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Abstract: In this article, we introduce a new extension to J−metric spaces, called CJ−metric spaces,
where θ is the controlled function in the triangle inequality. We prove some fixed point results in this
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illustrate our results.
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1. Introduction

The fixed point theory is a new, essential theory, and its application is utilized in many fields,
including Mathematics, Economics, and many others. For example, the impact of the fixed point
theory in the fractional differential equations appear clearly to all the observers, see [3, 4]. The fixed
point theory and the proof of the uniqueness were introduced by Banach [2], which was encouraging
to all subsequent researchers to start working on this theory; see [5, 8]. These days, the fixed point is
an active area wildly generalizing Banach, see [6, 7, 9–18].

Generalization of the fixed point theory can be made in two ways, either a generalization of the
Banach contraction to another linear or nonlinear contraction. The other way of extension is to
generalize the metric spaces by either changing the triangle inequality, omitting the symmetry
condition, or assuming that the self-distance is not necessarily zero.

Those generalizations are important due to the fact that more general spaces or contractions impact
a greater number of applications that can be adapted to that results.

In this work, we generalize a J−metric spaces, which Souayah recently introduced [1], where it
defined a metric space in three dimensions with a triangle inequality that includes a constant b > 0.
We extend the notion of J−metric spaces to CJ metric spaces that include a control function θ in three
dimensions instead of the constant b.
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In the main result section, we prove the existence and the uniqueness of a fixed point for self-
mappings on CJ−metric spaces, in Theorems 3.10 and 3.11, we consider self-mappings that satisfy
linear contractions where in Theorem 3.12, we consider mappings that satisfy nonlinear contractions.
Our finding generalizes many results in the literature. Moreover, in the last section, we present an
application of our impact on the system of linear equations.

2. Preliminaries

We begin our preliminaries by recalling the definitions of J−metric spaces.

Definition 2.1. [1] Consider a nonempty set δ, and a function J : δ3 → [0,∞). Let us define the set,

S (J, δ, φ) = {{φn} ⊂ δ : lim
n→∞

J(φ, φ, φn) = 0}

for all φ ∈ δ.

Definition 2.2. [1] Let δ be a set with at least one element and, J : δ3 → [0,∞) that satisfies the
mentioned below conditions:

(i) J(α, β, γ) = 0 implies α = β = γ for any α, β, γ ∈ δ.
(ii) There are some b > 0, where for each (α, β, γ) ∈ δ3 and {νn} ∈ S (J, δ, ν)

J(α, β, γ) ≤ b lim sup
n→∞

(
J(α, α, νn) + J(β, β, νn) + J(γ, γ, νn)

)
.

Then, (δ, J) is defined as a J−metric space. In addition, if J(α, α, β) = J(β, β, α) for each α, β ∈ δ,
the pair (δ, J) is defined as a symmetric J−metric space.

3. Main result

In this part, we will define CJ−metric spaces and prove the existence and the uniqueness of the fixed
point of self-mapping.

Definition 3.1. Let δ is a non empty set and a function CJ : δ3 → [0,∞). Then the set is defined as
follows

S (CJ, δ, α) = {{αn} ⊂ δ : lim
n→∞

CJ(α, α, αn) = 0}

for each α ∈ δ

Definition 3.2. Let δ be a set with at least one element and CJ : δ3 → [0,∞)fulfill the following
conditions:

(i) CJ(α, β, γ) = 0 implies α = β = γ for all α, β, γ ∈ δ.
(ii) There exist a function θ : δ3 → [0,∞), where θ is a continuous function and

limn→∞θ(α, α, αn)}

is a finite and exist where,

CJ(α, β, γ) ≤ θ(α, β, γ) lim sup
n→∞

(
CJ(α, α, φn) + CJ(β, β, φn) + CJ(γ, γ, φn)

)
.
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Then (δ,CJ) is defined as CJ−metric space. In addition, if

CJ(α, α, β) = CJ(β, β, α)

for each α, β ∈ δ, then (δ,CJ) is defined as symmetric CJ−metric space.

Remark 3.3. Notice that, this symmetry hypothesis does not necessarily mean that

CJ(α, β, γ) = CJ(β, α, γ) = CJ(γ, β, α) = · · · .

We will start by presenting some properties in the topology of CJ−metric spaces.

Definition 3.4. (1) Let (δ,CJ) is a CJ−metric space. A sequence {αn} ⊂ δ is convergent to an element
α ∈ δ if limn→∞ αn = α ,for {αn} ∈ S (CJ, δ, α).

(2) Let (δ,CJ) is a CJ−metric space.A sequence {αn} ⊂ δ is called Cauchy iff

lim
n,m→∞

CJ(αn, αn, αm) = 0.

(3) A CJ−metric space is called complete if each Cauchy sequence in δ is convergent.
(4) In a CJ−metric space (α,CJ), if ψ is a continuous map at a0 ∈ δ then for each αn ∈ S (CJ, α, a0)

gives {ψαn} ∈ S (CJ, α, ψa0).

Proposition 3.5. In a CJ−metric space (δ,CJ), if {αn} converges, then it is convergent to one exact
element in δ.

Proof. Let us start with {αn} converges to α1 and α2. so by using the triangle inequality condition that
is mentioned in the definition of the CJ metric space,

CJ(α1, α1, α2) ≤ θ(α1, α1, α2) lim sup
n→∞

(
CJ(α1, α1, αn) + CJ(α1, α1, αn) + CJ(α2, α2, αn)

)
= θ(α1, α,α2) lim sup

n→∞
(2CJ(α1, α1, αn) + CJ(α2, α2, αn)) = 0.

Thus,
CJ(α1, α1, α2) = 0⇒ α1 = α2.

�

Definition 3.6. Let (δ,CJ1) and (Γ,CJ1) are two CJ−metric spaces and ψ : δ → Γ is a map . Then
ψ is said to be a continuous at a0 ∈ δ if, for each ε > 0, there is ξ > 0 where, for each α ∈ δ,
CJ2(ψa0, ψa0, ψα) < ε whenever CJ1(a0, a0, α) < ξ.

Example 3.7. Let δ = R and, CJ : δ3 → [0,∞) defined by

CJ(α, β, γ) = |α − β| + |β − γ|,

for all α, β, γ ∈ R.

Let α ∈ R, and the sequence αn such that, αn = α +
1
n

. It is not hard to observe that lim
n→∞

CJ(α, α +

1
n
, α+

1
n

) = 0. For that reason and for each α ∈ R there is a sequence αn = α+
1
n

where S (CJ, δ, α) , ∅.
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Now, we present an example of CJ−metric space.

Example 3.8. Let δ = R, and CJ(α, β, γ) = |α| + |β| + 2|γ|, for all α, β, γ ∈ δ. And let θ : δ3 → [0,∞),
where θ(α, β, γ) = max(2, |α|, |β|, |γ|). We have CJ(α, β, γ) = 0 ⇒ |α| + |β| + 2|γ| = 0, which gives
|α| = |β| = |γ| = 0.

Then, the hypotheses (2.2) are fulfilled, and the symmetry of CJ is satisfied too.

CJ(α, α, γ) = 2|α| + 2|γ| = CJ(γ, γ, α).

In the end, let’s check the triangle inequality.
Let α, β, γ ∈ δ and φn a convergent sequence in δ such that, limn→∞CJ(φ, φ, φn) = 0, we have

CJ(α, β, γ) = |α| + |β| + 2|γ|
≤ 4|α| + 4|β| + 4|γ| + 12|φn|

= 2(2|α| + 2|φn| + 2|β| + 2|φn| + 2|γ| + 2|φn|)
= 2(CJ(α, β, φn) + CJ(β, β, φn) + J(γ, γ, φn))
≤ max(2, |α|, |β|, |γ) lim sup

n→∞

(
CJ(α, β, φn) + CJ(α, β, φn) + CJ(γ, γ, φn)

)
= θ(α, β, γ) lim sup

n→∞

(
CJ(α, β, φn) + CJ(α, β, φn) + CJ(γ, γ, φn)

)
.

So, this is an example of CJ metric space.

Next, we present an example of CJ−metric space that is not a J−metric spaces.

Example 3.9. Choose δ = {1, 2, · · · }. Take CJ : δ3 → [0,∞) such that

CJ(α, β, γ) =


0, ⇐⇒ α = β = γ

1
α+β

, if α, β are even and γ = 2n + 1
1
γ
, if α, β are odd and γ = 2n

1, otherwise.

Consider θ : δ3 → (0,∞) as

θ(α, β, γ) =


α + β, if α, β are even and γ = 2n + 1
γ, if α, β are odd and γ = 2n

1, otherwise.

Note that, it is not difficult to see that (δ,CJ) is a CJ−metric space.
However, (δ,CJ) is not a J−metric space.

Theorem 3.10. Let (δ,CJ) is a CJ−complete symmetric metric space, and g : δ → δ is a continuous
map satisfies

CJ(gα, gβ, gγ) ≤ P(CJ(α, β, γ)) for all α, β, γ ∈ δ. (3.1)

Where, P : [0,+∞)→ [0,+∞) is a function and for all t ∈ [0,+∞),

t � x, P(t) � P(x).
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And,
lim
n→∞

Pn(t) = 0 for each fixed t > 0. (3.2)

Then, g has a unique fixed point in δ.

Proof. Let’s start with α0 is an element in δ,and {αn}n≥0 ⊂ δ where,

α1 = gα0, α2 = gα1...αn = gnα0, n = 1, 2, · · · . (3.3)

First, we have to start proving {αn} is a Cauchy in δ. Let n,m ∈ N.

CJ(αn, αn, αm) = CJ(gαn−1, gαn−1, gαm−1
)
≤ P

(
CJ(αn−1, αn−1, αm−1)

)
= P

(
CJ(gαn−2, gαn−2, gαm−2)

)
≤

...

≤ Pn(CJ(α0, α0, αm−n)
)
.

After applying (3.1) n times and with assuming that m = n + q for some constant q ∈ N to get

CJ(αn, αn, αm) ≤ Pn(CJ(α0, α0, αq)
)
. (3.4)

By applying the limit in (3.4) as n −→ ∞ we get

lim
n→∞

CJ(αn, αn, αm) = 0. (3.5)

Accordingly, {αn} is a Cauchy sequence in δ and because of the completeness, there is α ∈ δ such that
αk → α as k → ∞.

Moreover, α = lim
k→∞

αk = lim
k→∞

αk+1 = lim
k→∞

gαk = gα. Thus, g has α as a fixed point.
Assume that α1 and α2 are two fixed points of g.

CJ(α1, α1, α2) = CJ(gα1, gα1, gα2) ≤ P
(
CJ(α1, α1, α2)

)
≤ P2(CJ(α1, α1, α2)

)
...

≤ Pn(CJ(α1, α1, α2)
)
.

By taking the limit for the above inequalities as n −→ ∞ we get CJ(α1, α1, α2) = 0 and α1 = α2.

Thus, g has a unique fixed point in δ as desired. �

Theorem 3.11. Let (δ,CJ) is a CJ−complete symmetric metric space and g : δ→ δ be a mapping that
satisfies,

CJ(gα, gβ, gγ) ≤ φ(α, β, γ)CJ(α, β, γ), ∀α, β, γ ∈ δ, (3.6)

where φ ∈ A, and φ : δ3 → (0, 1), such that

φ(g(α, β, γ)) ≤ φ(α, β, γ) and {g : δ→ δ}

g is a given mapping. Then g has a unique fixed point in δ.

AIMS Mathematics Volume 8, Issue 2, 4753–4763.



4758

Proof. Let α0 be an arbitrary element in δ. We establish the sequence {αn}as follows {αn = gnα0}.
Let’s start by proving that {αn} is a Cauchy sequence. For all natural numbers n,m, we assume that

that n < m and assume that there is q ∈ N where m = n + q. By applying (3.6) we get :

CJ(αn, αn, αm) =CJ(gαn−1, gαn−1, gαm−1)
≤φ(αn−1, αn−1, αm−1)CJ(αn−1, αn−1, αm−1)
...

≤φn(α0, α0, αq)CJ(α0, α0, αq).

By applying the limit as n → ∞ , and taking φ into consideration, we get lim
n,m→∞

CJ(αn, αn, αm) = 0,

so{αn} is a Cauchy sequence.
Then, by the completeness definition of δ, there is a α ∈ δ such that

α = lim
n→∞

αn = lim
n→∞

αn−1. (3.7)

We will show that α is a fixed point of g. From (3.7), we conclude that αn ∈ S (CJ, δ, α) and

lim
n→∞

CJ(α, α, αn) = 0 (3.8)

and
lim
n→∞

CJ(α, α, αn−1) = 0. (3.9)

By using the triangle inequality we get

CJ(gα, gα, α) ≤θ(gα, gα, α) lim
n→∞

sup
[
2CJ(gα, gα, αn) + CJ(α, α, αn)

]
=2θ(gα, gα, α) lim

n→∞
CJ(gα, gα, gαn−1)

≤2θ(gα, gα, α) lim
n→∞

φ(α, α, αn − 1)CJ(α, α, αn−1). (3.10)

By applying (3.9) in (3.10) we obtain that CJ(gα, gα, α) = 0, that is gα = α. Therefore α is a fixed
point of g.

To prove the uniqueness let, β1, β2 ∈ δ are two fixed points of g such that β1 , β2, gβ1 = β1 and
gβ2 = β2.

CJ(β1, β1, β2) =CJ(Gβ1, gβ1, gβ2)
≤φ(β1, β1, β2)CJ(β1, β1, β2)
<CJ(β1, β1, β2).

Where φ(β1, β1, β2) < 1, then CJ(β1, β1, β2) = 0 which implies that β1 = β2. �

Theorem 3.12. Let (δ,CJ) is a complete symmetric CJ−metric spaces, g : δ → δ is a continuous map
where

CJ(gα, gβ, gγ) ≤ aCJ(α, β, γ) + bCJ(α, gα, gα) + cCJ(β, gβ, gβ) + dCJ(γ, gγ, gγ) (3.11)

AIMS Mathematics Volume 8, Issue 2, 4753–4763.



4759

for each α, β, γ ∈ δ where

0 < a + b < 1 − c − d, (3.12)
0 < a < 1. (3.13)

Then, there is a unique fixed point of g.

Proof. Let α0 ∈ δ be an arbitrary point of δ and {αn = gnα0} be a sequence in δ to get.

CJ(αn, αn+1, αn+1) = CJ(gαn−1, gαn, gαn)
≤aCJ(αn−1, αn, αn) + bCJ(αn−1, αn, αn)

+ cCJ(αn, αn+1, αn+1) + dCJ(αn, αn+1, αn+1)
≤(a + b)CJ(αn−1, αn, αn) + (c + d)CJ(αn, αn+1, αn+1).

Then
CJ(αn, αn+1, αn+1) ≤

a + b
1 − c − d

CJ(αn−1, αn, αn).

By taking k =
a + b

1 − c − d
, then by using (3.12) we will have 0 < k < 1.

CJ(αn, αn+1, αn+1) ≤ knCJ(α0, α1, α1).

Which gives
lim
n→∞

CJ(αn, αn+1, αn+1) = 0. (3.14)

We denote CJn = CJ(αn, αn+1, αn+1). For each n,m ∈ N, n < m ,and suppose that there is a fixed q ∈ N
such that m = n + q. we have

CJ(αn, αn, αm) = CJ(αn, αn, αn+q) = CJ(gαn−1, gαn−1, gαn+q−1)
≤ aCJ(αn−1, αn−1, αn+p−1) + bCJ(αn−1, αn, αn) + cCJ(αn−1, αn, αn)
+ dCJ(αn+q−1, αn+q, αn+q)
= aCJ(αn−1, αn−1, αn+q−1) + (b + c)CJn−1 + dCJn+q−1

≤ a[aCJ(αn−2, αn−2, αn+p−2) + (c + d)CJn−2 + αJn+q−2] + (b + c)CJn−1

+ dCJn+q−1

= a2CJ(αn−2, αn−2, αn+q−2) + a(c + d)CJn−2 + aαCJn+q−2 + (b + c)CJn−1

+ dCJn+q−1

...

≤ anCJ(α0, α0, αq) + (b + c)
n∑

k=1

ak−1CJ(n−k) + d
n∑

k=1

ak−1CJ(n+q−k) . (3.15)

By applying the limit in (3.15) as n→ ∞ and using (3.13) and (3.14), we get

lim
n,m→∞

CJ(αn, αn, αm) = 0.
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Then, {αn} is a Cauchy sequence in δ. By the completeness definition, there is α ∈ δ where αn → α as
n→ ∞ and

lim
n→∞

CJ(αn, αn, α) = lim
n,m→∞

CJ(αn, αm, α) = 0. (3.16)

In addition, u = lim
k→∞

αk = lim
k→∞

αk+1 = lim
k→∞

gαk = gα. Therefore, g has u as a fixed point.
Let γ1, γ2 ∈ δ are two fixed point of g, γ1 , γ2 ,where, gγ1 = γ1, gγ2 = γ2.

CJ(γ1, γ1, γ2) =CJ(gγ1, gγ1, gγ2)
≤aCJ(γ1, γ1, γ2) + (b + c)CJ(γ1, gγ1, gγ1) + dCJ(γ2, gγ2, gγ2)
=aCJ(γ1, γ1, γ2) + (b + c)CJ(γ1, γ1, γ1) + dCJ(γ2, γ2, γ2).

Then, (1 − a)CJ(γ1, γ1, γ2) ≤ 0. Using (3.13) so this gives CJ(γ1, γ1, γ2) = 0 that is γ1 = γ2, which
means that g has a unique a fixed point. �

4. Applications

Throughout this section, we represent an example of (3.10), where we have a linear system of
equations in R, θ is a continuous function, and we prove that this system has a unique solution by
applying the fixed point theory.

Let δ = Rn, and let the symmetric CJ−metric space (δ,CJ) introduced by

CJ(d, ξ, ν) = max
1≤i≤n
|di − ξi| + |di − νi|,

for all d = (d1, ..., dn), ξ = (ξ1, ..., ξn), ν = (ν1, ..., νn) ∈ δ. such that

θ(d, ξ, ν) = max
1≤i≤n

(2, |di|, |ξi|, |νi|).

Theorem 4.1. Consider the following system
$11d1 +$12d2 +$13d3 +$1ndn = r1

$21d1 +$22d2 +$23d3 +$2ndn = r2
...

$n1d1 +$n2d2 +$n3d3 +$nndn = rn

,

if

Υ = max
1≤i≤n

( n∑
j=1, j,i

|$i j| + |1 +$ii|
)
< 1,

then the raised system of linear equations has a solution that is unique.

Proof. Let the map σ : δ→ δ introduced as σd = (B + In)d − r where

B =


$11 $12 · · · $1n

$21 $22 · · · $2n
...

...
. . .

...

$n1 $n2 · · · $nn

 ,
AIMS Mathematics Volume 8, Issue 2, 4753–4763.
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d = (d1, d2, · · · , dn); ξ = (ξ1, ξ2, · · · , ξn) and ν = (ν1, ν2, · · · , νn) ∈ Rn, In is the identity matrix for n × n
matrices and r = (r1, r2, · · · , rn) ∈ Cn. Let us show that CJ(σd, σξ, σν) ≤ ΥCJ(d, ξ, ν), ∀d, ξ, ν ∈ Rn.

We define
B̃ = B + In = (b̃i j), i, j = 1, ..., n,

with b̃i j =

{
$i j, j , i
1 +$ii, j = i

. Hence,

max
1≤i≤n

n∑
j=1

|b̃i j| = max
1≤i≤n

( n∑
j=1, j,i

|$i j| + |1 +$ii|
)

= Υ < 1.

For all i = 1, . . . , n, we have

(σd)i − (σξ)i =

n∑
j=1

b̃i j(d j − ξ j), (4.1)

(σd)i − (σν)i =

n∑
j=1

b̃i j(d j − ν j). (4.2)

Accordingly, using (4.1) and (4.2) we get

CJ(σd, σξ, σν) = max
1≤i≤n

(
|(σd)i − (σξ)i| + |(σd)i − (σν)i|

)
≤ max

1≤i≤n

( n∑
j=1

|b̃i j||d j − ξ j| +

n∑
j=1

|b̃i j||d j − ν j|
)

≤ max
1≤i≤n

n∑
j=1

|b̃i j|max
1≤k≤n

(
|dk − ξk| + |dk − νk|

)
= ΥCJ(d, ξ, ν) = Φ(CJ(d, ξ, ν)),

where, Φ(t) = Υt, ∀t ≥ 0. Notice that, all the conditions of Theorem 3.10 are fulfilled. Consequently,
σ has a unique fixed point. Accordingly, the raised linear system has a unique solution.

�

5. Conclusions

We have introduced a new metric-type spaces, where we have proved fixed point theorems for self-
mapping on such spaces. Our results generalize many well-known theorems in the field of fixed point
theory. Also, we presented an application of our results to systems of linear equations. As a future
work, our results can be used in fractional differential equations see [19–21], which include the most
recent fractional definitions “Abu-Shady-Kaabar” fractional derivative. In closing, we would like to
bring to the reader’s attention the following open questions. Note that in Theorems 3.10 and 3.11,
we assumed that the map is continuous. Can we replace the hypothesis of continuity with a weaker
condition? How could CJ−metric space help in the “Abu-Shady-Kaabar” operators?

AIMS Mathematics Volume 8, Issue 2, 4753–4763.



4762

Acknowledgments

The authors S. Subhi and N. Mlaiki would like to thank Prince Sultan University for paying the
publication fees for this work through TAS LAB.

Conflict of interest

The authors declare that they have no competing interests.

References

1. N. Souayah, N. Mlaiki, A new type of three-dimensional metric spaces with
applications to fractional differential equations, AIMS Math., 7 (2022), 17802–17814.
https://doi.org/10.3934/math.2022980

2. S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations
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3. P. Debnath, N. Konwar, S. Radenović, Metric fixed point theory, Applications in Science,
Engineering and Behavioural Sciences, Springer, Singapore, 2021. https://doi.org/10.1007/978-
981-16-4896-0

4. P. Debnath, H. M. Srivastava, P. Kumam, B. Hazarika, Fixed point theory and fractional calculus,
Recent Advances and Applications, Springer Singapore, 2022. https://doi.org/10.1007/978-981-
19-0668-8

5. T. Kamran, M. Samreen, Q. UL Ain, A generalization of b−metric space and some fixed point
theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019

6. S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S−metric spaces,
Mat. Vesnik, 64 (2012), 258–266.

7. N. Mlaiki, α − ψ−contractive mapping on S−metric space, Math. Sc. Lett., 4 (2015), 9–12.

8. N. Mlaiki, Common fixed points in complex S−metric space, Adv. Fixed Point Theory, 4 (2014),
509–524.

9. N. Souayah, N. Mlaiki, A fixed point in S b−metric spaces, J. Math. Comput. Sci., 16 (2016), 131–
139. http://dx.doi.org/10.22436/jmcs.016.02.01

10. N. Souayah, A fixed point in partial S b−metric spaces, An. Şt. Univ. Ovidius Constanţa, 24 (2016),
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