S 4 + (τ2

2)T4

+τ1(−T T
1 + T2),
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Π1,12 = 3R3, Π1,14 = −P1J2 − QT
1 A1 + (A1 − I)Q4,

Π1,15 = −
24
τ1 − 1

R3, Π1,16 =
60

(τ1 + 2)(τ1 + 1)
R3,

Π1,19 = QT
1 B + (A1 − I)Q5 + F2Λ1,

Π1,20 = QT
1 C + (A1 − I)Q6, Π1,21 = QT

1 D + (A1 − I)Q7,

Π2,2 = P1 − QT
2 − Q2 + (h2

2)P4 + (τ2
2)P5 + (h2

1)R1 + (h2
12)R2 + (h2

1)Z1 + (h2
2)Z2

+(h2
12)Z3 + (τ2

1)R3 + (τ2
12)R4 + (τ2

1)Z4 + (τ2
2)Z5 + (τ2

12)Z6,

Π2,3 = −P1J1, Π2,6 = −P1J1, Π2,11 = −P1J2 + QT
2 A2 − Q3,

Π2,14 = −P1J2 − QT
2 A1 − Q4, Π2,19 = QT

2 B − Q5,

Π2,20 = QT
2 C − Q6, Π2,21 = QT

2 D − Q7,

Π3,3 = −G1Λ2 + h1(L1 + LT
1 − L2 − LT

2 ) + (h2
1)(L3 + L5) + (h2

2)(M3 + M5)
+h2(M1 + MT

1 − M2 − MT
2 ) + h12(N1 + NT

1 − N2 − NT
2 ) + (h2

12)(N3 + N5),
Π3,4 = h1(−LT

1 + L2) + (h2
1)L4 + h12(−N1 + NT

2 ) + (h2
12)NT

4 ,

Π3,5 = h2(−MT
1 + M2) + (h2

2)M4 + h12(−NT
1 + N2) + (h2

12)N4, Π3,20 = G2Λ2,

Π4,4 = −9R1 − 9R2 + h1(−L2 − LT
2 ) + (h2

1)L5 + h12(N1 + NT
1 ) + (h2

12)N3,

Π4,5 = 3R2, Π4,6 =
36

h1 + 1
R1, Π4,7 = −

60
(h1 + 2)(h1 + 1)

R1,

Π4,8 = −
24

h12 + 1
R2, Π4,9 =

60
(h12 + 2)(h12 + 1)

R2,

Π5,5 = −P2 − 9R2 + h2(−M2 − MT
2 ) + (h2

2)M5 + h12(−N2 − NT
2 ) + (h2

12)N5,

Π5,9 =
36

h12 + 1
R2, Π5,10 = −

60
(h12 + 2)(h12 + 1)

R2,

Π6,6 = −P4, Π7,7 = −
192

(h1 + 1)2 R1, Π7,8 =
360

(h1 + 2)(h1 + 1)2 R1,

Π8,8 = −
720

(h1 + 2)2(h1 + 1)2 R1, Π9,9 = −
192

(h12 + 1)2 R2,

Π9,10 =
360

(h12 + 2)(h12 + 1)2 R2, Π10,10 = −
720

(h12 + 2)2(h12 + 1)2 R2,

Π11,11 = QT
3 A2 + A2Q3 + τ1(S 1 + S T

1 − S 2 − S T
2 ) + (τ2

1)(S 3 + S 5)
+τ2(T1 + T T

1 − T2 − T T
2 ) + (τ2

2)(T3 + T5) + (τ2
12)(U3 + U5)

+τ12(U1 + UT
1 − U2 − UT

2 ),
Π11,12 = τ1(−S T

1 + S 2) + (τ2
1)S 4 + τ12(−U1 + UT

2 ) + (τ2
12)UT

4 ,

Π11,13 = τ2(−T T
1 + T2)(τ2

2)T4 + τ12(−UT
1 + U2) + (τ2

12)U4,

Π11,14 = −QT
3 A1 + A2Q4, Π11,19 = QT

3 B + A2Q5,

Π11,20 = QT
3 C + A2Q6, Π11,21 = QT

3 D + A2Q7,

Π12,12 = −9R3 − 9R4 + τ1(−S 2 − S T
2 ) + (τ2

1)S 5 + τ12(−U1 − UT
1 ) + (τ2

12)U3,

Π12,13 = 3R4, Π12,15 =
36

(τ1 + 1)
R3, Π12,16 = −

60
(τ1 + 2)(τ1 + 1)

)R3,
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Π12,17 = −
24
τ12 + 1

R4, Π12,18 =
60

(τ12 + 2)(τ12 + 1)
R4,

Π13,13 = −P3 − 9R4 + τ2(−T2 − T T
2 ) + (τ2

2)T5 + τ12(−U2 − UT
2 ) + (τ2

12)U5,

Π13,17 =
36

(τ12 + 1)(τ12 + 1)
R4, Π13,18 = −

60
(τ12 + 2)(τ12 + 1)

R4,

Π14,14 = −QT
4 A1 − A1Q4 − P5, Π14,19 = QT

4 B − A1Q5,

Π14,20 = QT
4 C − A1Q6, Π14,21 = QT

4 D − A1Q7,

Π15,15 = −
192

(τ1 + 1)2 R3, Π15,16 =
360

(τ1 + 2)(τ1 + 1)2 R3,

Π16,16 = −
720

(τ1 + 2)2(τ1 + 1)2 R3, Π17,17 = −
192

(τ12 + 1)2 R4,

Π17,18 =
360

(τ12 + 2)(τ12 + 1)2 R4, Π18,18 = −
720

(τ12 + 2)2(τ12 + 1)2 R4,

Π19,19 = QT
5 B + BQ5 − Λ1, Π19,20 = QT

5 C + BQ6,

Π19,21 = QT
5 D + BQ7, Π20,20 = QT

6 C +CQ6 − Λ2,

Π20,21 = QT
5 D + BQ7, Π21,21 = QT

7 D + DQ7 − ξ
−1P6,

and others are equal to zero.
First of all, we examine the discrete-time neural network of the type with interval time-varying

discrete, leakage, and distributed delays of the form x(k + 1) = Ax(k − τ(k)) + B f (x(k)) +Cg(x(k − h(k))) + D
M∑

i=1

δ(i)x(k − i), k ∈ Z+,

x(s) = ϕ(s), s ∈ {−ρ,−ρ + 1, . . . ,−1, 0, }.
(3.3)

Theorem 1. The system (3.3) is asymptotically stable, if there exist positive definite symmetric
matrices Pi,Q j,Rk,Zi, i = 1, 2, 3, . . . , 6, j = 1, 2, 3, . . . , 7, k = 1, 2, 3, 4, and any appropriate
dimensional matrices Λ1,Λ2, satisfying the following LMIs

Π < 0, (3.4)
Z1 L1 L2

∗ L3 L4

∗ ∗ L5

 ≥ 0, (3.5)


Z2 M1 M2

∗ M3 M4

∗ ∗ M5

 ≥ 0, (3.6)


Z3 N1 N2

∗ N3 N4

∗ ∗ N5

 ≥ 0, (3.7)


Z4 S 1 S 2

∗ S 3 S 4

∗ ∗ S 5

 ≥ 0, (3.8)
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Z5 T1 T2

∗ T3 T4

∗ ∗ T5

 ≥ 0, (3.9)


Z6 U1 U2

∗ U3 U4

∗ ∗ U5

 ≥ 0. (3.10)

Proof. We begin by demonstrating the asymptotic stability of the system (3.3) under the constraints of
the theorem. Let us partition the constant matrix A into its components

A = A1 + A2, (3.11)

where A1, A2 ∈ R
n×n are real constant matrices in order to improve the bounds of the discrete delay.

After that, we rewrite the system (3.3) using transformation method, so we achieve the following
equivalents form:

x(k + 1) = x(k) + y(k), (3.12)

y(k) = (A1 − I)x(k) + A2x(k − τ(k)) − A1

k−1∑
i=k−τ(k)

y(i) + B f (x(k))

+Cg(x(k − h(k))) + D
M∑

i=1

δ(i)x(k − i). (3.13)

Design and implement the following Lyapunov-Krasovskii functional as follows:

V(k) =
10∑
i=1

Vi(k), (3.14)

where

V1(k) = xT (k)P1x(k),

V2(k) =
k−1∑

i=k−h2

xT (i)P2x(i) +
−h1∑

i=−h2+1

k−1∑
j=k+i

xT ( j)P2x( j),

V3(k) = h2

0∑
i=−h2+1

k−1∑
j=k+i−1

yT ( j)P4y( j),

V4(k) = h1

−1∑
i=−h1

k−1∑
j=k+i

yT ( j)R1y( j) + (h2 − h1)
−h1−1∑
i=−h2

k−1∑
j=k+i

yT ( j)R2y( j),

V5(k) = h1

−1∑
i=−h1

k−1∑
j=k+i

yT ( j)Z1y( j) + h2

−1∑
i=−h2

k−1∑
j=k+i

yT ( j)Z2y( j)

+(h2 − h1)
−h1−1∑
i=−h2

k−1∑
j=k+i

yT ( j)Z3y( j),
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V6(k) =
M∑

i=1

δ(i)
k−1∑

j=k−i

xT ( j)P6x( j),

V7(k) =
k−1∑

i=k−τ2

xT (i)P3x(i) +
−τ1∑

i=−τ2+1

k−1∑
j=k+i

xT ( j)P3x( j),

V8(k) = τ2

0∑
i=−τ2+1

k−1∑
j=k+i−1

yT ( j)P5y( j),

V9(k) = τ1

−1∑
i=−τ1

k−1∑
j=k+i

yT ( j)R3y( j) + (τ2 − τ1)
−τ1−1∑
i=−τ2

k−1∑
j=k+i

yT ( j)R4y( j),

V10(k) = τ1

−1∑
i=−τ1

k−1∑
j=k+i

yT ( j)Z4y( j) + τ2

−1∑
i=−τ2

k−1∑
j=k+i

yT ( j)Z5y( j)

+(τ2 − τ1)
−τ1−1∑
i=−τ2

k−1∑
j=k+i

yT ( j)Z6y( j).

Evaluating the forward difference of Vi(k)(i = 1, 2, . . . , 10), along the trajectory of system (3.3) is
given by

∆V(k) =
10∑
i=1

∆Vi(k). (3.15)

Let us define for i = 1, 2, . . . , 10,

∆Vi(k) = Vi(k + 1) − Vi(k),

where

∆V1(k) =
[
x(k) + y(k)

]T P1
[
x(k) + y(k)

]
− xT (k)P1x(k)

+

[
2xT (k)QT

1 + 2yT (k)QT
2 + 2xT (k − τ(k))QT

3 + 2
k−1∑

i=k−τ(k)

yT (i)QT
4

+2 f (x(k))T QT
5 + 2g(x(k − h(k)))T QT

6 + 2

 +∞∑
i=1

δ(i)x(k − i)

T

QT
7


×

−y(k) + (A1 − I)x(k) + A2x(k − τ(k)) − A1

k−1∑
i=k−τ(k)

y(i)

+B f (x(k)) +Cg(x(k − h(k))) + D
+∞∑
i=1

δ(i)x(k − i)

 , (3.16)

∆V2(k) = xT (k)P2x(k) − xT (k − h2)P2x(k − h2)

+

−h1∑
i=−h2+1

[
xT (k)P2x(k) − xT (k + i)P2x(k + i)

]
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= (h12 + 1)xT (k)P2x(k) − xT (k − h2)P2x(k − h2) −
k−h1∑

i=k−h2+1

xT (i)P2x(i)

≤ (h12 + 1)xT (k)P2x(k) − xT (k − h2)P2x(k − h2). (3.17)

Based on Lemma 4, the forward difference of V3(k) is calculated as

∆V3(k) = h2

0∑
i=−h2+1

[
yT (k)P4y(k) − yT (k + i − 1)P4y(k + i − 1)

]
≤ h2

2yT (k)P4y(k) −
k−1∑

i=k−h2

yT (i)P4

k−1∑
i=k−h2

y(i)

≤ h2
2yT (k)P4y(k) −

k−1∑
i=k−h(k)

yT (i)P4

k−1∑
i=k−h(k)

y(i). (3.18)

∆V4(k) = h2
1yT (k)R1y(k) + h2

12yT (k)R2y(k)

−h1

k−1∑
i=k−h1

yT (i)R1y(i) − h12

k−h1−1∑
i=k−h2

yT (i)R2y(i). (3.19)

∆V5(k) = h1

−1∑
i=−h1

[
yT (k)Z1y(k) − yT (k + i)Z1y(k + i)

]
+h2

−1∑
i=−h2

[
yT (k)Z2y(k) − yT (k + i)Z2y(k + i)

]
+h12

−h1−1∑
i=−h2

[
yT (k)Z3y(k) − yT (k + i)Z3y(k + i)

]
= h2

1yT (k)Z1y(k) − h1

k−1∑
i=k−h1

yT (i)Z1y(i)

+h2
2yT (k)Z2y(k) − h2

k−1∑
i=k−h2

yT (i)Z2y(i)

+h2
12yT (k)Z3y(k) − h12

k−h1−1∑
i=k−h2

yT (i)Z3y(i). (3.20)

∆V6(k) ≤ xT (k) (ξP6) x(k) −

 M∑
i=1

δ(i)x(k − i)

T (
1
ξ

P6

)  M∑
i=1

δ(i)x(k − i)

 . (3.21)

∆V7(k) = xT (k)P3x(k) − xT (k − τ2)P3x(k − τ2)

+

−τ1∑
i=−τ2+1

[
xT (k)P3x(k) − xT (k + i)P3x(k + i)

]
≤ (τ12 + 1)xT (k)P3x(k) − xT (k − τ2)P3x(k − τ2). (3.22)
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∆V8(k) ≤ τ2
2yT (k)P5y(k) −

k−1∑
i=k−τ2

yT (i)P5

k−1∑
i=k−τ2

y(i)

≤ τ2
2yT (k)P5y(k) −

k−1∑
i=k−τ(k)

yT (i)P5

k−1∑
i=k−τ(k)

y(i). (3.23)

∆V9(k) = τ2
1yT (k)R3y(k) + τ2

12yT (k)R4y(k)

−τ1

k−1∑
i=k−τ1

yT (i)R3y(i) − τ12

k−τ1−1∑
i=k−τ2

yT (i)R4y(i). (3.24)

∆V10(k) = τ2
1yT (k)Z4y(k) − τ1

k−1∑
i=k−τ1

yT (i)Z4y(i)

+τ2
2yT (k)Z5y(k) − τ2

k−1∑
i=k−τ2

yT (i)Z5y(i)

+τ2
12yT (k)Z6y(k) − τ12

k−τ1−1∑
i=k−τ2

yT (i)Z6y(i). (3.25)

By Lemma 5, four terms from ∆V4(k) and ∆V9(k) can each be driven as

k−1∑
i=k−h1

yT (i)R1y(i) ≥
1
h1

[x(k) − x(k − h1)]T R1[x(k) − x(k − h1)]

+
3
h1

x(k) + x(k − h1) −
2

h1 + 1

k∑
i=k−h1

x(i)


T

R1[⋆]

+
5
h1

x(k) − x(k − h1) +
6

h1 + 1

k∑
i=k−h1

x(i)

−
12

(h1 + 2)(h1 + 1)

0∑
i=−h1

k∑
j=k+i

x(i)


T

R1[⋆],

k−h1−1∑
i=k−h2

yT (i)R2y(i) ≥
1

h12
[x(k − h1) − x(k − h2)]T R2[⋆]

+
3

h12

[
x(k − h1) + x(k − h2) −

2
h12 + 1

k−h1∑
i=k−h2

x(i)


T

R2[⋆]

+
5

h12

x(k − h1) − x(k − h2) +
6

h12 + 1

k−h1∑
i=k−h2

x(i)

−
12

(h12 + 2)(h12 + 1)

−h1∑
i=−h2

k−k1∑
j=k+i

x(i)


T

R2[⋆],
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k−1∑
i=k−τ1

yT (i)R3y(i) ≥
1
τ1

[x(k) − x(k − τ1)]T R3[x(k) − x(k − τ1)]

+
3
τ1

x(k) + x(k − τ1) −
2
τ1 + 1

k∑
i=k−τ1

x(i)


T

R3[⋆]

+
5
τ1

x(k) − x(k − τ1) +
6
τ1 + 1

k∑
i=k−τ1

x(i)

−
12

(τ1 + 2)(τ1 + 1)

0∑
i=−τ1

k∑
j=k+i

x(i)


T

R3[⋆],

k−τ1−1∑
i=k−τ2

yT (i)R4y(i) ≥
1
τ12

[x(k − τ1) − x(k − τ2)]T R4[⋆]

+
3
τ12

x(k − τ1) + x(k − τ2) −
2

τ12 + 1

k−τ1∑
i=k−τ2

x(i)


T

R4[⋆]

+
5
τ12

x(k − τ1) − x(k − τ2) +
6

τ12 + 1

k−τ1∑
i=k−τ2

x(i)

−
12

(τ12 + 2)(τ12 + 1)

−τ1∑
i=−τ2

k−k1∑
j=k+i

x(i)


T

R4[⋆].

By Lemma 6, six terms from ∆V5(k) and ∆V10(k) can each be driven as

−

k−1∑
i=k−h1

yT (i)Z1y(i)

≤


x(k)

x(k − h(k))
x(k − h1)


T 

L1 + LT
1 −LT

1 + L2 0
∗ L1 + LT

1 − L2 − LT
2 −LT

1 + L2

∗ ∗ −L2 − LT
2

 [⋆]

+h1


x(k)

x(k − h(k))
x(k − h1)


T 

L3 L4 0
∗ L3 + L5 L4

∗ ∗ L5

 [⋆] ,

−

k−1∑
i=k−h1

yT (i)Z2y(i)

≤


x(k)

x(k − h(k))
x(k − h2)


T 

M1 + MT
1 −MT

1 + M2 0
∗ M1 + MT

1 − M2 − MT
2 −MT

1 + M2

∗ ∗ −M2 − MT
2

 [⋆]

+h1


x(k)

x(k − h(k))
x(k − h2)


T 

M3 M4 0
∗ M3 + M5 M4

∗ ∗ M5

 [⋆] ,
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−

k−h1−1∑
i=k−h2

yT (i)Z3y(i)

≤


x(k − h1)

x(k − h(k))
x(k − h2)


T 

N1 + NT
1 −NT

1 + N2 0
∗ N1 + NT

1 − N2 − NT
2 −NT

1 + N2

∗ ∗ −N2 − NT
2

 [⋆]

+h1


x(k − h1)

x(k − h(k))
x(k − h2)


T 

N3 N4 0
∗ N3 + N5 N4

∗ ∗ N5

 [⋆] ,

−

k−1∑
i=k−h1

yT (i)Z4y(i)

≤


x(k)

x(k − τ(k))
x(k − τ1)


T 

S 1 + S T
1 −S T

1 + S 2 0
∗ S 1 + S T

1 − S 2 − S T
2 −S T

1 + S 2

∗ ∗ −S 2 − S T
2

 [⋆]

+h1


x(k)

x(k − τ(k))
x(k − τ1)


T 

S 3 S 4 0
∗ S 3 + S 5 S 4

∗ ∗ S 5

 [⋆] ,

−

k−1∑
i=k−h1

yT (i)Z5y(i)

≤


x(k)

x(k − τ(k))
x(k − τ2)


T 

T1 + T T
1 −T T

1 + T2 0
∗ T1 + T T

1 − T2 − T T
2 −T T

1 + T2

∗ ∗ −T2 − T T
2

 [⋆]

+h1


x(k)

x(k − τ(k))
x(k − τ2)


T 

T3 T4 0
∗ T3 + T5 T4

∗ ∗ T5

 [⋆] ,

−

k−h1−1∑
i=k−h2

yT (i)Z6y(i)

≤


x(k − τ1)

x(k − τ(k))
x(k − τ2)


T 

U1 + UT
1 −UT

1 + U2 0
∗ U1 + UT

1 − U2 − UT
2 −UT

1 + U2

∗ ∗ −U2 − UT
2

 [⋆]

+h1


x(k − τ1)

x(k − τ(k))
x(k − τ2)


T 

U3 U4 0
∗ U3 + U5 U4

∗ ∗ U5

 [⋆] .

From Assumption 2, we have[
x(k)

f (x(k))

]T [
F1Λ

T
1 −F2Λ1

−F2Λ1 Λ1

] [
x(k)

f (x(k))

]
≤ 0, (3.26)
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and [
x(k)

g(x(k))

]T [
G1Λ

T
2 −G2Λ2

−G2Λ2 Λ2

] [
x(k)

g(x(k))

]
≤ 0, (3.27)

where

Λ1 = diag{λ11, λ12, . . . , λ1n},

Λ2 = diag{λ21, λ22, . . . , λ2n},

F1 = diag{F+1 F1, F+2 F2, . . . , F+n Fn},

F2 = diag
{

F+1 + F−1
2

,
F+2 + F−2

2
, . . . ,

F+n + F−n
2

}
,

G1 = diag{G+1 G1,G+2 G2, . . . ,G+n Gn},

G2 = diag
{

G+1 +G−1
2

,
G+2 +G−2

2
, . . . ,

G+n +G−n
2

}
,

where λ1i, λ2i, F−i , F
+
i ,G

−
i , and G+i (i=1,2,...,n) are known real constants.

According to (3.12)–(3.27), it is straightforward to see that

∆V(k) ≤ ξT (k)Πξ(k), (3.28)

where ξ(k) =

xT (k), yT (k), xT (k − h(k)), xT (k − h1), xT (k − h2),
k−1∑

i=k−h(k)

yT (i),
k∑

i=k−h1

xT (i),

0∑
i=−h1

k∑
j=k+i

x(i),
k∑

i=k−h12

xT (i),
0∑

i=−h2

k−h1∑
j=k+i

xT (i), xT (k − τ(k)), xT (k − τ1), xT (k − τ2),

k−1∑
i=k−τ(k)

yT (i),
k∑

i=k−τ1

xT (i),
0∑

i=−τ1

k∑
j=k+i

xT (i),
k∑

i=k−τ2

xT (i),
0∑

i=−τ2

k−τ1∑
j=k+i

xT (i), f T (x(k)),

gT (x(k − h(k))),

 M∑
i=1

δ(i)x(k − i)

T 
T

, and Π is defined in (3.2). From (3.4)–(3.10), system (3.3)

is asymptotically stable, as defined in Definition 2. The theorem is now complete in its proof. □

If leakage delay term disappears, that is τ(k) = 0, the neural networks system (3.3) reduces to x(k + 1) = Ax(k) + B f (x(k)) +Cg(x(k − h(k))) + D
M∑

i=1

δ(i)x(k − i),

x(s) = ϕ(s), s ∈ {−h2,−h2 + 1, . . . ,−1, 0, }.
(3.29)

The delay-dependent stability criterion for the system in (3.29) can be directly deduced from
Theorem 1.

We introduce the following notations for later use

Π̄ =
[
Π̄i, j

]
13×13
, (3.30)

where Π̄i, j = Π̄
T
j,i = Πi, j, i, j = 1, 2, 3, . . . , 10, 19, 20, 21, and it is presented in the following theorem.
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Theorem 2. The system (3.29) is asymptotically stable, if there exist positive definite symmetric
matrices Pi,Q j,Rk,Zl, i = 1, 2, 4 =, 6, j = 1, 2, 3, . . . , 6, k = 1, 2, l = 1, 2, 3 and any appropriate
dimensional matrices Λ1,Λ2, satisfying the following LMIs

Π̄ < 0, (3.31)
Z1 L1 L2

∗ L3 L4

∗ ∗ L5

 ≥ 0, (3.32)


Z2 M1 M2

∗ M3 M4

∗ ∗ M5

 ≥ 0, (3.33)


Z3 N1 N2

∗ N3 N4

∗ ∗ N5

 ≥ 0. (3.34)

Proof. Based on the same method as Theorem 1, but for this estimation we do not decompose matrix
A, thereby rewriting the system (3.29) with model transformation method as the following descriptor
system

x(k + 1) = x(k) + y(k), (3.35)

y(k) = (A − I)x(k) + B f (x(k)) +Cg(x(k − h(k))) + D
M∑

i=1

δ(i)x(k − i). (3.36)

Construct the following Lyapunov-Krasovskii functional as

V(k) =
6∑

i=1

Vi(k), (3.37)

where

V1(k) = xT (k)P1x(k),

V2(k) =
k−1∑

i=k−h2

xT (i)P2x(i) +
−h1∑

i=−h2+1

k−1∑
j=k+i

xT ( j)P2x( j),

V3(k) = h2

0∑
i=−h2+1

k−1∑
j=k+i−1

yT ( j)P4y( j),

V4(k) = h1

−1∑
i=−h1

k−1∑
j=k+i

yT ( j)R1y( j) + (h2 − h1)
−h1−1∑
i=−h2

k−1∑
j=k+i

yT ( j)R2y( j),

V5(k) = h1

−1∑
i=−h1

k−1∑
j=k+i

yT ( j)Z1y( j) + h2

−1∑
i=−h2

k−1∑
j=k+i

yT ( j)Z2y( j)

+(h2 − h1)
−h1−1∑
i=−h2

k−1∑
j=k+i

yT ( j)Z3y( j),
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V6(k) =
M∑

i=1

δ(i)
k−1∑

j=k−i

xT ( j)P6x( j).

When the forward difference of V(k) is calculated, it is defined as

∆V(k) =
6∑

i=1

∆Vi(k). (3.38)

Let us define for i = 1, 2, . . . , 6,

∆Vi(k) = Vi(k + 1) − Vi(k).

We can estimate V1(k) as follows.

∆V1(k) =
[
x(k) + y(k)

]T P1
[
x(k) + y(k)

]
− xT (k)P1x(k)

+

[
2xT (k)QT

1 + 2yT (k)QT
2 + 2 f (x(k))T QT

4 + 2g(x(k − h(k)))T QT
5

+2

 M∑
i=1

δ(i)x(k − i)

T

QT
6


[
− y(k) + (A − I)x(k) + B f (x(k))

+Cg(x(k − h(k))) + D
M∑

i=1

δ(i)x(k − i)

 . (3.39)

The proof after this step is omitted since it is analogous to the derivation of the Theorem 1. □

When D = 0, the neural networks system (3.3) becomes{
x(k + 1) = Ax(k − τ(k)) + B f (x(k)) +Cg(x(k − h(k))), k ∈ Z+,

x(s) = ϕ(s), s ∈ {−ρ,−ρ + 1, . . . ,−1, 0, }.
(3.40)

The delay-dependent stability criterion for the system in (3.40) can be directly deduced from
Theorem 1.

We introduce the following notations for later use

Π̂ =
[
Π̂i, j

]
20×20
, (3.41)

where Π̂i, j = Π̂
T
j,i = Πi, j, i, j = 1, 2, 3, . . . , 20, and it is presented in the following corollary.

Corollary 1. For given integers h1, h2 satisfying 0 < h1 ≤ h2, system (3.40) is asymptotically stable
for 0 < h1 ≤ h(k) ≤ h2, if there exist positive definite matrices Pi,Q j,Rk,Zi, i = 1, 2, 3, . . . , 6, j =
1, 2, 3, . . . , 6, k = 1, 2, 3, 4, and any appropriate dimensional matrices Λ1,Λ2, satisfying the following
LMIs, satisfying the following LMIs.

Π̂ < 0, (3.42)
Z1 L1 L2

∗ L3 L4

∗ ∗ L5

 ≥ 0, (3.43)
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Z2 M1 M2

∗ M3 M4

∗ ∗ M5

 ≥ 0, (3.44)


Z3 N1 N2

∗ N3 N4

∗ ∗ N5

 ≥ 0, (3.45)


Z4 S 1 S 2

∗ S 3 S 4

∗ ∗ S 5

 ≥ 0, (3.46)


Z5 T1 T2

∗ T3 T4

∗ ∗ T5

 ≥ 0, (3.47)


Z6 U1 U2

∗ U3 U4

∗ ∗ U5

 ≥ 0. (3.48)

Proof. The proof has been skipped since it is almost identical to the derivation of Theorem 1 except
that the matrix D is not included in the proof. □

If leakage delay term disappears and D = 0, the neural networks (3.29) becomes{
x(k + 1) = Ax(k) + B f (x(k)) +Cg(x(k − h(k))), k ∈ Z+

x(s) = ϕ(s), s ∈ {−h2,−h2 + 1, . . . ,−1, 0, }.
(3.49)

The delay-dependent stability criterion for the system in (3.49) can be directly deduced from
Theorem 2.

We introduce the following notations for later use

ˆ̄Π =
[ ˆ̄Πi, j

]
12×12
, (3.50)

where ˆ̄Πi, j =
ˆ̄ΠT

j,i = Πi, j, i, j = 1, 2, 3, . . . , 10, 19, 20, and it is presented in the following corollary.

Corollary 2. For given integers h1, h2 satisfying 0 < h1 ≤ h2, system (3.49) is asymptotically stable
for 0 < h1 ≤ h(k) ≤ h2, if there exist positive definite matrices Pi,Q j,Rk,Zl,

i = 1, 2, 4, 6, j = 1, 2, 3, . . . , 6, k = 1, 2, l = 1, 2, 3 and any appropriate dimensional matrices Λ1,Λ2,

satisfying the following LMIs

ˆ̄Π < 0, (3.51)
Z1 L1 L2

∗ L3 L4

∗ ∗ L5

 ≥ 0, (3.52)


Z2 M1 M2

∗ M3 M4

∗ ∗ M5

 ≥ 0, (3.53)
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Z3 N1 N2

∗ N3 N4

∗ ∗ N5

 ≥ 0. (3.54)

Proof. The proof is removed since it is comparable to the derivation of Theorem 2 without D and hence
does not need to be included. □

For system (2.1), we derive robust asymptotic stability using Theorem 1 and the following notations,
which will come in handy later.

S n
T = [ΓT Q1 ΓT Q2 0 0 0 0 0 0 0 0 ΓT Q3 0 0

ΓT Q4 0 0 0 0 ΓT Q5 ΓT Q6 ΓT Q7 ], (3.55)
Nn = [H1 0 0 0 0 0 0 0 0 0 0 0 0 − H1 0

0 0 0 H2 H3 H4]. (3.56)

Theorem 3. The system (3.1) is robustly asymptotically stable, if there exist positive definite
symmetric matrices Pi,Q j,Rk, i = 1, 2, . . . , 9, j = 1, 2, . . . , 5, k = 1, 2, . . . , 8, any appropriate
dimensional matrices J,T1,T2, S l, Jm, Km, Mm,Nm, l = 1, 2, . . . , 4, m = 1, 2, 3 and any positive real
constant δ satisfying the following LMIs


Π S n δNn

T

∗ −δI δET

∗ ∗ −δI

 < 0, (3.57)


Z1 L1 L2

∗ L3 L4

∗ ∗ L5

 ≥ 0, (3.58)


Z2 M1 M2

∗ M3 M4

∗ ∗ M5

 ≥ 0, (3.59)


Z3 N1 N2

∗ N3 N4

∗ ∗ N5

 ≥ 0, (3.60)


Z4 S 1 S 2

∗ S 3 S 4

∗ ∗ S 5

 ≥ 0, (3.61)


Z5 T1 T2

∗ T3 T4

∗ ∗ T5

 ≥ 0, (3.62)


Z6 U1 U2

∗ U3 U4

∗ ∗ U5

 ≥ 0. (3.63)
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Proof. Together with LMIs of Theorem 1, by replacing A1, B, C and D in (3.4) with A1 + ∆A(k),
B + ∆B(k), C + ∆C(k) and D + ∆D(k) in (2.5), respectively. Then, we find that condition (3.57) is
equivalent to the following condition

Π + S n∆(k)Nn + Nn
T∆(k)T S n

T < 0. (3.64)

By using Lemma 1, we obtain that (3.64) is equivalent to the LMIs as follows
Π S n δNn

T

∗ −δI δET

∗ ∗ −δI

 < 0, (3.65)

where δ is a positive real constant. From Theorem 1 and conditions (3.57)–(3.63), it follows from
Definition 1 that system (3.1) is robustly asymptotically stable. This completes the proof of the
theorem. □

If D = 0, then system (3.1) reduces to the following system
x(k + 1) = (A + ∆A(k))x(k − τ(k)) + (B + ∆B(k)) f (x(k))

+(C + ∆C(k))g(x(k − h(k)))
x(k) = ϕ(k), k = −ρ,−ρ + 1, . . . , 0.

(3.66)

The delay-dependent stability criteria for the system in (3.66) can be directly deduced from Theorem 3.
We introduce the following notations for later use

Ŝ n
T
= [ΓT Q1 ΓT Q2 0 0 0 0 0 0 0 0 ΓT Q3 0 0
ΓT Q4 0 0 0 0 ΓT Q5 ΓT Q6 ], (3.67)

N̂n = [H1 0 0 0 0 0 0 0 0 0 0 0 0 − H1 0
0 0 0 H2 H3]. (3.68)

and it is presented in the following corollary.

Corollary 3. The system (3.66) is robustly asymptotically stable, if there exist positive definite
symmetric matrices Pi,Q j,Rk, i = 1, 2, . . . , 9, j = 1, 2, . . . , 4, k = 1, 2, . . . , 8, any appropriate
dimensional matrices J,T1,T2, S l, Jm,Km,Mm,Nm, l = 1, 2, . . . , 4, m = 1, 2, 3 and any positive real
constant δ such that the following LMIs holdΠ̂ Ŝ δN̂T

∗ −δI δET

∗ ∗ −δI

 < 0, (3.69)


Z1 L1 L2

∗ L3 L4

∗ ∗ L5

 ≥ 0, (3.70)


Z2 M1 M2

∗ M3 M4

∗ ∗ M5

 ≥ 0, (3.71)
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Z3 N1 N2

∗ N3 N4

∗ ∗ N5

 ≥ 0, (3.72)


Z4 S 1 S 2

∗ S 3 S 4

∗ ∗ S 5

 ≥ 0, (3.73)


Z5 T1 T2

∗ T3 T4

∗ ∗ T5

 ≥ 0, (3.74)


Z6 U1 U2

∗ U3 U4

∗ ∗ U5

 ≥ 0. (3.75)

Proof. Together with LMI results of Corollary 1, by replacing A1 and B in (3.42) with A1 + ∆A(k)
and B + ∆B(k) in (2.5), respectively. Then, we find that condition (3.69) is equivalent to the following
condition

Π̂ + Ŝ∆(k)N̂ + N̂T∆(k)T Ŝ T < 0. (3.76)

By using Lemma 1, we obtain that (3.76) is equivalent to the LMI as followsΠ̂ Ŝ δN̂T

∗ −δI δET

∗ ∗ −δI

 < 0, (3.77)

where δ is a positive real constant. From Corollary 1 and conditions (3.69)–(3.75), system (3.66) is
robustly asymptotically stable. The proof is completed. □

3.2. Passivity analysis for discrete-time neural network

This subsection focuses on the robust passivity analysis of the uncertain linear discrete-time system
with interval discrete and distributed time-varying delays (2.1). The LMI-based conditions will be
derived using the Lyapunov technique.

First and foremost, we introduce the following notations for later use

S n
T
0 = [S n

T 0], Nn0 = [Nn 0], Π̆ =
[
Π̆i, j

]
22×22
,

where Π̆i, j = Π̆
T
j,i = Πi, j, i, j = 1, 2, 3, . . . , 22,

Π̆1,22 = QT
8 (A1 − I) + Q1 Π̆2,22 = −QT

8 + Q2,

Π̆11,22 = −AT
z + QT

8 A2 + Q3, Π̆14,22 = −QT
8 A1 + Q4,

Π̆19,22 = −BT
z + QT

8 B + Q5, Π̆20,22 = −CT
z + QT

8 C + Q6,

Π̆21,22 = −DT
z + QT

8 D + Q7, Π̆22,22 = −γI + QT
8 + Q8,

and others are equal to zero.
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Theorem 4. The system (2.1) is robustly passive, if there exist positive definite symmetric matrices
Pi,Q j,Rk, i = 1, 2, . . . , 10, j = 1, 2, . . . , 6, k = 1, 2, . . . , 8, any appropriate dimensional matrices
J,T1,T2, S l, Jm,Km,Mm,Nm, l = 1, 2, . . . , 4,m = 1, 2, 3 and any positive real constant δ, γ satisfying
the following LMIs Π̆ S n0 δNn

T
0

∗ −δI δET

∗ ∗ −δI

 < 0, (3.78)


Z1 L1 L2

∗ L3 L4

∗ ∗ L5

 ≥ 0, (3.79)


Z2 M1 M2

∗ M3 M4

∗ ∗ M5

 ≥ 0, (3.80)


Z3 N1 N2

∗ N3 N4

∗ ∗ N5

 ≥ 0, (3.81)


Z4 S 1 S 2

∗ S 3 S 4

∗ ∗ S 5

 ≥ 0, (3.82)


Z5 T1 T2

∗ T3 T4

∗ ∗ T5

 ≥ 0, (3.83)


Z6 U1 U2

∗ U3 U4

∗ ∗ U5

 ≥ 0. (3.84)

Proof. The proof follows from Theorem 1 and Theorem 3 by choosing the Lyapunov-Krasovskii
functional (3.14) and the forward differences in (3.16)–(3.27) with (2.1)–(2.8) and conditions
(3.78)–(3.84), it follows that

∆V(k) +
(
−2zT (k)w(k) − γwT (k)w(k)

)
≤ 0. (3.85)

Given a positive integer l and summing both sides of (3.85) from 0 to l with respect to k results in

l∑
k=0

∆V(k) +
l∑

k=0

(
−2zT (k)w(k) − γwT (k)w(k)

)
≤ 0,

V(l + 1) − V(0) − 2
l∑

k=0

zT (k)w(k) − γ
l∑

k=0

wT (k)w(k) ≤ 0.

Under the zero condition, we have

−γ

l∑
k=0

wT (k)w(k) ≤ 2
l∑

k=0

zT (k)w(k). (3.86)
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Therefore from (3.86), it is easy to get the inequality in Definition 3. Hence it can conclude that the
system (2.1) is robustly passive. The proof of this theorem is completed. □

If D = Dz = 0, then system (2.1) reduces to the following system
x(k + 1) = (A + ∆A(k))x(k − τ(k)) + (B + ∆B(k)) f (x(k))

+(C + ∆C(k))g(x(k − h(k))) + w(k),
z(k) = Azx(k − τ(k)) + Bz f (x(k)) +Czg(x(k − h(k)))
x(k) = ϕ(k), k = −ρ,−ρ + 1, . . . , 0.

(3.87)

The delay-dependent passivity criterion for the system in (3.87) can be directly deduced from
Theorem 4. We introduce the following notations for later use

Ŝ n
T
0 = [Ŝ n

T
0], N̂n0 = [N̂n 0], Π̃ =

[
Π̃i, j

]
21×21
,

where Π̃i, j = Π̃
T
j,i = Π̂i, j, i, j = 1, 2, 3, . . . , 21,

Π̃1,21 = QT
8 (A1 − I) + Q1 Π̃2,21 = −QT

8 + Q2

Π̃11,21 = −AT
z + QT

8 A2 + Q3, Π̃14,21 = −QT
8 A1 + Q4,

Π̃19,21 = −BT
z + QT

8 B + Q5, Π̃20,21 = −CT
z + QT

8 C + Q6,

Π̃21,21 = −γI + QT
8 + Q8,

and others are equal to zero.

Corollary 4. The system (3.87) is robustly passive if there exist positive definite symmetric matrices
Pi,Q j,Rk, i = 1, 2, . . . , 9, j = 1, 2, . . . , 4, 6, k = 1, 2, . . . , 8, any appropriate dimensional matrices
J,T1,T2, S l, Jm,Km,Mm, Nm, l = 1, 2, . . . , 4, m = 1, 2, 3 and any positive real constant δ, γ such that
the following LMIs hold 

Π̃ Ŝ n0 δN̂n
T
0

∗ −δI δET

∗ ∗ −δI

 < 0, (3.88)


Z1 L1 L2

∗ L3 L4

∗ ∗ L5

 ≥ 0, (3.89)


Z2 M1 M2

∗ M3 M4

∗ ∗ M5

 ≥ 0, (3.90)


Z3 N1 N2

∗ N3 N4

∗ ∗ N5

 ≥ 0, (3.91)


Z4 S 1 S 2

∗ S 3 S 4

∗ ∗ S 5

 ≥ 0, (3.92)

AIMS Mathematics Volume 8, Issue 2, 4973–5006.



4998
Z5 T1 T2

∗ T3 T4

∗ ∗ T5

 ≥ 0, (3.93)


Z6 U1 U2

∗ U3 U4

∗ ∗ U5

 ≥ 0. (3.94)

Proof. The proof is omitted since it is analogous to the derivation of Theorem 4 with Definition 3. □

If If leakage delay term disappears and D = Dz = 0, then system (2.1) reduces to the following
system 

x(k + 1) = Ax(k − τ(k)) + B f (x(k)) +Cg(x(k − h(k))) + w(k),
z(k) = Azx(k − τ(k)) + Bz f (x(k)) +Czg(x(k − h(k)))
x(k) = ϕ(k), k = −ρ,−ρ + 1, . . . , 0.

(3.95)

The delay-dependent passivity criterion for the system in (3.95) can be directly deduced from
Theorem 4. We introduce the following notations for later use

Π̃ =
[
Π̃i, j

]
21×21
,

where Π̃i, j = Π̃
T
j,i = Π̂i, j, i, j = 1, 2, 3, . . . , 21,

Π̃1,21 = QT
8 (A1 − I) + Q1 Π̃2,21 = −QT

8 + Q2

Π̃11,21 = −AT
z + QT

8 A2 + Q3, Π̃14,21 = −QT
8 A1 + Q4,

Π̃19,21 = −BT
z + QT

8 B + Q5, Π̃20,21 = −CT
z + QT

8 C + Q6,

Π̃21,21 = −γI + QT
8 + Q8,

and others are equal to zero.

Corollary 5. The system (3.95) is passive, if there exist positive definite symmetric matrices Pi,Q j,Rk,
i = 1, 2, . . . , 9, j = 1, 2, . . . , 4, 6, k = 1, 2, . . . , 8, any appropriate dimensional matrices J,T1,T2, S l,

Jm,Km,Mm, Nm, l = 1, 2, . . . , 4, m = 1, 2, 3 and any positive real constant γ such that the following
LMIs hold

Π̃ < 0, (3.96)
Z1 L1 L2

∗ L3 L4

∗ ∗ L5

 ≥ 0, (3.97)


Z2 M1 M2

∗ M3 M4

∗ ∗ M5

 ≥ 0, (3.98)


Z3 N1 N2

∗ N3 N4

∗ ∗ N5

 ≥ 0, (3.99)
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Z4 S 1 S 2

∗ S 3 S 4

∗ ∗ S 5

 ≥ 0, (3.100)


Z5 T1 T2

∗ T3 T4

∗ ∗ T5

 ≥ 0, (3.101)


Z6 U1 U2

∗ U3 U4

∗ ∗ U5

 ≥ 0. (3.102)

Proof. As with the derivation of Theorem 4 with Definition 3, the proof is skipped here for simplicity’s
sake. □

Remark 1. The problem of new delay-range-dependent asymptotic stability criteria for uncertain
discrete-time neural networks with interval discrete, distributed, and leakage time-varying delays
(Theorems 1–3, Corollarys 1–3) is studied. Moreover, new delay-range-dependent passivity criteria
are also investigated for uncertain discrete-time neural networks with interval discrete, distributed,
and leakage time-varying delays (Theorem 4, Corollarys 5 and 6). We use a mixed techniques such as
new inequalities, Jensen inequality, coefficient matrix decomposition technique, utilization of zero
equation, mixed model transformation, and reciprocally convex combination. Using the above new
LKFs and the lemmas leads to less conservatism of the obtained results than in published literature,
as presented via numerical examples.

3.3. Numerical examples for discrete-time neural network

In this part, we will provide numerical examples that will illustrate the efficacy and application of
the techniques that are being discussed.

Example 1. Illustrate the effectiveness of the proposed stability criterion (Theorem 1) for the
discrete-time system subjected to norm-bounded uncertainties (3.3) with parameters as follows

A1 = A2 =


0.2 0 0
0 0.05 0
0 0 0.15

 , B =


−0.3 0.1 0.2
0.2 0.2 0
0 −0.1 −0.4

 ,
C =


0.4 0.2 −0.1
0 0.2 0.3
−0.1 0 0.2

 , D =


−0.2 0.1 0
0.2 0.3 0.2
0 −0.2 0.2

 .
For the activation functions

F1 = G1 =


0 0 0
0 0 0
0 0 0

 , F2 = G2 =


0.4 0 0
0 0.3 0
0 0 0.3

 .
In addition, we choose 2 ≤ τ(k) ≤ 8. Then, by using the MATLAB LMI Toolbox, we solve LMI (3.4)–
(3.10), and the corresponding values of the permissible upper limits of h2 for a range of h1 values from
4 to 20 are also computed and given in Table 1 as follows:
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Table 1. Upper bounds of time delay h2 for different h1 for Example 1.

h1 4 5 6 7 8 9 10 12 15 20
Theorem2 65 64 64 63 62 62 60 58 56 54

Example 2. Consider system (3.29) with Theorem 2 and the following parameters as

A1 =


0.2 0 0
0 0.04 0
0 0 0.1

 , A2 =


0.2 0 0
0 0.06 0
0 0 0.2

 , B =


−0.3 0.1 0.2
0.2 0.2 0
0 −0.1 −0.4

 ,
C =


0.4 0.2 −0.1
0 0.2 0.3
−0.1 0 0.2

 , D =


−0.2 0.1 0
0.2 0.3 0.2
0 −0.2 0.2

 .
For the activation functions

F1 = G1 =


0 0 0
0 0 0
0 0 0

 , F2 = G2 =


0.4 0 0
0 0.3 0
0 0 0.3

 .
Then, by using the MATLAB LMI Toolbox, we solve LMI (3.31)–(3.34), and the corresponding values
of the permissible upper limits of h2 for a range of h1 values from 4 to 20 are also computed and given
in Table 2 as follows:

Table 2. Upper bounds of time delay h2 for different h1 for Example 2.

h1 4 5 6 7 8 9 10 12 15 20
Theorem2 86 86 87 87 87 87 88 88 90 92

Example 3. Consider system (3.49) with Corollary 2 and the following parameters

A1 =

[
0.4 0
0 0.45

]
, A2 =

[
0.4 0
0 0.45

]
, B =

[
0.001 0

0 0.005

]
, C =

[
−0.1 0.01
−0.2 −0.1

]
.

For the activation functions

F1 = G1 =

[
0 0
0 0

]
, F2 = G2 =

[
0.5 0
0 0.5

]
.

Table 3 lists the findings of the maximum delay limits for different h2 for system (3.49). A comparison
of current outcomes with those from the past may be seen in Table 3. Table 3 shows that our findings
for this particular case provide higher upper limits to the time delay than those in the references [10,
13, 14, 30, 31].
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Table 3. Upper bounds of time delay h2 for different h1 for Example 3.

Methods\h1 = 6 8 10 15 20
Theorem 1 [13] 20 21 21 23 26
Theorem 2 [14] 19 20 21 24 27
Corollary 1 [31] 20 20 21 24 27
Theorem 1 [10] 21 21 22 24 27
Theorem 2 [10] 20 21 22 24 27
Corollary 3.1 [30] 20 22 24 29 34
Corollary 2 23 24 25 30 35

Example 4. Illustrate the effectiveness of the proposed robust stability criterion (Corollary 3) for the
uncertain discrete-time system subjected to norm-bounded uncertainties, consider the following system

x(k + 1) =
[
0.8 + α(k) 0

0 0.9

]
x(k) +

[
−0.1 0
−0.1 −0.1

]
x(k − h(k)),

where |α(k)| < α. The uncertain system can be expressed in the form of (3.66) with the following
parameters

A1 = A2 =

[
0.4 0
0 0.45

]
, Γ =

[
α 0
0 0

]
, H1 =

[
1 0
0 0

]
, H2 = H3 = E =

[
0 0
0 0

]
.

For given interval [h1, h2], the values of α such that the robust asymptotic stability of this system are
listed in Table 4. From the table, it is clear that the proposed robust stability criterion accommodates
a higher perturbation bound for a given delay range than [3, 7, 29, 40] without losing stability.

Table 4. Upper delay bounds of α(k) for different [h1, h2] for Example 4.

[h1, h2] [2,7] [3,9] [5,10] [6,12] [10,15]
Gao and Chen [3] 0.190 0.145 0.131 0.090 0.065
Huang and Fenh [7] 0.192 0.154 0.142 0.114 1.102
Ramakrishnan and Ray [29] 0.195 0.165 0.154 0.131 1.112
Wang et al. [40] 0.205 0.172 0.161 0.138 -
Corollary 3 0.210 0.179 0.168 0.141 1.126

Example 5. Illustrate the effectiveness of the proposed stability criterion (Theorem 4) for the
discrete-time system subjected to norm-bounded uncertainties (2.1) with parameters as follows

A1 = A2 =


0.2 0 0
0 0.05 0
0 0 0.15

 , B =


−0.3 0.1 0.2
0.2 0.2 0
0 −0.1 −0.4

 ,
C =


0.2 0.1 −0.1
0 0.1 0
−0.1 0 0.2

 , D =


−0.1 −0.1 0
0.1 0.1 0.1
0 −0.1 0.1

 ,
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H1 = H2 =


0.1 0 0
0 0.1 0
0 0 0.1

 , H3 = H4 =


0.05 0 0

0 0.05 0
0 0 0.05

 ,

E =


0 0 0
0 0 0
0 0 0

 , Γ =


1 0 0
0 1 0
0 0 1

 ,
Az =


0.2 0 0
0 0.08 0
0 0 0.1

 , Bz =


0.1 0 0
0 0.2 0
0 0 0.1

 ,
Cz =


0.2 0 0
0 0.2 0
0 0 −0.1

 , Dz =


−0.1 0 0

0 0.1 0
0 0 0.1

 .
For the activation functions

F1 = G1 =


0.1 0 0
0 0.1 0
0 0 0.1

 , F2 = G2 =


0.4 0 0
0 0.3 0
0 0 0.3

 .
In addition, we choose 2 ≤ τ(k) ≤ 8 and δ(i) = 1, i = 1, 2, ...,M. Using the MATHLAB tools to solve
LMIs (3.78)–(3.84), and the corresponding values of the permissible upper limits of h2 for a range of
h1 values from 4 to 20, we are also computed and given in Table 5 as follows:

Table 5. Upper bounds of time delay h2 for different h1 for Example 1.

h1 4 5 6 7 8 9 10 12 15 20
Theorem4 30 30 28 28 27 27 26 25 24 22

Remark 2. An important property in discrete delayed system theory is stability which applies to
analyzing properties of passivity of various discrete delayed systems. In recent years, stability and
passivity properties have also been related to the different discrete delayed
systems [3, 7, 10, 13, 14, 29–31, 40]. Moreover, in this work, we use refined inequality and mixed
techniques to improve the stability and passivity criteria. By applying the abovementioned methods,
we obtain less conservative results than the others [3, 7, 10, 13, 14, 29–31, 40].

4. Conclusions

This paper explored discrete-time neural networks with mixed interval time-varying delays for
asymptotic stability and passivity. It has also examined how discrete-time neural networks with time
interval variations have resilient asymptotic stability and passivity analysis. The study was carried out
using a technique that incorporated the enhanced Lyapunov-Krasovskii functional, mixed model
transformation, decomposition approach of the coefficient matrix, and usage of zero equations. A
novel set of delays-range-dependent robust asymptotic stability criteria was developed and
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constructed using LMIs. We can demonstrate numerically that our criteria are less conservative than
those found in the current literature. Another numerical example has been provided to show the
applicability of the discoveries that have been proposed.
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