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Abstract: In many experiments, our interest lies in testing the significance of means from the grand
mean of the study variable. Sometimes, an additional linearly related uncontrollable factor is also
observed along with the main study variable, known as a covariate. For example, in Electrical
Discharge Machining (EDM) problem, the effect of pulse current on the surface roughness (study
variable) is affected by the machining time (covariate). Hence, covariate plays a vital role in testing
means, and if ignored, it may lead to false decisions. Therefore, we have proposed a covariate-based
approach to analyze the means in this study. This new approach capitalizes on the covariate effect to
refine the traditional structure and rectify misleading decisions, especially when covariates are present.
Moreover, we have investigated the impact of assumptions on the new approach, including normality,
linearity, and homogeneity, by considering equal or unequal sample sizes. This study uses percentage
type 1 error and power as our performance indicators. The findings reveal that our proposal
outperforms the traditional one and is more useful in reaching correct decisions. Finally, for practical
considerations, we have covered two real applications based on experimental data related to the
engineering and health sectors and illustrated the implementation of the study proposal.
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1. Introduction

In practice, many engineering or medical studies are concerned with comparing different group
means against each other or grand mean. Several parametric and nonparametric methods are used for
this purpose [1]. The analysis of variance (ANOVA) technique based on the F-statistic is a well-known
one-way fixed effect method to differentiate group means [2]. In addition, there are various statistical
procedures utilized for comparing independent group means, such as, the Welch test [3], the James-
second-order test [4], Brown-Forsythe test [5], and Alexander-Govern test [6]. The structure of the
preceding tests is compatible with assessing the pairwise significance of treatment means. An
extension of ANOVA in the presence of covariate is named analysis of covariance (ANCOVA), which
is used to examine whether there is a statistically significant difference between the means of three or
more independent groups after taking into account one or more covariates [7-9]. However, for
examining the difference in treatment means from their grand mean, we use the analysis of means
(ANOM) test originated and formally proposed by Ott [10] (reproduced by Ott [11]). The ANOM test
is applied for analysis in several fields, such as environmental studies [12], medical science [13,14],
nanomaterials [15], tourism [16], and healthcare studies [17]. The extension of the ANOM test under
mixed effect designs and balanced incomplete block designs was proposed by Schilling [18]. The
ANOM test is a graphical method that is not only useful for comparing group means but also beneficial
for comparing rates or proportions [19].

Initially, the ANOM test was designed for the equality of means; Wludyka and Nelson [20] proposed
the ANOM mechanism for the equality of variances, which is known as the analysis of means for variances
(ANOMYV). Bernard and Wludyka [21] and Wludyka and Sa [22] suggested the robustness of ANOMV
with the combination of the Fligner and Killeen test and the Levene test. An extension of the ANOM test
under a heteroscedastic model, known as heteroscedastic analysis of means (HANOM), was proposed by
Nelson and Dudewicz [23] and Dudewicz and Nelson [24]. A nonparametric version of the ANOM test
was introduced by Bakir [25], and a comparison between ANOM and ANOVA tests using parametric
bootstrap was conducted by Chang et al. [26] The exact control limits for the balanced design with equal
sample sizes were presented by Nelson [27], Nelson [28], while for the unbalanced design with unequal
sample sizes were given by Soong and Hsu [29]. Further, the tables for the ANOM test with equal sample
sizes were reported in studies [30—33] and for unequal sample sizes in studies [34,35].

Recently, Mendes and Yigit [36] established a comparative study between ANOVA-F and ANOM
tests under the violation of assumptions (e.g., normality, homogeneity of variances) in terms of type I error
rate and power of the test. Guirguis and Tobias [37] produced the distributional properties of the ANOM
test using Fortran syntax, and Pallmann and Hothorn [38] presented the applications of the ANOM test by
using the R language. [38] introduced the generalized approach for ANOM utilizing the concept of multiple
contrasts tests (MCTs), specific comparisons to the grand mean, and further generalizations for MCTs by
using a linear model with a covariate. The previous ANOM versions were considered for the fixed-effect
model, while Jayalath and Ng [39] examined the ANOM test for the random effect model, and Jayalath
and Ng [40] proposed the ANOM test for hierarchically nested and split-plot designs. A brief literature
review on the ANOM test can be found in [41]. An individual measurement control chart based on ANOM
control limits was suggested by Chakravarthi and Rao [42]. The effect of measurement errors on the
performance of the ANOM test was studied by Chakraborty and Khurshid [43], and a Bayesian graphical
approach for the location parameter of the process was discussed by Apley [44]. The bootstraps confidence
interval of the ANOM and ANOVA were derived by Lopez-Mejia and Roldan-Valadez [45].
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Generally, many experiments contain a study variable (Y) that is observed with another
linearly associated variable (X). The variable X is known as a covariate or concomitant variable,
which is an uncontrollable predictor and is found along with the study variable [46—53]. These
types of variables are common in many fields, such as: in the monofilament fibre or glue industry;
the strength (study variable) produced by different machines is affected by the thickness
(concomitant variable) of the fiber in the cutting machine; the amount of metal removed (study
variable) is associated with the hardness of the specimen (concomitant variable), in Electrical
Discharge Machining (EDM) problem, the effect of pulse current on the surface roughness (study
variable) is affected by the machining time (concomitant variable), in medical science; effect of
Viagra dosage on participants libido (study variable) is affected by the partners’ libido
(concomitant variable) and in marine studies; growth (weight) of oyster (study variable) is
dependent on the initial weight of oyster (concomitant variable) [54—-57].

From the above-stated literature, it can be seen that the traditional ANOM test does not consider
the concomitant variable that may disturb the mean square error and, consequently, may conduct false
judgments about the potential differences among different treatments. In this study, we intend to
propose a new testing mechanism named the analysis of means with covariate (ANOMC). The new
technique is developed under the following scenarios:

1) Measure the study variable (Y) and a covariate (X) among several groups (or treatments).

2) Assume a linear relationship between Y and X for each group.
3) Compare treatment adjusted means against their grand mean conditional on the value of X.
4) Identify which treatment’s adjusted mean is exactly significant.

The newly proposed methodology will give an indication of the significant mean using adjusted
mean effects.

The rest of the article is organized as follows. In Section 2, we describe the brief methodology of
ANOM and ANOMC tests. The design parameters of the study are reported in Section 3. Section 4
evaluates the performance of the proposed and competing methods. Section 5 presents illustrative
examples of mechanical/industrial engineering and medical phenomena. Finally, Section 6 provides a
summary, conclusions, and recommendations for the study.

2. Description of existing and proposed methods

In this section, firstly, we will outline the methodology of the traditional ANOM test about testing
of means. Later, we will describe the newly proposed method named by the ANOMC test for the testing
of adjusted means in the presence of a covariate.

2.1. The analysis of means (ANOM)

For the completely randomized design (CRD) with a single-factor model having t treatments,
each with n; observations, and the total number of observations is N = Y.{_, n;. The fixed-effects
model can be represented as follows:

Yl] =,Ll+Ti+Eij,i = 1,2,3,...,t,j = 1,2,...,ni, (21)

where Y;; is the jt" observation of response variable for the it" treatment level, 7; = u — ; is the
fixed effect of the i*" treatment level from overall mean u. €; j 1s the jt" random error of the it"
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treatment level and assumed to be normally distributed with zero mean and constant variance 2. The
variance o2 is assumed to be constant for all treatment levels, which implies that the observations
Y;j~N(u + 7;,0%) and the observations are mutually independent. The model given in Eq (2.1) is a
statistical linear model, i.e., the response variable Y;; is a linear function of the model parameters. The
layout of the ANOM data set is presented in Table 1, where the structure of the ANOM test under the
same assumptions as the model in Eq (2.1) is used to test the following hypotheses:

Null hypothesis, Hy: iy = ty = =+ = Us;

Alternative hypothesis, H;: at least one group mean differs from the grand mean.

Table 1. Layout of the ANOM dataset.

Tq Ty T3 T; T¢
Ry Y14 Yo1 Y34 Yia Vi1
R, Yip Y22 Y3, Y2 Yo
R; Yy Y2 Y3 Y Y
Ry, Yin, Yan, VYan, . Yin, . Yin,
Y, =X 0, Y, Y, Yy, .. Y,
v, =30 i/ 4 7, A .. T .. T
: =\2
St =XiL( - %) /(i - 1) St S Sk S S,

Under the balanced design (equal sample sizes among all treatments (n; = n)), the lower
decision line (LDL) and upper decision line (UDL) for ANOM test are defined as below:

LDL =Y — h(a,t,N — t)VMSE /% (2.2)
UDL =Y + h(a, t,N — t)VMSE /% (2.3)

where ¥ = Yi_; ¥, /t is the grand mean, MSE = Y.}_, S¢, /t is the mean square error, a is the pre-
specified type I error rate, n is the sample size, n; is the sample size of i*" treatment, N = ¥f_; n;
is the total number of observations, t is the number of treatments, and h(a, t, N — t) is the critical
value reported in Table B.1 [58].

However, under the unbalanced design (unequal sample sizes), the lower decision line (LDL) and
upper decision line (UDL) for the ANOM test are expressed as below:

LDL =Y —m(a,t,N — t)VMSE /I‘I’V;n” (2.4)
UDL =Y +m(a,t,N — t)VMSE |2 (2.5)
Nn;
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where Y =n,¥; +n,¥, +--+nY,/N is the weighted overall mean, MSE =
(ny — DSy + (ny — 1)S§ + -+ (n, — 1)S¢ /N is the pooled mean square error, and m(a, t, N —
t) is the critical value reported in Table B.3 [58], and all other notations are the same as discussed
above. The i*" treatment mean is declared significantly different from the grand mean if Y; falls
outside the LDL and UDL.

It is to be mentioned that the ANOM test assumes normality and homogeneity of the variances,
which are briefly discussed and compared with the ANOVA-F test by Mendes and Yigit [36]. It is to
be noted that Tables B.1 and B.3 given in Nelson et al. [58] have critical values with limited choices
of the degree of freedom. So, by adopting Nelson [28] mechanism, we have derived the critical values
h(a,t,N —t) and m(a,t,N —t) (given in Table 2) with the parameter choices considered in this
study.

Table 2. Critical values for several choices of the level of significance.

Balanced Design Unbalanced Design
a 0.01 0.05 a 0.01 0.05
' h(a,t,N h(a,t,N
n  h*(a,t,n) _9 h*(a, t,n) _9 n m'(a,t) m(a,t, N—t) m*(a,t) m(at,N—1t)
ny 11.2 3.57 7.65 2.67 n, 124 3.40 8.62 2.62
3 n, 11.0 3.18 8.6 2.51 ns 128 3.21 9.4 2.53
ns 12.6 3.08 9.94 2435 ne 152 3.10 11.25 2.43
ny 11.5 3.54 8.06 2.74 ng, 128 3.50 8.6 275
4 n, 11.36 3.24 8.94 2.64 ns 12.58 3.27 9.52 2.64
ns 1291 3.16 10.42 2.573 ne 16.8 3.12 13.6 2.52
ny 11.8 3.53 8.32 2.79 n, 144 3.31 10 2.74
5 n, 11.5 3.27 9.25 2.71 ns 154 3.21 11.9 2.66
ns 13.3 3.22 10.74 2.66 ne 18.6 3.14 15.3 2.605

2.2. The analysis of means with covariate (ANOMC)

Assume a single-factor model with a linearly related covariate having T treatments with t levels,
each with n; observations, and the total number of observations is N = Y.{_, n;. The fixed-effects
model can be represented as follows:

YVj=pu+7+BX;—X)+e€;,i=123,...,tj=12..n, (2.6)

where Y;; is the j* observation of response variable for the it" treatment level, X;j is the jth
observation of covariate for the i** treatment level corresponding to Y; ;- Further, u is the overall
mean, T; is the effect of i*" treatment level, B is the slope indicating the relationship between Y; i
and X;;, X is the mean of X; ; observations and ¢;; is the jt" random error of the i treatment
level and assumed to be normally distributed with zero mean and constant variance o2. It is noted
that in the model (2.6), we assumed that the slope B # 0, and the relationship between Y;; and X;;
is linear, the regression coefficients for each treatment are identical, the concomitant variable X;; is
not affected by treatment, and the treatment effects sum to zero (i.e., Yi—; T; = 0). The model given
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in Eq (2.6) is also a statistical linear model, i.e., the response variable Y;; is a linear function of the

model parameters.
The layout of the ANOMC dataset is reported in Table 3. The ANOMC test under the same

assumptions as the model in Eq (2.6) is used to test the following hypotheses:
Null hypothesis, Hy: pi; = py = =+ = Uy}
Alternative hypothesis, H;: at least one group mean differs from the grand mean.

Table 3. Layout of the ANOMC dataset.

12 7, 3 T; 7,
Rl Yll(Xll) Y21(X21) Y31(X31) le:l(Xil) Yfl(th)
R, Yio(X12)  Y(X32) Y3o(X32) o Y(Xi) ... Yi(Xe)
R; n(Xy)  Y(Xy)  Y(Xs) o Yu(Xy) o Yu(Xey)
Ry, Ving(Xin,)  Yon,(Xan,)  Yang(Xang) o Yim,(Xing)) oo Yen,(Xen,)
v, =Xl Y
o Y1 (X1) Y5.(X2) Y3.(X3) o V(X)) e V(X))
Xi =25, X1j
Y, =X N/ o o o _ o
o &) L) B . hE) . T
Xi =25, X15/n
. —\2
Sy, = Z?;l(yu -7) /-1
S2 = Zni (X X )2/(71- _ 1) 551.(5?%1.) ng.(s)%z.) 533.(5)%3.) Sl%i.(s)%i.) S?%t.(s)%t.)
i jeriy ‘ ' SX1.Y1. SXz.Yz. SX3.Y3. SXi.Yi. SXt.Yt.
SXi.Yi. =
Z?il(xu' -X )Y —-Y)/(n — 1)
b; = Sx,y,/S%, b, b,. bs. .. b .. b
Mi. = Yl + bl()? - Xl) Ml. MZ. M3. Mi. Mt.
1. = Sx,v./ [S%.Sv, . 7. 3. T .o
ki. = \/(1 - TLZ)(l + (1/7'1 — 3)) kl. kz. k3. ki. kt.
Sw; = kiri/ny Sit, Sit, Sits, Siz; Sit,

In the ANOMC test, the adjusted (Adj) means are calculated by the regression mean estimator
(M;), which is an unbiased estimator (i.e., M = Y!_, M; /t = Y ) having the minimum standard
deviation (S Mi.)' For more details about regression estimators, see [S9—-63].

Under the balanced design (equal sample sizes), the lower decision line (LDL) and upper
decision line (UDL) for the ANOMC test are defined below:

LDL = M_— h*(a,t,n)(MSEg ) /% (2.7)

AIMS Mathematics Volume 8, Issue 2, 4596-4629.



4602

UDL = M_+ h*(a,t,n)(MSEy; ) /% (2.8)

where h*(a,t,n) is the critical value reported in Table 2 (for more details, see Section 3.1). The b;
is the i*" slope, M; is the i*" regression mean estimator, 7; is the i*" sample correlation, k; is the

i®" unbiasing constant, S iz; 18 the sample standard deviation of i" regression mean estimator, M_=
t_ M, /t is the grand regression mean and MSE = £.S w1, /t is the overall mean square error.
Under the unbalanced design (unequal sample sizes), the lower decision line (LDL) and upper

decision line (UDL) for the ANOMC test are calculated by the following expressions:

— N—-n;

LDL = M, —m’(a,t)(MSEg ) |7 (2.9)
UDL = M, +m"(a,t)(MSEg) |, (2.10)

where m*(a,t) is the critical value reported in Table 2 (for more details, see Section 3.1).

However, M and MSE u_are defined as follows:

_ n11\711_+n21\712.+---+nt1\71t_
= N ,

M. (2.11)
(n1—1)Spz, +(M2=1)Sgz, ++(e—1)Spz,

MSEy = - . (2.12)

It is to be noted that under the unbalanced design (unequal sample sizes), the values of the lower
decision line (LDL) and upper decision line (UDL) vary with sample size. The i*" treatment
adjusted mean declared significantly different from the adjusted grand mean if M; falls outside the
LDL and UDL.

As mentioned earlier, the ANOM test worked under some assumptions such as normality,
homogeneity, and linear relationship see [64—66]. Similarly, the ANOMC test also works under some
assumptions, including (i) normal distribution of the study variable for each value of covariate variable
within each treatment group, (ii) variances of the conditional study variable are the same for each
treatment group (Homogeneity), (iii) linear relation between the study variable and covariate and (iv)
the regression coefficients for each treatment are identical (homogeneity of regression slopes).

3. Design of the study

This section provides the design structure of this study, which is further considered to execute the
simulation study. In this procedure, normal random numbers (Z 5J=123,.., n) having parameters
(u = 0; 0 = 1) are generated by using the Box and Muller transformation [67,68]. The non-normal
numbers are generated by the Flieshman mechanism [69] with four specified moments. Flieshman
method defines a random number by using the polynomial transformation equation, which is given as
follows:

Vi =a+bZj+cZ} +dZ}, 3.1)

AIMS Mathematics Volume 8, Issue 2, 4596-4629.
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where a, b, ¢, and d are the coefficients of transformation (cf. Table 4), and V is the resulting variable
having zero mean, unit variance with specified skewness (s) and kurtosis (kr) values. The
Flieshman’s transformation coefficients for the specified pair of skewness and kurtosis (s, kr) are
reported in Table 2. The skewness and kurtosis pair (s, kr) is used to describe different distributions
having zero mean and unit variance, such as (0,0) forms normal distribution, (0,3) forms heavy-
tailed double exponential distribution, (2,6) forms extremely positive skewed exponential
distribution, and (0,25) forms very heavy-tailed approximately Cauchy distribution. To get the
desired slope and homogeneous values of a concomitant variable, the following model is used:

Yij = peXej +/ (1- ptz)Etj: (3.2)

where Y;; is the jt" response observation of t‘" treatment, p, is the correlation between Y and
X for t*" treatment, X, j 1s the j th observation of concomitant variable associated with t‘"* treatment
and Ey; is the j th observation of error term associated with t* treatment. It is noted that both X, j
and E;; are obtained by using the algorithm of Eq (3.1).

Table 4. Flieshman’s transformation coefficients against pairs of skewness and kurtosis.

(s, kr)
Constants
(0,0) (0,3) (0,25) (2,6)
a 0 0 0 -0.31372
b 1 0.78236 0.25528 0.82633
c 0 0 0 0.31372
d 0 0.0679 0.20376 0.02271

Under the procedural description given above, we have assessed the performance of ANOMC
and ANOM tests under several aspects, including the following:

1) normality; different choices of D = (s, kr),

2) correlation; different choices of correlation between Y and X (p),

3) homogeneity of variances; several cases of variances (v),

4) hypotheses; null case (&;) and non-null cases (6,_1¢),

5) number of treatments (t),

6) sample size (n).

Further, the choices of the aforementioned design parameters ((s, kr),p,v,d,t and n) are
presented in Table 5. In Table 5, the symbol “:” is used to differentiate the value of each treatment. For
example, p, = 0.5:0.5:0.8: 0.8 means that the correlation between Y and X in the first two
treatments is 0.5, and in the last two treatments, it is set at 0.8. It is to be noted that only one covariate
is used in this study, and its distribution is assumed to be standard normal throughout the study. The
Monte Carlo simulation study (motivated by [70]) is carried out by using the R software version (4.0.3).

AIMS Mathematics Volume 8, Issue 2, 4596-4629.
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Table 5. Choices of different design parameters.

Number of treatments (t)

3 4 5
Distribution (s,kr) (0,0),(0,3),(2,6),(0,25) (0,0),(0,3),(2,6),(0,25) (0,0),(0,3),(2,6),(0,25)

Correlation(p)

oy 0.5:0.5:0.5 0.5:0.5:0.5:0.5 0.5:0.5:0.5:0.5:0.5

o 0.5:0.5:0.8 0.5:0.5:0.8:0.8 0.5:0.5:0.5:0.8:0.8

D3 0.8:0.5:0.5 0.8:0.8:0.5:0.5 0.8:0.8:0.5:0.5:0.5

P4 0.8:0.8:0.8 0.8:0.8:0.8:0.8 0.8:0.8:0.8:0.8:0.8
Sample size (n)

ny 5:5:5 5:5:5:5 5:5:5:5:5

n, 10:10:10 10:10:10:10 10:10:10:10:10

ns 15:15:15 15:15:15:15 15:15:15:15:15

ng 4:7:10 4:4:7:7 4:6:8:10:15

ng 5:10:15 5:8:10:15 5:10:15:20:25

ng 5:15:25 10:20:30:40 10:20:30:40:50

Variance ratios (V)

2 1:1:1 1:1:1:1 1:1:1:1:1

vi 1:1:4 1:1:1:4 1:1:1:1:4

vy 4:1:1 4:1:1:1 4:1:1:1:1

vi 1:1:10 1:1:1:10 1:1:1:1:10

v3 10:1:1 10:1:1:1 10:1:1:1:1
Effect size (§)

61 0:0:0 0:0:0:0 0:0:0:0

[ 0:0:1 0:0:0:1 0:0:0:0:1

O3 0:0.25:1 0:0.50:0.50:1 0:0.25:0.50:0.75:1

6, 0:0.50:1 0:0.25:0.75:1 0:0:0.25:0.75:1

b5 0:0.75:1 0:0:1:1 0:0:0.25:0.25:1

b¢ 0:1:1 0:0.25:0.50:1 0:0:0:1:1

6 0.25:0:1 0.25:0:0:1 0.25:0:0:0:1

Og 1:0:0.25 1:0:0:0.25 1:0:0:0:0.25

89 0.50:0:1 0.50:0:0:1 0.50:0:0:0:1

S10 1:0:0.50 1:0:0:0.50 1:0:0:0:0.50

As mentioned above, the decision lines (i.e., LDL and UDL) of the ANOMC method depend on
the critical values. The procedure to find the critical values for the ANOMC method is illustrated in
the following steps:

1) On the fixed correlation (p;), variance ratio (v;) and pair of skewness and kurtosis

(D; = (0,0)), choose any case of the number of treatments (t) and sample size (n), under

the null hypotheses.
2) Generate random numbers based on the information assumed in the previous step using the

Flieshman method.
3) Calculate the statistics M;, M and MSEy; .

AIMS Mathematics Volume 8, Issue 2, 4596-4629.
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4) Use an arbitrary value as a critical value (i.e., h*(a,t,n) for balanced design and m*(a, t)
for unbalanced design), and obtain a lower decision line (LDL) and an upper decision line
(UDL) for the ANOMC test.

5) Plot the M; against the decision lines. Further, calculate an indicator variable I such that it
can have an observation equal to one, if any M; falls outside of the decision lines; otherwise,
assumed to equal zero.

6) Repeat steps 1-5, a large number of runs to obtain specified a.

If specified @ does not achieve, then adjust the previous arbitrary critical value and repeat
steps 1-6 until specified a is obtained. The obtained critical values for the ANOMC test are
reported in Table 2 with respect to @ = 0.01 and ¢ = 0.05.

4. Performance analysis

The performance of the two methods is investigated in terms of percentage type I error (a) and
the percentage power of the test (1 — ) [71]. The type I error is the degree of the incorrect rejection

of a true null hypothesis (Hy: ¢y = 4, = -+ = y;) which is mathematically defined as:
a = P(Reject Hy|H, is true), (4.1)
a = P(Y; <LDLorY; > UDL|H,) or a = P(M; < LDL or M; > UDL|H,). 4.2)

However, the power of the test is the degree of correct rejection of the false null hypothesis
(H,: at least one of the y; or Adjy; is different), which is termed as:

1 —pf = P(Reject Hy|H, is false), (4.3)
1—pB =P, <LDLorY, >UDL|H,is false), (4.4)
1—B =P, <LDLorY; >UDL|H)) or1—f =P(M; <LDLor M; > UDL|H;). (4.5)

The decision criteria for both performance measures are illustrated as follows: a test with the
probability of the type I error should be around a is declared the best test, while a test with a large
power is deemed the best test. In order to give a quantitative definition of robustness (of significance
level), we have to state the range of values of probability of type I error for a given a value, for which
the test would be considered robust. Bradley [72] suggested that a method could be regarded as robust
to the violation of assumptions if the type I error rate is within £0.5a. Bradley liberal criterion for
robustness is (0.5a < a* < 1.5a). When a = 5%, the estimated error rate outside the range
(2.5%, 7.5%) is considered as conservative or liberal. Bradley’s stringent criterion of robustness is
(09a < a* £ 1.1a).

Sullivan and D Agostino [73] reported a procedure as robust if the actual significance level does not
exceed 10% of the nominal significance level (e.g., for a = 0.05,less than or equal to 0.055) .
According to Guo and Luh [74], a method is robust if its observed significance level does not exceed 0.075
for the 5 percent nominal significance level. Zumbo and Coulmbo [75] expanded Bradley’s robust criterion
to identify three different levels of robustness. For a = 0.05, the fairly stringent criterion is
(0.045, 0.055), the moderate criterion is (0.04, 0.06), the liberal criterion is (0.025,0.075). Another
criterion used by Vorapongsathorn et al. [76] is the Cochran limit, i.e., (0.04, 0.06) for 5 percent nominal
significance level. As there exists sampling error or some natural variation; therefore, to account for
sampling error associated with estimated type I error rates, we used Bradley’s liberal criterion, to establish
sampling error ranges around « in this study.
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4.1. Null case with homogeneity of variances

The percentage type I error rates of both tests under the null case §; (no mean shift in any
treatment) and variance homogeneity v, (equal variance for all treatments) were reported in Table 6.
The percentage type I error that lies outside Bradley’s liberal criterion range are tagged with the symbol
“* ", The findings of the current setup are listed below:

1) Under the balanced design, the ANOMC and ANOM tests have almost similar percentage type

I error rates except in heavy-tailed distributions such as exponential and Cauchy.

2) Similar findings are also observed under the unbalanced design, but the ANOMC test has an
excessive percentage type I error rate under all (normal or non-normal) environments when
there is a direct pairing of correlations (p,), while opposite results are observed in the case of
the indirect pairing of the correlations (p3).

3) Overall, the ANOMC test is not robust compared to the ANOM test when the response variable
follows large heavy-tailed distributions.

4) Unequal correlations, either direct or indirect, may cause a change in the percentage type I
error rate from the specified @ = 5%.

5) Both tests reveal an approximately similar percentage of type I error with the increase in the
number of treatment levels and sample size.

4.2. Null case with the heterogeneity of variances

As mentioned in Section 2.1, the ANOM test requires an assumption about the homogeneity of
variances. Moreover, the ANOMC also works under the assumption that variances of conditional study
variable are the same for each treatment group (cf. Section 2.2). In the ANOMC test, homogeneity
may be categorized as; (i) the variances of Y are equal for each treatment group (homogeneity), and
(i1) the variances of Y do not depend on the values of covariate X (heteroscedasticity). In this study,
we are concerned about the first condition of homogeneity, which significantly impacts the test
performance under unbalanced design case. Therefore, we have introduced direct (i.e., v, v§) and
indirect (i.e., v;, v3 ) variance ratios to check the effect of heterogeneity on ANOMC and ANOM tests.

The impact of heterogeneity on ANOMC and ANOM tests with respect to different correlation
pairs, sample sizes, distributional environments, and treatment levels (t = 3,4 and 5) have been
investigated in this study and are reported in Tables 6-9. It is noted that type-I error rates for ANOMC
are slightly better than ANOM, but they exceed the nominal level at some stages (which is the effect

of heterogeneity), although we have observed improvements at various levels of heterogeneity.
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Table 6. Effect of non-normality and correlation on ANOMC (AC) and ANOM (A) in
terms of percentage type I error.

Balanced Design Unbalanced Design

t p (0,0) 0,3) (2,6) (0,25) (0,0) 0,3) (2,6) (0,25)
" AC A AC A AC A AC A AC A AC A AC A AC A
Py 509 496 485 470 13.15% 582 4.55 4.39 5.11 508 487 509 11.40* 595 4.62 5.76
P2 541 508 520 485 13.70* 5.65 4.83 4.41 717 510 677  5.07 13.94* 591 6.24 5.67
P3 " 563 498 538 477 1377* 5.68 4.79 4.36 " 375 498  3.63 510 9.89* 594 3.48 5.79
Pa 509 500 485 474 13.15% 557 4.55 4.36 5.11 503 487 507 11.40* 5.90 4.62 5.71
Py 492 506 492 504 830* 595 5.31 5.20 493 499 492 513 949 566 5.19 5.94
Pa 548 511 545 509 885 584 5.73 5.24 737 499  7.17 513 12.28* 5.63 7.15 5.86
’ P3 " 559 511 553 5.1 9.28% 585 5.87 5.20 " 348 496 355 510 7.81* 563 3.75 6.02
P4 492 517 492 513  830* 588 5.31 5.27 493 495 492 513 949 557 5.19 5.88
1 498 521 508 524 6.92 5.87 5.48 5.42 516 501 513 530 8.99* 593 5.46 6.54
Pa 546 530 555 531 7.55% 587 5.99 5.46 8.23*% 500 8.00* 530 1225% 585  8.10% 6.46
P3 " 575 523 575 526  7.88% 587 6.06 5.43 " 320 498 325 526 6.80 5.82 3.64 6.57
P4 498 533 508 532 6.92 5.75 5.48 5.42 516 504 513 527  899% 570 5.46 6.41
1 500 495 510 500 1578* 6.18 6.14 6.19 506 498 508 523 1542* 6.28 591 7.02
Pa 565 486 575 494 16.09*  6.05 6.62 6.13 8.00% 5.02 7.83* 515 18.44* 6.17  8.14* 6.92
P3 " 562 491 568 502 1621* 6.03 6.55 6.19 " 381 496 3.84 520 13.49* 6.17 4.64 6.94
P4 500 492 510 495 1578* 596 6.14 6.06 506 493 508 515 1542* 6.2 591 6.86
p1 514 507 552 517 9.75%* 598  7.80* 6.47 5.04 504 531 541  11.16%  6.36 7.09 7.45
P2 628 502 665 522 1086* 589  8.68* 6.46 8.24* 508 843* 538 1433* 626 10.07*  7.19
! P3 " 626 497 660 512 10.79* 589  8.67* 6.38 " 399 509 427 548  9.59%  6.38 5.77 7.37
Pa 5.14 497 552 518 9.75%* 590  7.80* 6.34 5.04 506 531 535 11.16%  6.25 7.09 7.21
p1 5.08 504 541 521 7.48 5.92 7.19 6.10 506 500 531 5.22 6.81 5.81 6.91 6.53
P2 6.14 503 641 514 868 577  827* 6.05 8.88* 505 9.15% 527 10.82* 587 10.76*  6.40
P3 b 6.18 504 647 513  865* 580  821* 6.06 " 4.21 509 443 528 5.94 5.76 5.59 6.49
Pa 5.08 500 541 514 7.48 5.74 7.19 6.04 506 509 531 5.24 6.81 5.78 6.91 6.37
p1 5.03 508 543 555 18.16* 6.82  7.93*  8.33* 5.11 507 552 570 1391* 6.88  8.03*  9.06%
P2 587 502 615 539 1852* 672  855%  8.19* 8.54* 515 8.87% 577 1745% 684 11.43* 8.98*
P3 " 581 513 616 549 18.53* 670  842*  8.32* 714 374 510 414 574  11.50*  6.81 6.21 9.09*
P4 503 500 543 533 18.16* 653  7.93*  7.96* 5.11 519 552 570 1391* 6.64 8.03*  8.86*
p1 508 505 575 548 10.65* 641  9.65%  7.92% 500 501 552 552 1027* 624  8.19*  8.28*
P2 6.27 502 699 545 11.74* 629 10.75*  7.80* 8.88* 503 9.32% 544 14.10* 620 12.24*  8.03*
’ P3 " 634 515 698 551 11.71* 641 10.61*  7.84* " 376 488 416 543  821*  6.14 6.38 8.08*
Pa 508 509 575 546 10.65* 628  9.65%  7.71* 500 499 552 544 1027* 610  8.19*  7.72%
p1 498 507 533 4.88 6.03 4.68 7.09 3.94 507 507 551 5.39 7.14 573 7.94% 7.18
P2 492 545 526 5.20 5.97 5.17 7.04 4.27 9.01* 502 945* 538 10.79* 5.63 11.96%  7.04
P3 " 497 543 527 520 5.89 5.19 7.06 4.19 e 449 505 484 529 6.28 5.64 6.67 7.04
Pa 490 507 515 4.88 5.88 4.68 6.95 3.94 507 506 551 5.29 7.14 5.60  7.94* 6.91

*outside of the range specified by Bradley’s liberal criterion.
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Table 7. Effect on ANOMC (AC) and ANOM (A) in the presence of heterogeneous

variances (type I error %) for fixed treatment level (t = 3).

Balanced Design Unbalanced Design
P v n (0,0) (0,3) (2,6) (0,25) n (0,0) 0,3 (2,6) (0,25)
AC A AC A AC A AC A AC A AC A AC A AC A
vy 12.9 14.5 120 141 231 17.0 9.1 12.1 4.6 5.1 42 4.8 10.7 7.3 3.0 3.7
vy 126 140 11.5 13.6 235 17.0 8.8 114 258 320 242 319 347 344 190 309
& vi 207 234 197 231 307 258 157 213 7.6 7.7 7.0 7.4 143 10.5 49 5.9
vy 203 226 192 223 311 260 150 208 394 504 384 510 478 525 338 516
vy 9.4 14.9 8.8 144 191 16.8 7.1 12.6 3.7 5.0 34 4.8 9.7 6.9 2.8 3.7
. vy 14.2 14.1 13.1 135 252 169 9.8 11.5 292 320 278 321 383 342 225 308
vi 179 236 168 234 281 257 13.0 218 6.4 7.8 5.8 7.4 13.0 101 4.0 5.9
vy - 213 226 203 223 321 260 162 207 - 413 505 407 510 495 525 367 515
vy 164 146 153 140 266 169 11.7 12.0 5.8 52 5.2 4.9 12.3 7.3 3.7 3.7
05 vy 10.8 14.1 9.9 137 21.1 16.8 7.8 11.6 213 321 19.6 318 301 344 156 314
v 229 233 219 231 327 258 183 211 8.5 7.7 8.0 7.3 153 10.5 5.8 5.9
vy 189 230 177 228 298 256 137 213 36.8 503 355 508 455 522 303 519
vy 12.9 14.8 120 143 231 16.8 9.1 12.6 4.6 5.1 42 4.9 10.7 6.9 3.0 3.7
vy 126 142 11.5 13.6 235 16.8 8.8 11.7 258 319 242 321 347 344 190 313
P 2 207 237 197 234 307 256 157 215 7.6 7.9 7.0 7.5 143 10.1 4.9 5.9
vy 203 230 192 228 3l.1 25.5 150 213 394 503 384 508 478 521 33.8 518
2 14.7 154 144 154 199 172 135 14.9 44 4.0 42 3.8 9.0 5.8 3.4 2.9
o 23 146 154 143 15.5 19.7 171 134 150 285 345 272 344 369 374 234 332
2 23.6 244 236 247 287 267 230 249 7.4 6.0 7.0 5.7 12.1 8.4 5.6 4.5
vy 239 246 242 250 287 263 235 254 440 539 439 544 512 565 412 5438
vi 106 153 104 15.2 156 172 9.9 14.7 3.4 3.9 33 3.7 7.8 5.5 3.0 3.0
0 vy 16.6 155 16.3 155 217 171 154 147 325 345 315 344 408 374 277 332
vi 206 245 205 249 259 263 192 253 6.2 6.0 5.9 5.6 10.9 7.9 4.6 4.6
vy - 250 246 253 250 297 263 250 254 ng 462 539 461 544 531 56.6 445 548
vi 18.8 153 18.6 153 241 17.1 174 146 5.6 3.9 5.2 3.7 10.2 5.7 4.1 2.9
vy 124 153 12.1 153 17.5 16.6 11.4 14.9 23.6 342 222 342 318 373 19.0 334
P vi 260 244 263 246 309 266 262 249 8.3 5.9 7.9 5.7 13.0 84 6.4 45
vy 222 245 224 248 273 259 214 252 41.1 53.6 406 540 48,6 562 37.0 547
vy 14.7 153 144 152 199 172 135 14.6 44 3.9 42 3.6 9.0 5.5 3.4 2.9
vy 146 153 143 153 19.7 167 134 1438 285 343 272 342 369 372 234 332
P vi 236 245 236 250 287 263 230 251 7.4 6.0 7.0 5.6 12.1 7.9 5.6 4.6
vy 239 244 242 248 287 259 235 252 44.0 535 439 540 512 562 412 546
vy 15.1 157 151 15.8 18.5 17.3 14.7 15.6 2.9 2.4 2.7 23 5.7 3.6 2.3 2.0
vy 15.1 157 149 158 183 172 145 15.6 354 431 340 429 418 448 29.1 403
& v 245 252 248 254 276 266 250 261 4.8 3.6 4.6 3.4 7.6 4.9 3.6 2.7
vy 241 250 243 254 274 265 245 259 528 646 529 649 590 662 50.1  64.1
vy 10.9 154 108 154 140 172 108 15.4 2.4 2.4 2.4 2.3 5.5 3.6 22 1.9
) 23 16.8 15.5 168 157 206 172 165 152 404 433 394 429 467 449 342 399
v 212 246 212 249 247 263 210 255 4.0 3.5 3.8 33 6.8 4.9 3.0 2.7
2 s 19.5 15.8 194 158 229 173 18.9 154 - 552 647 554 649  6l1.1 66.1 53.7 640
vy 12.8 156 126 155 16.0 17.1 12.3 15.6 3.6 2.5 34 2.4 6.4 3.6 2.7 1.9
s 23 252 248 255 249 288 265 257 255 292 433 280 429 358 446 232 403
v 226 246 225 250 @ 26.1 26.1 224 258 5.4 3.6 5.2 3.4 8.2 4.9 42 2.6
vy 27.0 250 272 251 300 265 279 256 497 647 493 647 557 655 455 644
vi 7.7 7.9 7.7 7.9 10.5 9.2 8.0 7.8 2.9 2.5 2.7 23 5.7 3.5 23 1.9
4 vy 7.6 7.9 7.6 8.0 10.4 9.0 7.8 8.1 354 432 340 429 418 446  29.1 401
vi 124 127 124 12.7 15.5 14.2 122 124 4.8 3.5 4.6 33 7.6 4.9 3.6 2.7
vy 123 12.8 12.2 12.8 15.5 14.0 11.9 12.7 528 646 529 647 59.0 655 50.1 644
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Table 8. Effect on ANOMC (AC) and ANOM (A) in the presence of heterogeneous

variances (type I error %) for fixed treatment level (t = 4).

Balanced Design Unbalanced Design
P v n (0,0 (0,3) (2,6) (0,25) n (0,0) (0,3) (2,6) (0,25)
AC A AC A AC A AC A AC A AC A AC A AC A
vy 12.9 14.5 12.0 14.1 23.1 17.0 9.1 12.1 4.6 5.1 42 4.8 10.7 7.3 3.0 3.7
vy 12.6 14.0 11.5 13.6 235 17.0 8.8 114 258 320 242 319 347 344 19.0 30.9
. 2 207 234 19.7 231 307 258 157 213 7.6 7.7 7.0 7.4 143 10.5 4.9 5.9
vy 203 226 192 223 311 260 150 208 394 504 384 51.0 478 525 338 51.6
vy 9.4 14.9 8.8 14.4 19.1 16.8 7.1 12.6 3.7 5.0 34 4.8 9.7 6.9 2.8 3.7
vy 14.2 14.1 13.1 135 252 16.9 9.8 11.5 292 320 278 321 383 342 225 30.8
P2 vi 179 236 168 234 281 25.7 130 218 6.4 7.8 5.8 7.4 13.0 10.1 4.0 5.9
vy 213 226 203 223 321 260 162 207 413 505 407 510 495 525 367 51.5
2 " 16.4 14.6 153 140 266 16.9 11.7 12.0 n4 5.8 5.2 5.2 4.9 123 7.3 3.7 3.7
vy 10.8 14.1 9.9 137 21.1 16.8 7.8 11.6 213 321 19.6  31.8 301 34.4 15.6 314
P v 229 233 219 231 327 258 183 211 8.5 7.7 8.0 7.3 153 10.5 5.8 5.9
vy 189  23.0 177 228 298 256 137 213 368 503 355 508 455 522 303 519
vi 12.9 14.8 12.0 143 231 16.8 9.1 12.6 4.6 5.1 42 4.9 10.7 6.9 3.0 3.7
vy 12.6 14.2 11.5 13.6 235 16.8 8.8 11.7 258 319 242 321 347 344 19.0 313
p vi 20.7 237 19.7 234 307 256 157 215 7.6 7.9 7.0 7.5 143 10.1 49 5.9
vy 203 23.0 192 228 311 25.5 150 213 394 503 384 508 478 521 33.8 51.8
vy 14.7 15.4 14.4 15.4 19.9 17.2 13.5 14.9 44 4.0 42 3.8 9.0 5.8 3.4 2.9
vy 14.6 15.4 143 15.5 19.7 17.1 134 15.0 285 345 272 344 369 374 234 332
. v 236 244 236 247 287 267 230 249 7.4 6.0 7.0 5.7 12.1 8.4 5.6 45
vy 239 246 242 250 287 263 235 254 440 539 439 544 512 565 412 54.8
vy 10.6 153 10.4 152 15.6 17.2 9.9 14.7 3.4 3.9 33 3.7 7.8 5.5 3.0 3.0
vy 16.6 15.5 16.3 155 217 17.1 15.4 14.7 325 345 315 344 408 374 277 332
P2 v 206 245 205 249 259 263 192 253 6.2 6.0 5.9 5.6 10.9 7.9 4.6 4.6
vy 250 246 253 250 297 263 250 254 462 539  46.1 544 531 56.6 445 54.8
23 " 18.8 153 18.6 153 241 17.1 17.4 14.6 " 5.6 3.9 5.2 3.7 10.2 5.7 4.1 2.9
vy 124 153 12.1 153 17.5 16.6 11.4 14.9 23.6 342 222 342 318 373 19.0 334
P2 2 260 244 263 246 309 266 262 249 8.3 5.9 7.9 5.7 13.0 8.4 6.4 45
vy 222 245 224 248 273 259 214 252 41.1 53.6 406 540 486 562 370 54.7
2 14.7 153 14.4 152 19.9 17.2 13.5 14.6 4.4 3.9 42 3.6 9.0 55 3.4 2.9
vy 14.6 153 143 153 19.7 16.7 134 14.8 285 343 272 342 369 372 234 332
P vi 236 245 236 250 287 263 230 251 7.4 6.0 7.0 5.6 12.1 7.9 5.6 4.6
vy 239 244 242 248 287 259 235 252 440 535 439 540 512 562 412 54.6
2 15.1 15.7 15.1 15.8 18.5 17.3 14.7 15.6 2.9 24 2.7 23 5.7 3.6 23 2.0
vy 15.1 15.7 14.9 15.8 183 17.2 14.5 15.6 354 431 340 429 418 448 291 403
~ v 245 252 248 254 276 266 250 @ 26.1 4.8 3.6 4.6 34 7.6 49 3.6 2.7
vy 24.1 250 243 254 274 265 245 259 528 646 529 649 590 662 501 64.1
vi 10.9 154 10.8 154 14.0 17.2 10.8 154 2.4 2.4 2.4 2.3 5.5 3.6 22 1.9
vy 16.8 15.5 16.8 157 206 17.2 16.5 15.2 404 433 394 429 467 449 342 39.9
Pe vi 212 246 212 249 247 263 210 255 4.0 3.5 3.8 33 6.8 49 3.0 2.7
2 19.5 15.8 19.4 158 229 17.3 18.9 154 552 647 554 649 611 66.1 53.7 64.0
vi " 12.8 15.6 12.6 15.5 16.0 17.1 123 15.6 " 3.6 2.5 34 2.4 6.4 3.6 2.7 1.9
vy 252 248 255 249 288 265 257 255 292 433 280 429 358 446 232 40.3
P v 226 246 225 250 261 261 224 258 5.4 3.6 5.2 34 8.2 4.9 42 2.6
vy 27.0 250 272 251 30,0 265 279 256 497 647 493 647 557 655 455 64.4
vy 7.7 7.9 7.7 7.9 10.5 9.2 8.0 7.8 29 2.5 2.7 2.3 5.7 35 2.3 1.9
vy 7.6 7.9 7.6 8.0 104 9.0 7.8 8.1 354 432 340 429 418 446 291 40.1
p vy 12.4 12.7 12.4 12.7 15.5 14.2 12.2 12.4 4.8 35 4.6 33 7.6 4.9 3.6 2.7
vy 12.3 12.8 12.2 12.8 15.5 14.0 11.9 12.7 528 646 529 647 590 655 501 64.4
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Table 9. Effect on ANOMC (AC) and ANOM (A) in the presence of heterogeneous
variances (type I error %) for fixed treatment level (t = 5).

Balanced Design Unbalanced Design
P v n (0,0) (0,3) (2,6) (0,25) n (0,0) (0,3) (2,6) (0,25)
AC A AC A AC A AC A AC A AC A AC A AC A
2 19.1 232 182 23.1 31.0  26.1 17.1 23.1 9.0 9.9 9.0 9.7 15.1 11.2 9.1 9.4
vy 19.6 235 189 236 31.0 267 173 237 346 403 331 39.8 439 435 285 384
P v 342 393 33.6 397 437 421 312 413 17.8 16.6 17.9 167 218 18.1 17.6 164
vy 348  40.0 345 406 442 426 319 420 55.1 64.3 54.3 64.5 62.6  66.1 498 635
2 139 227 13.6 227 263 258 13.8 232 7.0 9.5 7.2 9.5 14.0 11.0 7.9 9.4
vy 229 236 219 237 338 266 19.9 237 403 403 390 399 497  43.1 342 383
P2 v 370  40.0 367 406 456 42,6 346 418 15.4 16.6 15.5 16.6 203 17.8 153 164
vy - 30,0 390 292 397 406 414 267 410 e 579 642 576 645 65.1 66.1 543 634
2 222 233 213 232 339 260 19.6 231 10.1 9.8 10.0 9.7 15.6 11.0 10.0 9.4
vy 144 237 138 238 262 264 139 242 256 403 242 402 345 433 214 387
P v 364 393 359 398 452 420 338 414 18.9 16.6 18.9 16.8 224 18.1 188 164
vy 30.6 403 30.0 409 407 422 273 422 494 636 483 63.8 575 662 426 634
vy 19.1 22.7 182 226 310 255 17.1 23.1 9.0 9.5 9.0 9.5 15.1 10.9 9.1 9.3
o4 vy 19.6  23.6 189 237 31.0 262 17.3 24.0 346 402 33.1 40.0 439 434 285 386
vy 342 390 336 397 437 411 312 409 17.8 16.6 17.9 16.6 218 17.8 17.6 164
vy 348 403 345 408 442 420 319 419 55.1 63.6 543 63.7 62,6  66.1 498 634
vy 23.7 245 237 247 294 263 249 260 12.4 11.3 12.5 11.5 16.0 12.6 134 117
vy 242 247 244 247 290 269 251 25.5 403 444 388 439 467 465 337 413
. 2 405 412 41.1 417 441 423 423 436 23.0 19.6 232 19.6 256 206 241 202
vy 405 41.0 411 415 444 430 423 433 619 692 616 693 664 700 576 672
vy 175 245 177 249 234 264 193 26.1 9.5 11.3 9.8 11.4 14.1 124 113 11.6
0 vy 27.8 247 281 247 326 268 286 254 463 443 45.1 43.7 526 465 402 412
vy 36.1 414 366 420 405 426 373 436 204 194 208 195 233 206 214 203
vy n, 426  41.0 433 41.6 462  43.0 450 432 - 649 692 648 693 69.1 699 621 672
vy 275 245 27.6 249 327 261 28.6 258 13.8 11.3 14.1 11.6 17.0 12.6 145 117
vy 180 246 183 250 233 268 19.9 257 302 447 287 443 362 464 253 417
Ps v 425 412 433 417 46.1 423 450 436 23.0 19.5 232 19.5 256 205 24.1 203
vy 364 408 366 416 404 426 376 436 56.1 689 554 687 613 70.3 503 677
2 237 245 237 249 294 262 249 259 12.4 11.3 12.5 11.3 16.0 12.3 134 115
vy 242 247 244 250 290 267 251 25.6 403 448 388 442 467  46.1 33.7 415
p v 405 415 411 419 441 42,6 423 436 23.0 19.5 232 19.5 256 205 24.1 203
vy 40.5 407 41.1 416 444 426 423 436 619 689 616 687 664 703 576 615
vy 250 253 253 253 282 264 267 260 153 11.9 153 12.1 16.7 12.6 164 123
vy 248 249 250 250 283 267 257 258 392 441 388 440 424 451 369 426
P v 41.6 417 423 423 444 427 439 436 272 208 273 206 278 212 283 211
vy 412 414 416 420 444 430 430 437 60.7 680 608  68.1 63.3 688 599 676
vy 19.0 251 193 252 220 263 208 260 114 11.8 11.8 11.8 134 12.4 132 122
vy 284 249 28,6 251 320 266 294 257 450 442 447 441 482 450 434 426
P2 vy 376 419 38,0 421 403 427 392 435 24.5 203 245 205 252 211 255 21.1
vy - 412 414 416 420 444 430 430 437 - 634 680 638 682 660 688 637 67.6
vy 286 251 292 253 318 266 305 25.8 17.1 11.8 17.3 11.9 18.2 12.5 18.1 12.3
vy 186  25.0 188 252 222 264 201 25.8 29.6 439 292 437 327 452 274 429
P 2 437 418 444 421 464 427 464 436 28.3 208 284 207 289 212 294 212
vy 37.1 417 373 420 404 428 383 436 548 680 547 679 577 685 533 678
vy 250 250 253 25.1 282 263 26.7 259 153 11.8 153 11.8 16.7 124 164 121
o4 vy 248 249 250 251 283 26.3 257 258 392 439 388 438 424 452 369 429
vy 41.6 419 423 422 444 426 439 434 272 204 273 205 278 212 283 211
vy 412 417 416 420 444 428 43.0 436 60.7  68.1 60.8  68.0 633 686 599 678
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To be more specific, the prime findings of the effect of heterogeneity on the ANOMC and ANOM

tests are listed below:

1) Under the balanced design, both tests (ANOMC and ANOM) are affected due to heterogeneity
of variances, but the ANOMC test is less affected than the ANOM test in normal and non-
normal environments except for exponential distribution.

2) Under the unequal sample sizes (unbalanced design), the same findings are still valid.

3) The ANOMC test has a higher type I error rate (%) when large sample sizes are associated
with more substantial variances, while the ANOM test has a higher type I error rate (%) in the
presence of an inverse relationship between sample sizes and variances.

The performance of both tests (ANOMC and ANOM) under heterogeneity is decreased with the

increase in heterogeneity level. Meanwhile, when correlations are equal (p; and p,), the ANOMC test
may produce relatively same percentage type I error rates.

4.3. Non-null cases under homogeneity of variances

For the null case, data has been sampled from a common population (y; = u, = -+ = u,), and
hence, any significance between treatment means attributed as sampling error and measured in terms
of percentage type I error (). The non-null case consists of data that has been sampled from a
population having at least one different mean, and the significance between the treatment means is
measured in terms of the percentage power of the test (1 — ). In this study, nine different non-null
cases (0,_1¢) are studied to examine the power of ANOMC and ANOM tests. Under the homogeneity
of variances, the effect of several non-null cases on ANOMC and ANOM tests with respect to different
correlation choices, distributional environments, and treatment levels (t = 3,4 and 5) are given in
Table 10 for n,, Table 11 for n, and Figures 1-4 for n, , n;, ng and n.

4.3.1. Under the balanced design

The effect of several non-null cases on the ANOMC and ANOM tests with respect to
distributional environments, treatment levels, and sample (n;,n, and n3) are given in Table 10 and
Figures 1 and 2.

At the fixed sample size (n4): The findings of the ANOMC and ANOM tests at the fixed sample
size n, are reported in Table 10. At fixed correlations p;, treatment level (t = 3) and under Cauchy
distribution, the findings of the non-null case §, reveals that the ANOMC test has 46.3% power as
compared to 45.8% power of the ANOM test. However, the ANOMC and ANOM tests have 32.7%
and 28.9% power for the non-null case §, under the exponential distribution. Further, under the
double exponential distribution, the ANOMC and ANOM tests have 22.3% and 25.9% power for the
non-null case §¢ and under the normal distribution; the ANOMC test has 18.0% power as compared
to 21.9% power of the ANOM test for the non-null case dg.

At the fixed sample size (n,): The comparative analysis of the ANOMC and ANOM tests based
on several non-null cases for the sample size choice n, are exhibited in Figure 1. At fixed t = 4,
p3, and &3 under the normal distribution, the findings depict that the ANOMC test has 34.0% power
as compared to 28.6% power of the ANOM test. The ANOMC and ANOM tests have 33.1% and 27.8%
power for the non-null case &5 under the double exponential distribution, while under the exponential
distribution, the ANOMC and ANOM tests have 43.1% and 30.4% power for the non-null case §;.
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Furthermore, for the non-null case 69 under the Cauchy distribution, the ANOMC test has 47.2%
power as compared to 36.1% power of the ANOM test.

At the fixed sample size (n3): Several non-null cases for the ANOMC and ANOM tests at a
fixed sample size n; are presented in Figure 2. When the treatment level (t = 5) and correlations
(ps) are fixed than the findings of the non-null case &, shows that under double exponential
distribution, the ANOMC test has 99.6% power as compared to 81.3% power of the ANOM test.
Further, the ANOMC and ANOM tests have 98.4% and 67.4% power for the non-null case §, under
the normal distribution. Under the exponential distribution, the ANOMC and ANOM tests have 99.7%
and 82.9% power for the non-null case §¢ while for the non-null case §;y under the Cauchy
distribution, the ANOMC test has 98.1% power as compared to 78.7% power of the ANOM test.
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Figure 1. Effect of non-null cases on tests (ANOMC and ANOM) in terms of % power
under homogeneous variances and balanced design case (n, ).
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Table 10. Effect of non-null cases on tests (ANOMC (AC) and ANOM (A)) in terms of %

power under homogeneous variances and balanced design case (n,).

t=3 t=4 t=5

p 6 (0,0) 0,3) (2,6) (0,25) (0,0) (0,3) (2,6) (0,25) (0,0) 0,3) 2,6) (0,25)
AC A AC A AC A AC A AC A AC A AC A AC A AC A AC A AC A AC A
8, 229 281 26.6 31.1 374 342 463 458 212 27.6 246 305 356 320 43.6 447 200 272 232 30.1 354 315 429 450
§; 19.0 23.1 220 257 32.8 285 399 39.1 148 194 169 21.9 29.1 234 320 333 135 183 153 204 287 229 285 322
8, 190 233 21.8 259 327 289 39.8 389 140 186 158 20.6 284 228 307 317 161 226 184 251 315 272 339 381
85 227 278 265 309 37.1 342 459 451 149 197 169 21.7 29.7 244 324 335 160 223 187 247 314 259 355 380
p1 8 193 232 223 259 329 286 399 393 209 285 238 312 36.6 343 423 459 209 297 239 328 369 350 425 481
§, 192 235 219 259 32.6 285 40.1 39.1 18.6 242 21.6 269 329 286 39.1 404 179 246 208 274 333 290 393 416
8 180 219 205 241 31.3 269 378 370 184 240 21.3 267 33.1 287 39.1 397 180 249 210 278 338 293 396 417
8y 179 220 205 243 312 268 373 369 17.6 23.0 200 256 319 275 365 386 169 239 195 264 325 281 370 403
8, 176 214 203 238 31.1 269 378 365 17.5 229 199 253 317 277 367 380 172 242 198 267 330 284 374 404
6, 282 282 326 31.1 453 339 534 454 28.6 277 334 305 456 31.8 550 439 247 273 295 30.1 43.1 312 522 44.1
63 231 232 269 257 404 285 46.8 38.8 20.0 19.6 23.1 21.8 37.1 233 415 328 16.7 18.5 190 206 339 227 351 31.7
6, 21.6 214 249 237 38.1 267 44.1 363 192 183 22.1 204 36.5 22.6 398 312 198 227 227 248 379 269 410 37.7
6s 231 232 268 257 393 28.7 46.6 385 20.8 19.6 239 21.5 38.1 242 418 327 198 22.1 233 245 378 256 439 373
p2 06 279 279 324 309 43.6 34.1 52.5 447 288 285 327 31.1 474 341 532 452 256 29.7 29.1 326 442 346 50.1 47.7
6, 232 236 269 260 404 285 46.7 39.1 248 245 29.0 27.0 41.7 282 49.7 397 218 246 260 273 404 28.6 48.0 40.9
8g 233 235 269 259 362 282 462 389 26.6 239 305 264 394 279 499 392 252 249 29.1 274 394 288 487 40.9
8o 21.7 219 252 242 383 269 443 36.8 229 235 26.7 25.6 40.0 272 46.7 379 209 239 244 263 392 280 456 39.7
810 21.5 221 249 242 354 26.8 434 36.8 246 228 28.0 25.1 38.0 272 469 375 237 241 27.0 266 383 28.0 46.1 39.7
6, 350 281 404 310 462 333 59.8 447 304 273 348 30.5 429 31.6 55.1 443 273 274 317 303 415 312 524 44.5
6; 289 231 334 256 399 279 534 383 20.6 194 236 212 33.0 229 413 328 16.7 18.7 192 206 313 228 351 31.7
6, 264 215 305 237 377 262 504 36.1 193 182 21.8 203 322 222 398 31.1 208 227 237 251 353 266 415 38.0
65 283 232 33.0 256 41.1 283 534 384 19.6 195 228 21.6 33.7 24.0 41.7 327 215 223 248 245 356 257 443 375
p3 O0¢ 347 27.8 40.1 30.7 483 334 60.5 444 287 283 324 312 425 336 S53.1 453 282 299 319 329 432 344 520 47.8
6, 29.0 233 335 258 40.1 28.0 533 385 269 243 305 26.7 39.7 283 503 397 246 248 284 273 39.1 28.6 487 41.3
6g 288 235 33.6 26.1 446 279 543 385 24.6 242 28.8 265 42.0 284 497 394 21.0 241 247 267 397 283 457 40.0
8y 267 21.6 307 237 382 263 50.7 364 248 227 282 252 385 273 469 378 23.1 240 262 263 378 279 460 39.8
810 27.0 219 312 240 41.7 262 51.6 364 23.0 229 26.7 252 40.0 275 469 376 220 251 264 276 409 290 481 41.1
6, 448 279 506 308 58.1 332 684 442 437 278 49.6 304 57.1 313 682 433 433 274 492 298 574 308 682 43.5
63 368 232 423 254 510 28.0 61.7 382 28.6 194 330 21.5 444 229 537 323 247 18.7 287 204 422 225 492 31.1
6, 334 217 387 237 48.0 26.1 589 359 274 183 31.5 20.0 433 222 51.7 306 309 228 353 250 479 262 56.6 374
65 363 234 418 257 507 282 61.7 379 288 195 335 21.5 452 237 53.8 321 335 222 387 244 491 252 602 36.4
ps O0g 443 28.0 504 30.8 57.8 333 683 44.1 402 283 452 30.8 563 33.6 658 445 409 298 462 326 570 341 67.1 47.1
6, 368 235 424 256 512 28.1 61.8 38.1 374 245 429 268 519 280 63.1 390 382 250 438 274 532 281 64.2 40.2
8g 363 237 421 259 508 27.7 619 385 374 243 427 265 523 28.0 62.6 389 387 249 443 274 535 283 643 40.2
8o 335 219 386 239 482 262 592 36.0 33.8 23.1 38.8 254 495 27.0 59.6 373 349 240 40.1 264 509 274 61.7 39.0
810 33.7 22.1 389 240 48.1 26.1 59.0 36.0 34.1 229 389 250 49.7 27.1 592 370 356 242 405 265 S5l.1 276 614 38.9
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Table 11. Effect of non-null cases on tests (ANOMC (AC) and ANOM (A)) in terms of %
power under homogeneous variances and unbalanced design case (n,).

t=3 t=4 t=5
p & (0,0) 0,3) (2,6) (0,25) (0,0) 0,3) (2,6) (0,25) (0,0) 0,3) (2,6) (0,25)
AC A AC A AC A AC A AC A AC A AC A AC A AC A AC A AC A AC A
8, 398 457 443 489 525 515 616 612 257 357 297 394 415 408 497 539 651 69.6 683 715 726 725 784 78.0
83 293 347 333 376 427 397 506 50.1 153 21.6 172 239 293 249 320 358 246 303 272 325 36.6 332 419 428
8, 235 283 265 308 365 322 424 424 141 196 158 21.7 283 235 293 33.0 355 427 39.1 454 483 465 560 565
85 222 264 247 287 353 307 405 397 140 193 158 21.6 284 240 287 324 475 530 517 558 582 56.6 66.7 66.0
P 8 247 293 277 319 385 345 445 430 207 295 232 325 364 343 400 460 451 536 490 564 573 581 662 67.0
8, 351 403 39.1 436 477 460 569 563 228 320 264 355 386 37.0 458 502 614 66.1 652 684 70.1 699 765 76.0
8§ 197 238 219 258 281 279 367 360 152 21.1 169 233 273 245 314 346 20.1 244 216 256 278 259 343 343
8§ 324 377 366 409 449 431 543 537 21.1 300 246 332 37. 355 429 482 582 635 625 658 678 674 748 743
S0 196 239 219 261 292 281 365 368 150 208 166 230 27.6 248 298 343 217 274 238 293 319 302 370 387
6, 529 456 577 488 644 512 718 605 41.0 357 462 388 571 405 651 529 848 695 86.0 715 863 727 895 7718
6; 404 347 448 371 547 39.6 618 495 248 216 27.6 23.6 426 246 455 349 381 304 413 325 534 330 574 419
6, 327 281 362 303 482 321 536 413 229 197 253 21.6 406 23.1 426 322 529 427 569 454 655 463 714 559
8 308 261 342 282 461 304 512 388 232 195 252 214 407 23.6 418 319 675 534 713 558 749 563 80.6 653
pa 8 342 291 379 314 490 342 547 425 337 295 369 323 522 342 555 453 633 53.6 67.1 562 73.6 57.6 79.7 66.3
6, 471 403 515 433 59.6 458 675 558 364 321 414 352 536 367 614 492 820 663 836 683 845 699 882 757
8 272 240 30.1 258 354 274 463 356 259 213 285 231 363 243 457 337 323 241 349 258 384 259 49.6 339
8, 441 376 484 405 562 427 647 53.0 33.6 303 386 331 514 349 586 471 79.1 635 812 657 831 675 869 737
8, 273 239 300 259 374 280 463 363 248 21.1 272 230 367 244 438 334 337 274 365 289 437 299 521 386
6, 549 456 593 485 647 512 727 60.6 33.6 359 385 39.1 468 40.7 584 533 738 694 760 713 789 726 828 779
6; 405 348 451 374 515 390 625 497 179 213 208 237 306 246 381 356 260 305 292 323 366 33.0 458 428
6, 31.1 283 353 307 424 31.7 538 41.7 160 196 185 21.6 288 232 354 325 402 425 445 451 509 463 612 563
85 291 265 333 286 41.6 304 516 390 154 196 178 21.6 286 239 344 319 554 529 593 554 635 568 719 657
ps 8¢ 340 294 386 31.6 473 341 563 425 230 295 266 326 374 343 467 454 518 53.6 56.0 562 619 579 715 668
6, 482 404 530 434 586 454 681 559 295 320 342 355 433 37.0 540 49.7 70.1 658 729 681 763 699 809 758
8 258 241 295 258 359 275 482 357 164 21.1 193 233 311 245 37.6 343 195 238 221 256 295 260 385 339
8, 447 378 49.6 405 549 426 655 534 270 301 31.1 331 415 355 507 475 669 634 699 654 739 678 79.0 741
8, 256 239 294 258 36.0 279 479 361 161 21.1 185 229 308 247 355 338 222 272 249 292 336 299 410 388
6, 728 456 758 485 78.6 S51.1 830 60.1 550 359 60.1 389 664 40.1 747 525 959 69.1 954 712 957 728 950 777
6; 405 348 451 374 515 39.0 625 49.7 30.6 214 348 234 465 242 546 346 506 302 545 319 634 326 69.1 41.7
6, 456 278 502 300 585 314 666 409 275 195 313 215 441 228 512 318 69.7 428 73.0 449 773 46.0 81.7 555
8 430 263 47.6 284 565 299 644 385 270 196 307 213 443 23.6 504 313 850 530 861 553 875 563 893 651
Py Os 486 292 535 314 608 339 685 419 398 295 446 321 575 341 642 446 805 53.7 831 559 855 572 89.0 659
8, 659 40.1 69.7 431 732 451 791 552 49.0 321 544 351 622 365 708 48.6 943 659 939 680 946 70.0 942 755
8 381 240 426 256 467 272 605 352 307 213 352 233 432 241 551 335 420 238 461 253 477 257 628 333
8, 620 377 66.0 403 698 424 768 528 447 303 49.8 331 593 349 67.8 465 926 634 925 653 93.6 676 933 73.6
8, 375 237 419 256 478 276 599 358 286 21.0 325 230 425 242 524 332 442 272 483 289 527 300 651 382
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Figure 2. Effect of non-null cases on tests (ANOMC and ANOM) in terms of % power
under homogeneous variances and balanced design case (n; ).

4.3.2.  Unbalanced design

The comparative analysis of the ANOMC and ANOM tests with respect to several non-null cases,
distributional environments, treatment levels, and sample sizes (n,, ng and ng) are given in Table 11
and Figures 3 and 4.

At the fixed sample size (n4): The effect of several non-null cases on the performance of
ANOMC and ANOM tests with respect to distributional environments and treatment levels are
reported in Table 11. On the fixed treatment level (t = 5), correlations (p,), non-null case (J,), and
under double exponential distribution, the ANOMC test has 95.4% power as compared to 71.2% power
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of the ANOM test. Under the normal distribution, the ANOMC and ANOM tests have 69.7% and 42.8%
power for the non-null case §, and under the exponential distribution, the ANOMC and ANOM tests
have 85.5% and 57.2% power for the non-null case §¢. Further, for the non-null case §;¢ and under
the Cauchy distribution, the ANOMC test has 65.1% power as compared to 38.2% power of the ANOM
test.

At the fixed sample size (ng): The performance analysis of the ANOMC and ANOM test at a
fixed sample size ng are presented in Figure 3. For the fixed treatment level (t = 4) having the fixed
correlations (p3), the findings of the non-null case 85 depicts that under the normal distribution, the
ANOMC test has 49.7% power as compared to 41.3% power of the ANOM test. The ANOMC and
ANOM tests have 41.5% and 33.9% power for the non-null case d5 under the double exponential
distribution. Further, under the exponential distribution, the ANOMC and ANOM tests have 81.5%
and 68.5% power for the non-null case &, while for the non-null case &9 under the Cauchy
distribution, the ANOMC test has 82.0% power as compared to 71.9% power of the ANOM test.
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Figure 3. Effect of non-null cases on tests (ANOMC and ANOM) in terms of % power
under homogeneous variances and unbalanced design case (ng).
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At the fixed sample size (ng): Several non-null cases for the ANOMC and ANOM tests at a
fixed sample size ng are presented in Figure 4. At fixed equal correlations (p,) having the
treatment level (t = 3), the findings of the non-null case §, reveal that under the Cauchy
distribution, the ANOMC test has 94.7% power as compared to 85.8% power of the ANOM test.
Further, under the exponential distribution, the ANOMC and ANOM tests have 72.7% and 53.6%
power for the non-null case §, and under the double exponential distribution, the ANOMC and
ANOM tests have 59.9% and 43.6% power for the non-null case 8¢ while for the non-null case
0g under the normal distribution, ANOMC test has 47.5% power as compared to 35.0% power of
the ANOM test.
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Figure 4. Effect of non-null cases on tests (ANOMC and ANOM) in terms of % power
under homogeneous variances and unbalanced design case (ng).

Overall, the performance of both tests (ANOMC and ANOM) increases with the increase in
sample sizes, but the ANOMC test performs relatively better than the ANOM test. Moreover, the
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performance of both tests (ANOMC and ANOM) also increases due to the increase in correlation
between the study variable and the concomitant variable. Furthermore, when sample sizes are unequal,
the performance of both tests is affected by the inverse relationship between sample sizes and the size
of shifted means.

5. Experimental examples

In this section, two illustrative examples from different experimental situations are discussed to
compare the performance of the proposed method ANOMC and the ANOM test.

5.1. An illustrative example of the balanced case

For equal sample sizes (balanced case), the ANOM and ANOMC methods are implemented
on the mechanical manufacturing problem dataset. Electrical discharge machining (EDM) is a
frequently used method in the manufacturing industry. Dutta et al. [54] described an
experimental study to investigate the effects of EDM parameters (i.e., pulse current, pulse-on-
time, and pulse-off-time) on machining time and surface roughness for machining Inconel 800.
The experimental work was carried out on the Electronic4-axis CNC sprint cut wire electrical
discharge machine. A negatively polarized brass wire of diameter 0.25mm with a tensile strength
of 500N/mm was used as an electrode. Deionized water was used as the dielectric fluid. Samples
of size 25mmx*25mmx*5mm were cut on the machine, and the machining time (min) and surface
roughness (um) with the pulse current (amp) are reported therein. In this example, we are
considering surface roughness as the study variable, machining time as a concomitant variable
and both variables are reported with several levels of pulse current (amp). It is noted that surface
roughness has a linear relation with machining time based on ten experiments, excluding the first
and seventh experiments. Therefore, 10 observations (n = 10) with respect to the three levels
(t = 3) of pulse current (i.e., 210um, 220um and 230um) are used to implement ANOM and
ANOMC methods.

The ANOM method is applied to the observations of surface roughness without incorporating the
concomitant variable machining time, and the results are plotted in Figure 5. The overall average (Y)
and mean square error (MSE) of surface roughness are calculated as 3.072 and 0.318, respectively.
Using Table 2, the critical value (i.e., h(a,t,N —t) = 2.51) is fixed against the level of
significance @ = 5%. Further, the individual means of pulse current levels are plotted against the
decision interval (i.e., UDL = 2.706 and LDL = 3.437) gives evidence of not rejecting the null
hypothesis, i.e., no individual average differs from the overall average. Hence, the power of all pulse
current levels to detect the difference in surface roughness is likely small.

Further, the ANOMC method is applied for testing the means of surface roughness without ignoring the
effect of machining time. The surface roughness and machining time correlations are calculated as -0.964433,
-0.9618967, and -0.8263165 with respect to pulse current levels. Moreover, the regression means are calculated
for each pulse current level, and the overall regression average (M ), and mean square error of regression mean
estimator (M SE M“) are estimated as 3.073646 and 0.07143622, respectively. Using Table 2, the critical value
(ie., h*(a,t,n) = 8.6)is fixed against the level of significance @ = 5%. Further, the graphical representation
of the ANOMC under balanced design is also plotted in Figure 5, where individual regression means are plotted
against the decision interval (i.e., UDL = 2.915021 and LDL = 3.232271). The findings reveal that all
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individual regression averages differ from the overall regression average, which is evidence of the significance
of surface roughness with respect to pulse current levels.
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Figure 5. Results of ANOM and ANOMC methods for EDM problem.
5.2. An illustrative example of the unbalanced case

For the unbalanced design (unequal sample sizes), dataset related to medical science is used,
where the effect on participants and partner libidos are reported with respect to three Viagra dosages.
The complete data set having three treatments (Viagra dosages) with different sample sizes of
participants and partner libido is reported in Table 11.1 on page no. 400 [77]. The first Viagra dosage
(Placebo) has 9 samples of participant and partner libidos, while other Viagra dosages (Low dose and
High dose) have 8 and 13 samples of participant and partner libidos, respectively.

In this example, we used the number of participant libido as a study variable (Y), while the
number of partner libido is used as a covariate (X). The graphical layout of the ANOM method is
presented in Figure 6. The ANOM test is applied to the participant’s libido observations by ignoring
the partners' libido effect. Using Table 2, the critical value m(a,t,N —t) = 2.53 is fixed against
the 5% level of significance. The overall average (Y ), and mean square error (MSE) of participant
libidos are calculated as 4.366667 and 3.486032, respectively. The individual means of Viagra
dosage are plotted against the decision intervals, ie., UDL =
(5.684055;5.796851; 5.352897) and LDL = (3.049278; 2.936483; 3.380436) ), which reveals
that all individual averages are statistically insignificant. Hence, all Viagra dosages have a similar
effect on participant’s libido.

The ANOMC method is applied for testing the means of participants’ libido without ignoring the
effect of partners’ libido. The correlations of participant and partner libidos are calculated as 0.8829347,
0.9718268, and -0.1688756 with respect to Viagra dosages. Using Table 2, the critical value
h*(a,t,n) = 8.63 is fixed against the 5% level of significance. Moreover, the regression means are
calculated for each Viagra dosage, and the overall regression average (M ), and mean square error of
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regression mean estimator (MSE M__) are estimated as 4.641178 and 0.3935578, respectively. The
graphical representation of the ANOMC method under balanced design is also plotted in Figure 6,
where individual regression means are plotted against the decision interval, i.e., UDL =
(5.588390; 5.669491; 5.350285) and LDL (3.693966; 3.612866; 3.932072). The findings reveal
that only individual regression averages related to the placebo drug are different from the overall

regression average, which is evidence that a placebo drug has a different effect on the participant’s
libido.
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Figure 6. Results of ANOM and ANOMC methods for the Viagra dosage example.
6. Conclusions

ANOVA is the most commonly used technique to compare the treatment means. An alternative
technique to ANOVA is ANOM, a graphical test used to test whether the treatment means differ from
the grand mean. ANOVA requires multiple comparison tests to identify the significantly different
treatments; however, ANOM does not require any additional test for such identification. This study
proposed a new covariate based ANOM method, namely ANOMC, for the analysis of means. It is used
for testing the significance of means from the grand mean by accommodating the effect of a covariate.
The proposed procedure works under several assumptions, such as normality, linearity, and
homogeneity. The effect of these assumptions, sample sizes (equal or unequal), treatments, and
hypotheses (null and non-null) on ANOM and ANOMC tests are compared in terms of percentage type
I error and percentage power of the test.

The findings of the study revealed that in the case of homogeneity of variances with the null case,
the ANOMC test is not as robust as the ANOM test when the response variable follows a conditionally
large heavy-tailed distribution (e.g., exponential distribution). It is observed that under unequal
correlations, pairing (direct or indirect) of correlations may lead to a change in the percentage type |

AIMS Mathematics Volume 8, Issue 2, 4596-4629.



4621

error rate from pre-specified @ = 5%. Moreover, both tests have approximately similar findings with
the increase in treatment level and sample size. In the presence of heterogeneity of variances with the
null case, both tests are affected, but the ANOMC test is less affected as compared to the ANOM test
in a balanced design under normal and non-normal environments except for exponential distribution.
In an unbalanced design, the ANOMC test is affected when large sample sizes are associated with
more substantial variances, while the ANOM test has a higher type I error rate in the presence of an
inverse relationship between sample sizes and variances. It is also noted that the ANOMC test has
relatively the same percentage type I error rate for equal correlations.

As expected, the power values of the ANOM test and ANOMC test change with respect to effect
size (6), sample size, treatment level, and distribution environment. The performance of both tests
improves with the increase in sample sizes, but the ANOMC test performs relatively better than the
ANOM test. The performance of both tests (ANOMC and ANOM) also increases due to the increase
in correlation between the study variable and the concomitant variable. Moreover, when sample sizes
are unequal, the performance of both tests is affected by the inverse relationship between sample sizes
and the size of shifted means. This study is designed under a limited number of treatments, choices of
sample size (equal and unequal), correlations, and distributional environments, which may be extended
in the future. Moreover, the proposal may also be expanded using the robust regression estimators to
achieve a robust version of the ANOMC method. In the current study, we have used Monte Carlo
simulations. However, developing other tests (integral approach or Markov chain method) for
ANOMC to construct LDL and UDL is a potential direction for future research.
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Appendix

R code for example about EDM problem

y =¢(2.05,2.43,2.79,2.85,3.14,2.12,2.85,3.35,3.19,3.38,2.1,2.79,3.24,3.43,3.59,
2.35,3.34,3.4,3.44,4.02,2.56,2.81,3.17,3.44,4.16,2.31,2.74,3.49,3.65,3.97)
x=¢(31.67,19.25,14.5,12.15,10,26.6,14,9.47,8.88,7.87,30.27,18.3,13.6,11.87,10.1,
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25.4,13.4,8.93,8.07,7.67,29.67,15.28,13.4,11.58,9.07,25,12.3,8.4,7.83,6.13)
t=3;n=10;cl1=2.51;¢c2=8.6

ymat = matrix (y,n,t); xmat = matrix (x,n,t)

par (mfrow =c (1,2))

par (mar =c (2,4.2,2,3), cex = 1)

HEHHHHHH T HEHIHIH I ANOM TestHH BT I I
ybari = apply (ymat, 2, mean); s2i = apply (ymat, 2, var)

ybar = mean (ybari); mse = mean (s21)

1dl = ybar-(c1*sqrt (mse)*sqrt ((t-1)/(n*t)))

udl = ybar + (c1*sqrt(mse)*sqrt ((t-1)/(n*t)))

plot (ybari, ylim = ¢ (2.5,3.5), col = "blue", pch = 20, cex = 1.5, xlab = "Treatments",
ylab = expression (bar (Y~scriptstyle(i.))), xaxt ="n", main = "ANOM")

axis (labels = list ("210 (amp)","220 (amp)","230 (amp)"), side = 1, at = ¢ (1,2,3), cex.axis = 0.75)
g=c0

for (iin 1:t) {

if(ybari[1]>udl|ybari[1]<Id]l){g[i] = ybari[i]} else {g[i] = NA}

b

points (g, cex = 1.5, col = "red", pch = 20, Ity = 2)

abline (h =1dl, v=NULL, col = "green4", Ity = 5)

abline (h = ybar, v=NULL, col = "green4", Ity = 1)

abline (h =udl, v =NULL, col = "green4", Ity = 5)

segments (1, ybar, 1, ybari[1], col = "blue")

segments (2, ybar, 2, ybari[2], col = "blue")

segments (3, ybar, 3, ybari[3], col = "blue")

mtext (("LDL"), side = 4, line = 1, at =Idl, cex = 0.75, col = "Green4")

mtext (expression(paste(bar(Y[..]))), side =4, line = 1, at = ybar, cex = 0.75, col = "Green4")
mtext(("UDL"), side =4, line = 1, at = udl, cex = 0.75, col = "Green4")

HIHHHHHHH BT AN OMC Test #HHHH T T I
sdy = apply (ymat, 2, sd); sdx = apply (xmat, 2, sd)

ybari = apply (ymat, 2, mean); ybar = mean (ybari)

xbari = apply (xmat, 2, mean); xbar = mean (xbari)

rr = beta = mm = k = smm = double ()

for (iin 1:t)

{

rr[i] = cor(ymat[,i], xmat[,i])

beta[i] = rr[1]*(sdy[1]/sdx[i])

mm[i] = ybari[i]-beta[1]*(xbar-xbari[i])

k[i] = sqrt((1-(rr[i]"2))*(1+(1/(n-3))))

smm{[i] = (k[1]*sdy[1])/sqrt(n)

b

mbar = mean (mm); mse = mean (smm)

1dl = mbar-(c2*mse*sqrt((t-1)/(n*t)))

udl = mbar+(c2*mse*sqrt((t-1)/(n*t)))

plot (mm, ylim=c (2.5,3.5), col="blue", pch=20, cex=1.5, xlab="Treatments",
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ylab = expression (bar(M~scriptstyle(i.))), xaxt = "n", main="ANOMC")

axis (labels = list("210(amp)","220(amp)","230(amp)"), side = 1, at = ¢(1,2,3), cex.axis = 0.75)
g=c0

for (iin 1:t){

if(mm[i]>udljmm[i]<ldl){g[i]=mm][i]} else {g[i]=NA}

b

points (g, cex=1.5, col="red", pch=20,1ty=2)

abline (h =1dl, v=NULL, col = "green4", Ity = 5)

abline (h = mbar, v=NULL, col = "greend", Ity = 1)

abline (h =udl, v=NULL, col = "green4", Ity = 5)

segments (1, mbar, 1, mm[1], col="blue")

segments (2, mbar, 2, mm[2], col="blue")

segments (3, mbar, 3, mm[3], col="blue")

mtext (("LDL"), side =4, line = 1, at =Idl, cex = 0.75, col = "Green4")

mtext (expression(paste(bar(M[..]))), side = 4, line = 1, at=mbar, cex = 0.75, col = "Green4")
mtext (("UDL"), side = 4, line = 1, at = udl, cex = 0.75, col = "Green4")

R code for example about viagra dosages problem

p0=c(3,2,5,2,2,2,7,2,4); pl =c(4,1,5,1,2,2,7,4,5)

10 =¢(7,5,3,4,4,7,5,4); 11 =¢(5,3,1,2,2,6,4,2)

h0 =¢(9,2,6,3,4,4,4,6,4,6,2,8,5); h1 =¢(1,3,5,4,3,3,2,0,1,3,0,1,0)

nl = length(p0); n2 = length(10); n3 = length(h0);

t=3;n=c(nl, n2, n3); N =sum(n); cl =2.53; c2 =8.63

par (mfrow = ¢(1,2))

par (mar = ¢(2,4.2,2,3), cex =1)

HIHHIHIHEHHHHRHIHEHE R ANOM Test #HHHHIHIHHHHHHIHIHEHHHHRHHHEHEH R
ybari = ¢(mean(p0), mean(10), mean(h0))

s21 = c(var(p0), var(10), var(h0))

ybar = ((n[1]*ybari[1])+(n[2]*ybari[2])+(n[3]*ybari[3]))/N

mse = ((n[1]-1)*s2i[1])+((n[2]-1)*s2i[2])*+((n[3]-1)*s2i[3]))/(N-t)

1d1 = udl = double()

for (k in 1:t)

{

1d1[k] = ybar-(c1*sqrt(mse)*sqrt((N-n[k])/(N*n[k])))

udl[k] = ybar+(c1*sqrt(mse)*sqrt((N-n[k])/(N*n[k])))

b

plot (ybari, ylim = ¢(2.5,6.5), col = "blue", pch = 20, cex = 1.5, xlab = "Treatments",
ylab = expression(bar(Y~scriptstyle(i.))), xaxt = "n", main="ANOM")

axis (labels = list("Placebo","Low dose","High dose"), side = 1, at = ¢(1,2,3), cex.axis = 0.75)
g=c()

for (1 in 1:t){

if(ybari[i]>udl[i]|ybari[i]<Idl[i]){g[1]=ybari[i]} else {g[i]=NA}

b
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points (g, cex = 1.5, col = "red", pch = 20, Ity = 2)

abline (h = ybar, v=NULL, col = "green4", Ity = 1)

segments (0, udl[1], 1.5, udI[1], col = "green4", Ity = 5)

segments (1.5, udl[2], 2.5, udl[2], col = "greend", Ity = 5)

segments (2.5, udl[3], 3, udl[3], col = "green4", Ity = 5)

segments (0, 1d1[1], 1.5, 1dI[1], col = "greend4", Ity = 5)

segments (1.5, 1dI[2], 2.5, 1d1[2], col = "greend", Ity = 5)

segments (2.5, 1dI[3], 3, 1dI[3], col = "greend4", Ity = 5)

segments (1, ybar, 1, ybari[1], col = "blue")

segments (2, ybar, 2, ybari[2], col = "blue")

segments (3, ybar, 3, ybari[3], col = "blue")

mtext (("LDL"), side = 4, line = 1, at = mean(ldl), cex = 0.75, col = "Green4")
mtext (expression(paste(bar(Y[..]))), side =4, line = 1, at = ybar, cex = 0.75, col = "Green4")
mtext (("UDL"), side = 4, line = 1, at = mean(udl), cex = 0.75, col = "Green4")
HIHHIHIHEHHHHHHHIHHAHH AN OMC Test tHHHHIHIHIHHHHFHHIHEHHRHHIHEHEH T
ybari = ¢(mean(p0), mean(10), mean(h0));

xbari = ¢(mean(p1), mean(11), mean(h1)); xbar = mean(xbari)

sdy = ¢(sd(p0), sd(10), sd(h0))

sdx = c(sd(pl), sd(11), sd(h1))

rrl = cor(p0, pl); 112 = cor(10, 11); rr3 = cor(h0, h1); rr=c(rr1, 12, r13)

beta = mm = k = smm = double ()

for (iin 1:t)

{

beta[i] = rr[1]*(sdy[1]/sdx[i])

mm[i] = ybari[i]-beta[1]*(xbar-xbari[i])

k[i] = sqrt((1-(rr[i]"2))*(1+(1/(n[i]-3))))

smm([i] = (k[i]*sdyi])/sqrt(n[i])

b

mbar = ((n[1]*mm[1])+(n[2]*mm[2])+(n[3]*mm[3]))/N

mse = ((n[1]-1)*smm[1])+((n[2]-1)*smm[2])+((n[3]-1)*smm[3]))/(N-t)

1d1 = udl = double()

for (k in 1:t)

{

1d1[k] = mbar-(c2*mse*sqrt((N-n[k])/(N*n[k])))

udl[k] = mbar+(c2*mse*sqrt((N-n[k])/(N*n[k])))

b

plot (mm, ylim = c(3,6), col = "blue", pch =20, cex = 1.5, xlab = "Treatments",
ylab = expression(bar(M~scriptstyle(i.))), xaxt = "n", main = "ANOMC")

axis (labels = list("Placebo", "Low dose", "High dose"), side = 1, at = ¢(1,2,3), cex.axis = 0.75)
g=c()

for (1in 1:t){

if (mm[i]>udl[i]jmm][i]<Idl[1]){g[i]=mm][i]} else {g[i]=NA}}

points (g, cex = 1.5, col = "red", pch = 20, Ity = 2)

abline (h = mbar, v=NULL, col = "green4", Ity = 1)
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segments (0, udl[1], 1.5, udI[1], col = "greend4", Ity = 5)

segments (1.5, udl[2], 2.5, udl[2], col = "greend", Ity = 5)

segments (2.5, udl[3], 3, udI[3], col = "greend4", Ity = 5)

segments (0, 1d1[1], 1.5, 1dI[1], col = "greend4", Ity = 5)

segments (1.5, 1dI[2], 2.5, 1d1[2], col = "greend", Ity = 5)

segments (2.5, 1dI[3], 3, 1dI[3], col = "greend4", Ity = 5)

segments (1, mbar, 1, mm[1], col = "blue")

segments (2, mbar, 2, mm[2], col = "blue")

segments (3, mbar, 3, mm[3], col = "blue")

mtext (("LDL"), side = 4, line = 1, at = mean(ldl), cex = 0.75, col = "Green4")
mtext (expression(paste(bar(M]..]))), side = 4, line = 1, at = mbar, cex = 0.75, col = "Green4")
mtext (("UDL"), side = 4, line = 1, at = mean(udl), cex = 0.75, col = "Green4")
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