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1. Introduction

Let (X, d) be a geodesic metric space and f : X → (−∞,∞] be a proper and convex function. One
of the major problem in optimization is to find x ∈ X such that

f (x) = min
y∈X

f (y). (1.1)

We denote by

arg min
y∈X

f (y),

the set of a minimizer of a convex function. One of the most effective way of solving problem (1.1) is
the Proximal Point Algorithm (for short term, PPA). Its origin goes back to Martinet [1],
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Rockafellar [2], and Brézis and Lions [3]. Martinet studied the PPA for variational inequalities
whereas Rockafellar showed the weak convergence of the sequence generated by the proximal point
algorithm to a zero of the maximal monotone operator in Hilbert spaces. Güler’s counterexample [4]
showed that the sequence generated by the proximal point algorithm does not necessarily converge
strongly even if the maximal monotone operator is the subdifferential of a convex, proper, and lower
semicontinuous function. Kamimura and Takahashi [5] combined the PPA with Halpern’s
algorithm [6] so that the strong convergence is guaranteed. The proximal point algorithm can be used
in numerous problems such as equilibrium problems, saddle point problems, convex minimization
problems, and variational inequality problems.

Recently, many convergence results for the PPA for solving optimization problems have been
extended from the classical linear spaces such as Euclidean spaces, Hilbert spaces and Banach spaces
to the setting of manifolds [7–10]. The minimizers of the objective convex functionals in the spaces
with nonlinearity play a crucial role in the branch of analysis and geometry. Numerous applications in
computer vision, machine learning, electronic structure computation, system balancing and robot
manipulation can be considered as solving optimization problems on manifolds [11–14].

In 2014, Bačák [15] obtained few results using the proximal point algorithm in CAT(0) spaces. Also,
he employed a splitting version of the PPA to find minimizer of a sum of convex functions, thereby
extending the results of Bertsekas [16] into Hadamard spaces. Following this, many mathematicians
have obtained numerous results involving the proximal point algorithm in the framework of CAT(0)
spaces [17–21,27,28]. It is worth mentioning here that approximating the common fixed points has its
own importance as it has a direct link with the minimization problems. Takahashi [22] and Izhar Uddin
et al. [23] has applied common fixed point approximation to solve split feasibility and optimization
problem. In 2020, Dung and Hieu [24] and Yambangwai et al. [25] studied approximating fixed points
of three mappings and applied their results for image debluggring. Very recently, Yambangwai and
Thianwan [26] applied approximating fixed points of three mappings into mage deblurring and signal
recovering problems. They also showed that results involving three mappings are better than the results
involving one or two mappings.

Fascinated by the ongoing research, in this paper, we propose a new modified proximal point
algorithm for finding a common element of the set of fixed points of three single-valued nonexpansive
mappings, the set of fixed points of three multi-valued nonexpansive mappings and the set of
minimizers of convex and lower semi-continuous functions. We prove few convergence results for the
proposed algorithm under some mild conditions.

2. Preliminaries

In this section, we present some fundamental concepts, definitions, and some results, which will be
used in the next section.

A metric space (X, d) is said to be a CAT(0) space if it is geodesically connected, and if every
geodesic triangle in X is at least as thin as its comparison triangle in the Euclidean plane (see more
details in [29]). A complete CAT(0) space is then called a Hadamard space. Euclidean spaces, Hilbert
spaces, the Hilbert ball [30], hyperbolic spaces [31], R-tress [32] and a complete, simply connected
Riemannian manifold having non-positive sectional curvature are some examples of a CAT(0) space.

Definition 1. A subset D of a CAT(0) space X is said to be convex if D includes every geodesic segment
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joining ant two of its points, that is, for any x, y ∈ D, we have [x, y] ⊂ D, where [x, y] := {αx⊕ (1−α)y :
0 ≤ α ≤ 1} is the unique geodesic joining x and y.

Definition 2. A single-valued mapping T : D→ D is said to be

(i) nonexpansive if d(T x,Ty) ≤ d(x, y) for all x, y ∈ D;
(ii) semi-compact if for any sequence {xn} in D such that

lim
n→∞

d(T xn, xn) = 0,

there exist a subsequence {xni} of {xn} such that {xni} converges strongly to x∗ ∈ D.

We denote the set of all fixed points of T is denoted by F(T ). Now, we state the following lemma
to be used later on.

Lemma 1. ( [33]) Let (X, d) be a CAT(0) space, then the following assertions hold:

(i) For x, y ∈ X and t ∈ [0, 1], there exists a unique z ∈ [x, y] such that

d(x, z) = td(x, y) and d(y, z) = (1 − t)d(x, y).

(ii) For x, y, z ∈ X and t ∈ [0, 1], we have

d((1 − t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z)

and

d2((1 − t)x ⊕ ty, z) ≤ (1 − t)d2(x, z) + td2(y, z) − t(1 − t)d2(x, y).

We use the notation (1 − t)x ⊕ ty for the unique point z of the above lemma.
Now, we collect some basic geometric properties which are instrumental throughout the discussions.
Let {xn} be a bounded sequence in a complete CAT(0) space X. For x ∈ X we write:

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) is given by

r({xn}) = inf{r(x, xn) : x ∈ X}

and the asymptotic center A({xn}) of {xn} is defined as:

A({xn}) = {x ∈ X : r(x, xn) = r({xn})}.

It is well known that, in a complete CAT(0) space, A({xn}) consists of exactly one point [34]. We now
present the definition and some basic properties of the ∆-convergence which will be fruitful for our
subsequent discussion.

Definition 3. ( [35]) A sequence {xn} in a CAT(0) space X is said to be ∆-convergent to a point x ∈ X
if x is the unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case, we write
∆ − limn→∞ xn = x and call x the ∆-limit of {xn}.
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Lemma 2. ( [35]) Every bounded sequence in a complete CAT(0) space admits a ∆-convergent
subsequence.

Lemma 3. ( [36]) If D is a closed convex subset of a complete CAT(0) space X and if {xn} is a bounded
sequence in D, then the asymptotic center of {xn} is in D.

Lemma 4. ( [33]) Let D be a nonempty closed convex subset of a complete CAT(0) space (X, d) and
T : D → D be a nonexpansive mapping. If {xn} is a bounded sequence in D such that ∆ − limn xn = x
and lim

n→∞
d(T xn, xn) = 0, then x is a fixed point of T .

Lemma 5. ( [33]) If {xn} is a bounded sequence in a complete CAT(0) space with A({xn}) = {x}, {un} is
a subsequence of {xn} with A({un}) = {u} and the sequence {d(xn, u)} converges, then x = u.

Lemma 6. ( [23, 37]) Let D be a nonempty closed and convex subset of a CAT(0) space X. Then, for
any {xi}

n
i=1 ∈ D and αi ∈ (0, 1), i = 1, 2, ..., n with

∑n
i=1 αi = 1, we have the following inequalities:

d(⊕n
i=1αixi, z) ≤

n∑
i=1

αid(xi, z), ∀ z ∈ D (2.1)

and

d2(⊕n
i=1αixi, z) ≤

n∑
i=1

αid2(xi, z) −
n∑

i, j=1,i, j

αiα jd2(xi, x j), ∀ z ∈ D. (2.2)

Convex and lower semi-continuous functions on CAT(0) spaces are our principal object of interest
in this paper. Recall that a function f : D→ (−∞,∞] defined on a convex subset D of a CAT(0) space
is convex if, for any geodesic γ : [a, b] → D, the function f oγ is convex, i.e., f (αx ⊕ (1 − α)y) ≤
α f (x) + (1 − α) f (y) for all x, y ∈ D. For some important examples one can refer [38]. Now, a function
f defined on D is said to be lower semi-continuous at x ∈ D if

f (x) ≤ lim inf
n→∞

f (xn)

for each sequence {xn} such that xn → x as n → ∞. A function f is said to be lower semi-continuous
on D if it is lower semi-continuous at any point in D.

For any λ > 0, define the Moreau-Yosida resolvent of f in CAT(0) space as follows:

Jλ(x) = arg min
y∈D

[ f (y) +
1

2λ
d2(y, x)]

for all x ∈ D. The mapping Jλ is well defined for all λ ≥ 0, see [4]. If f is a proper, convex and lower
semi-continuous function, then the set F(Jλ) of the fixed point of the resolvent Jλ associated with f
coincides with the set arg min

y∈D
f (y) of minimizers of f ; refer [38]. Also, for any λ > 0, the resolvent Jλ

of f is nonexpansive, see [39].

Lemma 7. ( [40]) Let (X, d) be a complete CAT(0) space and f : X → (−∞,∞] be a proper, convex
and lower semi-continuous function, then for all x, y ∈ X and λ > 0, we have

1
2λ

d2(Jλx, y) −
1

2λ
d2(x, y) +

1
2λ

d2(x, Jλx) + f (Jλx) ≤ f (y).
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Lemma 8. ( [39,41]) Let (X, d) be a complete CAT(0) space and f : X → (−∞,∞] be a proper, convex
and lower semi-continuous function. Then the following identity holds:

Jλx = Jµ(
λ − µ

λ
Jλx ⊕

µ

λ
x)

for all x ∈ X and λ > µ > 0.

Let CB(D), CC(D) and KC(D) denote the families of nonempty closed bounded subsets, closed
convex subsets and compact convex subsets of D, respectively. The Pompeiu-Hausdorff distance [42]
on CB(D) is defined by

H(A, B) = max{sup
x∈A

dist(x, B), sup
y∈B

dist(y, A)}

for A, B ∈ CB(D), where dist(x,D) = in f {d(x, y) : y ∈ D} is the distance from a point x to a subset D.
An element x ∈ D is said to be a fixed point of a multi-valued mapping S : D→ CB(D) if x ∈ S x. We
denote the set of all fixed points of S by F(S ).

Definition 4. A multi-valued mapping S : D→ CB(D) is said to be

(i) nonexpansive if H(S x, S y) ≤ d(x, y) for all x, y ∈ D;
(ii) hemi-compact if for any sequence {xn} in D with lim

n→∞
dist(S xn, xn) = 0, there exist a subsequence

{xni} of {xn} such that {xni} converges strongly to x∗ ∈ D.

3. Main results

Theorem 1. Let D be a nonempty closed and convex subset of a complete CAT(0) space X. Let
Ti : D→ D, i = 1, 2, 3 be single-valued nonexpansive mappings, S i : D→ CB(D), i = 1, 2, 3 be multi-
valued nonexpansive mappings and g : D → (−∞,∞] be a proper convex and lower semi-continuous
function. Suppose that Ω = F(T1)∩F(T2)∩F(T3)∩F(S 1)∩F(S 2)∩F(S 3)∩arg min

y∈D
, ∅ and S iq = {q},

i = 1, 2, 3 for q ∈ Ω. For x1 ∈ D, let the sequence {xn} is generated in the following manner:

wn = arg min
y∈X

[ f (y) + 1
2λn

d2(y, xn)],

zn = αnxn ⊕ βnw′n ⊕ γnw′′n ,

yn = ψnxn ⊕ κnw′′′n ⊕ φnT1xn,

xn+1 = δnxn ⊕ ηnT2xn ⊕ ξnT3yn, f or all n ∈ N,

(3.1)

where {αn}, {βn}, {γn}, {ψn}, {κn}, {φn}, {δn}, {ηn} and {ξn} are sequences in (0, 1) such that

0 < a ≤ {αn}, {βn}, {γn}, {ψn}, {κn}, {φn}, {δn}, {ηn}, {ξn} ≤ b < 1,

αn + βn + γn = 1, ψn + κn + φn = 1, δn + ηn + ξn = 1,

for all n ∈ N and {λn} is a sequence such that λn ≥ λ > 0 for all n ∈ N and some λ. Then, the following
statements hold:

(i) lim
n→∞

d(xn, q) exists for all q ∈ Ω;
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(ii) lim
n→∞

d(xn,wn) = 0;
(iii) lim

n→∞
dist(xn, S ixn) = 0, i = 1, 2, 3;

(iv) lim
n→∞

d(xn,Tixn) = 0, i = 1, 2, 3;
(v) lim

n→∞
d(xn, Jλxn) = 0.

Proof. Let q ∈ Ω, then
q = T1q = T2q = T3q ∈ (S 1q ∩ S 2q ∩ S 3q)

and
f (q) ≤ f (y), ∀ y ∈ D.

Therefore, we have

f (q) +
1

2λn
d2(q, q) ≤ f (y) +

1
2λn

d2(y, q),

for all y ∈ D and hence q = Jλq.
(i) Note that wn = Jλn xn and Jλn is nonexpansive map for each n ∈ N. So, we have

d(wn, q) = d(Jλn xn, Jλnq) ≤ d(xn, q). (3.2)

As q ∈ S i(q) for i = 1, 2, 3, using (3.2) and Lemma 6 we have

d(zn, q) = d(αnxn ⊕ βnw′n ⊕ γnw′′n , q)
≤ αnd(xn, q) + βnd(w′n, q) + γnd(w′′n , q)
≤ αnd(xn, q) + βnd(S 1xn, S 1q) + γnd(S 2wn, S 2q)
≤ d(xn, q) (3.3)

and

d(yn, q) = d(ψnxn ⊕ κnw′′′n ⊕ φnT1xn, q)
≤ ψnd(xn, q) + κnd(w′′′n , q) + φnd(T1xn, q)
≤ ψnd(xn, q) + κnd(S 3zn, q) + φnd(T1xn, q)
≤ d(xn, q). (3.4)

Now, consider

d(xn+1, q) = d(δnxn ⊕ ηnT2xn ⊕ ξnT3yn, q)
≤ δnd(xn, q) + ηnd(T2xn, q) + ξnd(T3yn)
≤ d(xn, q). (3.5)

This shows that lim
n→∞

d(xn, q) exists and so we assume that

lim
n→∞

d(xn, q) = r ≥ 0. (3.6)
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(ii) Next, we show that lim
n→∞

d(xn,wn) = 0. By Lemma 7 , we get

1
2λn
{d2(wn, q) − d2(xn, q) + d2(xn,wn)} ≤ f (q) − f (wn).

Since f (p) ≤ f (wn) for each n ∈ N, it follows that

d2(xn,wn) ≤ d2(xn, q) − d2(wn, q). (3.7)

So, in order to show that lim
n→∞

d(xn,wn) = 0, it is sufficient to show that

lim
n→∞

d(wn, q) = r.

From (3.3), we have
lim sup

n→∞
d(zn, q) ≤ lim sup

n→∞
d(xn, q) = r. (3.8)

Also, using (3.4), we get
lim sup

n→∞
d(yn, q) ≤ lim sup

n→∞
d(xn, q) = r. (3.9)

Using (3.5) along with the fact that δn + ηn + ξn = 1 for all n ≥ 1, we obtain

d(xn+1, q) ≤ δnd(xn, q) + ηnd(T2xn, q) + ξnd(T3yn, q)
≤ (1 − ξn)d(xn, q) + ξnd(yn, q),

which is same as

d(xn, q) ≤
1
ξn

[d(xn, q) − d(xn+1, q)] + d(yn, q)

≤
1
a

[d(xn, q) − d(xn+1, q)] + d(yn, q),

which gives

lim inf
n→∞

d(xn, q) ≤ lim inf
n→∞

{
1
a

[d(xn, q) − d(xn+1, q)] + d(yn, q)}.

On using (3.6), we get
r ≤ lim inf

n→∞
d(yn, q). (3.10)

From (3.9) and (3.10), we obtain
lim
n→∞

d(yn, q) = r. (3.11)

Similarly, (3.4) yields

d(yn, q) ≤ ψnd(xn, q) + κnd(zn, q) + φnd(xn, q)
≤ d(xn, q) − κnd(xn, q) + κnd(zn, q),

which results into

d(xn, q) ≤
1
κn

[d(xn, q) − d(yn, q)] + d(zn, q) ≤
1
a

[d(xn, q) − d(yn, q)] + d(zn, q),
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which on using (3.6) and (3.11) gives

r ≤ lim inf
n→∞

d(zn, q). (3.12)

From (3.8) and (3.12), we get
lim
n→∞

d(zn, q) = r. (3.13)

Now, on using (3.3), we have

d(xn, q) ≤
1
a

[d(xn, q) − d(zn, q)] + d(wn, q),

which along with (3.6) and (3.13) gives

r ≤ lim inf
n→∞

d(wn, q). (3.14)

Also, (3.2) results into
lim sup

n→∞
d(wn, q) ≤ lim sup

n→∞
d(xn, q) = r. (3.15)

On using (3.14) and (3.15), we obtain

lim
n→∞

d(wn, q) = r. (3.16)

From (3.6), (3.7) and (3.16), we get
lim
n→∞

d(xn,wn) = 0. (3.17)

(iii) Now, we prove lim
n→∞

d(xn, S ixn) = 0 for i = 1, 2, 3.
Consider

d2(zn, q) = d2(αnxn ⊕ βnw′n ⊕ γnw′′n , q)
≤ αnd2(xn, q) + βnd2(w′n, q) + γnd2(w′′n , q)
−αnβnd2(xn,w′n) − αnγnd2(xn,w′′n ) − βnγnd2(w′n,w

′′
n )

≤ d2(xn, q) − αnβnd2(xn,w′n) − αnγnd2(xn,w′′n ) − βnγnd2(w′n,w
′′
n ),

which is equivalent to

αnβnd2(xn,w′n) + αnγnd2(xn,w′′n ) + βnγnd2(w′n,w
′′
n ) ≤ d2(xn, q) − d2(zn, q).

On using (3.6) and (3.8), we obtain
lim
n→∞

d(xn,w′n) = 0, (3.18)

lim
n→∞

d(xn,w′′n ) = 0, (3.19)

and
lim
n→∞

d(w′n,w
′′
n ) = 0. (3.20)

Now, triangle inequality gives

dist(xn, S 1xn) ≤ d(xn,w′n) + dist(w′n, S 1xn),
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which on using (3.18) results into
lim
n→∞

dist(xn, S 1xn) = 0. (3.21)

Again, consider

dist(xn, S 2xn) ≤ d(xn,w′′n ) + dist(w′′n , S 2xn) ≤ d(xn,w′′n ) + d(wn, xn),

which on using (3.17) and (3.19) gives

lim
n→∞

dist(xn, S 2xn) = 0. (3.22)

Now, we have

d2(yn, q) ≤ ψnd2(xn, q) + κnd2(w′′′n , q) + φnd2(T1xn, q)
−ψnκnd2(xn,w′′′n ) − ψnφnd2(xn,T1xn) − κnφnd2(w′′′n ,T1xn)

≤ d2(xn, q) − ψnκnd2(xn,w′′′n ) − ψnφnd2(xn,T1xn) − κnφnd2(w′′′n ,T1xn),

which is equivalent to

ψnκnd2(xn,w′′′n ) + ψnφnd2(xn,T1xn) + κnφnd2(w′′′n ,T1xn) ≤ d2(xn, q) − d2(yn, q),

this on using (3.6) and (3.11) gives
lim
n→∞

d(xn,w′′′n ) = 0, (3.23)

lim
n→∞

d(xn,T1xn) = 0, (3.24)

and
lim
n→∞

d(T1xn,w′′′n ) = 0. (3.25)

On using (3.18) and (3.19), we have

d(zn, xn) ≤ αnd(xn, xn) + βnd(w′n, xn) + γnd(w′′n , xn)
→ 0 as n→ ∞. (3.26)

Thus, with the help of (3.23) and (3.26), we obtain

dist(xn, S 3xn) ≤ d(xn,w′′′n ) + dist(w′′′n , S 3xn)
≤ d(xn,w′′′n ) + d(zn, xn)
→ 0 as n→ ∞. (3.27)

(iv) Next, we show that

lim
n→∞

d(xn,T1xn) = lim
n→∞

d(xn,T2xn) = lim
n→∞

d(xn,T3xn) = 0.

In (3.24), we have already proved that lim
n→∞

d(xn,T1xn) = 0.
So, consider

d2(xn+1, q) ≤ d2(xn, q) − δnηnd2(xn,T2xn) − δnξnd2(xn,T3yn) − ηnξnd2(T2xn,T3yn),
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which results into
lim
n→∞

d(xn,T2xn) = 0, (3.28)

lim
n→∞

d(xn,T3yn) = 0, (3.29)

and
lim
n→∞

d(T2xn,T3yn) = 0. (3.30)

On using (3.23) and (3.24), we obtain

d(yn, xn) ≤ ψnd(xn, xn) + κnd(w′′′n , xn) + φnd(T1xn, xn)
→ 0 as n→ ∞. (3.31)

Now, (3.28), (3.30) and (3.31) yields

d(xn,T3xn) ≤ d(xn,T2xn) + d(T2xn,T3yn) + d(T3yn,T3xn)
→ 0 as n→ ∞. (3.32)

(v) Now, as wn = Jλn xn, from Lemma 8 we have

d(Jλxn, xn) ≤ d(Jλxn,wn) + d(wn, xn)
= d(Jλxn, Jλn xn) + d(wn, xn)

= d(Jλxn, Jλ(
λn − λ

λn
Jλn xn ⊕

λ

λn
xn)) + d(wn, xn)

≤ d(xn, (1 −
λ

λn
)Jλn xn ⊕

λ

λn
xn) + d(wn, xn)

≤ (1 −
λ

λn
)d(xn, Jλn xn) +

λ

λn
d(xn, xn) + d(wn, xn)

= (1 −
λ

λn
)d(xn,wn) + d(wn, xn)

→ 0 as n→ ∞.

�

We now present the ∆-convergence result in CAT(0) spaces.

Theorem 2. Let D be a nonempty closed and convex subset of a complete CAT(0) space X. Let
Ti : D → D, i = 1, 2, 3 be single-valued nonexpansive mappings, S i : D → KC(D), i = 1, 2, 3 be
multi-valued nonexpansive mappings, and f : D → (−∞,∞] be a proper convex and lower semi-
continuous function. Suppose that Ω = F(T1)∩ F(T2)∩ F(T3)∩ F(S 1)∩ F(S 2)∩ F(S 3)∩ arg min

y∈D
, ∅

and S iq = {q}, i = 1, 2, 3 for q ∈ Ω. For x1 ∈ D, let the sequence {xn} is generated by (3.1), where {αn},
{βn}, {γn}, {ψn}, {κn}, {φn}, {δn}, {ηn} and {ξn} are sequences in (0, 1) such that

0 < a ≤ {αn}, {βn}, {γn}, {ψn}, {κn}, {φn}, {δn}, {ηn}, {ξn} ≤ b < 1,

αn + βn + γn = 1, ψn + κn + φn = 1, δn + ηn + ξn = 1,

for all n ∈ N and {λn} is a sequence such that λn ≥ λ > 0 for all n ∈ N and some λ. Then, the sequence
{xn} ∆-converges to a point in Ω.
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Proof. Let Wω({xn}) = ∪A({un}), where union is taken over all subsequences {un} over {xn}. In order
to show the ∆-convergence of {xn} to a point of Ω, firstly we will prove Wω({xn}) ⊂ Ω and thereafter
argue that Wω({xn}) is a singleton set.

To show Wω({xn}) ⊂ Ω, let q ∈ Wω({xn}). Then, there exists a subsequence {un} of {xn} such that
A({un}) = q. By Lemmas 2 and 3, there exists a subsequence {vn} of {un} such that ∆ − lim

n
vn = v and

v ∈ D. From Theorem 1, we have

lim
n→∞

d(vn,Tivn) = 0, i = 1, 2, 3

and
lim
n→∞

d(vn, Jλvn) = 0.

Since Ti, i = 1, 2, 3 and Jλ are nonexpansive mappings, with the use of Lemma 4, we obtain

v = T1v = T2v = T3v = Jλv.

So, we have
v ∈ F(T1) ∩ F(T2) ∩ F(T3) ∩ arg min

y∈D
f (y). (3.33)

Since S i, i = 1, 2, 3 is compact valued, for each n ∈ N, there exist ri
n ∈ S ivn and pi

n ∈ S iv, i = 1, 2, 3
such that

d(vn, ri
n) = dist(vn, S ivn), i = 1, 2, 3,

and
d(ri

n, pi
n) = dist(ri

n, S iv), i = 1, 2, 3.

From Theorem 1, we get
lim
n→∞

d(vn, ri
n) = 0, i = 1, 2, 3.

By using the compactness of S iv, i = 1, 2, 3, there exists a subsequence {pi
n j
} of {pi

n} such that lim
j→∞

pi
n j

=

pi ∈ S iv, i = 1, 2, 3. With the help of Opial condition, we have

lim sup
j→∞

d(vn j , pi) ≤ lim sup
j→∞

(d(vn j , r
i
n j

) + d(ri
n j
, pi

n j
) + d(pi

n j
, pi))

≤ lim sup
j→∞

(d(vn j , r
i
n j

) + dist(ri
n j
, S iv) + d(pi

n j
, pi))

≤ lim sup
j→∞

(d(vn j , r
i
n j

) + H(S ivn j , S iv) + d(pi
n j
, pi))

≤ lim sup
j→∞

(d(vn j , r
i
n j

) + d(vn j , v) + d(pi
n j
, pi))

= lim sup
j→∞

d(vn j , v).

Since asymptotic center is unique, we get v = pi ∈ S iv, i = 1, 2, 3. By using (3.33), we obtain

v ∈ F(T1) ∩ F(T2) ∩ F(T3) ∩ F(S 1) ∩ F(S 2) ∩ F(S 3) ∩ arg min
y∈D

f (y) = Ω.

From Theorem 1 and Lemma 5 , we get q = v, and Wω({xn}) ⊂ Ω.
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Now it is left to show that Wω({xn}) consists of single element only. For this, let {un} be a
subsequence of {xn}. Again, by using Lemma 2, we can find a subsequence {vn} of {un} such that
∆ − lim

n
vn = v. Let A({un}) = u and A({xn}) = x. It is enough to show that v = x. Since v ∈ Ω, by

Theorem 1, {d(xn, v)} is convergent. Again, by Lemma 5, we have v = x which proves that
Wω({xn}) = {x}. Hence the conclusion follows. �

The following results are strong convergence theorems for the proposed algorithm in CAT(0) spaces.

Theorem 3. Under the hypothesis of Theorem 2, the sequence {xn} converges to an element of Ω if Jλ
is semi-compact or T1 is semi-compact or T2 is semi-compact or T3 is semi-compact or S 1 is hemi-
compact or S 2 is hemi-compact or S 3 is hemi-compact.

Proof. Without loss of generality, we assume that S 1 is hemi-compact. Therefore, there exist a
subsequence {vn} of {xn} which is having a strong limit p in D. From Theorem 1, we get

lim
n→∞

d(Tiun, un) = 0, i = 1, 2, 3,

lim
n→∞

d(Jλun, un) = 0,

and
lim
n→∞

dist(S iun, un) = 0, i = 1, 2, 3.

From Lemma 4 , we obtain

p ∈ F(T1) ∩ F(T2) ∩ F(T3) ∩ arg min
y∈D

f (y). (3.34)

By using nonexpansiveness of S 1, we have

dist(p, S 1 p) ≤ d(p, un) + dist(un, S 1un) + H(S 1un, S 1 p)
≤ 2d(p, un) + dist(un, S 1un)
→ 0 as n → ∞.

This results into dist(p, S 1 p) = 0, which is same as p ∈ S 1 p. Thus, p ∈ F(S 1). Similarly, we can show
that p ∈ F(S 2) and p ∈ F(S 3). Therefore, from (3.34), we get

p ∈ F(T1) ∩ F(T2) ∩ F(T3) ∩ F(S 1) ∩ F(S 2) ∩ F(S 3) ∩ arg min
y∈D

f (y) = Ω.

By using double extract subsequence principle, we get that the sequence {xn} converges strongly to
p ∈ Ω. �

Since every multi-valued mapping S : D→ CB(D) is hemi-compact if D is a compact subset of X.
So, the following result can be obtained from Theorem 3 immediately.

Theorem 4. Let D be a nonempty compact and convex subset of a complete CAT(0) space X. Let
Ti : D → D, i = 1, 2, 3 be single-valued nonexpansive mappings, S i : D → KC(D), i = 1, 2, 3 be
multi-valued nonexpansive mappings, and f : D → (−∞,∞] be a proper convex and lower semi-
continuous function. Suppose that Ω = F(T1)∩ F(T2)∩ F(T3)∩ F(S 1)∩ F(S 2)∩ F(S 3)∩ arg min

y∈D
, ∅
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and S iq = {q}, i = 1, 2, 3 for q ∈ Ω. For x1 ∈ D, let the sequence {xn} is generated by (3.1), where {αn},
{βn}, {γn}, {ψn}, {κn}, {φn}, {δn}, {ηn} and {ξn} are sequences in (0, 1) such that

0 < a ≤ {αn}, {βn}, {γn}, {ψn}, {κn}, {φn}, {δn}, {ηn}, {ξn} ≤ b < 1,

αn + βn + γn = 1, ψn + κn + φn = 1, δn + ηn + ξn = 1,

for all n ∈ N and {λn} is a sequence such that λn ≥ λ > 0 for all n ∈ N and some λ. Then, the sequence
{xn} converges strongly to a point in Ω.

Remarks:

(i) Since any CAT(k) space is a CAT(k′) space for k′ ≥ k (refer [29]), all our results immediately
apply to any CAT(k) space with k ≤ 0.

(ii) Every real Hilbert space H is a complete CAT(0) space, so we have the following convergence
results which can be obtained from Theorems 2 and 3.

Corollary 1. Let D be a nonempty closed and convex subset of a real Hilbert space X. Let Ti : D→ D,
i = 1, 2, 3 be single-valued nonexpansive mappings, S i : D → CB(D), i = 1, 2, 3 be multi-valued
nonexpansive mappings and g : D→ (−∞,∞] be a proper convex and lower semi-continuous function.
Suppose that Ω = F(T1)∩F(T2)∩F(T3)∩F(S 1)∩F(S 2)∩F(S 3)∩arg min

y∈D
, ∅ and S iq = {q}, i = 1, 2, 3

for q ∈ Ω. For x1 ∈ D, let the sequence {xn} is generated in the following manner:

wn = arg min
y∈X

[ f (y) + 1
2λn
‖y − xn‖

2],

zn = αnxn + βnw′n + γnw′′n ,

yn = ψnxn + κnw′′′n + φnT1xn,

xn+1 = δnxn + ηnT2xn + ξnT3yn, f or all n ∈ N,

(3.35)

where {αn}, {βn}, {γn}, {ψn}, {κn}, {φn}, {δn}, {ηn} and {ξn} are sequences in (0, 1) such that

0 < a ≤ {αn}, {βn}, {γn}, {ψn}, {κn}, {φn}, {δn}, {ηn}, {ξn} ≤ b < 1,

αn + βn + γn = 1, ψn + κn + φn = 1, δn + ηn + ξn = 1,

for all n ∈ N and {λn} is a sequence such that λn ≥ λ > 0 for all n ∈ N and some λ. Then, the sequence
{xn} ∆-converges to a point in Ω.

Corollary 2. Let D be a nonempty closed and convex subset of a real Hilbert space X. Let Ti :
D → D, i = 1, 2, 3 be single-valued nonexpansive mappings, S i : D → CB(D), i = 1, 2, 3 be multi-
valued nonexpansive mappings, and f : D→ (−∞,∞] be a proper convex and lower semi-continuous
function. Suppose that Ω = F(T1)∩F(T2)∩F(T3)∩F(S 1)∩F(S 2)∩F(S 3)∩arg min

y∈D
, ∅ and S iq = {q},

i = 1, 2, 3 for q ∈ Ω. For x1 ∈ D, let the sequence {xn} is generated by (3.35), where {αn}, {βn}, {γn},
{ψn}, {κn}, {φn}, {δn}, {ηn} and {ξn} are sequences in (0, 1) such that

0 < a ≤ {αn}, {βn}, {γn}, {ψn}, {κn}, {φn}, {δn}, {ηn}, {ξn} ≤ b < 1,

αn + βn + γn = 1, ψn + κn + φn = 1, δn + ηn + ξn = 1,

for all n ∈ N and {λn} is a sequence such that λn ≥ λ > 0 for all n ∈ N and some λ. Then, the sequence
{xn} converges to an element of Ω if Jλ is semi-compact or T1 is semi-compact or T2 is semi-compact
or T3 is semi-compact or S 1 is hemi-compact or S 2 is hemi-compact or S 3 is hemi-compact.
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4. Conclusions

In this article, we present a new proximal point algorithm for solving the constrained convex
minimization problem as well as the fixed point problem of nonexpansive single-valued and
multi-valued mappings in CAT(0) spaces. Theorems 2–4 are the main convergence results of the
paper. We also driven some corollaries in the class of Hilbert spaces. Our results extend and improves
the corresponding results of Cholamjiak [18], Suantai and Phuengrattana [43], Kumam et al. [44],
Weng et al. [45] and Weng et al. [46].
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15. M. Bačák, The proximal point algorithm in metric spaces, Israel. J. Math., 194 (2013), 689–701.
https://doi.org/10.1007/s11856-012-0091-3

16. D. P. Bertsekas, Incremental proximal methods for large scale convex optimization, Math
Program., 129 (2011), 163–195. https://doi.org/10.1007/s10107-011-0472-0

17. P. Cholamjiak, A. A. N. Abdou, Y. J. Cho, Proximal point algorithms involving fixed points
of nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl., 2015 (2015), 227.
https://doi.org/10.1186/s13663-015-0465-4

18. P. Cholamjiak, The modified proximal point algorithm in CAT(0) spaces, Optim. Lett., 9 (2015),
1401–1410. https://doi.org/10.1007/s11590-014-0841-8

19. M. T. Heydari, S. Ranjbar, Halpern-type proximal point algorithm in complete CAT(0)
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