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Abstract: In many experiments, our interest lies in testing the significance of means from the grand 
mean of the study variable. Sometimes, an additional linearly related uncontrollable factor is also 
observed along with the main study variable, known as a covariate. For example, in Electrical 
Discharge Machining (EDM) problem, the effect of pulse current on the surface roughness (study 
variable) is affected by the machining time (covariate). Hence, covariate plays a vital role in testing 
means, and if ignored, it may lead to false decisions. Therefore, we have proposed a covariate-based 
approach to analyze the means in this study. This new approach capitalizes on the covariate effect to 
refine the traditional structure and rectify misleading decisions, especially when covariates are present. 
Moreover, we have investigated the impact of assumptions on the new approach, including normality, 
linearity, and homogeneity, by considering equal or unequal sample sizes. This study uses percentage 
type I error and power as our performance indicators. The findings reveal that our proposal 
outperforms the traditional one and is more useful in reaching correct decisions. Finally, for practical 
considerations, we have covered two real applications based on experimental data related to the 
engineering and health sectors and illustrated the implementation of the study proposal. 
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1. Introduction 

In practice, many engineering or medical studies are concerned with comparing different group 
means against each other or grand mean. Several parametric and nonparametric methods are used for 
this purpose [1]. The analysis of variance (ANOVA) technique based on the F-statistic is a well-known 
one-way fixed effect method to differentiate group means [2]. In addition, there are various statistical 
procedures utilized for comparing independent group means, such as, the Welch test [3], the James-
second-order test [4], Brown-Forsythe test [5], and Alexander-Govern test [6]. The structure of the 
preceding tests is compatible with assessing the pairwise significance of treatment means. An 
extension of ANOVA in the presence of covariate is named analysis of covariance (ANCOVA), which 
is used to examine whether there is a statistically significant difference between the means of three or 
more independent groups after taking into account one or more covariates [7–9]. However, for 
examining the difference in treatment means from their grand mean, we use the analysis of means 
(ANOM) test originated and formally proposed by Ott [10] (reproduced by Ott [11]). The ANOM test 
is applied for analysis in several fields, such as environmental studies [12], medical science [13,14], 
nanomaterials [15], tourism [16], and healthcare studies [17]. The extension of the ANOM test under 
mixed effect designs and balanced incomplete block designs was proposed by Schilling [18]. The 
ANOM test is a graphical method that is not only useful for comparing group means but also beneficial 
for comparing rates or proportions [19]. 

Initially, the ANOM test was designed for the equality of means; Wludyka and Nelson [20] proposed 
the ANOM mechanism for the equality of variances, which is known as the analysis of means for variances 
(ANOMV). Bernard and Wludyka [21] and Wludyka and Sa [22] suggested the robustness of ANOMV 
with the combination of the Fligner and Killeen test and the Levene test. An extension of the ANOM test 
under a heteroscedastic model, known as heteroscedastic analysis of means (HANOM), was proposed by 
Nelson and Dudewicz [23] and Dudewicz and Nelson [24]. A nonparametric version of the ANOM test 
was introduced by Bakir [25], and a comparison between ANOM and ANOVA tests using parametric 
bootstrap was conducted by Chang et al. [26] The exact control limits for the balanced design with equal 
sample sizes were presented by Nelson [27], Nelson [28], while for the unbalanced design with unequal 
sample sizes were given by Soong and Hsu [29]. Further, the tables for the ANOM test with equal sample 
sizes were reported in studies [30–33] and for unequal sample sizes in studies [34,35]. 

Recently, Mendeş and Yiğit [36] established a comparative study between ANOVA-F and ANOM 
tests under the violation of assumptions (e.g., normality, homogeneity of variances) in terms of type I error 
rate and power of the test. Guirguis and Tobias [37] produced the distributional properties of the ANOM 
test using Fortran syntax, and Pallmann and Hothorn [38] presented the applications of the ANOM test by 
using the R language. [38] introduced the generalized approach for ANOM utilizing the concept of multiple 
contrasts tests (MCTs), specific comparisons to the grand mean, and further generalizations for MCTs by 
using a linear model with a covariate. The previous ANOM versions were considered for the fixed-effect 
model, while Jayalath and Ng [39] examined the ANOM test for the random effect model, and Jayalath 
and Ng [40] proposed the ANOM test for hierarchically nested and split-plot designs. A brief literature 
review on the ANOM test can be found in [41]. An individual measurement control chart based on ANOM 
control limits was suggested by Chakravarthi and Rao [42]. The effect of measurement errors on the 
performance of the ANOM test was studied by Chakraborty and Khurshid [43], and a Bayesian graphical 
approach for the location parameter of the process was discussed by Apley [44]. The bootstraps confidence 
interval of the ANOM and ANOVA were derived by Lopez-Mejia and Roldan-Valadez [45]. 
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Generally, many experiments contain a study variable 𝑌   that is observed with another 
linearly associated variable 𝑋 . The variable 𝑋 is known as a covariate or concomitant variable, 
which is an uncontrollable predictor and is found along with the study variable [46–53]. These 
types of variables are common in many fields, such as: in the monofilament fibre or glue industry; 
the strength (study variable) produced by different machines is affected by the thickness 
(concomitant variable) of the fiber in the cutting machine; the amount of metal removed (study 
variable) is associated with the hardness of the specimen (concomitant variable), in Electrical 
Discharge Machining (EDM) problem, the effect of pulse current on the surface roughness (study 
variable) is affected by the machining time (concomitant variable), in medical science; effect of 
Viagra dosage on participants libido (study variable) is affected by the partners’ libido 
(concomitant variable) and in marine studies; growth (weight) of oyster (study variable) is 
dependent on the initial weight of oyster (concomitant variable) [54–57]. 

From the above-stated literature, it can be seen that the traditional ANOM test does not consider 
the concomitant variable that may disturb the mean square error and, consequently, may conduct false 
judgments about the potential differences among different treatments. In this study, we intend to 
propose a new testing mechanism named the analysis of means with covariate (ANOMC). The new 
technique is developed under the following scenarios: 

1) Measure the study variable 𝑌  and a covariate 𝑋  among several groups (or treatments). 
2) Assume a linear relationship between 𝑌 and 𝑋 for each group. 
3) Compare treatment adjusted means against their grand mean conditional on the value of 𝑋. 
4) Identify which treatment’s adjusted mean is exactly significant. 
The newly proposed methodology will give an indication of the significant mean using adjusted 

mean effects. 
The rest of the article is organized as follows. In Section 2, we describe the brief methodology of 

ANOM and ANOMC tests. The design parameters of the study are reported in Section 3. Section 4 
evaluates the performance of the proposed and competing methods. Section 5 presents illustrative 
examples of mechanical/industrial engineering and medical phenomena. Finally, Section 6 provides a 
summary, conclusions, and recommendations for the study. 

2. Description of existing and proposed methods 

In this section, firstly, we will outline the methodology of the traditional ANOM test about testing 
of means. Later, we will describe the newly proposed method named by the ANOMC test for the testing 
of adjusted means in the presence of a covariate. 

2.1. The analysis of means (ANOM) 

For the completely randomized design (CRD) with a single-factor model having 𝑡 treatments, 
each with 𝑛  observations, and the total number of observations is 𝑁 ∑ 𝑛 . The fixed-effects 
model can be represented as follows: 

𝑌 𝜇 𝜏 𝜖 , 𝑖 1, 2, 3, . . . , 𝑡, 𝑗 1, 2, . . . , 𝑛 ,     (2.1) 

where 𝑌  is the j  observation of response variable for the 𝑖  treatment level, 𝜏 𝜇 𝜇  is the 
fixed effect of the 𝑖  treatment level from overall mean 𝜇. 𝜖  is the j  random error of the 𝑖  
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treatment level and assumed to be normally distributed with zero mean and constant variance 𝜎 . The 
variance 𝜎  is assumed to be constant for all treatment levels, which implies that the observations 
𝑌 ~𝑁 𝜇 𝜏 , 𝜎  and the observations are mutually independent. The model given in Eq (2.1) is a 
statistical linear model, i.e., the response variable 𝑌  is a linear function of the model parameters. The 
layout of the ANOM data set is presented in Table 1, where the structure of the ANOM test under the 
same assumptions as the model in Eq (2.1) is used to test the following hypotheses: 

Null hypothesis, 𝐻 : 𝜇 𝜇 ⋯ 𝜇 ; 
Alternative hypothesis, 𝐻 : at least one group mean differs from the grand mean. 

Table 1. Layout of the ANOM dataset. 

 𝜏  𝜏  𝜏  … 𝜏  … 𝜏  

𝑅  𝑌  𝑌  𝑌  … 𝑌  … 𝑌  

𝑅  𝑌  𝑌  𝑌  … 𝑌  … 𝑌  

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 
… 

⁞ 

⁞ 
… 

⁞ 

⁞ 
𝑅  𝑌  𝑌  𝑌  … 𝑌  … 𝑌  

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 
… 

⁞ 

⁞ 
… 

⁞ 

⁞ 
𝑅  𝑌  𝑌  𝑌  … 𝑌  … 𝑌  

𝑌 . ∑ 𝑌   𝑌 . 𝑌 . 𝑌 . … 𝑌 . … 𝑌 . 

𝑌 . ∑ 𝑌 𝑛⁄   𝑌 . 𝑌 . 𝑌 . … 𝑌 . … 𝑌 . 

𝑆
.

∑ 𝑌 𝑌 . 𝑛 1   𝑆
.
 𝑆

.
 𝑆

.
 … 𝑆

.
 … 𝑆

.
 

Under the balanced design (equal sample sizes among all treatments 𝑛 𝑛  ), the lower 
decision line 𝐿𝐷𝐿  and upper decision line 𝑈𝐷𝐿  for ANOM test are defined as below: 

𝐿𝐷𝐿 𝑌.. ℎ 𝛼, 𝑡, 𝑁 𝑡 √𝑀𝑆𝐸 ,       (2.2) 

𝑈𝐷𝐿 𝑌.. ℎ 𝛼, 𝑡, 𝑁 𝑡 √𝑀𝑆𝐸 ,       (2.3) 

where 𝑌.. ∑ 𝑌 . 𝑡⁄  is the grand mean, 𝑀𝑆𝐸 ∑ 𝑆
.

𝑡⁄  is the mean square error, 𝛼 is the pre-
specified type I error rate, 𝑛 is the sample size, 𝑛  is the sample size of 𝑖  treatment, 𝑁 ∑ 𝑛  
is the total number of observations, 𝑡 is the number of treatments, and ℎ 𝛼, 𝑡, 𝑁 𝑡  is the critical 
value reported in Table B.1 [58]. 

However, under the unbalanced design (unequal sample sizes), the lower decision line 𝐿𝐷𝐿  and 
upper decision line 𝑈𝐷𝐿  for the ANOM test are expressed as below: 

𝐿𝐷𝐿 𝑌.. 𝑚 𝛼, 𝑡, 𝑁 𝑡 √𝑀𝑆𝐸 ,      (2.4) 

𝑈𝐷𝐿 𝑌.. 𝑚 𝛼, 𝑡, 𝑁 𝑡 √𝑀𝑆𝐸 ,      (2.5) 
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where 𝑌.. 𝑛 𝑌 . 𝑛 𝑌 . ⋯ 𝑛 𝑌 . 𝑁⁄   is the weighted overall mean, 𝑀𝑆𝐸
𝑛 1 𝑆

.
𝑛 1 𝑆

.
⋯ 𝑛 1 𝑆

.
𝑁⁄  is the pooled mean square error, and 𝑚 𝛼, 𝑡, 𝑁

𝑡  is the critical value reported in Table B.3 [58], and all other notations are the same as discussed 
above. The 𝑖   treatment mean is declared significantly different from the grand mean if 𝑌 .  falls 
outside the 𝐿𝐷𝐿 and 𝑈𝐷𝐿. 

It is to be mentioned that the ANOM test assumes normality and homogeneity of the variances, 
which are briefly discussed and compared with the ANOVA-F test by Mendeş and Yiğit [36]. It is to 
be noted that Tables B.1 and B.3 given in Nelson et al. [58] have critical values with limited choices 
of the degree of freedom. So, by adopting Nelson [28] mechanism, we have derived the critical values 
ℎ 𝛼, 𝑡, 𝑁 𝑡  and 𝑚 𝛼, 𝑡, 𝑁 𝑡  (given in Table 2) with the parameter choices considered in this 
study. 

Table 2. Critical values for several choices of the level of significance. 

t 

Balanced Design Unbalanced Design 

𝛼 0.01 0.05 𝛼 0.01 0.05 

𝑛 ℎ∗ 𝛼, 𝑡, 𝑛  
ℎ 𝛼, 𝑡, 𝑁

𝑡  
ℎ∗ 𝛼, 𝑡, 𝑛

ℎ 𝛼, 𝑡, 𝑁

𝑡  
𝑛 𝑚∗ 𝛼, 𝑡 𝑚 𝛼, 𝑡, 𝑁 𝑡 𝑚∗ 𝛼, 𝑡  𝑚 𝛼, 𝑡, 𝑁 𝑡

3 

𝑛  11.2 3.57 7.65 2.67 𝑛 12.4 3.40 8.62 2.62 

𝑛  11.0 3.18 8.6 2.51 𝑛 12.8 3.21 9.4 2.53 

𝑛  12.6 3.08 9.94 2.435 𝑛 15.2 3.10 11.25 2.43 

4 

𝑛  11.5 3.54 8.06 2.74 𝑛 12.8 3.50 8.6 2.75 

𝑛  11.36 3.24 8.94 2.64 𝑛 12.58 3.27 9.52 2.64 

𝑛  12.91 3.16 10.42 2.573 𝑛 16.8 3.12 13.6 2.52 

5 

𝑛  11.8 3.53 8.32 2.79 𝑛 14.4 3.31 10 2.74 

𝑛  11.5 3.27 9.25 2.71 𝑛 15.4 3.21 11.9 2.66 

𝑛  13.3 3.22 10.74 2.66 𝑛 18.6 3.14 15.3 2.605 

2.2. The analysis of means with covariate (ANOMC) 

Assume a single-factor model with a linearly related covariate having 𝑇 treatments with 𝑡 levels, 
each with 𝑛  observations, and the total number of observations is 𝑁 ∑ 𝑛 . The fixed-effects 
model can be represented as follows: 

𝑌 𝜇 𝜏 𝐵 𝑋 𝑋.. 𝜖 , 𝑖 1, 2, 3, . . . , 𝑡, 𝑗 1, 2, . . . , 𝑛 ,   (2.6) 

where 𝑌   is the j   observation of response variable for the 𝑖   treatment level, 𝑋   is the j  
observation of covariate for the 𝑖  treatment level corresponding to 𝑌 . Further, 𝜇 is the overall 
mean, 𝜏  is the effect of 𝑖  treatment level, 𝐵 is the slope indicating the relationship between 𝑌  
and 𝑋 , 𝑋.. is the mean of 𝑋  observations and 𝜖  is the j  random error of the 𝑖  treatment 
level and assumed to be normally distributed with zero mean and constant variance 𝜎 . It is noted 
that in the model (2.6), we assumed that the slope 𝐵 0, and the relationship between 𝑌  and 𝑋  
is linear, the regression coefficients for each treatment are identical, the concomitant variable 𝑋  is 
not affected by treatment, and the treatment effects sum to zero (i.e., ∑ 𝜏 0 . The model given 
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in Eq (2.6) is also a statistical linear model, i.e., the response variable 𝑌  is a linear function of the 
model parameters. 

The layout of the ANOMC dataset is reported in Table 3. The ANOMC test under the same 
assumptions as the model in Eq (2.6) is used to test the following hypotheses: 

Null hypothesis, 𝐻 : 𝜇 𝜇 ⋯ 𝜇 ; 
Alternative hypothesis, 𝐻 : at least one group mean differs from the grand mean. 

Table 3. Layout of the ANOMC dataset. 

 𝜏  𝜏  𝜏  … 𝜏  … 𝜏  

𝑅  𝑌 𝑋  𝑌 𝑋  𝑌 𝑋  … 𝑌 𝑋  … 𝑌 𝑋

𝑅  𝑌 𝑋  𝑌 𝑋  𝑌 𝑋  … 𝑌 𝑋  … 𝑌 𝑋

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 
…

⁞ 

⁞ 
… 

⁞ 

⁞ 

𝑅  𝑌 𝑋  𝑌 𝑋  𝑌 𝑋  … 𝑌 𝑋  … 𝑌 𝑋

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 

⁞ 
…

⁞ 

⁞ 
… 

⁞ 

⁞ 

𝑅  𝑌 𝑋 𝑌 𝑋 𝑌 𝑋 … 𝑌 𝑋  … 𝑌 𝑋

𝑌 . ∑ 𝑌   

 𝑋 . ∑ 𝑋  
𝑌 . 𝑋 .  𝑌 . 𝑋 .  𝑌 . 𝑋 .  … 𝑌 . 𝑋 .  … 𝑌 . 𝑋 .  

𝑌 . ∑ 𝑌 𝑛⁄   

𝑋 . ∑ 𝑋 𝑛⁄   
𝑌 . 𝑋 .  𝑌 . 𝑋 .  𝑌 . 𝑋 .  … 𝑌 . 𝑋 .  … 𝑌 . 𝑋 .  

𝑆
.

∑ 𝑌 𝑌 . 𝑛 1   

𝑆
.

∑ 𝑋 𝑋 . 𝑛 1   

𝑆
. .

∑ 𝑋 𝑋 . 𝑌 𝑌 . 𝑛⁄ 1   

𝑆
.

𝑆
.

𝑆 . . 

𝑆
.

𝑆
.

 

𝑆 . . 

𝑆
.

𝑆
.

𝑆 . . 
…

𝑆
.

𝑆
.

 

𝑆
. .

 
… 

𝑆
.

𝑆
.

𝑆 . . 

𝑏 . 𝑆
. .

𝑆
.

⁄  𝑏 . 𝑏 . 𝑏 . … 𝑏 . … 𝑏 . 

𝑀 . 𝑌 . 𝑏 . 𝑋.. 𝑋 .  𝑀 . 𝑀 . 𝑀 . … 𝑀 . … 𝑀 . 

𝑟 . 𝑆
. .

𝑆
.
𝑆

.
 𝑟 . 𝑟 . 𝑟 . … 𝑟 . … 𝑟 . 

𝑘 . 1 𝑟 . 1 1 𝑛 3⁄  𝑘 . 𝑘 . 𝑘 . … 𝑘 . … 𝑘 . 

𝑆
.

𝑘 .𝑟 . 𝑛⁄  𝑆 . 𝑆 . 𝑆 . … 𝑆
.
 … 𝑆 . 

In the ANOMC test, the adjusted 𝐴𝑑𝑗  means are calculated by the regression mean estimator 
𝑀 . ,  which is an unbiased estimator (i.e., 𝑀.. ∑ 𝑀 . 𝑡⁄ 𝑌.. ) having the minimum standard 

deviation 𝑆
.

. For more details about regression estimators, see [59–63]. 

Under the balanced design (equal sample sizes), the lower decision line 𝐿𝐷𝐿   and upper 
decision line 𝑈𝐷𝐿  for the ANOMC test are defined below: 

𝐿𝐷𝐿 𝑀.. ℎ∗ 𝛼, 𝑡, 𝑛 𝑀𝑆𝐸
..

,       (2.7) 
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𝑈𝐷𝐿 𝑀.. ℎ∗ 𝛼, 𝑡, 𝑛 𝑀𝑆𝐸
..

,      (2.8) 

where ℎ∗ 𝛼, 𝑡, 𝑛  is the critical value reported in Table 2 (for more details, see Section 3.1). The 𝑏 . 
is the 𝑖  slope, 𝑀 . is the 𝑖  regression mean estimator, 𝑟 . is the 𝑖  sample correlation, 𝑘 . is the 
𝑖  unbiasing constant, 𝑆

.
 is the sample standard deviation of 𝑖  regression mean estimator, 𝑀..

∑ 𝑀 . 𝑡⁄  is the grand regression mean and 𝑀𝑆𝐸
..

∑ 𝑆
.

𝑡⁄  is the overall mean square error. 
Under the unbalanced design (unequal sample sizes), the lower decision line 𝐿𝐷𝐿  and upper 

decision line 𝑈𝐷𝐿  for the ANOMC test are calculated by the following expressions: 

𝐿𝐷𝐿 𝑀.. 𝑚∗ 𝛼, 𝑡 𝑀𝑆𝐸
..

,      (2.9) 

𝑈𝐷𝐿 𝑀.. 𝑚∗ 𝛼, 𝑡 𝑀𝑆𝐸
..

,      (2.10) 

where 𝑚∗ 𝛼, 𝑡   is the critical value reported in Table 2 (for more details, see Section 3.1). 

However, 𝑀.. and 𝑀𝑆𝐸
..
 are defined as follows: 

𝑀..
. . ⋯ .,        (2.11) 

𝑀𝑆𝐸
..

. .
⋯

..     (2.12) 

It is to be noted that under the unbalanced design (unequal sample sizes), the values of the lower 
decision line 𝐿𝐷𝐿   and upper decision line 𝑈𝐷𝐿   vary with sample size. The 𝑖   treatment 
adjusted mean declared significantly different from the adjusted grand mean if 𝑀 . falls outside the 
𝐿𝐷𝐿 and 𝑈𝐷𝐿. 

As mentioned earlier, the ANOM test worked under some assumptions such as normality, 
homogeneity, and linear relationship see [64–66]. Similarly, the ANOMC test also works under some 
assumptions, including (i) normal distribution of the study variable for each value of covariate variable 
within each treatment group, (ii) variances of the conditional study variable are the same for each 
treatment group (Homogeneity), (iii) linear relation between the study variable and covariate and (iv) 
the regression coefficients for each treatment are identical (homogeneity of regression slopes). 

3. Design of the study 

This section provides the design structure of this study, which is further considered to execute the 
simulation study. In this procedure, normal random numbers 𝑍 ; 𝑗 1,2,3, … , 𝑛  having parameters 
𝜇 0;  𝜎 1  are generated by using the Box and Muller transformation [67,68]. The non-normal 

numbers are generated by the Flieshman mechanism [69] with four specified moments. Flieshman 
method defines a random number by using the polynomial transformation equation, which is given as 
follows: 

𝑉 𝑎 𝑏𝑍 𝑐𝑍 𝑑𝑍 ,       (3.1) 
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where 𝑎, 𝑏, 𝑐, and 𝑑 are the coefficients of transformation (cf. Table 4), and 𝑉 is the resulting variable 
having zero mean, unit variance with specified skewness 𝑠   and kurtosis 𝑘𝑟   values. The 
Flieshman’s transformation coefficients for the specified pair of skewness and kurtosis 𝑠, 𝑘𝑟  are 
reported in Table 2. The skewness and kurtosis pair 𝑠, 𝑘𝑟  is used to describe different distributions 
having zero mean and unit variance, such as 0, 0  forms normal distribution, 0, 3  forms heavy-
tailed double exponential distribution,  2, 6   forms extremely positive skewed exponential 
distribution, and 0, 25   forms very heavy-tailed approximately Cauchy distribution. To get the 
desired slope and homogeneous values of a concomitant variable, the following model is used: 

𝑌 𝜌 𝑋 1 𝜌 𝐸 ,        (3.2) 

where 𝑌   is the 𝑗   response observation of 𝑡   treatment, 𝜌   is the correlation between 𝑌  and 
𝑋 for 𝑡  treatment, 𝑋  is the 𝑗  observation of concomitant variable associated with 𝑡  treatment 
and 𝐸  is the 𝑗  observation of error term associated with 𝑡  treatment. It is noted that both 𝑋  
and 𝐸  are obtained by using the algorithm of Eq (3.1). 

Table 4. Flieshman’s transformation coefficients against pairs of skewness and kurtosis. 

Constants 
𝑠, 𝑘𝑟  

0,0  0,3  0,25  2,6  

𝑎 0 0 0 -0.31372 

𝑏 1 0.78236 0.25528 0.82633 

𝑐 0 0 0 0.31372 

𝑑 0 0.0679 0.20376 0.02271 

Under the procedural description given above, we have assessed the performance of ANOMC 
and ANOM tests under several aspects, including the following: 

1) normality; different choices of 𝐷 𝑠, 𝑘𝑟 , 
2) correlation; different choices of correlation between 𝑌 and 𝑋 𝜌 , 
3) homogeneity of variances; several cases of variances 𝑣 , 
4) hypotheses; null case 𝛿  and non-null cases 𝛿 , 
5) number of treatments 𝑡 , 
6) sample size 𝑛 . 
Further, the choices of the aforementioned design parameters 𝑠, 𝑘𝑟 , 𝜌, 𝑣, 𝛿, 𝑡 and 𝑛   are 

presented in Table 5. In Table 5, the symbol “:” is used to differentiate the value of each treatment. For 
example, 𝜌 0.5: 0.5: 0.8: 0.8  means that the correlation between 𝑌  and 𝑋  in the first two 
treatments is 0.5, and in the last two treatments, it is set at 0.8. It is to be noted that only one covariate 
is used in this study, and its distribution is assumed to be standard normal throughout the study. The 
Monte Carlo simulation study (motivated by [70]) is carried out by using the R software version (4.0.3). 
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Table 5. Choices of different design parameters. 

 Number of treatments 𝑡  

 3 4 5 

Distribution 𝑠, 𝑘𝑟 0,0 , 0,3 , 2,6 , 0,25 0,0 , 0,3 , 2,6 , 0,25 0,0 , 0,3 , 2,6 , 0,25  

Correlation 𝜌     

𝜌  0.5:0.5:0.5 0.5:0.5:0.5:0.5 0.5:0.5:0.5:0.5:0.5 

𝜌  0.5:0.5:0.8 0.5:0.5:0.8:0.8 0.5:0.5:0.5:0.8:0.8 

𝜌  0.8:0.5:0.5 0.8:0.8:0.5:0.5 0.8:0.8:0.5:0.5:0.5 

𝜌  0.8:0.8:0.8 0.8:0.8:0.8:0.8 0.8:0.8:0.8:0.8:0.8 

Sample size 𝑛     

𝑛  5:5:5 5:5:5:5 5:5:5:5:5 

𝑛  10:10:10 10:10:10:10 10:10:10:10:10 

𝑛  15:15:15 15:15:15:15 15:15:15:15:15 

𝑛  4:7:10 4:4:7:7 4:6:8:10:15 

𝑛  5:10:15 5:8:10:15 5:10:15:20:25 

𝑛  5:15:25 10:20:30:40 10:20:30:40:50 

Variance ratios 𝑣    

𝑣  1:1:1 1:1:1:1 1:1:1:1:1 

𝑣  1:1:4 1:1:1:4 1:1:1:1:4 

𝑣  4:1:1 4:1:1:1 4:1:1:1:1 

𝑣  1:1:10 1:1:1:10 1:1:1:1:10 

𝑣  10:1:1 10:1:1:1 10:1:1:1:1 

Effect size 𝛿     

𝛿  0:0:0 0:0:0:0 0:0:0:0 

𝛿  0:0:1 0:0:0:1 0:0:0:0:1 

𝛿  0:0.25:1 0:0.50:0.50:1 0:0.25:0.50:0.75:1 

𝛿  0:0.50:1 0:0.25:0.75:1 0:0:0.25:0.75:1 

𝛿  0:0.75:1 0:0:1:1 0:0:0.25:0.25:1 

𝛿  0:1:1 0:0.25:0.50:1 0:0:0:1:1 

𝛿  0.25:0:1 0.25:0:0:1 0.25:0:0:0:1 

𝛿  1:0:0.25 1:0:0:0.25 1:0:0:0:0.25 

𝛿  0.50:0:1 0.50:0:0:1 0.50:0:0:0:1 

𝛿  1:0:0.50 1:0:0:0.50 1:0:0:0:0.50 

As mentioned above, the decision lines (i.e., LDL and UDL) of the ANOMC method depend on 
the critical values. The procedure to find the critical values for the ANOMC method is illustrated in 
the following steps: 

1) On the fixed correlation 𝜌  , variance ratio 𝑣   and pair of skewness and kurtosis 
𝐷 0,0 , choose any case of the number of treatments 𝑡  and sample size 𝑛 , under 

the null hypotheses. 
2) Generate random numbers based on the information assumed in the previous step using the 

Flieshman method. 
3) Calculate the statistics 𝑀 ., 𝑀.. and 𝑀𝑆𝐸

..
. 
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4) Use an arbitrary value as a critical value (i.e., ℎ∗ 𝛼, 𝑡, 𝑛  for balanced design and 𝑚∗ 𝛼, 𝑡  
for unbalanced design), and obtain a lower decision line 𝐿𝐷𝐿  and an upper decision line 
𝑈𝐷𝐿  for the ANOMC test. 

5) Plot the 𝑀 . against the decision lines. Further, calculate an indicator variable 𝐼 such that it 
can have an observation equal to one, if any 𝑀 . falls outside of the decision lines; otherwise, 
assumed to equal zero. 

6) Repeat steps 1–5, a large number of runs to obtain specified 𝛼. 
If specified 𝛼 does not achieve, then adjust the previous arbitrary critical value and repeat 

steps 1–6 until specified 𝛼  is obtained. The obtained critical values for the ANOMC test are 
reported in Table 2 with respect to 𝛼 0.01 and 𝛼 0.05. 

4. Performance analysis 

The performance of the two methods is investigated in terms of percentage type I error 𝛼  and 
the percentage power of the test 1 𝛽  [71]. The type I error is the degree of the incorrect rejection 
of a true null hypothesis 𝐻 : 𝜇 𝜇 ⋯ 𝜇  which is mathematically defined as: 

𝛼 𝑃 𝑅𝑒𝑗𝑒𝑐𝑡 𝐻 |𝐻  𝑖𝑠 𝑡𝑟𝑢𝑒 ,       (4.1) 
𝛼 𝑃 𝑌 . 𝐿𝐷𝐿 𝑜𝑟 𝑌 . 𝑈𝐷𝐿|𝐻  𝑜𝑟 𝛼 𝑃 𝑀 . 𝐿𝐷𝐿 𝑜𝑟 𝑀 . 𝑈𝐷𝐿|𝐻 .  (4.2) 

However, the power of the test is the degree of correct rejection of the false null hypothesis 
𝐻 : at least one of the 𝜇  𝑜𝑟 𝐴𝑑𝑗𝜇  is different , which is termed as: 

1 𝛽 𝑃 𝑅𝑒𝑗𝑒𝑐𝑡 𝐻 |𝐻  𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 ,        (4.3) 

1 𝛽 𝑃 𝑌 . 𝐿𝐷𝐿 𝑜𝑟 𝑌 . 𝑈𝐷𝐿|𝐻  𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 ,      (4.4) 

1 𝛽 𝑃 𝑌 . 𝐿𝐷𝐿 𝑜𝑟 𝑌 . 𝑈𝐷𝐿|𝐻  𝑜𝑟 1 𝛽 𝑃 𝑀 . 𝐿𝐷𝐿 𝑜𝑟 𝑀 . 𝑈𝐷𝐿|𝐻 . (4.5) 

The decision criteria for both performance measures are illustrated as follows: a test with the 
probability of the type I error should be around 𝛼 is declared the best test, while a test with a large 
power is deemed the best test. In order to give a quantitative definition of robustness (of significance 
level), we have to state the range of values of probability of type I error for a given α value, for which 
the test would be considered robust. Bradley [72] suggested that a method could be regarded as robust 
to the violation of assumptions if the type I error rate is within 0.5𝛼. Bradley liberal criterion for 
robustness is 0.5𝛼 𝛼∗ 1.5𝛼  . When 𝛼 5% , the estimated error rate outside the range 
2.5%, 7.5%  is considered as conservative or liberal. Bradley’s stringent criterion of robustness is 
0.9𝛼 𝛼∗ 1.1𝛼 . 

Sullivan and D Agostino [73] reported a procedure as robust if the actual significance level does not 
exceed 10% of the nominal significance level e. g., for α  0.05, less than or equal to 0.055  . 
According to Guo and Luh [74], a method is robust if its observed significance level does not exceed 0.075 
for the 5 percent nominal significance level. Zumbo and Coulmbo [75] expanded Bradley’s robust criterion 
to identify three different levels of robustness. For 𝛼 0.05 , the fairly stringent criterion is 
0.045, 0.055 , the moderate criterion is 0.04, 0.06 , the liberal criterion is 0.025, 0.075 . Another 

criterion used by Vorapongsathorn et al. [76] is the Cochran limit, i.e., 0.04, 0.06  for 5 percent nominal 
significance level. As there exists sampling error or some natural variation; therefore, to account for 
sampling error associated with estimated type I error rates, we used Bradley’s liberal criterion, to establish 
sampling error ranges around 𝛼 in this study. 
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4.1. Null case with homogeneity of variances 

The percentage type I error rates of both tests under the null case 𝛿   (no mean shift in any 
treatment) and variance homogeneity 𝑣  (equal variance for all treatments) were reported in Table 6. 
The percentage type I error that lies outside Bradley’s liberal criterion range are tagged with the symbol 
“ ∗ ”. The findings of the current setup are listed below: 

1) Under the balanced design, the ANOMC and ANOM tests have almost similar percentage type 
I error rates except in heavy-tailed distributions such as exponential and Cauchy. 

2) Similar findings are also observed under the unbalanced design, but the ANOMC test has an 
excessive percentage type I error rate under all (normal or non-normal) environments when 
there is a direct pairing of correlations 𝜌 , while opposite results are observed in the case of 
the indirect pairing of the correlations 𝜌 . 

3) Overall, the ANOMC test is not robust compared to the ANOM test when the response variable 
follows large heavy-tailed distributions. 

4) Unequal correlations, either direct or indirect, may cause a change in the percentage type I 
error rate from the specified 𝛼 5%. 

5) Both tests reveal an approximately similar percentage of type I error with the increase in the 
number of treatment levels and sample size. 

4.2. Null case with the heterogeneity of variances 

As mentioned in Section 2.1, the ANOM test requires an assumption about the homogeneity of 

variances. Moreover, the ANOMC also works under the assumption that variances of conditional study 

variable are the same for each treatment group (cf. Section 2.2). In the ANOMC test, homogeneity 

may be categorized as; (i) the variances of 𝑌 are equal for each treatment group (homogeneity), and 

(ii) the variances of 𝑌 do not depend on the values of covariate 𝑋 (heteroscedasticity). In this study, 

we are concerned about the first condition of homogeneity, which significantly impacts the test 

performance under unbalanced design case. Therefore, we have introduced direct (i.e., 𝑣 , 𝑣 ) and 

indirect (i.e., 𝑣 , 𝑣 ) variance ratios to check the effect of heterogeneity on ANOMC and ANOM tests.  

The impact of heterogeneity on ANOMC and ANOM tests with respect to different correlation 

pairs, sample sizes, distributional environments, and treatment levels 𝑡 3, 4 and 5   have been 

investigated in this study and are reported in Tables 6–9. It is noted that type-I error rates for ANOMC 

are slightly better than ANOM, but they exceed the nominal level at some stages (which is the effect 

of heterogeneity), although we have observed improvements at various levels of heterogeneity. 
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Table 6. Effect of non-normality and correlation on ANOMC (AC) and ANOM (A) in 
terms of percentage type I error. 

𝑡 𝜌 

Balanced Design Unbalanced Design 

𝑛 
0,0  0,3  2,6  0,25  

 
0,0  0,3  2,6  0,25  

AC A AC A AC A AC A AC A AC A AC A AC A 

3 

𝜌  

𝑛  

5.09 4.96 4.85 4.70 13.15* 5.82 4.55 4.39 

𝑛

5.11 5.08 4.87 5.09 11.40* 5.95 4.62 5.76 

𝜌  5.41 5.08 5.20 4.85 13.70* 5.65 4.83 4.41 7.17 5.10 6.77 5.07 13.94* 5.91 6.24 5.67 

𝜌  5.63 4.98 5.38 4.77 13.77* 5.68 4.79 4.36 3.75 4.98 3.63 5.10 9.89* 5.94 3.48 5.79 

𝜌  5.09 5.00 4.85 4.74 13.15* 5.57 4.55 4.36 5.11 5.03 4.87 5.07 11.40* 5.90 4.62 5.71 

𝜌  

𝑛  

4.92 5.06 4.92 5.04 8.30* 5.95 5.31 5.20 

𝑛

4.93 4.99 4.92 5.13 9.49* 5.66 5.19 5.94 

𝜌  5.48 5.11 5.45 5.09 8.85* 5.84 5.73 5.24 7.37 4.99 7.17 5.13 12.28* 5.63 7.15 5.86 

𝜌  5.59 5.11 5.53 5.11 9.28* 5.85 5.87 5.20 3.48 4.96 3.55 5.10 7.81* 5.63 3.75 6.02 

𝜌  4.92 5.17 4.92 5.13 8.30* 5.88 5.31 5.27 4.93 4.95 4.92 5.13 9.49* 5.57 5.19 5.88 

𝜌  

𝑛  

4.98 5.21 5.08 5.24 6.92 5.87 5.48 5.42 

𝑛

5.16 5.01 5.13 5.30 8.99* 5.93 5.46 6.54 

𝜌  5.46 5.30 5.55 5.31 7.55* 5.87 5.99 5.46 8.23* 5.00 8.00* 5.30 12.25* 5.85 8.10* 6.46 

𝜌  5.75 5.23 5.75 5.26 7.88* 5.87 6.06 5.43 3.20 4.98 3.25 5.26 6.80 5.82 3.64 6.57 

𝜌  4.98 5.33 5.08 5.32 6.92 5.75 5.48 5.42 5.16 5.04 5.13 5.27 8.99* 5.70 5.46 6.41 

4 

𝜌  

𝑛  

5.00 4.95 5.10 5.00 15.78* 6.18 6.14 6.19 

𝑛

5.06 4.98 5.08 5.23 15.42* 6.28 5.91 7.02 

𝜌  5.65 4.86 5.75 4.94 16.09* 6.05 6.62 6.13 8.00* 5.02 7.83* 5.15 18.44* 6.17 8.14* 6.92 

𝜌  5.62 4.91 5.68 5.02 16.21* 6.03 6.55 6.19 3.81 4.96 3.84 5.20 13.49* 6.17 4.64 6.94 

𝜌  5.00 4.92 5.10 4.95 15.78* 5.96 6.14 6.06 5.06 4.93 5.08 5.15 15.42* 6.12 5.91 6.86 

𝜌  

𝑛  

5.14 5.07 5.52 5.17 9.75* 5.98 7.80* 6.47 

𝑛

5.04 5.04 5.31 5.41 11.16* 6.36 7.09 7.45 

𝜌  6.28 5.02 6.65 5.22 10.86* 5.89 8.68* 6.46 8.24* 5.08 8.43* 5.38 14.33* 6.26 10.07* 7.19 

𝜌  6.26 4.97 6.60 5.12 10.79* 5.89 8.67* 6.38 3.99 5.09 4.27 5.48 9.59* 6.38 5.77 7.37 

𝜌  5.14 4.97 5.52 5.18 9.75* 5.90 7.80* 6.34 5.04 5.06 5.31 5.35 11.16* 6.25 7.09 7.21 

𝜌  

𝑛  

5.08 5.04 5.41 5.21 7.48 5.92 7.19 6.10 

𝑛

5.06 5.00 5.31 5.22 6.81 5.81 6.91 6.53 

𝜌  6.14 5.03 6.41 5.14 8.68* 5.77 8.27* 6.05 8.88* 5.05 9.15* 5.27 10.82* 5.87 10.76* 6.40 

𝜌  6.18 5.04 6.47 5.13 8.65* 5.80 8.21* 6.06 4.21 5.09 4.43 5.28 5.94 5.76 5.59 6.49 

𝜌  5.08 5.00 5.41 5.14 7.48 5.74 7.19 6.04 5.06 5.09 5.31 5.24 6.81 5.78 6.91 6.37 

5 

𝜌  

𝑛  

5.03 5.08 5.43 5.55 18.16* 6.82 7.93* 8.33*

𝑛

5.11 5.07 5.52 5.70 13.91* 6.88 8.03* 9.06*

𝜌  5.87 5.02 6.15 5.39 18.52* 6.72 8.55* 8.19* 8.54* 5.15 8.87* 5.77 17.45* 6.84 11.43* 8.98*

𝜌  5.81 5.13 6.16 5.49 18.53* 6.70 8.42* 8.32* 3.74 5.10 4.14 5.74 11.50* 6.81 6.21 9.09*

𝜌  5.03 5.00 5.43 5.33 18.16* 6.53 7.93* 7.96* 5.11 5.19 5.52 5.70 13.91* 6.64 8.03* 8.86*

𝜌  

𝑛  

5.08 5.05 5.75 5.48 10.65* 6.41 9.65* 7.92*

𝑛

5.00 5.01 5.52 5.52 10.27* 6.24 8.19* 8.28*

𝜌  6.27 5.02 6.99 5.45 11.74* 6.29 10.75* 7.80* 8.88* 5.03 9.32* 5.44 14.10* 6.20 12.24* 8.03*

𝜌  6.34 5.15 6.98 5.51 11.71* 6.41 10.61* 7.84* 3.76 4.88 4.16 5.43 8.21* 6.14 6.38 8.08*

𝜌  5.08 5.09 5.75 5.46 10.65* 6.28 9.65* 7.71* 5.00 4.99 5.52 5.44 10.27* 6.10 8.19* 7.72*

𝜌  

𝑛  

4.98 5.07 5.33 4.88 6.03 4.68 7.09 3.94 

𝑛

5.07 5.07 5.51 5.39 7.14 5.73 7.94* 7.18 

𝜌  4.92 5.45 5.26 5.20 5.97 5.17 7.04 4.27 9.01* 5.02 9.45* 5.38 10.79* 5.63 11.96* 7.04 

𝜌  4.97 5.43 5.27 5.20 5.89 5.19 7.06 4.19 4.49 5.05 4.84 5.29 6.28 5.64 6.67 7.04 

𝜌  4.90 5.07 5.15 4.88 5.88 4.68 6.95 3.94 5.07 5.06 5.51 5.29 7.14 5.60 7.94* 6.91 

*outside of the range specified by Bradley’s liberal criterion. 
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Table 7. Effect on ANOMC (AC) and ANOM (A) in the presence of heterogeneous 
variances (type I error %) for fixed treatment level 𝑡 3 . 

𝜌 𝑣 𝑛 

Balanced Design 

𝑛 

Unbalanced Design 

0,0  0,3  2,6 0,25 0,0 0,3 2,6  0,25

AC A AC A AC A AC A AC A AC A AC A AC A

𝜌  

𝑣  

𝑛  

12.9 14.5 12.0 14.1 23.1 17.0 9.1 12.1

𝑛

4.6 5.1 4.2 4.8 10.7 7.3 3.0 3.7

𝑣  12.6 14.0 11.5 13.6 23.5 17.0 8.8 11.4 25.8 32.0 24.2 31.9 34.7 34.4 19.0 30.9

𝑣  20.7 23.4 19.7 23.1 30.7 25.8 15.7 21.3 7.6 7.7 7.0 7.4 14.3 10.5 4.9 5.9 

𝑣  20.3 22.6 19.2 22.3 31.1 26.0 15.0 20.8 39.4 50.4 38.4 51.0 47.8 52.5 33.8 51.6

𝜌  

𝑣  9.4 14.9 8.8 14.4 19.1 16.8 7.1 12.6 3.7 5.0 3.4 4.8 9.7 6.9 2.8 3.7 

𝑣  14.2 14.1 13.1 13.5 25.2 16.9 9.8 11.5 29.2 32.0 27.8 32.1 38.3 34.2 22.5 30.8

𝑣  17.9 23.6 16.8 23.4 28.1 25.7 13.0 21.8 6.4 7.8 5.8 7.4 13.0 10.1 4.0 5.9 

𝑣  21.3 22.6 20.3 22.3 32.1 26.0 16.2 20.7 41.3 50.5 40.7 51.0 49.5 52.5 36.7 51.5

𝜌  

𝑣  16.4 14.6 15.3 14.0 26.6 16.9 11.7 12.0 5.8 5.2 5.2 4.9 12.3 7.3 3.7 3.7 

𝑣  10.8 14.1 9.9 13.7 21.1 16.8 7.8 11.6 21.3 32.1 19.6 31.8 30.1 34.4 15.6 31.4

𝑣  22.9 23.3 21.9 23.1 32.7 25.8 18.3 21.1 8.5 7.7 8.0 7.3 15.3 10.5 5.8 5.9 

𝑣  18.9 23.0 17.7 22.8 29.8 25.6 13.7 21.3 36.8 50.3 35.5 50.8 45.5 52.2 30.3 51.9

𝜌  

𝑣  12.9 14.8 12.0 14.3 23.1 16.8 9.1 12.6 4.6 5.1 4.2 4.9 10.7 6.9 3.0 3.7 

𝑣  12.6 14.2 11.5 13.6 23.5 16.8 8.8 11.7 25.8 31.9 24.2 32.1 34.7 34.4 19.0 31.3

𝑣  20.7 23.7 19.7 23.4 30.7 25.6 15.7 21.5 7.6 7.9 7.0 7.5 14.3 10.1 4.9 5.9 

𝑣  20.3 23.0 19.2 22.8 31.1 25.5 15.0 21.3 39.4 50.3 38.4 50.8 47.8 52.1 33.8 51.8

𝜌  

𝑣  

𝑛  

14.7 15.4 14.4 15.4 19.9 17.2 13.5 14.9

𝑛

4.4 4.0 4.2 3.8 9.0 5.8 3.4 2.9

𝑣  14.6 15.4 14.3 15.5 19.7 17.1 13.4 15.0 28.5 34.5 27.2 34.4 36.9 37.4 23.4 33.2

𝑣  23.6 24.4 23.6 24.7 28.7 26.7 23.0 24.9 7.4 6.0 7.0 5.7 12.1 8.4 5.6 4.5 

𝑣  23.9 24.6 24.2 25.0 28.7 26.3 23.5 25.4 44.0 53.9 43.9 54.4 51.2 56.5 41.2 54.8

𝜌  

𝑣  10.6 15.3 10.4 15.2 15.6 17.2 9.9 14.7 3.4 3.9 3.3 3.7 7.8 5.5 3.0 3.0 

𝑣  16.6 15.5 16.3 15.5 21.7 17.1 15.4 14.7 32.5 34.5 31.5 34.4 40.8 37.4 27.7 33.2

𝑣  20.6 24.5 20.5 24.9 25.9 26.3 19.2 25.3 6.2 6.0 5.9 5.6 10.9 7.9 4.6 4.6 

𝑣  25.0 24.6 25.3 25.0 29.7 26.3 25.0 25.4 46.2 53.9 46.1 54.4 53.1 56.6 44.5 54.8

𝜌  

𝑣  18.8 15.3 18.6 15.3 24.1 17.1 17.4 14.6 5.6 3.9 5.2 3.7 10.2 5.7 4.1 2.9 

𝑣  12.4 15.3 12.1 15.3 17.5 16.6 11.4 14.9 23.6 34.2 22.2 34.2 31.8 37.3 19.0 33.4

𝑣  26.0 24.4 26.3 24.6 30.9 26.6 26.2 24.9 8.3 5.9 7.9 5.7 13.0 8.4 6.4 4.5 

𝑣  22.2 24.5 22.4 24.8 27.3 25.9 21.4 25.2 41.1 53.6 40.6 54.0 48.6 56.2 37.0 54.7

𝜌  

𝑣  14.7 15.3 14.4 15.2 19.9 17.2 13.5 14.6 4.4 3.9 4.2 3.6 9.0 5.5 3.4 2.9 

𝑣  14.6 15.3 14.3 15.3 19.7 16.7 13.4 14.8 28.5 34.3 27.2 34.2 36.9 37.2 23.4 33.2

𝑣  23.6 24.5 23.6 25.0 28.7 26.3 23.0 25.1 7.4 6.0 7.0 5.6 12.1 7.9 5.6 4.6 

𝑣  23.9 24.4 24.2 24.8 28.7 25.9 23.5 25.2 44.0 53.5 43.9 54.0 51.2 56.2 41.2 54.6

𝜌  

𝑣  

𝑛  

15.1 15.7 15.1 15.8 18.5 17.3 14.7 15.6

𝑛

2.9 2.4 2.7 2.3 5.7 3.6 2.3 2.0

𝑣  15.1 15.7 14.9 15.8 18.3 17.2 14.5 15.6 35.4 43.1 34.0 42.9 41.8 44.8 29.1 40.3

𝑣  24.5 25.2 24.8 25.4 27.6 26.6 25.0 26.1 4.8 3.6 4.6 3.4 7.6 4.9 3.6 2.7 

𝑣  24.1 25.0 24.3 25.4 27.4 26.5 24.5 25.9 52.8 64.6 52.9 64.9 59.0 66.2 50.1 64.1

𝜌  

𝑣  10.9 15.4 10.8 15.4 14.0 17.2 10.8 15.4 2.4 2.4 2.4 2.3 5.5 3.6 2.2 1.9 

𝑣  16.8 15.5 16.8 15.7 20.6 17.2 16.5 15.2 40.4 43.3 39.4 42.9 46.7 44.9 34.2 39.9

𝑣  21.2 24.6 21.2 24.9 24.7 26.3 21.0 25.5 4.0 3.5 3.8 3.3 6.8 4.9 3.0 2.7 

𝑣  19.5 15.8 19.4 15.8 22.9 17.3 18.9 15.4 55.2 64.7 55.4 64.9 61.1 66.1 53.7 64.0

𝜌  

𝑣  12.8 15.6 12.6 15.5 16.0 17.1 12.3 15.6 3.6 2.5 3.4 2.4 6.4 3.6 2.7 1.9 

𝑣  25.2 24.8 25.5 24.9 28.8 26.5 25.7 25.5 29.2 43.3 28.0 42.9 35.8 44.6 23.2 40.3

𝑣  22.6 24.6 22.5 25.0 26.1 26.1 22.4 25.8 5.4 3.6 5.2 3.4 8.2 4.9 4.2 2.6 

𝑣  27.0 25.0 27.2 25.1 30.0 26.5 27.9 25.6 49.7 64.7 49.3 64.7 55.7 65.5 45.5 64.4

𝜌  

𝑣  7.7 7.9 7.7 7.9 10.5 9.2 8.0 7.8 2.9 2.5 2.7 2.3 5.7 3.5 2.3 1.9 

𝑣  7.6 7.9 7.6 8.0 10.4 9.0 7.8 8.1 35.4 43.2 34.0 42.9 41.8 44.6 29.1 40.1

𝑣  12.4 12.7 12.4 12.7 15.5 14.2 12.2 12.4 4.8 3.5 4.6 3.3 7.6 4.9 3.6 2.7 

𝑣  12.3 12.8 12.2 12.8 15.5 14.0 11.9 12.7 52.8 64.6 52.9 64.7 59.0 65.5 50.1 64.4
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Table 8. Effect on ANOMC (AC) and ANOM (A) in the presence of heterogeneous 
variances (type I error %) for fixed treatment level 𝑡 4 . 

𝜌 𝑣 𝑛 

Balanced Design 

𝑛 

Unbalanced Design 

0,0  0,3  2,6  0,25  0,0  0,3  2,6  0,25  

AC A AC A AC A AC A AC A AC A AC A AC A 

𝜌  

𝑣  

𝑛  

12.9 14.5 12.0 14.1 23.1 17.0 9.1 12.1

𝑛

4.6 5.1 4.2 4.8 10.7 7.3 3.0 3.7 

𝑣  12.6 14.0 11.5 13.6 23.5 17.0 8.8 11.4 25.8 32.0 24.2 31.9 34.7 34.4 19.0 30.9 

𝑣  20.7 23.4 19.7 23.1 30.7 25.8 15.7 21.3 7.6 7.7 7.0 7.4 14.3 10.5 4.9 5.9 

𝑣  20.3 22.6 19.2 22.3 31.1 26.0 15.0 20.8 39.4 50.4 38.4 51.0 47.8 52.5 33.8 51.6 

𝜌  

𝑣  9.4 14.9 8.8 14.4 19.1 16.8 7.1 12.6 3.7 5.0 3.4 4.8 9.7 6.9 2.8 3.7 

𝑣  14.2 14.1 13.1 13.5 25.2 16.9 9.8 11.5 29.2 32.0 27.8 32.1 38.3 34.2 22.5 30.8 

𝑣  17.9 23.6 16.8 23.4 28.1 25.7 13.0 21.8 6.4 7.8 5.8 7.4 13.0 10.1 4.0 5.9 

𝑣  21.3 22.6 20.3 22.3 32.1 26.0 16.2 20.7 41.3 50.5 40.7 51.0 49.5 52.5 36.7 51.5 

𝜌  

𝑣  16.4 14.6 15.3 14.0 26.6 16.9 11.7 12.0 5.8 5.2 5.2 4.9 12.3 7.3 3.7 3.7 

𝑣  10.8 14.1 9.9 13.7 21.1 16.8 7.8 11.6 21.3 32.1 19.6 31.8 30.1 34.4 15.6 31.4 

𝑣  22.9 23.3 21.9 23.1 32.7 25.8 18.3 21.1 8.5 7.7 8.0 7.3 15.3 10.5 5.8 5.9 

𝑣  18.9 23.0 17.7 22.8 29.8 25.6 13.7 21.3 36.8 50.3 35.5 50.8 45.5 52.2 30.3 51.9 

𝜌  

𝑣  12.9 14.8 12.0 14.3 23.1 16.8 9.1 12.6 4.6 5.1 4.2 4.9 10.7 6.9 3.0 3.7 

𝑣  12.6 14.2 11.5 13.6 23.5 16.8 8.8 11.7 25.8 31.9 24.2 32.1 34.7 34.4 19.0 31.3 

𝑣  20.7 23.7 19.7 23.4 30.7 25.6 15.7 21.5 7.6 7.9 7.0 7.5 14.3 10.1 4.9 5.9 

𝑣  20.3 23.0 19.2 22.8 31.1 25.5 15.0 21.3 39.4 50.3 38.4 50.8 47.8 52.1 33.8 51.8 

𝜌  

𝑣  

𝑛  

14.7 15.4 14.4 15.4 19.9 17.2 13.5 14.9

𝑛

4.4 4.0 4.2 3.8 9.0 5.8 3.4 2.9 

𝑣  14.6 15.4 14.3 15.5 19.7 17.1 13.4 15.0 28.5 34.5 27.2 34.4 36.9 37.4 23.4 33.2 

𝑣  23.6 24.4 23.6 24.7 28.7 26.7 23.0 24.9 7.4 6.0 7.0 5.7 12.1 8.4 5.6 4.5 

𝑣  23.9 24.6 24.2 25.0 28.7 26.3 23.5 25.4 44.0 53.9 43.9 54.4 51.2 56.5 41.2 54.8 

𝜌  

𝑣  10.6 15.3 10.4 15.2 15.6 17.2 9.9 14.7 3.4 3.9 3.3 3.7 7.8 5.5 3.0 3.0 

𝑣  16.6 15.5 16.3 15.5 21.7 17.1 15.4 14.7 32.5 34.5 31.5 34.4 40.8 37.4 27.7 33.2 

𝑣  20.6 24.5 20.5 24.9 25.9 26.3 19.2 25.3 6.2 6.0 5.9 5.6 10.9 7.9 4.6 4.6 

𝑣  25.0 24.6 25.3 25.0 29.7 26.3 25.0 25.4 46.2 53.9 46.1 54.4 53.1 56.6 44.5 54.8 

𝜌  

𝑣  18.8 15.3 18.6 15.3 24.1 17.1 17.4 14.6 5.6 3.9 5.2 3.7 10.2 5.7 4.1 2.9 

𝑣  12.4 15.3 12.1 15.3 17.5 16.6 11.4 14.9 23.6 34.2 22.2 34.2 31.8 37.3 19.0 33.4 

𝑣  26.0 24.4 26.3 24.6 30.9 26.6 26.2 24.9 8.3 5.9 7.9 5.7 13.0 8.4 6.4 4.5 

𝑣  22.2 24.5 22.4 24.8 27.3 25.9 21.4 25.2 41.1 53.6 40.6 54.0 48.6 56.2 37.0 54.7 

𝜌  

𝑣  14.7 15.3 14.4 15.2 19.9 17.2 13.5 14.6 4.4 3.9 4.2 3.6 9.0 5.5 3.4 2.9 

𝑣  14.6 15.3 14.3 15.3 19.7 16.7 13.4 14.8 28.5 34.3 27.2 34.2 36.9 37.2 23.4 33.2 

𝑣  23.6 24.5 23.6 25.0 28.7 26.3 23.0 25.1 7.4 6.0 7.0 5.6 12.1 7.9 5.6 4.6 

𝑣  23.9 24.4 24.2 24.8 28.7 25.9 23.5 25.2 44.0 53.5 43.9 54.0 51.2 56.2 41.2 54.6 

𝜌  

𝑣  

𝑛  

15.1 15.7 15.1 15.8 18.5 17.3 14.7 15.6

𝑛

2.9 2.4 2.7 2.3 5.7 3.6 2.3 2.0 

𝑣  15.1 15.7 14.9 15.8 18.3 17.2 14.5 15.6 35.4 43.1 34.0 42.9 41.8 44.8 29.1 40.3 

𝑣  24.5 25.2 24.8 25.4 27.6 26.6 25.0 26.1 4.8 3.6 4.6 3.4 7.6 4.9 3.6 2.7 

𝑣  24.1 25.0 24.3 25.4 27.4 26.5 24.5 25.9 52.8 64.6 52.9 64.9 59.0 66.2 50.1 64.1 

𝜌  

𝑣  10.9 15.4 10.8 15.4 14.0 17.2 10.8 15.4 2.4 2.4 2.4 2.3 5.5 3.6 2.2 1.9 

𝑣  16.8 15.5 16.8 15.7 20.6 17.2 16.5 15.2 40.4 43.3 39.4 42.9 46.7 44.9 34.2 39.9 

𝑣  21.2 24.6 21.2 24.9 24.7 26.3 21.0 25.5 4.0 3.5 3.8 3.3 6.8 4.9 3.0 2.7 

𝑣  19.5 15.8 19.4 15.8 22.9 17.3 18.9 15.4 55.2 64.7 55.4 64.9 61.1 66.1 53.7 64.0 

𝜌  

𝑣  12.8 15.6 12.6 15.5 16.0 17.1 12.3 15.6 3.6 2.5 3.4 2.4 6.4 3.6 2.7 1.9 

𝑣  25.2 24.8 25.5 24.9 28.8 26.5 25.7 25.5 29.2 43.3 28.0 42.9 35.8 44.6 23.2 40.3 

𝑣  22.6 24.6 22.5 25.0 26.1 26.1 22.4 25.8 5.4 3.6 5.2 3.4 8.2 4.9 4.2 2.6 

𝑣  27.0 25.0 27.2 25.1 30.0 26.5 27.9 25.6 49.7 64.7 49.3 64.7 55.7 65.5 45.5 64.4 

𝜌  

𝑣  7.7 7.9 7.7 7.9 10.5 9.2 8.0 7.8 2.9 2.5 2.7 2.3 5.7 3.5 2.3 1.9 

𝑣  7.6 7.9 7.6 8.0 10.4 9.0 7.8 8.1 35.4 43.2 34.0 42.9 41.8 44.6 29.1 40.1 

𝑣  12.4 12.7 12.4 12.7 15.5 14.2 12.2 12.4 4.8 3.5 4.6 3.3 7.6 4.9 3.6 2.7 

𝑣  12.3 12.8 12.2 12.8 15.5 14.0 11.9 12.7 52.8 64.6 52.9 64.7 59.0 65.5 50.1 64.4 
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Table 9. Effect on ANOMC (AC) and ANOM (A) in the presence of heterogeneous 
variances (type I error %) for fixed treatment level 𝑡 5 . 

𝜌 𝑣 𝑛 

Balanced Design 

𝑛 

Unbalanced Design 

0,0  0,3  2,6 0,25 0,0 0,3 2,6  0,25

AC A AC A AC A AC A AC A AC A AC A AC A

𝜌  

𝑣  

𝑛  

19.1 23.2 18.2 23.1 31.0 26.1 17.1 23.1

𝑛

9.0 9.9 9.0 9.7 15.1 11.2 9.1 9.4

𝑣  19.6 23.5 18.9 23.6 31.0 26.7 17.3 23.7 34.6 40.3 33.1 39.8 43.9 43.5 28.5 38.4

𝑣  34.2 39.3 33.6 39.7 43.7 42.1 31.2 41.3 17.8 16.6 17.9 16.7 21.8 18.1 17.6 16.4

𝑣  34.8 40.0 34.5 40.6 44.2 42.6 31.9 42.0 55.1 64.3 54.3 64.5 62.6 66.1 49.8 63.5

𝜌  

𝑣  13.9 22.7 13.6 22.7 26.3 25.8 13.8 23.2 7.0 9.5 7.2 9.5 14.0 11.0 7.9 9.4 

𝑣  22.9 23.6 21.9 23.7 33.8 26.6 19.9 23.7 40.3 40.3 39.0 39.9 49.7 43.1 34.2 38.3

𝑣  37.0 40.0 36.7 40.6 45.6 42.6 34.6 41.8 15.4 16.6 15.5 16.6 20.3 17.8 15.3 16.4

𝑣  30.0 39.0 29.2 39.7 40.6 41.4 26.7 41.0 57.9 64.2 57.6 64.5 65.1 66.1 54.3 63.4

𝜌  

𝑣  22.2 23.3 21.3 23.2 33.9 26.0 19.6 23.1 10.1 9.8 10.0 9.7 15.6 11.0 10.0 9.4 

𝑣  14.4 23.7 13.8 23.8 26.2 26.4 13.9 24.2 25.6 40.3 24.2 40.2 34.5 43.3 21.4 38.7

𝑣  36.4 39.3 35.9 39.8 45.2 42.0 33.8 41.4 18.9 16.6 18.9 16.8 22.4 18.1 18.8 16.4

𝑣  30.6 40.3 30.0 40.9 40.7 42.2 27.3 42.2 49.4 63.6 48.3 63.8 57.5 66.2 42.6 63.4

𝜌  

𝑣  19.1 22.7 18.2 22.6 31.0 25.5 17.1 23.1 9.0 9.5 9.0 9.5 15.1 10.9 9.1 9.3 

𝑣  19.6 23.6 18.9 23.7 31.0 26.2 17.3 24.0 34.6 40.2 33.1 40.0 43.9 43.4 28.5 38.6

𝑣  34.2 39.0 33.6 39.7 43.7 41.1 31.2 40.9 17.8 16.6 17.9 16.6 21.8 17.8 17.6 16.4

𝑣  34.8 40.3 34.5 40.8 44.2 42.0 31.9 41.9 55.1 63.6 54.3 63.7 62.6 66.1 49.8 63.4

𝜌  

𝑣  

𝑛  

23.7 24.5 23.7 24.7 29.4 26.3 24.9 26.0

𝑛

12.4 11.3 12.5 11.5 16.0 12.6 13.4 11.7

𝑣  24.2 24.7 24.4 24.7 29.0 26.9 25.1 25.5 40.3 44.4 38.8 43.9 46.7 46.5 33.7 41.3

𝑣  40.5 41.2 41.1 41.7 44.1 42.3 42.3 43.6 23.0 19.6 23.2 19.6 25.6 20.6 24.1 20.2

𝑣  40.5 41.0 41.1 41.5 44.4 43.0 42.3 43.3 61.9 69.2 61.6 69.3 66.4 70.0 57.6 67.2

𝜌  

𝑣  17.5 24.5 17.7 24.9 23.4 26.4 19.3 26.1 9.5 11.3 9.8 11.4 14.1 12.4 11.3 11.6

𝑣  27.8 24.7 28.1 24.7 32.6 26.8 28.6 25.4 46.3 44.3 45.1 43.7 52.6 46.5 40.2 41.2

𝑣  36.1 41.4 36.6 42.0 40.5 42.6 37.3 43.6 20.4 19.4 20.8 19.5 23.3 20.6 21.4 20.3

𝑣  42.6 41.0 43.3 41.6 46.2 43.0 45.0 43.2 64.9 69.2 64.8 69.3 69.1 69.9 62.1 67.2

𝜌  

𝑣  27.5 24.5 27.6 24.9 32.7 26.1 28.6 25.8 13.8 11.3 14.1 11.6 17.0 12.6 14.5 11.7

𝑣  18.0 24.6 18.3 25.0 23.3 26.8 19.9 25.7 30.2 44.7 28.7 44.3 36.2 46.4 25.3 41.7

𝑣  42.5 41.2 43.3 41.7 46.1 42.3 45.0 43.6 23.0 19.5 23.2 19.5 25.6 20.5 24.1 20.3

𝑣  36.4 40.8 36.6 41.6 40.4 42.6 37.6 43.6 56.1 68.9 55.4 68.7 61.3 70.3 50.3 67.7

𝜌  

𝑣  23.7 24.5 23.7 24.9 29.4 26.2 24.9 25.9 12.4 11.3 12.5 11.3 16.0 12.3 13.4 11.5

𝑣  24.2 24.7 24.4 25.0 29.0 26.7 25.1 25.6 40.3 44.8 38.8 44.2 46.7 46.1 33.7 41.5

𝑣  40.5 41.5 41.1 41.9 44.1 42.6 42.3 43.6 23.0 19.5 23.2 19.5 25.6 20.5 24.1 20.3

𝑣  40.5 40.7 41.1 41.6 44.4 42.6 42.3 43.6 61.9 68.9 61.6 68.7 66.4 70.3 57.6 67.5

𝜌  

𝑣  

𝑛  

25.0 25.3 25.3 25.3 28.2 26.4 26.7 26.0

𝑛

15.3 11.9 15.3 12.1 16.7 12.6 16.4 12.3

𝑣  24.8 24.9 25.0 25.0 28.3 26.7 25.7 25.8 39.2 44.1 38.8 44.0 42.4 45.1 36.9 42.6

𝑣  41.6 41.7 42.3 42.3 44.4 42.7 43.9 43.6 27.2 20.8 27.3 20.6 27.8 21.2 28.3 21.1

𝑣  41.2 41.4 41.6 42.0 44.4 43.0 43.0 43.7 60.7 68.0 60.8 68.1 63.3 68.8 59.9 67.6

𝜌  

𝑣  19.0 25.1 19.3 25.2 22.0 26.3 20.8 26.0 11.4 11.8 11.8 11.8 13.4 12.4 13.2 12.2

𝑣  28.4 24.9 28.6 25.1 32.0 26.6 29.4 25.7 45.0 44.2 44.7 44.1 48.2 45.0 43.4 42.6

𝑣  37.6 41.9 38.0 42.1 40.3 42.7 39.2 43.5 24.5 20.3 24.5 20.5 25.2 21.1 25.5 21.1

𝑣  41.2 41.4 41.6 42.0 44.4 43.0 43.0 43.7 63.4 68.0 63.8 68.2 66.0 68.8 63.7 67.6

𝜌  

𝑣  28.6 25.1 29.2 25.3 31.8 26.6 30.5 25.8 17.1 11.8 17.3 11.9 18.2 12.5 18.1 12.3

𝑣  18.6 25.0 18.8 25.2 22.2 26.4 20.1 25.8 29.6 43.9 29.2 43.7 32.7 45.2 27.4 42.9

𝑣  43.7 41.8 44.4 42.1 46.4 42.7 46.4 43.6 28.3 20.8 28.4 20.7 28.9 21.2 29.4 21.2

𝑣  37.1 41.7 37.3 42.0 40.4 42.8 38.3 43.6 54.8 68.0 54.7 67.9 57.7 68.5 53.3 67.8

𝜌  

𝑣  25.0 25.0 25.3 25.1 28.2 26.3 26.7 25.9 15.3 11.8 15.3 11.8 16.7 12.4 16.4 12.1

𝑣  24.8 24.9 25.0 25.1 28.3 26.3 25.7 25.8 39.2 43.9 38.8 43.8 42.4 45.2 36.9 42.9

𝑣  41.6 41.9 42.3 42.2 44.4 42.6 43.9 43.4 27.2 20.4 27.3 20.5 27.8 21.2 28.3 21.1

𝑣  41.2 41.7 41.6 42.0 44.4 42.8 43.0 43.6 60.7 68.1 60.8 68.0 63.3 68.6 59.9 67.8
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To be more specific, the prime findings of the effect of heterogeneity on the ANOMC and ANOM 
tests are listed below: 

1) Under the balanced design, both tests (ANOMC and ANOM) are affected due to heterogeneity 
of variances, but the ANOMC test is less affected than the ANOM test in normal and non-
normal environments except for exponential distribution. 

2) Under the unequal sample sizes (unbalanced design), the same findings are still valid. 
3) The ANOMC test has a higher type I error rate (%) when large sample sizes are associated 

with more substantial variances, while the ANOM test has a higher type I error rate (%) in the 
presence of an inverse relationship between sample sizes and variances. 

The performance of both tests (ANOMC and ANOM) under heterogeneity is decreased with the 
increase in heterogeneity level. Meanwhile, when correlations are equal (𝜌  and 𝜌 ), the ANOMC test 
may produce relatively same percentage type I error rates. 

4.3. Non-null cases under homogeneity of variances 

For the null case, data has been sampled from a common population 𝜇 𝜇 ⋯ 𝜇 , and 
hence, any significance between treatment means attributed as sampling error and measured in terms 
of percentage type I error 𝛼  . The non-null case consists of data that has been sampled from a 
population having at least one different mean, and the significance between the treatment means is 
measured in terms of the percentage power of the test 1 𝛽 . In this study, nine different non-null 
cases (𝛿 ) are studied to examine the power of ANOMC and ANOM tests. Under the homogeneity 
of variances, the effect of several non-null cases on ANOMC and ANOM tests with respect to different 
correlation choices, distributional environments, and treatment levels 𝑡 3, 4 and 5  are given in 
Table 10 for 𝑛 , Table 11 for 𝑛  and Figures 1–4 for 𝑛   , 𝑛 , 𝑛  and 𝑛 . 

4.3.1. Under the balanced design 

The effect of several non-null cases on the ANOMC and ANOM tests with respect to 
distributional environments, treatment levels, and sample 𝑛 , 𝑛  and 𝑛  are given in Table 10 and 
Figures 1 and 2. 

At the fixed sample size 𝒏𝟏 : The findings of the ANOMC and ANOM tests at the fixed sample 
size 𝑛  are reported in Table 10. At fixed correlations 𝜌 , treatment level 𝑡 3  and under Cauchy 
distribution, the findings of the non-null case 𝛿  reveals that the ANOMC test has 46.3% power as 
compared to 45.8% power of the ANOM test. However, the ANOMC and ANOM tests have 32.7% 
and 28.9% power for the non-null case 𝛿   under the exponential distribution. Further, under the 
double exponential distribution, the ANOMC and ANOM tests have 22.3% and 25.9% power for the 
non-null case 𝛿  and under the normal distribution; the ANOMC test has 18.0% power as compared 
to 21.9% power of the ANOM test for the non-null case 𝛿 . 

At the fixed sample size 𝒏𝟐 : The comparative analysis of the ANOMC and ANOM tests based 
on several non-null cases for the sample size choice 𝑛  are exhibited in Figure 1. At fixed 𝑡 4, 
𝜌 , and 𝛿  under the normal distribution, the findings depict that the ANOMC test has 34.0% power 
as compared to 28.6% power of the ANOM test. The ANOMC and ANOM tests have 33.1% and 27.8% 
power for the non-null case 𝛿  under the double exponential distribution, while under the exponential 
distribution, the ANOMC and ANOM tests have 43.1% and 30.4% power for the non-null case 𝛿 . 
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Furthermore, for the non-null case 𝛿   under the Cauchy distribution, the ANOMC test has 47.2% 
power as compared to 36.1% power of the ANOM test. 

At the fixed sample size 𝒏𝟑 : Several non-null cases for the ANOMC and ANOM tests at a 
fixed sample size  𝑛  are presented in Figure 2. When the treatment level 𝑡 5  and correlations 
𝜌   are fixed than the findings of the non-null case 𝛿   shows that under double exponential 

distribution, the ANOMC test has 99.6% power as compared to 81.3% power of the ANOM test. 
Further, the ANOMC and ANOM tests have 98.4% and 67.4% power for the non-null case 𝛿  under 
the normal distribution. Under the exponential distribution, the ANOMC and ANOM tests have 99.7% 
and 82.9% power for the non-null case 𝛿   while for the non-null case 𝛿   under the Cauchy 
distribution, the ANOMC test has 98.1% power as compared to 78.7% power of the ANOM test. 

Figure 1. Effect of non-null cases on tests (ANOMC and ANOM) in terms of % power 
under homogeneous variances and balanced design case 𝑛  . 
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Table 10. Effect of non-null cases on tests (ANOMC (AC) and ANOM (A)) in terms of % 
power under homogeneous variances and balanced design case 𝑛 . 

𝜌 𝛿 

𝑡 3 𝑡 4 𝑡 5 

0,0  0,3  2,6  0,25  0,0  0,3  2,6  0,25  0,0  0,3  2,6  0,25  

AC A AC A AC A AC A AC A AC A AC A AC A AC A AC A AC A AC A 

𝜌  

𝛿  22.9 28.1 26.6 31.1 37.4 34.2 46.3 45.8 21.2 27.6 24.6 30.5 35.6 32.0 43.6 44.7 20.0 27.2 23.2 30.1 35.4 31.5 42.9 45.0 

𝛿  19.0 23.1 22.0 25.7 32.8 28.5 39.9 39.1 14.8 19.4 16.9 21.9 29.1 23.4 32.0 33.3 13.5 18.3 15.3 20.4 28.7 22.9 28.5 32.2 

𝛿  19.0 23.3 21.8 25.9 32.7 28.9 39.8 38.9 14.0 18.6 15.8 20.6 28.4 22.8 30.7 31.7 16.1 22.6 18.4 25.1 31.5 27.2 33.9 38.1 

𝛿  22.7 27.8 26.5 30.9 37.1 34.2 45.9 45.1 14.9 19.7 16.9 21.7 29.7 24.4 32.4 33.5 16.0 22.3 18.7 24.7 31.4 25.9 35.5 38.0 

𝛿  19.3 23.2 22.3 25.9 32.9 28.6 39.9 39.3 20.9 28.5 23.8 31.2 36.6 34.3 42.3 45.9 20.9 29.7 23.9 32.8 36.9 35.0 42.5 48.1 

𝛿  19.2 23.5 21.9 25.9 32.6 28.5 40.1 39.1 18.6 24.2 21.6 26.9 32.9 28.6 39.1 40.4 17.9 24.6 20.8 27.4 33.3 29.0 39.3 41.6 

𝛿  18.0 21.9 20.5 24.1 31.3 26.9 37.8 37.0 18.4 24.0 21.3 26.7 33.1 28.7 39.1 39.7 18.0 24.9 21.0 27.8 33.8 29.3 39.6 41.7 

𝛿  17.9 22.0 20.5 24.3 31.2 26.8 37.3 36.9 17.6 23.0 20.0 25.6 31.9 27.5 36.5 38.6 16.9 23.9 19.5 26.4 32.5 28.1 37.0 40.3 

𝛿  17.6 21.4 20.3 23.8 31.1 26.9 37.8 36.5 17.5 22.9 19.9 25.3 31.7 27.7 36.7 38.0 17.2 24.2 19.8 26.7 33.0 28.4 37.4 40.4 

𝜌  

𝛿  28.2 28.2 32.6 31.1 45.3 33.9 53.4 45.4 28.6 27.7 33.4 30.5 45.6 31.8 55.0 43.9 24.7 27.3 29.5 30.1 43.1 31.2 52.2 44.1 

𝛿  23.1 23.2 26.9 25.7 40.4 28.5 46.8 38.8 20.0 19.6 23.1 21.8 37.1 23.3 41.5 32.8 16.7 18.5 19.0 20.6 33.9 22.7 35.1 31.7 

𝛿  21.6 21.4 24.9 23.7 38.1 26.7 44.1 36.3 19.2 18.3 22.1 20.4 36.5 22.6 39.8 31.2 19.8 22.7 22.7 24.8 37.9 26.9 41.0 37.7 

𝛿  23.1 23.2 26.8 25.7 39.3 28.7 46.6 38.5 20.8 19.6 23.9 21.5 38.1 24.2 41.8 32.7 19.8 22.1 23.3 24.5 37.8 25.6 43.9 37.3 

𝛿  27.9 27.9 32.4 30.9 43.6 34.1 52.5 44.7 28.8 28.5 32.7 31.1 47.4 34.1 53.2 45.2 25.6 29.7 29.1 32.6 44.2 34.6 50.1 47.7 

𝛿  23.2 23.6 26.9 26.0 40.4 28.5 46.7 39.1 24.8 24.5 29.0 27.0 41.7 28.2 49.7 39.7 21.8 24.6 26.0 27.3 40.4 28.6 48.0 40.9 

𝛿  23.3 23.5 26.9 25.9 36.2 28.2 46.2 38.9 26.6 23.9 30.5 26.4 39.4 27.9 49.9 39.2 25.2 24.9 29.1 27.4 39.4 28.8 48.7 40.9 

𝛿  21.7 21.9 25.2 24.2 38.3 26.9 44.3 36.8 22.9 23.5 26.7 25.6 40.0 27.2 46.7 37.9 20.9 23.9 24.4 26.3 39.2 28.0 45.6 39.7 

𝛿  21.5 22.1 24.9 24.2 35.4 26.8 43.4 36.8 24.6 22.8 28.0 25.1 38.0 27.2 46.9 37.5 23.7 24.1 27.0 26.6 38.3 28.0 46.1 39.7 

𝜌  

𝛿  35.0 28.1 40.4 31.0 46.2 33.3 59.8 44.7 30.4 27.3 34.8 30.5 42.9 31.6 55.1 44.3 27.3 27.4 31.7 30.3 41.5 31.2 52.4 44.5 

𝛿  28.9 23.1 33.4 25.6 39.9 27.9 53.4 38.3 20.6 19.4 23.6 21.2 33.0 22.9 41.3 32.8 16.7 18.7 19.2 20.6 31.3 22.8 35.1 31.7 

𝛿  26.4 21.5 30.5 23.7 37.7 26.2 50.4 36.1 19.3 18.2 21.8 20.3 32.2 22.2 39.8 31.1 20.8 22.7 23.7 25.1 35.3 26.6 41.5 38.0 

𝛿  28.3 23.2 33.0 25.6 41.1 28.3 53.4 38.4 19.6 19.5 22.8 21.6 33.7 24.0 41.7 32.7 21.5 22.3 24.8 24.5 35.6 25.7 44.3 37.5 

𝛿  34.7 27.8 40.1 30.7 48.3 33.4 60.5 44.4 28.7 28.3 32.4 31.2 42.5 33.6 53.1 45.3 28.2 29.9 31.9 32.9 43.2 34.4 52.0 47.8 

𝛿  29.0 23.3 33.5 25.8 40.1 28.0 53.3 38.5 26.9 24.3 30.5 26.7 39.7 28.3 50.3 39.7 24.6 24.8 28.4 27.3 39.1 28.6 48.7 41.3 

𝛿  28.8 23.5 33.6 26.1 44.6 27.9 54.3 38.5 24.6 24.2 28.8 26.5 42.0 28.4 49.7 39.4 21.0 24.1 24.7 26.7 39.7 28.3 45.7 40.0 

𝛿  26.7 21.6 30.7 23.7 38.2 26.3 50.7 36.4 24.8 22.7 28.2 25.2 38.5 27.3 46.9 37.8 23.1 24.0 26.2 26.3 37.8 27.9 46.0 39.8 

𝛿  27.0 21.9 31.2 24.0 41.7 26.2 51.6 36.4 23.0 22.9 26.7 25.2 40.0 27.5 46.9 37.6 22.0 25.1 26.4 27.6 40.9 29.0 48.1 41.1 

𝜌  

𝛿  44.8 27.9 50.6 30.8 58.1 33.2 68.4 44.2 43.7 27.8 49.6 30.4 57.1 31.3 68.2 43.3 43.3 27.4 49.2 29.8 57.4 30.8 68.2 43.5 

𝛿  36.8 23.2 42.3 25.4 51.0 28.0 61.7 38.2 28.6 19.4 33.0 21.5 44.4 22.9 53.7 32.3 24.7 18.7 28.7 20.4 42.2 22.5 49.2 31.1 

𝛿  33.4 21.7 38.7 23.7 48.0 26.1 58.9 35.9 27.4 18.3 31.5 20.0 43.3 22.2 51.7 30.6 30.9 22.8 35.3 25.0 47.9 26.2 56.6 37.4 

𝛿  36.3 23.4 41.8 25.7 50.7 28.2 61.7 37.9 28.8 19.5 33.5 21.5 45.2 23.7 53.8 32.1 33.5 22.2 38.7 24.4 49.1 25.2 60.2 36.4 

𝛿  44.3 28.0 50.4 30.8 57.8 33.3 68.3 44.1 40.2 28.3 45.2 30.8 56.3 33.6 65.8 44.5 40.9 29.8 46.2 32.6 57.0 34.1 67.1 47.1 

𝛿  36.8 23.5 42.4 25.6 51.2 28.1 61.8 38.1 37.4 24.5 42.9 26.8 51.9 28.0 63.1 39.0 38.2 25.0 43.8 27.4 53.2 28.1 64.2 40.2 

𝛿  36.3 23.7 42.1 25.9 50.8 27.7 61.9 38.5 37.4 24.3 42.7 26.5 52.3 28.0 62.6 38.9 38.7 24.9 44.3 27.4 53.5 28.3 64.3 40.2 

𝛿  33.5 21.9 38.6 23.9 48.2 26.2 59.2 36.0 33.8 23.1 38.8 25.4 49.5 27.0 59.6 37.3 34.9 24.0 40.1 26.4 50.9 27.4 61.7 39.0 

𝛿  33.7 22.1 38.9 24.0 48.1 26.1 59.0 36.0 34.1 22.9 38.9 25.0 49.7 27.1 59.2 37.0 35.6 24.2 40.5 26.5 51.1 27.6 61.4 38.9 
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Table 11. Effect of non-null cases on tests (ANOMC (AC) and ANOM (A)) in terms of % 
power under homogeneous variances and unbalanced design case 𝑛 . 

𝜌 𝛿 

𝑡 3 𝑡 4 𝑡 5 

0,0  0,3  2,6  0,25  0,0  0,3  2,6  0,25  0,0  0,3  2,6  0,25  

AC A AC A AC A AC A AC A AC A AC A AC A AC A AC A AC A AC A 

𝜌  

𝛿  39.8 45.7 44.3 48.9 52.5 51.5 61.6 61.2 25.7 35.7 29.7 39.4 41.5 40.8 49.7 53.9 65.1 69.6 68.3 71.5 72.6 72.5 78.4 78.0

𝛿  29.3 34.7 33.3 37.6 42.7 39.7 50.6 50.1 15.3 21.6 17.2 23.9 29.3 24.9 32.0 35.8 24.6 30.3 27.2 32.5 36.6 33.2 41.9 42.8

𝛿  23.5 28.3 26.5 30.8 36.5 32.2 42.4 42.4 14.1 19.6 15.8 21.7 28.3 23.5 29.3 33.0 35.5 42.7 39.1 45.4 48.3 46.5 56.0 56.5

𝛿  22.2 26.4 24.7 28.7 35.3 30.7 40.5 39.7 14.0 19.3 15.8 21.6 28.4 24.0 28.7 32.4 47.5 53.0 51.7 55.8 58.2 56.6 66.7 66.0

𝛿  24.7 29.3 27.7 31.9 38.5 34.5 44.5 43.0 20.7 29.5 23.2 32.5 36.4 34.3 40.0 46.0 45.1 53.6 49.0 56.4 57.3 58.1 66.2 67.0

𝛿  35.1 40.3 39.1 43.6 47.7 46.0 56.9 56.3 22.8 32.0 26.4 35.5 38.6 37.0 45.8 50.2 61.4 66.1 65.2 68.4 70.1 69.9 76.5 76.0

𝛿  19.7 23.8 21.9 25.8 28.1 27.9 36.7 36.0 15.2 21.1 16.9 23.3 27.3 24.5 31.4 34.6 20.1 24.4 21.6 25.6 27.8 25.9 34.3 34.3

𝛿  32.4 37.7 36.6 40.9 44.9 43.1 54.3 53.7 21.1 30.0 24.6 33.2 37.1 35.5 42.9 48.2 58.2 63.5 62.5 65.8 67.8 67.4 74.8 74.3

𝛿  19.6 23.9 21.9 26.1 29.2 28.1 36.5 36.8 15.0 20.8 16.6 23.0 27.6 24.8 29.8 34.3 21.7 27.4 23.8 29.3 31.9 30.2 37.0 38.7

𝜌  

𝛿  52.9 45.6 57.7 48.8 64.4 51.2 71.8 60.5 41.0 35.7 46.2 38.8 57.1 40.5 65.1 52.9 84.8 69.5 86.0 71.5 86.3 72.7 89.5 77.8

𝛿  40.4 34.7 44.8 37.1 54.7 39.6 61.8 49.5 24.8 21.6 27.6 23.6 42.6 24.6 45.5 34.9 38.1 30.4 41.3 32.5 53.4 33.0 57.4 41.9

𝛿  32.7 28.1 36.2 30.3 48.2 32.1 53.6 41.3 22.9 19.7 25.3 21.6 40.6 23.1 42.6 32.2 52.9 42.7 56.9 45.4 65.5 46.3 71.4 55.9

𝛿  30.8 26.1 34.2 28.2 46.1 30.4 51.2 38.8 23.2 19.5 25.2 21.4 40.7 23.6 41.8 31.9 67.5 53.4 71.3 55.8 74.9 56.3 80.6 65.3

𝛿  34.2 29.1 37.9 31.4 49.0 34.2 54.7 42.5 33.7 29.5 36.9 32.3 52.2 34.2 55.5 45.3 63.3 53.6 67.1 56.2 73.6 57.6 79.7 66.3

𝛿  47.1 40.3 51.5 43.3 59.6 45.8 67.5 55.8 36.4 32.1 41.4 35.2 53.6 36.7 61.4 49.2 82.0 66.3 83.6 68.3 84.5 69.9 88.2 75.7

𝛿  27.2 24.0 30.1 25.8 35.4 27.4 46.3 35.6 25.9 21.3 28.5 23.1 36.3 24.3 45.7 33.7 32.3 24.1 34.9 25.8 38.4 25.9 49.6 33.9

𝛿  44.1 37.6 48.4 40.5 56.2 42.7 64.7 53.0 33.6 30.3 38.6 33.1 51.4 34.9 58.6 47.1 79.1 63.5 81.2 65.7 83.1 67.5 86.9 73.7

𝛿  27.3 23.9 30.0 25.9 37.4 28.0 46.3 36.3 24.8 21.1 27.2 23.0 36.7 24.4 43.8 33.4 33.7 27.4 36.5 28.9 43.7 29.9 52.1 38.6

𝜌  

𝛿  54.9 45.6 59.3 48.5 64.7 51.2 72.7 60.6 33.6 35.9 38.5 39.1 46.8 40.7 58.4 53.3 73.8 69.4 76.0 71.3 78.9 72.6 82.8 77.9

𝛿  40.5 34.8 45.1 37.4 51.5 39.0 62.5 49.7 17.9 21.3 20.8 23.7 30.6 24.6 38.1 35.6 26.0 30.5 29.2 32.3 36.6 33.0 45.8 42.8

𝛿  31.1 28.3 35.3 30.7 42.4 31.7 53.8 41.7 16.0 19.6 18.5 21.6 28.8 23.2 35.4 32.5 40.2 42.5 44.5 45.1 50.9 46.3 61.2 56.3

𝛿  29.1 26.5 33.3 28.6 41.6 30.4 51.6 39.0 15.4 19.6 17.8 21.6 28.6 23.9 34.4 31.9 55.4 52.9 59.3 55.4 63.5 56.8 71.9 65.7

𝛿  34.0 29.4 38.6 31.6 47.3 34.1 56.3 42.5 23.0 29.5 26.6 32.6 37.4 34.3 46.7 45.4 51.8 53.6 56.0 56.2 61.9 57.9 71.5 66.8

𝛿  48.2 40.4 53.0 43.4 58.6 45.4 68.1 55.9 29.5 32.0 34.2 35.5 43.3 37.0 54.0 49.7 70.1 65.8 72.9 68.1 76.3 69.9 80.9 75.8

𝛿  25.8 24.1 29.5 25.8 35.9 27.5 48.2 35.7 16.4 21.1 19.3 23.3 31.1 24.5 37.6 34.3 19.5 23.8 22.1 25.6 29.5 26.0 38.5 33.9

𝛿  44.7 37.8 49.6 40.5 54.9 42.6 65.5 53.4 27.0 30.1 31.1 33.1 41.5 35.5 50.7 47.5 66.9 63.4 69.9 65.4 73.9 67.8 79.0 74.1

𝛿  25.6 23.9 29.4 25.8 36.0 27.9 47.9 36.1 16.1 21.1 18.5 22.9 30.8 24.7 35.5 33.8 22.2 27.2 24.9 29.2 33.6 29.9 41.0 38.8

𝜌  

𝛿  72.8 45.6 75.8 48.5 78.6 51.1 83.0 60.1 55.0 35.9 60.1 38.9 66.4 40.1 74.7 52.5 95.9 69.1 95.4 71.2 95.7 72.8 95.0 77.7

𝛿  40.5 34.8 45.1 37.4 51.5 39.0 62.5 49.7 30.6 21.4 34.8 23.4 46.5 24.2 54.6 34.6 50.6 30.2 54.5 31.9 63.4 32.6 69.1 41.7

𝛿  45.6 27.8 50.2 30.0 58.5 31.4 66.6 40.9 27.5 19.5 31.3 21.5 44.1 22.8 51.2 31.8 69.7 42.8 73.0 44.9 77.3 46.0 81.7 55.5

𝛿  43.0 26.3 47.6 28.4 56.5 29.9 64.4 38.5 27.0 19.6 30.7 21.3 44.3 23.6 50.4 31.3 85.0 53.0 86.1 55.3 87.5 56.3 89.3 65.1

𝛿  48.6 29.2 53.5 31.4 60.8 33.9 68.5 41.9 39.8 29.5 44.6 32.1 57.5 34.1 64.2 44.6 80.5 53.7 83.1 55.9 85.5 57.2 89.0 65.9

𝛿  65.9 40.1 69.7 43.1 73.2 45.1 79.1 55.2 49.0 32.1 54.4 35.1 62.2 36.5 70.8 48.6 94.3 65.9 93.9 68.0 94.6 70.0 94.2 75.5

𝛿  38.1 24.0 42.6 25.6 46.7 27.2 60.5 35.2 30.7 21.3 35.2 23.3 43.2 24.1 55.1 33.5 42.0 23.8 46.1 25.3 47.7 25.7 62.8 33.3

𝛿  62.0 37.7 66.0 40.3 69.8 42.4 76.8 52.8 44.7 30.3 49.8 33.1 59.3 34.9 67.8 46.5 92.6 63.4 92.5 65.3 93.6 67.6 93.3 73.6

𝛿  37.5 23.7 41.9 25.6 47.8 27.6 59.9 35.8 28.6 21.0 32.5 23.0 42.5 24.2 52.4 33.2 44.2 27.2 48.3 28.9 52.7 30.0 65.1 38.2
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Figure 2. Effect of non-null cases on tests (ANOMC and ANOM) in terms of % power 
under homogeneous variances and balanced design case 𝑛  . 

4.3.2. Unbalanced design 

The comparative analysis of the ANOMC and ANOM tests with respect to several non-null cases, 
distributional environments, treatment levels, and sample sizes 𝑛 , 𝑛  and 𝑛  are given in Table 11 
and Figures 3 and 4. 

At the fixed sample size 𝒏𝟒  : The effect of several non-null cases on the performance of 
ANOMC and ANOM tests with respect to distributional environments and treatment levels are 
reported in Table 11. On the fixed treatment level 𝑡 5 , correlations 𝜌 , non-null case 𝛿 , and 
under double exponential distribution, the ANOMC test has 95.4% power as compared to 71.2% power 
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of the ANOM test. Under the normal distribution, the ANOMC and ANOM tests have 69.7% and 42.8% 
power for the non-null case 𝛿  and under the exponential distribution, the ANOMC and ANOM tests 
have 85.5% and 57.2% power for the non-null case 𝛿 . Further, for the non-null case 𝛿  and under 
the Cauchy distribution, the ANOMC test has 65.1% power as compared to 38.2% power of the ANOM 
test. 

At the fixed sample size 𝐧𝟓 : The performance analysis of the ANOMC and ANOM test at a 
fixed sample size 𝑛  are presented in Figure 3. For the fixed treatment level 𝑡 4  having the fixed 
correlations 𝜌 , the findings of the non-null case 𝛿  depicts that under the normal distribution, the 
ANOMC test has 49.7% power as compared to 41.3% power of the ANOM test. The ANOMC and 
ANOM tests have 41.5% and 33.9% power for the non-null case 𝛿  under the double exponential 
distribution. Further, under the exponential distribution, the ANOMC and ANOM tests have 81.5% 
and 68.5% power for the non-null case 𝛿   while for the non-null case 𝛿   under the Cauchy 
distribution, the ANOMC test has 82.0% power as compared to 71.9% power of the ANOM test. 

Figure 3. Effect of non-null cases on tests (ANOMC and ANOM) in terms of % power 
under homogeneous variances and unbalanced design case 𝑛 . 
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At the fixed sample size 𝒏𝟔 : Several non-null cases for the ANOMC and ANOM tests at a 
fixed sample size 𝑛   are presented in Figure 4. At fixed equal correlations 𝜌   having the 
treatment level 𝑡 3  , the findings of the non-null case 𝛿   reveal that under the Cauchy 
distribution, the ANOMC test has 94.7% power as compared to 85.8% power of the ANOM test. 
Further, under the exponential distribution, the ANOMC and ANOM tests have 72.7% and 53.6% 
power for the non-null case 𝛿  and under the double exponential distribution, the ANOMC and 
ANOM tests have 59.9% and 43.6% power for the non-null case 𝛿  while for the non-null case 
𝛿  under the normal distribution, ANOMC test has 47.5% power as compared to 35.0% power of 
the ANOM test. 

Figure 4. Effect of non-null cases on tests (ANOMC and ANOM) in terms of % power 
under homogeneous variances and unbalanced design case 𝑛 . 

Overall, the performance of both tests (ANOMC and ANOM) increases with the increase in 
sample sizes, but the ANOMC test performs relatively better than the ANOM test. Moreover, the 
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performance of both tests (ANOMC and ANOM) also increases due to the increase in correlation 
between the study variable and the concomitant variable. Furthermore, when sample sizes are unequal, 
the performance of both tests is affected by the inverse relationship between sample sizes and the size 
of shifted means. 

5. Experimental examples 

In this section, two illustrative examples from different experimental situations are discussed to 
compare the performance of the proposed method ANOMC and the ANOM test. 

5.1. An illustrative example of the balanced case 

For equal sample sizes (balanced case), the ANOM and ANOMC methods are implemented 
on the mechanical manufacturing problem dataset. Electrical discharge machining (EDM) is a 
frequently used method in the manufacturing industry. Dutta et al. [54] described an 
experimental study to investigate the effects of EDM parameters (i.e., pulse current, pulse-on-
time, and pulse-off-time) on machining time and surface roughness for machining Inconel 800. 
The experimental work was carried out on the Electronic4-axis CNC sprint cut wire electrical 
discharge machine. A negatively polarized brass wire of diameter 0.25mm with a tensile strength 
of 500N/mm was used as an electrode. Deionized water was used as the dielectric fluid. Samples 
of size 25mm×25mm×5mm were cut on the machine, and the machining time (min) and surface 
roughness 𝜇𝑚   with the pulse current 𝑎𝑚𝑝   are reported therein. In this example, we are 
considering surface roughness as the study variable, machining time as a concomitant variable 
and both variables are reported with several levels of pulse current 𝑎𝑚𝑝 . It is noted that surface 
roughness has a linear relation with machining time based on ten experiments, excluding the first 
and seventh experiments. Therefore, 10 observations 𝑛 10  with respect to the three levels 
𝑡 3  of pulse current (i.e., 210𝜇𝑚, 220𝜇𝑚 and 230𝜇𝑚  are used to implement ANOM and 

ANOMC methods. 
The ANOM method is applied to the observations of surface roughness without incorporating the 

concomitant variable machining time, and the results are plotted in Figure 5. The overall average 𝑌..  
and mean square error 𝑀𝑆𝐸  of surface roughness are calculated as 3.072 and 0.318, respectively. 
Using Table 2, the critical value (i.e.,  ℎ 𝛼, 𝑡, 𝑁 𝑡 2.51 ) is fixed against the level of 
significance 𝛼 5% . Further, the individual means of pulse current levels are plotted against the 
decision interval (i.e.,  𝑈𝐷𝐿 2.706 and 𝐿𝐷𝐿 3.437 ) gives evidence of not rejecting the null 
hypothesis, i.e., no individual average differs from the overall average. Hence, the power of all pulse 
current levels to detect the difference in surface roughness is likely small. 

Further, the ANOMC method is applied for testing the means of surface roughness without ignoring the 
effect of machining time. The surface roughness and machining time correlations are calculated as -0.964433, 
-0.9618967, and -0.8263165 with respect to pulse current levels. Moreover, the regression means are calculated 
for each pulse current level, and the overall regression average 𝑀.. , and mean square error of regression mean 
estimator 𝑀𝑆𝐸

..
 are estimated as 3.073646 and 0.07143622, respectively. Using Table 2, the critical value 

(i.e., ℎ∗ 𝛼, 𝑡, 𝑛 8.6) is fixed against the level of significance 𝛼 5%. Further, the graphical representation 
of the ANOMC under balanced design is also plotted in Figure 5, where individual regression means are plotted 
against the decision interval (i.e., 𝑈𝐷𝐿 2.915021 and 𝐿𝐷𝐿 3.232271 ). The findings reveal that all 
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individual regression averages differ from the overall regression average, which is evidence of the significance 
of surface roughness with respect to pulse current levels. 

Figure 5. Results of ANOM and ANOMC methods for EDM problem. 

5.2. An illustrative example of the unbalanced case 

For the unbalanced design (unequal sample sizes), dataset related to medical science is used, 
where the effect on participants and partner libidos are reported with respect to three Viagra dosages. 
The complete data set having three treatments (Viagra dosages) with different sample sizes of 
participants and partner libido is reported in Table 11.1 on page no. 400 [77]. The first Viagra dosage 
(Placebo) has 9 samples of participant and partner libidos, while other Viagra dosages (Low dose and 
High dose) have 8 and 13 samples of participant and partner libidos, respectively. 

In this example, we used the number of participant libido as a study variable 𝑌 , while the 
number of partner libido is used as a covariate 𝑋 . The graphical layout of the ANOM method is 
presented in Figure 6. The ANOM test is applied to the participant’s libido observations by ignoring 
the partners' libido effect. Using Table 2, the critical value 𝑚 𝛼, 𝑡, 𝑁 𝑡 2.53  is fixed against 
the 5% level of significance. The overall average 𝑌.. , and mean square error 𝑀𝑆𝐸  of participant 
libidos are calculated as 4.366667 and 3.486032, respectively. The individual means of Viagra 
dosage are plotted against the decision intervals, i.e.,  𝑈𝐷𝐿
5.684055; 5.796851; 5.352897  and 𝐿𝐷𝐿 3.049278;  2.936483; 3.380436  ), which reveals 

that all individual averages are statistically insignificant. Hence, all Viagra dosages have a similar 
effect on participant’s libido. 

The ANOMC method is applied for testing the means of participants’ libido without ignoring the 
effect of partners’ libido. The correlations of participant and partner libidos are calculated as 0.8829347, 
0.9718268, and -0.1688756 with respect to Viagra dosages. Using Table 2, the critical value 
ℎ∗ 𝛼, 𝑡, 𝑛 8.63 is fixed against the 5% level of significance. Moreover, the regression means are 
calculated for each Viagra dosage, and the overall regression average 𝑀.. , and mean square error of 
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regression mean estimator 𝑀𝑆𝐸
..

  are estimated as 4.641178 and 0.3935578, respectively. The 

graphical representation of the ANOMC method under balanced design is also plotted in Figure 6, 
where individual regression means are plotted against the decision interval, i.e., 𝑈𝐷𝐿
5.588390; 5.669491; 5.350285  and 𝐿𝐷𝐿 3.693966; 3.612866; 3.932072  . The findings reveal 

that only individual regression averages related to the placebo drug are different from the overall 
regression average, which is evidence that a placebo drug has a different effect on the participant’s 
libido. 

Figure 6. Results of ANOM and ANOMC methods for the Viagra dosage example. 

6. Conclusions 

ANOVA is the most commonly used technique to compare the treatment means. An alternative 
technique to ANOVA is ANOM, a graphical test used to test whether the treatment means differ from 
the grand mean. ANOVA requires multiple comparison tests to identify the significantly different 
treatments; however, ANOM does not require any additional test for such identification. This study 
proposed a new covariate based ANOM method, namely ANOMC, for the analysis of means. It is used 
for testing the significance of means from the grand mean by accommodating the effect of a covariate. 
The proposed procedure works under several assumptions, such as normality, linearity, and 
homogeneity. The effect of these assumptions, sample sizes (equal or unequal), treatments, and 
hypotheses (null and non-null) on ANOM and ANOMC tests are compared in terms of percentage type 
I error and percentage power of the test. 

The findings of the study revealed that in the case of homogeneity of variances with the null case, 
the ANOMC test is not as robust as the ANOM test when the response variable follows a conditionally 
large heavy-tailed distribution (e.g., exponential distribution). It is observed that under unequal 
correlations, pairing (direct or indirect) of correlations may lead to a change in the percentage type I 
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error rate from pre-specified 𝛼 5%. Moreover, both tests have approximately similar findings with 
the increase in treatment level and sample size. In the presence of heterogeneity of variances with the 
null case, both tests are affected, but the ANOMC test is less affected as compared to the ANOM test 
in a balanced design under normal and non-normal environments except for exponential distribution. 
In an unbalanced design, the ANOMC test is affected when large sample sizes are associated with 
more substantial variances, while the ANOM test has a higher type I error rate in the presence of an 
inverse relationship between sample sizes and variances. It is also noted that the ANOMC test has 
relatively the same percentage type I error rate for equal correlations. 

As expected, the power values of the ANOM test and ANOMC test change with respect to effect 
size δ , sample size, treatment level, and distribution environment. The performance of both tests 
improves with the increase in sample sizes, but the ANOMC test performs relatively better than the 
ANOM test. The performance of both tests (ANOMC and ANOM) also increases due to the increase 
in correlation between the study variable and the concomitant variable. Moreover, when sample sizes 
are unequal, the performance of both tests is affected by the inverse relationship between sample sizes 
and the size of shifted means. This study is designed under a limited number of treatments, choices of 
sample size (equal and unequal), correlations, and distributional environments, which may be extended 
in the future. Moreover, the proposal may also be expanded using the robust regression estimators to 
achieve a robust version of the ANOMC method. In the current study, we have used Monte Carlo 
simulations. However, developing other tests (integral approach or Markov chain method) for 
ANOMC to construct LDL and UDL is a potential direction for future research. 
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Appendix 

R code for example about EDM problem 

y = c (2.05,2.43,2.79,2.85,3.14,2.12,2.85,3.35,3.19,3.38,2.1,2.79,3.24,3.43,3.59, 
2.35,3.34,3.4,3.44,4.02,2.56,2.81,3.17,3.44,4.16,2.31,2.74,3.49,3.65,3.97) 
x = c (31.67,19.25,14.5,12.15,10,26.6,14,9.47,8.88,7.87,30.27,18.3,13.6,11.87,10.1, 
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25.4,13.4,8.93,8.07,7.67,29.67,15.28,13.4,11.58,9.07,25,12.3,8.4,7.83,6.13) 
t = 3; n = 10; c1 = 2.51; c2 = 8.6 
ymat = matrix (y,n,t); xmat = matrix (x,n,t) 
par (mfrow = c (1,2)) 
par (mar = c (2,4.2,2,3), cex = 1) 
################################# ANOM Test################################# 
ybari = apply (ymat, 2, mean); s2i = apply (ymat, 2, var) 
ybar = mean (ybari); mse = mean (s2i) 
ldl = ybar-(c1*sqrt (mse)*sqrt ((t-1)/(n*t))) 
udl = ybar + (c1*sqrt(mse)*sqrt ((t-1)/(n*t))) 
plot (ybari, ylim = c (2.5,3.5), col = "blue", pch = 20, cex = 1.5, xlab = "Treatments", 
ylab = expression (bar (Y~scriptstyle(i.))), xaxt = "n", main = "ANOM") 
axis (labels = list ("210 (amp)","220 (amp)","230 (amp)"), side = 1, at = c (1,2,3), cex.axis = 0.75) 
g = c () 
for (i in 1:t) { 
if(ybari[i]>udl|ybari[i]<ldl){g[i] = ybari[i]} else {g[i] = NA} 
} 
points (g, cex = 1.5, col = "red", pch = 20, lty = 2) 
abline (h = ldl, v = NULL, col = "green4", lty = 5) 
abline (h = ybar, v = NULL, col = "green4", lty = 1) 
abline (h = udl, v =NULL, col = "green4", lty = 5) 
segments (1, ybar, 1, ybari[1], col = "blue") 
segments (2, ybar, 2, ybari[2], col = "blue") 
segments (3, ybar, 3, ybari[3], col = "blue") 
mtext (("LDL"), side = 4, line = 1, at = ldl, cex = 0.75, col = "Green4") 
mtext (expression(paste(bar(Y[..]))), side = 4, line = 1, at = ybar, cex = 0.75, col = "Green4") 
mtext(("UDL"), side = 4, line = 1, at = udl, cex = 0.75, col = "Green4") 
############################ANOMC Test ##################################### 
sdy = apply (ymat, 2, sd); sdx = apply (xmat, 2, sd) 
ybari = apply (ymat, 2, mean); ybar = mean (ybari) 
xbari = apply (xmat, 2, mean); xbar = mean (xbari) 
rr = beta = mm = k = smm = double () 
for (i in 1:t) 
{ 
rr[i] = cor(ymat[,i], xmat[,i]) 
beta[i] = rr[i]*(sdy[i]/sdx[i]) 
mm[i] = ybari[i]-beta[i]*(xbar-xbari[i]) 
k[i] = sqrt((1-(rr[i]^2))*(1+(1/(n-3)))) 
smm[i] = (k[i]*sdy[i])/sqrt(n) 
} 
mbar = mean (mm); mse = mean (smm) 
ldl = mbar-(c2*mse*sqrt((t-1)/(n*t))) 
udl = mbar+(c2*mse*sqrt((t-1)/(n*t))) 
plot (mm, ylim=c (2.5,3.5), col="blue", pch=20, cex=1.5, xlab="Treatments", 
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ylab = expression (bar(M~scriptstyle(i.))), xaxt = "n", main="ANOMC") 
axis (labels = list("210(amp)","220(amp)","230(amp)"), side = 1, at = c(1,2,3), cex.axis = 0.75) 
g = c () 
for (i in 1:t){ 
if(mm[i]>udl|mm[i]<ldl){g[i]=mm[i]} else {g[i]=NA} 
} 
points (g, cex=1.5, col="red", pch=20,lty=2) 
abline (h = ldl, v = NULL, col = "green4", lty = 5) 
abline (h = mbar, v = NULL, col = "green4", lty = 1) 
abline (h = udl, v = NULL, col = "green4", lty = 5) 
segments (1, mbar, 1, mm[1], col="blue") 
segments (2, mbar, 2, mm[2], col="blue") 
segments (3, mbar, 3, mm[3], col="blue") 
mtext (("LDL"), side = 4, line = 1, at = ldl, cex = 0.75, col = "Green4") 
mtext (expression(paste(bar(M[..]))), side = 4, line = 1, at=mbar, cex = 0.75, col = "Green4") 
mtext (("UDL"), side = 4, line = 1, at = udl, cex = 0.75, col = "Green4") 

R code for example about viagra dosages problem 

p0 = c(3,2,5,2,2,2,7,2,4); p1 = c(4,1,5,1,2,2,7,4,5) 
l0 = c(7,5,3,4,4,7,5,4); l1 = c(5,3,1,2,2,6,4,2) 
h0 = c(9,2,6,3,4,4,4,6,4,6,2,8,5); h1 = c(1,3,5,4,3,3,2,0,1,3,0,1,0) 
n1 = length(p0); n2 = length(l0); n3 = length(h0); 
t = 3; n = c(n1, n2, n3); N = sum(n); c1 = 2.53; c2 = 8.63 
par (mfrow = c(1,2)) 
par (mar = c(2,4.2,2,3), cex = 1) 
######################### ANOM Test ##################################### 
ybari = c(mean(p0), mean(l0), mean(h0)) 
s2i = c(var(p0), var(l0), var(h0)) 
ybar = ((n[1]*ybari[1])+(n[2]*ybari[2])+(n[3]*ybari[3]))/N 
mse = (((n[1]-1)*s2i[1])+((n[2]-1)*s2i[2])+((n[3]-1)*s2i[3]))/(N-t) 
ldl = udl = double() 
for (k in 1:t) 
{ 
ldl[k] = ybar-(c1*sqrt(mse)*sqrt((N-n[k])/(N*n[k]))) 
udl[k] = ybar+(c1*sqrt(mse)*sqrt((N-n[k])/(N*n[k]))) 
} 
plot (ybari, ylim = c(2.5,6.5), col = "blue", pch = 20, cex = 1.5, xlab = "Treatments", 
ylab = expression(bar(Y~scriptstyle(i.))), xaxt = "n", main="ANOM") 
axis (labels = list("Placebo","Low dose","High dose"), side = 1, at = c(1,2,3), cex.axis = 0.75) 
g = c() 
for (i in 1:t){ 
if(ybari[i]>udl[i]|ybari[i]<ldl[i]){g[i]=ybari[i]} else {g[i]=NA} 
} 
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points (g, cex = 1.5, col = "red", pch = 20, lty = 2) 
abline (h = ybar, v = NULL, col = "green4", lty = 1) 
segments (0, udl[1], 1.5, udl[1], col = "green4", lty = 5) 
segments (1.5, udl[2], 2.5, udl[2], col = "green4", lty = 5) 
segments (2.5, udl[3], 3, udl[3], col = "green4", lty = 5) 
segments (0, ldl[1], 1.5, ldl[1], col = "green4", lty = 5) 
segments (1.5, ldl[2], 2.5, ldl[2], col = "green4", lty = 5) 
segments (2.5, ldl[3], 3, ldl[3], col = "green4", lty = 5) 
segments (1, ybar, 1, ybari[1], col = "blue") 
segments (2, ybar, 2, ybari[2], col = "blue") 
segments (3, ybar, 3, ybari[3], col = "blue") 
mtext (("LDL"), side = 4, line = 1, at = mean(ldl), cex = 0.75, col = "Green4") 
mtext (expression(paste(bar(Y[..]))), side = 4, line = 1, at = ybar, cex = 0.75, col = "Green4") 
mtext (("UDL"), side = 4, line = 1, at = mean(udl), cex = 0.75, col = "Green4") 
################################ANOMC Test ################################## 
ybari = c(mean(p0), mean(l0), mean(h0)); 
xbari = c(mean(p1), mean(l1), mean(h1)); xbar = mean(xbari) 
sdy = c(sd(p0), sd(l0), sd(h0)) 
sdx = c(sd(p1), sd(l1), sd(h1)) 
rr1 = cor(p0, p1); rr2 = cor(l0, l1); rr3 = cor(h0, h1); rr=c(rr1, rr2, rr3) 
beta = mm = k = smm = double () 
for (i in 1:t) 
{ 
beta[i] = rr[i]*(sdy[i]/sdx[i]) 
mm[i] = ybari[i]-beta[i]*(xbar-xbari[i]) 
k[i] = sqrt((1-(rr[i]^2))*(1+(1/(n[i]-3)))) 
smm[i] = (k[i]*sdy[i])/sqrt(n[i]) 
} 
mbar = ((n[1]*mm[1])+(n[2]*mm[2])+(n[3]*mm[3]))/N 
mse = (((n[1]-1)*smm[1])+((n[2]-1)*smm[2])+((n[3]-1)*smm[3]))/(N-t) 
ldl = udl = double() 
for (k in 1:t) 
{ 
ldl[k] = mbar-(c2*mse*sqrt((N-n[k])/(N*n[k]))) 
udl[k] = mbar+(c2*mse*sqrt((N-n[k])/(N*n[k]))) 
} 
plot (mm, ylim = c(3,6), col = "blue", pch = 20, cex = 1.5, xlab = "Treatments", 
ylab = expression(bar(M~scriptstyle(i.))), xaxt = "n", main = "ANOMC") 
axis (labels = list("Placebo", "Low dose", "High dose"), side = 1, at = c(1,2,3), cex.axis = 0.75) 
g = c () 
for (i in 1:t){ 
if (mm[i]>udl[i]|mm[i]<ldl[i]){g[i]=mm[i]} else {g[i]=NA}} 
points (g, cex = 1.5, col = "red", pch = 20, lty = 2) 
abline (h = mbar, v =NULL, col = "green4", lty = 1) 
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segments (0, udl[1], 1.5, udl[1], col = "green4", lty = 5) 
segments (1.5, udl[2], 2.5, udl[2], col = "green4", lty = 5) 
segments (2.5, udl[3], 3, udl[3], col = "green4", lty = 5) 
segments (0, ldl[1], 1.5, ldl[1], col = "green4", lty = 5) 
segments (1.5, ldl[2], 2.5, ldl[2], col = "green4", lty = 5) 
segments (2.5, ldl[3], 3, ldl[3], col = "green4", lty = 5) 
segments (1, mbar, 1, mm[1], col = "blue") 
segments (2, mbar, 2, mm[2], col = "blue") 
segments (3, mbar, 3, mm[3], col = "blue") 
mtext (("LDL"), side = 4, line = 1, at = mean(ldl), cex = 0.75, col = "Green4") 
mtext (expression(paste(bar(M[..]))), side = 4, line = 1, at = mbar, cex = 0.75, col = "Green4") 
mtext (("UDL"), side = 4, line = 1, at = mean(udl), cex = 0.75, col = "Green4") 
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