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1. Introduction 

We focus on the following generalized absolute value equations (GAVE): 

𝐴𝑥 − 𝐵|𝑥| = 𝑏,          (1.1) 

where 𝐴, 𝐵 ∈ ℝ𝑛×𝑛 and 𝑏 ∈ ℝ𝑛. Here, ‘|𝑥|’ denotes the vector in ℝ𝑛 with absolute values of 

components of 𝑥. Particularly, if 𝐵 = 𝐼 or 𝐵 is invertible, the GAVE (1.1) is simplified to the 

following absolute value equations (AVE): 

𝐴𝑥 − |𝑥| = 𝑏.          (1.2) 
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Especially, when 𝐵 is a zero matrix, the GAVE (1.1) is simplified to the linear system 𝐴𝑥 =

𝑏, which plays a significant role in scientific computing problems. The main significance of the 

GAVE (1.1) and the AVE (1.2) is that many problems in different fields may be transformed into 

the form of an AVE. These include linear programming problems, linear complementarity problems 

(LCP), quadratic programming, mixed integer programming, the bimatrix game, and so on; [1–7] for 

more details. For example, given a matrix 𝑀 ∈ ℝ𝑛×𝑛 and a vector 𝑞 ∈ ℝ𝑛 , the linear 

complementarity problems (LCP) is to find 𝑧 ∈ ℝ𝑛 so that 

𝑧 ≥ 0, 𝑤 ≔ 𝑀𝑧 + 𝑞 ≥ 0, 𝑎𝑛𝑑 𝑧𝑇(𝑀𝑧 + 𝑞) = 0.    (1.3) 

Over the last 20 years, to obtain the numerical solutions of the GAVE (1.1) and the AVE (1.2), 

people have done a lot of research and established many effective numerical methods to solve the 

GAVE (1.1) and the AVE (1.2), such as the Newton-based methods [8–18], the SOR-like iteration 

methods [19–21], the neural network methods [22–24], the matrix multisplitting Picard-iterative 

method [25] and so on. 

Some ideas of our new work were inspired by the research on the GAVE (1.1) [10,13]. By 

separating the GAVE (1.1) from the sum of the differentiable function and Lipschitz continuous 

function, a common framework of the modified Newton-based (MN) iterative method [10] to solve 

the GAVE (1.1) has been established. The convergence conditions are given, and numerical 

experiments are used to show the availability of the MN method. At every iteration, we need to 

calculate the linear system with the coefficient matrix Ω + 𝐴 , where Ω  is a given positive 

semi-definite matrix. However, if Ω + 𝐴 is ill-conditioned, solving this linear system may be costly 

or impossible in practice. To solve this problem, we introduce a nonnegative real parameter 𝜃 ≥ 0 

in the MN iteration frame and propose a new relaxed iterative method to solve the GAVE (1.1). The 

new plan includes the famous Picard iteration method [26,27] and the MN iteration method [10]. 

Two general sufficient conditions to ensure the convergence of the relaxed modified Newton-based 

(RMN) method are given. Further, there are some specific conditions, that is, the coefficient matrix 

𝐴 is symmetric positive definite or an 𝐻+-matrix. Moreover, the experimental results verify the 

effectiveness of the RMN method. 

The layout of the rest of this work is as follows. In Section 2, we establish a new relaxed 

iterative method to solve the GAVE (1.1). The associated convergence analysis is given in Section 3. 

The numerical results are provided in Section 4, and some remarks are given in Section 5. 

2. Relaxed modified Newton-based iteration method 

We will introduce a new MN iterative approach to acquire the numerical solutions of the GAVE 

(1.1) in this section. 

For this reason, the following symbols and definitions are introduced. Let 𝐴 = (𝑎𝑖𝑗) ∈ ℝ𝑛×𝑛. If 

𝑎𝑖𝑗 ≤ 0 for any 𝑖 ≠ 𝑗 , then 𝐴 is a 𝑍-matrix. If 𝐴−1 ≥ 0 and 𝐴 is a 𝑍-matrix, then 𝐴 is a 

nonsingular 𝑀-matrix. If the comparison matrix 〈𝐴〉 of 𝐴 is an 𝑀-matrix, then 𝐴 is an 𝐻-matrix, 

where the form of 〈𝐴〉 = (〈𝑎〉𝑖𝑗) is as follows: 

〈𝑎〉𝑖𝑗 = {
|𝑎𝑖𝑖|, 𝑖𝑓 𝑖 = 𝑗,

−|𝑎𝑖𝑗|, 𝑖𝑓 𝑖 ≠ 𝑗.
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If 𝐴 is an 𝐻-matrix with positive diagonal terms, then 𝐴 is an 𝐻+-matrix. If 𝐴 is symmetric 

and satisfies 𝑥𝑇𝐴𝑥 > 0 for all nonzero vectors 𝑥, then 𝐴 is symmetric positive definite. Note that 

|𝐴| = (|𝑎𝑖𝑗|) and 𝜌(𝐴) represent the absolute value matrix and the spectral radius, respectively. 

∥𝐴∥2 denotes the Euclidean norm. 

To begin, we start with a brief review of the MN iteration method proposed in [10]. Because the 

nonlinear term B|x| exists, solving the GAVE (1.1) can be transformed into finding the solution of 

the nonlinear function 𝐹(𝑥): 

𝐹(𝑥) ≔ 𝐴𝑥 − 𝐵|𝑥| − 𝑏 = 0.        (2.1) 

The MN method in [10] regards the nonlinear function 𝐹(𝑥) as the sum of the differentiable 

function 𝐻(𝑥) and Lipschitz continuous function 𝐺(𝑥). A positive semi-definite matrix Ω ∈ 𝑅𝑛×𝑛 

is introduced and 𝐻(𝑥) = Ω𝑥 + 𝐴𝑥  and 𝐺(𝑥) = −Ω𝑥 − 𝐵|𝑥| − 𝑏  are substituted into the MN 

iteration scheme proposed in [28]. If the Jacobian matrix 𝐻′(𝑥) = Ω + 𝐴 is invertible, the MN 

iteration method to solve the GAVE (1.1) is established with more detail as follows: 

Algorithm 2.1. [10] (MN iteration method) 

Step 1. Choose an arbitrary initial guess 𝑥(0) ∈ ℝ𝑛, and let 𝑘 ≔ 0; 

Step 2. For 𝑘 = 0,1,2, ⋯, compute 𝑥(𝑘+1) ∈ ℝ𝑛 by using 

𝑥(𝑘+1) = 𝑥(𝑘)−(Ω + 𝐴)−1(𝐴𝑥(𝑘) − 𝐵|𝑥(𝑘)| − 𝑏) 

= (Ω + 𝐴)−1(Ω𝑥(𝑘) + 𝐵|𝑥(𝑘)| + 𝑏),       (2.2) 

where Ω + 𝐴 is nonsingular and Ω is a known positive semi-definite matrix; 

Step 3. If the iteration sequence {𝑥(𝑘)}
𝑘=0

∞
 is convergent, then the iteration stops. Otherwise, let 

𝑘 + 1 replace 𝑘 and go to Step 2. 

According to Algorithm 2.1, the coefficient matrix of the linear system is Ω + 𝐴, which must 

be calculated at every step of the MN iteration method. However, if Ω + 𝐴 is ill-conditioned, 

solving the linear system may be costly or impossible in actual applications. 

In this paper, we give a new method to solve the GAVE (1.1). We introduce a nonnegative real 

parameter 𝜃 ≥ 0 in the MN iteration scheme proposed in [28] and obtain an RMN iteration method 

(the RMN method for short) for solving the GAVE (1.1): 

𝐹(𝑥(𝑘)) + (𝐻′(𝑥(𝑘)) + (𝜃 − 1)𝐴)(𝑥(𝑘+1) − 𝑥(𝑘)) = 0.    (2.3) 

By substituting (2.1) and the Jacobian matrix 𝐻′(𝑥(𝑘)) = Ω + 𝐴 into (2.3). It can be understood as 

𝐻̃(𝑥) = Ω𝑥 + 𝜃𝐴𝑥 and 𝐺̃(𝑥) = −Ω𝑥 − (𝜃 − 1)𝐴𝑥 − 𝐵|𝑥| − 𝑏. Therefore, we can obtain the new 

RMN iteration method as described below: 

Algorithm 2.2. (The relaxed modified Newton-based (RMN) iteration method) 

Step 1. Choose an arbitrary initial guess 𝑥(0) ∈ ℝ𝑛, and let 𝑘 ≔ 0; 

Step 2. For 𝑘 = 0,1,2, ⋯, compute 𝑥(𝑘+1) ∈ ℝ𝑛 by using 

𝑥(𝑘+1) = (Ω + 𝜃𝐴)−1(Ω𝑥(𝑘) + (𝜃 − 1)𝐴𝑥(𝑘) + 𝐵|𝑥(𝑘)| + 𝑏),   (2.4) 
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where Ω + 𝜃𝐴  is nonsingular, Ω  is a known positive semi-definite matrix and 𝜃 ≥ 0  is a 

nonnegative relaxation parameter; 

Step 3. If the iteration sequence {𝑥(𝑘)}
𝑘=0

∞
 is convergent, then the iteration stops. Otherwise, let 

𝑘 + 1 replace 𝑘 and go to Step 2. 

Comparing Algorithms 2.1 and 2.2, the coefficient matrix of the former is Ω + 𝐴, and that of 

the latter is Ω + 𝜃𝐴. We can change the relaxation parameter 𝜃  to avoid the ill-conditioned 

coefficient matrix. 

Remark 2.1. Obviously, if we put 𝜃 = 1, then the RMN method (2.4) is simplified to the famous 

MN method [10]. If we set 𝜃 = 1 and Ω as a zero matrix, then the RMN method (2.4) is simplified 

to the Picard method [26,27]. 

3. Convergence property 

We will discuss the convergence analysis of the RMN method to solve the GAVE (1.1) in this 

section. First, we give the general conditions of convergence. Second, for the case that the coefficient 

matrix A is symmetric positive definite or an 𝐻+-matrix, then some sufficient convergence theorems 

of the RMN method are provided. The RMN method can be simplified to the MN method [10] and 

the Picard method [26,27], so their convergence conditions can be obtained immediately. 

3.1. General sufficient convergence property 

Theorem 3.1 and Theorem 3.2 present the general sufficient convergence of Algorithm 2.2 

when the related matrix is invertible. 

Theorem 3.1. Let 𝐴, 𝐵 ∈ ℝ𝑛×𝑛, 𝜃 ≥ 0 be a nonnegative relaxation parameter and Ω be a positive 

semi-definite matrix which makes Ω + 𝜃𝐴 is invertible. If 

∥∥(Ω + 𝜃𝐴)−1∥∥2
<

1

‖Ω+(𝜃−1)𝐴‖2+‖𝐵‖2
,       (3.1) 

then the iterative sequence {𝑥(𝑘)}
𝑘=1

+∞
 created by Algorithm 2.2 is convergent. 

Proof. Suppose that the GAVE (1.1) has a solution 𝑥∗; then, 𝑥∗ satisfies the following equation: 

𝐴𝑥∗ − 𝐵|𝑥∗| = 𝑏,        (3.2) 

which is equal to 

(Ω + 𝜃𝐴)𝑥∗ = Ω𝑥∗ + (𝜃 − 1)𝐴𝑥∗ + 𝐵|𝑥∗| + 𝑏.     (3.3) 

Subtracting (3.3) from (2.4) gives the error expression as follows: 

(Ω + 𝜃𝐴)(𝑥(𝑘+1) − 𝑥∗) = Ω(𝑥(𝑘) − 𝑥∗) + (𝜃 − 1)𝐴(𝑥(𝑘) − 𝑥∗) + 𝐵(|𝑥(𝑘)| − |𝑥∗|). (3.4) 

Noticing that Ω + 𝜃𝐴 is nonsingular, we have 

𝑥(𝑘+1) − 𝑥∗ = (Ω + 𝜃𝐴)−1((Ω + (𝜃 − 1)𝐴)(𝑥(𝑘) − 𝑥∗) + 𝐵(|𝑥(𝑘)| − |𝑥∗|)).  (3.5) 
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Using the 2-norm for (3.5), we get 

∥∥𝑥(𝑘+1) − 𝑥∗∥∥2 = ∥
∥(Ω + 𝜃𝐴)−1 ((Ω + (𝜃 − 1)𝐴)(𝑥(𝑘) − 𝑥∗) + 𝐵(|𝑥(𝑘)| − |𝑥∗|))∥

∥
2

≤ ∥∥(Ω + 𝜃𝐴)−1∥∥2
⋅ ∥∥(Ω + (𝜃 − 1)𝐴)(𝑥(𝑘) − 𝑥∗) + 𝐵(|𝑥(𝑘)| − |𝑥∗|)∥∥

2

≤ ∥∥(Ω + 𝜃𝐴)−1∥∥2
⋅ (∥ Ω + (𝜃 − 1)𝐴 ∥2+ ‖𝐵‖2)∥∥𝑥(𝑘) − 𝑥∗∥∥2

.

  (3.6) 

According to the condition (3.1), {𝑥(𝑘)}
𝑘=1

+∞
, as created by Algorithm 2.2, is convergent. 

Theorem 3.2. Let 𝐴 ∈ ℝ𝑛×𝑛 be nonsingular, 𝐵 ∈ ℝ𝑛×𝑛, 𝜃 > 0 be a positive relaxation parameter 

and Ω be a positive semi-definite matrix which makes Ω + 𝜃𝐴 is nonsingular. If 

∥∥(𝜃𝐴)−1∥∥2
<

1

‖Ω‖2+‖Ω+(𝜃−1)𝐴‖2+‖𝐵‖2
,      (3.7) 

then the iterative sequence {𝑥(𝑘)}
𝑘=1

+∞
 created by Algorithm 2.2 is convergent. 

Proof. From the Banach lemma [29], we can get 

∥∥(Ω + 𝜃𝐴)−1∥∥2
≤

∥∥(𝜃𝐴)−1∥∥2

1−∥∥(𝜃𝐴)−1∥∥2
‖Ω‖2

<

1

‖Ω‖2+‖Ω+(𝜃−1)𝐴‖2+‖𝐵‖2

1−
‖Ω‖2

‖Ω‖2+‖Ω+(𝜃−1)𝐴‖2+‖𝐵‖2

=
1

‖Ω+(𝜃−1)𝐴‖2+‖𝐵‖2
.

      (3.8) 

Then the conclusion is drawn from Theorem 3.1. 

As we all know, the GAVE (1.1) can be simplified to the AVE (1.2). Therefore, let 𝐵 = 𝐼, 

the RMN method is also suitable for solving the AVE (1.2). 

Corollary 3.1. Let 𝐴 ∈ ℝ𝑛×𝑛, 𝜃 ≥ 0 be a nonnegative relaxation parameter and Ω be a positive 

semi-definite matrix which makes Ω + 𝜃𝐴 is nonsingular. If 

∥∥(Ω + 𝜃𝐴)−1∥∥2
<

1

‖Ω+(𝜃−1)𝐴‖2+1
,        (3.9) 

then the iterative sequence {𝑥(𝑘)}
𝑘=1

+∞
 created by Algorithm 2.2 to solve the AVE (1.2)  is 

convergent. 

Corollary 3.2. Let 𝐴 ∈ ℝ𝑛×𝑛 be nonsingular, 𝜃 > 0 be a positive relaxation parameter and Ω be 

a positive semi-definite matrix which makes Ω + 𝜃𝐴 is nonsingular. If 

∥∥(𝜃𝐴)−1∥∥2
<

1

‖Ω‖2+‖Ω+(𝜃−1)𝐴‖2+1
,       (3.10) 

then the iterative sequence {𝑥(𝑘)}
𝑘=1

+∞
 created by Algorithm 2.2 to solve the AVE (1.2)  is 

convergent. 
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3.2. Special sufficient convergence property 

If 𝐴 is symmetric positive definite or an 𝐻+-matrix, we can respectively obtain Theorem 3.3 

and Theorem 3.4, for Ω = 𝜔𝐼 with 𝜔 > 0. 

Theorem 3.3. Let 𝐴 ∈ ℝ𝑛×𝑛  be a symmetric positive definite matrix, 𝜃 > 0  be a positive 

relaxation parameter and Ω = 𝜔𝐼  with 𝜔 > 0 . Further denote that 𝜆𝑚𝑖𝑛  and 𝜆𝑚𝑎𝑥  are the 

minimum and the maximum eigenvalues of the matrix 𝐴, respectively, and assume ‖𝐵‖2 = 𝜏. If 

𝜏 > 𝜆𝑚𝑎𝑥  or 𝜏 <  𝜆𝑚𝑖𝑛 , then the iterative sequence {𝑥(𝑘)}
𝑘=1

+∞
 created by Algorithm 2.2 is 

convergent. 

Proof. In fact, according to Theorem 3.1, we only need to get 

∥∥(Ω + 𝜃𝐴)−1∥∥2
‖Ω + (𝜃 − 1)𝐴 + 𝐵‖2 < 1.      (3.11) 

By the assumptions, we have 

∥∥(Ω + 𝜃𝐴)−1∥∥2
‖Ω + (𝜃 − 1)𝐴 + 𝐵‖2 = 𝑚𝑎𝑥

𝜆∈sp (𝐴)
 
|𝜔+(𝜃−1)𝜆+𝜏|

𝜔+𝜃𝜆

= 𝑚𝑎𝑥
𝜆∈sp(𝐴)

 
|𝜔+𝜃𝜆−𝜆+𝜏|

𝜔+𝜃𝜆
= 1 + 𝑚𝑎𝑥

𝜆∈sp (𝐴)
 
|𝜏−𝜆|

𝜔+𝜃𝜆

= 𝑚𝑎𝑥 {1 +
|𝜏−𝜆𝑚𝑖𝑛|

𝜔+𝜃𝜆𝑚𝑖𝑛
, 1 +

|𝜏−𝜆𝑚𝑎𝑥|

𝜔+𝜃𝜆𝑚𝑎𝑥
}

= {
1 +

𝜏−𝜆𝑚𝑖𝑛

𝜔+𝜆𝑚𝑖𝑛
 for 𝜏 ⩽ √𝜆𝑚𝑖𝑛𝜆𝑚𝑎𝑥

1 +
𝜆𝑚𝑎𝑥−𝜏

𝜔+𝜃𝜆𝑚𝑎𝑥
 for 𝜏 ⩾ √𝜆𝑚𝑖𝑛𝜆𝑚𝑎𝑥

.

  (3.12) 

It follows that, if 𝜏 > 𝜆𝑚𝑎𝑥  or 𝜏 <  𝜆𝑚𝑖𝑛 , then {𝑥(𝑘)}
𝑘=1

+∞
, as created by Algorithm 2.2, is 

convergent. 

Similarly, let 𝐵 = 𝐼, and the following is the corresponding inference. 

Corollary 3.3. Let 𝐴 ∈ ℝ𝑛×𝑛  be a symmetric positive definite matrix, 𝜃 > 0  be a positive 

relaxation parameter and Ω = 𝜔𝐼  with 𝜔 > 0 . Further denote that 𝜆𝑚𝑖𝑛  and 𝜆𝑚𝑎𝑥  are the 

minimum and the maximum eigenvalues of the matrix 𝐴, respectively. If 𝜆𝑚𝑎𝑥 < 1 or 𝜆𝑚𝑖𝑛 > 1, 

then {𝑥(𝑘)}
𝑘=1

+∞
, as created by Algorithm 2.2 to solve the AVE (1.2), is convergent. 

Theorem 3.4. Let 𝐴 ∈ ℝ𝑛×𝑛 be an 𝐻+-matrix, 𝜃 > 0 be a positive relaxation parameter and Ω =

𝜔𝐼 with 𝜔 > 0. If 

∥∥(Ω + ⟨𝜃𝐴⟩)−1∥∥2
<

1

‖Ω+|𝜃−1||𝐴|+|𝐵|‖2
,      (3.13) 

then the iterative sequence {𝑥(𝑘)}
𝑘=1

+∞
 created by Algorithm 2.2 converges. 

Proof. According to the assumptions and [30], we have 

|(Ω + 𝜃𝐴)−1| ≤ (Ω + 〈𝜃𝐴〉)−1.       (3.14) 
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Using the absolute value of (3.5), we get 

|𝑥(𝑘+1) − 𝑥∗| = |(Ω + 𝜃𝐴)−1 (Ω(𝑥(𝑘) − 𝑥∗) + (𝜃 − 1)𝐴(𝑥(𝑘) − 𝑥∗) + 𝐵(|𝑥(𝑘)| − |𝑥∗|))|

≤ |(Ω + 𝜃𝐴)−1|(|Ω||𝑥(𝑘) − 𝑥∗| + |𝜃 − 1||𝐴||𝑥(𝑘) − 𝑥∗|) + |𝐵|||𝑥(𝑘)| − |𝑥∗||)

≤ (Ω + ⟨𝜃𝐴⟩)−1(Ω + |𝜃 − 1||𝐴| + |𝐵|)|𝑥(𝑘) − 𝑥∗|.

(3.15) 

Since 

𝜌((Ω + ⟨𝜃𝐴⟩)−1(Ω + |𝜃 − 1||𝐴| + |𝐵|)) ≤ ∥∥(Ω + ⟨𝜃𝐴⟩)−1(Ω + |𝜃 − 1||𝐴| + |𝐵|)∥∥2

≤ ∥∥(Ω + ⟨𝜃𝐴⟩)−1∥∥2
‖Ω + |𝜃 − 1||𝐴| + |𝐵|‖2.

(3.16) 

It follows that, if the condition (3.13) is satisfied, then the sequence {𝑥(𝑘)}
𝑘=1

+∞
 created by Algorithm 

2.2 converges. 

Corollary 3.4. Let 𝐴 ∈ ℝ𝑛×𝑛 be an 𝐻+-matrix, 𝜃 > 0 be a positive relaxation parameter and Ω =
𝜔𝐼 with 𝜔 > 0. If 

∥∥(Ω + ⟨𝜃𝐴⟩)−1∥∥2
<

1

‖Ω+|𝜃−1||𝐴|+1‖2
,      (3.17) 

then the sequence {𝑥(𝑘)}
𝑘=1

+∞
 created by Algorithm 2.2 to solve the AVE (1.2) converges. 

4. Numerical experiments 

This section describes the use of two numerical examples to compare the RMN method and the 

MN method [10] in terms of the iteration step number (indicated as ‘IT’), the amount of CPU time 

(indicated as ‘CPU’) and the norm of relative residual vector (indicated as ‘RES’). Here, ‘RES’ was 

set to be 

RES =
∥∥𝐴𝑥(𝑘) − 𝐵|𝑥(𝑘)| − 𝑏∥∥

2

∥ 𝑏 ∥2
. 

Here, we used MATLAB R2020B for all the experiments. All numerical computations were 

started from the initial vector 

𝑥(0) = (1,0,1,0, … ,1,0, … )𝑇 ∈ ℝ𝑛. 

The iteration was terminated once RES< 10−7 or the largest number of iteration step 𝑘𝑚𝑎𝑥 exceeds 

500. As we all know, different values of Ω will affect the performances for the MN method [10], 

while the new RMN method has two influencing factors: Ω and 𝜃 . Therefore, selecting the 

appropriate Ω and 𝜃 is a significant issue that needs further research. As described in [10], let Ω =
𝜔𝐼, and the best experimental parameter is recorded as 𝜔𝑒𝑥𝑝, which minimizes the iteration step 

number of the MN method. When the iteration step numbers are the same, take the minimum value 

of RES. Similarly, the optimal experimental parameters of the new RMN method are recorded as 

𝜔𝑒𝑥𝑝  and 𝜃𝑒𝑥𝑝 . In addition, the Cholesky and LU factorizations are utilized to solve all the 

subsystems when 𝜔𝐼 + 𝜃𝐴 are symmetric positive definite and nonsymmetric, respectively. 
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As pointed out in [4,9], if the eigenvalue of 𝑀 is not 1, the LCP (1.3) can lead to 

(𝑀 + 𝐼)𝑥 − (𝑀 − 𝐼)|𝑥| = 𝑞 𝑤𝑖𝑡ℎ 𝑥 =
1

2
[(𝑀 − 𝐼)𝑧 + 𝑞].    (4.1) 

If we let 𝐴 = 𝑀 + 𝐼, 𝐵 = 𝑀 − 𝐼 and 𝑏 = 𝑞, (4.1) converts to the form of the GAVE (1.1). 

According to this, we give the following examples. 

Example 1. ([6]) Let 𝑛 = 𝑚2. We consider the LCP (1.3), where 𝑀 = 𝑀̂ + 𝜇𝐼 ∈ ℝ𝑛×𝑛 𝑎𝑛𝑑 𝑞 =

−𝑀𝑧∗ ∈ ℝ𝑛 with 

𝑀̂ = 𝑡𝑟𝑖𝑑𝑖𝑎𝑔(−𝐼, 𝑆, −𝐼) ∈ ℝ𝑛×𝑛, 𝑆 = 𝑡𝑟𝑖𝑑𝑖𝑎𝑔(−1,4, −1) ∈ ℝ𝑚×𝑚, 

and 𝑧∗ = (1.2,1.2,1.2, … ,1.2, … )𝑇 ∈ ℝ𝑛 is the unique solution of the LCP. In this situation, the 

unique solution of the GAVE (1.1) is 𝑥∗ = (−0.6, −0.6, −0.6, … , −0.6, … )𝑇 ∈ ℝ𝑛. 

To demonstrate the superiority of the new RMN iteration method, we took 𝜇 = −4, 𝜇 = −1 

and 𝜇 = 4 in our actual experiments. By computation, the matrices 𝑀 and 𝐴 are symmetric 

positive indefinite and symmetric positive definite when 𝜇 = −4 and 𝜇 = 4. When 𝜇 = −1, the 

former is symmetric indefinite, and the latter is symmetric positive definite. 

Table 1. Experimental results for Example 1 with 𝜇 = −4. 

 𝒏 3600 4900 6400 8100 10000 12100 

MN 𝜔𝑒𝑥𝑝 4.21 4.21 4.21 4.21 4.21 4.21 

 IT 42 42 41 41 41 41 

 CPU 0.0257 0.0313  0.0423 0.0632 0.0945 0.1439  

 RES 8.7911e-08  8.1628e-08 9.9938e-08 9.4510e-08 8.9924e-08 8.5983e-08 

RMN 𝜔𝑒𝑥𝑝 2 2 2 2 2 2 

 𝜃𝑒𝑥𝑝 0 0 0 0 0 0 

 IT 1 1 1 1 1 1 

 CPU 0.0011  0.0014 0.0016 0.0016 0.0022 0.0024 

 RES 3.6161e-16  3.6281e-16 3.6372e-16 3.6443e-16 3.6499e-16 3.6545e-16  
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Table 2. Experimental results for Example 1 with 𝜇 = −1. 

 𝒏 3600 4900 6400 8100 10000 12100 

MN 𝜔𝑒𝑥𝑝 1.18 1.18 1.18 1.18 1.18 1.18 

 IT 45 44 44 44 44 44 

 CPU 0.0206  0.0314 0.0499 0.0715 0.1003 0.1548 

 RES 8.1234e-08  9.8868e-08 9.2976e-08 8.8063e-08 8.3888e-08 8.0286e-08 

RMN 𝜔𝑒𝑥𝑝 3.07 3.07 3.06 3.06 3.05 3.05 

 𝜃𝑒𝑥𝑝 0.46 0.46 0.46 0.46 0.46 0.46 

 IT 33 33 33 33 33 32 

 CPU 0.0169  0.0277 0.0389 0.0582 0.0861 0.1282 

 RES 8.5725e-08  7.9222e-08 7.4120e-08 6.9804e-08 6.6263e-08 9.7359e-08 

Table 3. Experimental results for Example 1 with 𝜇 = 4. 

 𝒏 3600 4900 6400 8100 10000 12100 

MN 𝜔𝑒𝑥𝑝 4.96  4.95 4.94 4.93 4.93 4.92 

 IT 12 12 12 12 12 12 

 CPU 0.0093  0.0151 0.0215 0.0370 0.0519 0.0913 

 RES 3.7076e-08  3.6153e-08 3.5311e-08 3.4548e-08 3.3845e-08 3.3194e-08 

RMN 𝜔𝑒𝑥𝑝 0 0 0 0 0 0 

 𝜃𝑒𝑥𝑝 1.72 1.72 1.72 1.72 1.72 1.72 

 IT 8 8 8 8 8 8 

 CPU 0.0073  0.0120 0.0167 0.0259 0.0361 0.0648 

 RES 2.0827e-08  2.1162e-08 2.1414e-08 2.1611e-08 2.1769e-08 2.1898e-08 

In Tables 1–3, we give the experimental results of different values of 𝜇. It is easy to see that 

when the grid size 𝑛 increases, the iteration step number and CPU time of the MN and RMN 

methods also increase. Compared with the former, the latter has less iteration steps and CPU time. 

Therefore, we can conclude that the new RMN iteration method has better computational 

performance. 

Example 2. ([6,31]) Let 𝑛 = 𝑚2 . We consider the LCP (1.3) , where 𝑀 = 𝑀̂ + 4𝐼 ∈ ℝ𝑛×𝑛 

𝑎𝑛𝑑 𝑞 = −𝑀𝑧∗ ∈ ℝ𝑛 with 

𝑀̂ = 𝑡𝑟𝑖𝑑𝑖𝑎𝑔(−1.5𝐼, 𝑆, −0.5𝐼) ∈ ℝ𝑛×𝑛, 𝑆 = 𝑡𝑟𝑖𝑑𝑖𝑎𝑔(−1.5,4, −0.5) ∈ ℝ𝑚×𝑚, 

and 𝑧∗ = (1.2,1.2,1.2, … ,1.2, … )𝑇 ∈ ℝ𝑛 is the unique solution of the LCP. In this situation, the 

unique solution of the GAVE (1.1) is 𝑥∗ = (−0.6, −0.6, −0.6, … , −0.6, … )𝑇 ∈ ℝ𝑛. 



4723 

AIMS Mathematics  Volume 8, Issue 2, 4714–4725. 

In this case, the matrix A is a s.d.d 𝐻+-matrix. The experimental results in Table 4 further 

demonstrate that the results obtained from Table 3, that is, the computational efficiency of the RMN 

method is better than the MN method. 

Table 4. Experimental results for Example 2. 

 𝒏 3600 4900 6400 8100 10000 12100 

MN 𝜔𝑒𝑥𝑝 5.05 5.04 5.03 5.02 5.01 5.01 

 IT 12 12 12 12 12 12 

 CPU 0.0363  0.0455 0.0670 0.1238 0.1735 0.2568 

 RES 5.5099e-08 5.3683e-08 5.2389e-08 5.1208e-08 5.0132e-08 4.9137e-08 

RMN 𝜔𝑒𝑥𝑝 0 0 0 0 0 0 

 𝜃𝑒𝑥𝑝 1.72 1.72 1.72 1.72 1.72 1.72 

 IT 8 8 8 8 8 8 

 CPU 0.0197  0.0358 0.0581 0.0895 0.1337 0.1878 

 RES 2.0511e-08  2.0890e-08 2.1175e-08 2.1398e-08 2.1577e-08 2.1724e-08 

5. Conclusions 

In this paper, the RMN method has been established to solve the GAVE (1.1) by introducing a 

nonnegative real parameter 𝜃 ≥ 0. To ensure the convergence of the RMN method, some sufficient 

theorems are given. We used two numerical experiments from the LCP to show that, as compared 

with the existing MN iteration method [10], the new RMN method is feasible under certain 

conditions. 
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