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1. Introduction

Let H(Σ) denote the space of all analytic functions in the open unit disk Σ = {k ∈ C : |k| < 1} and
letH denote the class of functions ~ ∈ H(Σ) which has the form

~(k) = k +

∞∑
v=2

avkv, (1.1)

and suppose S̃ denote the subclass ofH which are univalent in Σ. Then the convolution or Hadamard
product of ~ of the form (1.1) and g of the form g(k) = k +

∑∞
v=2 bvkv, is defined as:

(~ ∗ g)(k) = k +

∞∑
v=2

avbvkv.

In order to define new classes of q-spiral-like with respect to (`, )-symmetric points defined
in Σ, we first recall the concept of quantum calculus (or q-calculus), the goal of quantum calculus,
often known as q-calculus, is to find q-analogues without using limits, owing to the fact that it is
widely used in a variety of scientific fields, in particular q-calculus has a great interest because of
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its applications in geometric function theory, so this method becomes a crucial component of the
subject of our investigation. Jackson was the first participant who introduced fundamental ideas and
developed the q-calculus theory [1–3]. In recent years, using quantum calculus approach to studying
geometric properties several subclasses of analytic functions by many authors. For example, Naeem
et al. [4] investigated subclesse of q-convex functions. Srivastava et al. [5] studied subclasses of q-
starlike functions. Alsarari et al. [6] investigated the convolution conditions of q-Janowski symmetrical
functions classes. Ovindaraj and Sivasubramanian in [7] found subclasses connected with q-conic
domain. Khan et al. [8] used the symmetric q-derivative operator. Srivastava [9] published survey-
cum-expository review paper which is useful for researchers. Many scholars introduced specific
classes using q-calculus, which helped to advance the theory. See for further information on these
contributions [10–12].

We provide some basic definitions and concept details of q-calculus which are used in our work and
we will assume that q satisfies the condition 0 < q < 1 throughout our work. Jackson [1] introduced
q-derivative ∂q~(k) as

∂q~(k) =

~(k)−~(qk)
k(1−q) , k , 0,

~′(0), k = 0.
(1.2)

Equivalently (1.2), may be written as

∂q~(k) = 1 +

∞∑
v=2

[v]qavkv−1 k , 0,

where
[v]q =

1 − qv

1 − q
= 1 + q + q2 + ... + qv−1. (1.3)

For ~ a function defined in a subset of C, provided ~′(0) exists, then (1.2) yields

lim
q→1−

(∂q~(k)) = lim
q→1−

~(k) − ~(qk)
k(1 − q)

= ~′(k).

By using (1.2) it can easily be seen that for n and m any real (or complex) constants

∂q(n~(k) ± mg(k)) = n∂q~(k) ± m∂qg(k),

∂q(~(k)g(k)) = ~(qk)∂qg(k) + ∂qg~(k)g(k) = ~(k)∂qg(k) + ∂q~(k)g(qk)

∂q

(
~(k)
g(k)

)
=

g(k)∂q~(k) − ~(k)∂qg(k)
g(qk)g(k)

.

As a right inverse Jackson [2] presented the q-integral of a function ~ as:∫ k

0
~(z)dqz = k(1 − q)

∞∑
v=0

qv~(kqv),

provided that
∑∞

v=0 qv~(kqv) is converges.
Recent work in the family of analytical functions has shown the use of the idea of (`, )-symmetrical

functions to take a more general approach. This definition applies concepts of odd, even, and planar
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Sakaguchi’s functions to the -dimensional case. Liczberski and Polubinski [13] constructed the
concept of (`, )-symmetrical functions for the positive integer  and (` = 0, 1, 2, . . . ,  − 1). A
non-empty subset Q of the complex plane C will be called -fold symmetric domain if εQ = Q,
where ε = e

2πi
 . function ~ : Q→ C is called (`, )-symmetrical if for each k ∈ Q, ~(εk) = ε`~(k).

Theorem 1.1. [13] For the -fold symmetric set Σ, then for every function ~ : Σ 7→ C, can be written
in the form,

~(k) =

−1∑
`=0

~`, (k), where ~`, (k) =
1


−1∑
r=0

ε−r`~ (εrk) , k ∈ Σ. (1.4)

Remark 1.1. Equivalently, (1.4) may be written as:

h`, (k) =

∞∑
v=1

δv,`avkv, where δv,` =
1


−1∑
r=0

ε(v−`)r =

1, v = I  + `;
0, v , I  + `;

(1.5)

for I ∈ N.

Recently, many authors have conducted some studies about the concept of (`, )-symmetrical
functions obtained interesting results for various classes see [14–17].

The function ~ is called λ-spirallike if <
{
eiλ k~′(k)

~(k)

}
> 0, λ is real and |λ| < π

2 . Furthermore, let P

the Carathěodory class of functions form p(k) = 1 +
∞∑

v=1
cvkv defined on Σ and satisfying p(0) = 1,

Re{p(k)} > 0, k ∈ Σ and p ∈ P ⇔ p(k) =
1 + s(k)
1 − s(k)

, where s ∈ ∆ denote for the family of Schwarz

functions, that is
∆ := {s ∈ H , s(0) = 0, |s(k)| < 1, k ∈ Σ}. (1.6)

We amalgamate the notion of (`, )-symmetrical functions and q-derivative to originate new classes
of q-spirallike functions with respect to (`, )-symmetric points S̃`, q (λ).

Definition 1.1. For arbitrary fixed numbers λ and q, |λ| < π
2 , 0 < q < 1, let S̃`, q (λ) denote the family

of functions ~ ∈ H which satisfies

<

{
eiλ k∂q~(k)
~`, (k)

}
∈ P, for all k ∈ Σ, (1.7)

where ~`,  is defined in (1.4).

For special cases for the parameters q, λ, ` and  the class S̃`, q (λ) yield several known subclasses
of H , namely S̃1, 

1 (0) := S̃  by defined by Sakaguchi [18], S̃1,1
q (1) = S̃q which was first introduced by

Ismail et al. [3], etc.
We denote by T `, 

q (λ) consisting all functions ~, satisfying

~ ∈ T `, 
q (λ)⇔ k∂q~(k) ∈ S̃`, q (λ). (1.8)

The following neighborhood principle was first proposed by Goodman [19] and generalized by
Ruscheweyh [20].
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Definition 1.2. [19, 20] For ρ ≥ 0 and any ~ ∈ H , ρ-neighborhood of function ~ defined as:

Nρ(~) =

 g ∈ H : g(k) = k +

∞∑
v=2

bvkv,

∞∑
v=2

v|av − bv| ≤ ρ

 . (1.9)

For the identity function e(k) = k, defined as:

Nρ(e) =

g ∈ H : g(k) = k +

∞∑
v=2

bvkv,

∞∑
v=2

v|bv| ≤ ρ

 . (1.10)

For all η ∈ C, with |η| < ρ, Ruscheweyh [20] proved

~(k) + ηk
1 + η

∈ S̃∗ ⇒ Nρ(~) ⊂ S̃∗.

Lemma 1.1. [19] Let P(k) = 1 +
∑∞

v=1 pvkv, (k ∈ Σ), with the condition<{p(k)} > 0, then

|pv| ≤ 2, (v ≥ 1).

The goal of this research to investigate a convolution conditions and coefficient estimates for a
function ~ to be in the classes S̃`, q (λ) and ~ ∈ T `, 

q (λ), which will be used as a assisting result for to
discuss a sufficient prerequisites and associated neighborhood results.

2. Main results

Theorem 2.1. A function ~ ∈ T `, 
q (λ) if and only if

1
k

[
~ ∗

(
(k − qk3)(1 − eiφ)

(1 − k)(1 − qk)(1 − q2k)
−

(1 + ei(φ−2λ))k
(1 − α`k)(1 − α`qk)

)]
, 0, |k| < 1,

where, 0 ≤ φ < 2π, 0 < q < 1 and α` are defined by (2.3).

Proof. We have, ~ ∈ T `, 
q (λ) if and only if

eiλ ∂q(k∂q~(k))
∂q~`, (k) − i sin λ

cos λ
,

1 + eiφ

1 − eiφ , (|k| < 1),

which implies
∂q(k∂q~(k))(1 − eiφ) − ∂q~`, (k){1 + ei(φ−2λ)} , 0. (2.1)

Setting ~(k) = k +
∑∞

v=2 avkv, we have

∂q~ = 1 +

∞∑
v=2

[v]qavkv−1,

∂q

(
k∂q~

)
= 1 +

∞∑
v=2

[v]2
qavkv−1 = ∂q~ ∗

1
(1 − k)(1 − qk)

.
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∂q~`, (k) = ∂q~ ∗
1

(1 − α`k)
=

∞∑
v=1

[v]qα
v
`avkv−1, (2.2)

where
αv
` = δv

v,` and δv,` is given by (1.5). (2.3)

The left hand side of (2.1) is equivalent to

∂q~ ∗

(
1 − eiφ

(1 − k)(1 − qk)
−

1 + ei(φ−2λ)

1 − α`k

)
, (2.4)

simplifying (2.4), we get

1
k

[
k∂q~ ∗

(
(1 − eiφ)k

(1 − k)(1 − qk)
−

(1 + ei(φ−2λ))k
1 − α`k

)]
, 0, (2.5)

since k∂q~ ∗ g = ~ ∗ k∂qg, then the above equation can be written as:

1
k

[
~ ∗

(
(k − qk3)(1 − eiφ)

(1 − k)(1 − qk)(1 − q2k)
−

(1 + ei(φ−2λ))k
(1 − α`k)(1 − α`qk)

)]
, 0.

�

Remark 2.1. As q → 1− and particular values of `,  and λ Theorem 2.1 yields to the results found
in [21, 22].

Theorem 2.2. A function ~ ∈ S̃`, q (λ) if and only if

1
k

[
~ ∗

(
(1 − eiφ)k

(1 − k)(1 − qk)
−

(1 + ei(φ−2λ))k
1 − α`k

)]
, 0, |k| < 1,

where 0 < q < 1, 0 ≤ φ < 2π and α` are defined by (2.3).

Proof. Since ~ ∈ S̃`, q (λ) if and only if g(k) =
∫ k

0
~(ζ)
ζ

dqζ ∈ T
`, 
q (λ), we have

1
k

[
g ∗

(
(k − qk3)(1 − eiφ)

(1 − k)(1 − qk)(1 − q2k)
−

(1 + ei(φ−2λ))k
(1 − α`k)(1 − α`qk)

)]
=

1
k

[
~ ∗

(
(1 − eiφ)k

(1 − k)(1 − qk)
−

(1 + ei(φ−2λ))k
1 − α`k

)]
.

Thus the result follows from Theorem 2.2. �

Remark 2.2. Note that from Theorem 2.2, we can easily get

~ ∈ S̃`, q (λ)⇔
(~ ∗ g)(k)

k
, 0, g ∈ H , k ∈ Σ, (2.6)

where g(k) has the form

g(k) = k −
∞∑

v=2

tvkv, tv =
[v]q − δv,` − ([v]q + δv,`e−2iλ)eiφ

(1 + e−2iλ)eiφ . (2.7)
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Theorem 2.3. Let ~(k) ∈ H , for |λ| < π
2 and 0 < q < 1, if

∞∑
v=2

 ([v]q − δv,`) +
∣∣∣[v]q + δv,`e−2iλ

∣∣∣
|e−2iλ + 1|

 |av| ≤ 1, (2.8)

then ~(k) ∈ S̃`, q (λ).

Proof. Theorem 2.3 can be proved by demonstrating Remark 2.2 by showing (~∗g)(k)
k , 0. For ~ and g

given by (1.1) and (2.7) respectfully.

(~ ∗ g)(k)
k

= 1 −
∞∑

v=2

tvavkv−1, k ∈ Σ.

It is known from Remark 2.2 that ~(k) ∈ S̃`, q (λ)⇔ (~∗g)(k)
k , 0. Using (2.7) and (2.8), we get∣∣∣∣∣ (~ ∗ g)(k)

k

∣∣∣∣∣ ≥ 1 −
∞∑

v=2

[v]q − δv,` + |[`]q + δv,`e−2iλ|

|e−2iλ + 1|
|av||k|v−1 > 0, k ∈ Σ.

Thus, ~(k) ∈ S̃`, q (λ). �

Theorem 2.4. If ~(k) ∈ S̃`, q (λ), then

|av| ≤

v−1∏
r=1

δr,  + [r]q

[r + 1]q − δr+1, 
, v ≥ 2, (2.9)

where δm,  is given by (1.5).

Proof. Let ~(k) ∈ S̃`, q (λ) from Definition 1.1, we have

p(k) =

(
eiλ k∂q~(k)
~`, (k)

)
= 1 +

∞∑
v=1

pvzv,

where p(k) is Carathéodory function.
Since

eiλk∂q~(k) = ~`, (k)p(k),

we have

eiλ
∞∑

v=2

([v]q − δv, )avkv =

k +

∞∑
v=2

avδv, kv

  ∞∑
v=1

pvkv

 , (2.10)

where δv,  is given by (1.5), δ1,  = 1.
By equating coefficients of kv in (2.10) both sides we have

av =
e−iλ

([v]q − δv, )

v−1∑
m=1

δv−m, av−m pm, a1 = 1.
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By Lemma1.1 and using the fact that |eiλ| = 1, we get

|av| ≤
2

|[v]q − δv, |

v−1∑
m=1

δm, |am|, a1 = 1 = δ1, . (2.11)

It now suffices the prove that

2
[v]q − δv, 

v−1∑
r=1

δv, |a | ≤

v−1∏
r=1

δr,  + [r]q

[r + 1]q − δr+1, 
. (2.12)

For this, we use the induction method. (2.12) is true for v = 2 and 3.
Let us suppose (2.12)holds for all v ≤ m.
From (2.11), we have

|am| ≤
2

[m]q − δm, 

m−1∑
r=1

δr, |ar|, a1 = 1 = δ1, .

From (2.9), we have

|am| ≤

m−1∏
r=1

δr,  + [r]q

[r + 1]q − δr+1, 
.

By the induction hypothesis , we have

2
[m]q − δm, 

m−1∑
r=1

δr, |ar| ≤

m−1∏
r=1

δr,  + [r]q

[r + 1]q − δr+1, 
.

Multiplying both sides by
δm,  + [m]q

[m + 1]q − δm+1, 
,

we have
m∏

r=1

δr,  + [r]q

[r + 1]q − δr+1, 
≥

δm,  + [m]q

[m + 1]q − δm+1, 

 2
[m]q − δm, 

m−1∑
r=1

δr, |ar|


=

2
[m + 1]q − δm+1, 

 2δm, 

[m]q − δm, 

m−1∑
r=1

δr, |ar| +

m−1∑
r=1

δr, |ar|


≥

2
[m + 1]q − δm+1, 

δm, |am| +

m−1∑
r=1

δr, j|ar|


≥

2
[m + 1]q − δm+1, 

m∑
r=1

δr, |ar|.

Hence
2

[m + 1]q − δm+1, 

m∑
r=1

δr, |ar| ≤

m∏
r=1

δr,  + [r]q

[r + 1]q − δr+1, 
.

The inequality (2.12) holds for v = m + 1, thus proving the result. �
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Theorem 2.5. If ~ ∈ T `, 
q (λ) then

|av| ≤
1

[v]q

r−1∏
r=1

δr,  + [r]q

[r + 1]q − δr+1, 
, for v ≥ 2, (2.13)

where δr,  is given by (1.5).

The proof follows by using Theorem 2.4 and (1.8).

3. (ρ, q)-neighborhoods for functions in the classes S̃`, q (λ) and T `, 
q (λ)

In the order to find some neighborhood results, we assume that v = [v]q in Definition 1.2 to get
definition of neighborhood with q-derivativeNλ

q,ρ(h) andNλ
q,ρ(e), where [v]q is given by Equation (1.3).

In particular. For v =
([v]q−δv,`)+|[v]q+δv,`e−2iλ|

|1+e−2iλ |
in Definition 1.2 to get definition of neighborhood for the

classes S̃`, q (λ) and T `, 
q (λ) which is N `, 

q,ρ(λ; ~).

Theorem 3.1. Let ~ ∈ Nq,1(e), and defined by the form (1.1), then∣∣∣∣∣∣k∂q~(k)
~`, (k)

− 1

∣∣∣∣∣∣ < 1, (3.1)

where ~`,  is defined by (1.4).

Proof. Let ~ ∈ H , and ∂q~(k) = k+
∑∞

v=2[v]qavkv, ~`, (k) = k+
∑∞

v=2 δv,`avkv, where δv,` is given by (1.5).
Consider

|k∂q~(k) − ~`, (k)| =

∣∣∣∣∣∣∣
∞∑

v=2

([v]q − δv,`)avkv−1

∣∣∣∣∣∣∣
< |k|

∞∑
v=2

[v]q|av| −

∞∑
v=2

δv,`|av||k|v−1

= |k| −
∞∑

v=2

δv,`|av||k|v−1

≤ |~`, (k)|, k ∈ Σ.

This gives us the required result. �

Theorem 3.2. Let ~ ∈ H , and for all complex number η, with |η| < ρ, if

~(k) + ηk
1 + η

∈ S̃`, q (λ). (3.2)

Then
N

`, 

q, ρ|1+e−2iλ |
4

(λ; ~) ⊂ S̃`, q (λ).

AIMS Mathematics Volume 8, Issue 2, 4141–4152.



4149

Proof. Let f ∈ N `, 

q, ρ|1+e−2iλ |
4

(λ; ~) and defined by f (k) = k +
∑∞

v=2 bvkv. It is sufficient to prove that

f ∈ S̃`, q (λ) to to prove the Theorem 3.2. We would prove this claim in next three steps.
We first note that Theorem 2.2 is equivalent to

~ ∈ S̃`, q (λ)⇔
1
k

[(~ ∗ tφ)(k)] , 0, k ∈ Σ, (3.3)

where

tφ(k) = k −
∞∑

v=2

[v]q − δv,` − ([v]q + δv,`e−2iλ)eiφ

(1 + e−2iλ)eiφ kv, (3.4)

and 0 ≤ φ < 2π. We can write tφ(k) = k −
∑∞

v=2 tvkv,
where

tv =
[v]q − δv,` − ([v]q + δv,`e−2iλ)eiφ

(1 + e−2iλ)eiφ , (3.5)

so that |tv| ≤
4[v]q

|1+e−2iλ |
. Secondly we obtain that (3.2) is equivalent to∣∣∣∣∣∣~(k) ∗ tφ(k)

k

∣∣∣∣∣∣ ≥ ρ, (3.6)

because, if ~(k) = k +
∑∞

v=2 avkv ∈ H and satisfy (3.2), then (3.3) is equivalent to

tφ ∈ S̃`, q (λ)⇔
1
k

[
~(k) ∗ tφ(k)

1 + η

]
, 0, |η| < ρ.

Thirdly letting f (k) = k +
∑∞

v=2 bvkv we notice that∣∣∣∣∣ f (k) ∗ tφ(k)
k

∣∣∣∣∣ =

∣∣∣∣∣∣~(k) ∗ tφ(k)
k

+
( f (k) − ~(k)) ∗ tφ(k)

k

∣∣∣∣∣∣
≥ ρ −

∣∣∣∣∣∣ ( f (k) − ~(k)) ∗ tφ(k)
k

∣∣∣∣∣∣ (by using (3.6))

= ρ −

∣∣∣∣∣∣∣
∞∑

v=2

(bv − av)tvkv

∣∣∣∣∣∣∣
≥ ρ − |k|

∞∑
v=2

4[v]q

|1 + e−2iλ|
|bv − av|

≥ ρ − ρ|w| > 0,

this prove that
f (k) ∗ tφ(k)

k
, 0, k ∈ Σ.

In view of our observations (3.3), it follows that f ∈ S̃`, q (λ). The theorem’s proof is now complete. �

Theorem 3.3. Let ~ ∈ S̃`, q (λ), for ρ1 < c. Then

N `, 
q,ρ1

(λ; ~) ⊂ S̃`, q (λ),

where c , 0 with
∣∣∣∣ (~∗tφ)(k)

k

∣∣∣∣ ≥ c, ρ1 =
ρ|1+e−2iλ |

4 and tφ is defined by (3.4).
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Proof. Let the function m = k +
∑∞

v=2 bvkv ∈ N
`, 
q,ρ1(λ; ~). It is enough to demonstrate that (m∗tφ)(k)

k , 0
for Theorem 3.3’s proof, where tφ is given by (3.4). Consider∣∣∣∣∣m(k) ∗ tφ(k)

k

∣∣∣∣∣ ≥ ∣∣∣∣∣h(k) ∗ tφ(k)
k

∣∣∣∣∣ − ∣∣∣∣∣ (m(k) − h(k)) ∗ tφ(k)
k

∣∣∣∣∣ . (3.7)

Since ~ ∈ S̃`, q (λ), therefore applying Theorem 2.2, we obtain∣∣∣∣∣∣ (~ ∗ tφ)(k)
k

∣∣∣∣∣∣ ≥ c, (3.8)

where c is a real value that is not zero and k ∈ Σ. Now∣∣∣∣∣∣ (m(k) − ~(k)) ∗ tφ(k)
k

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∞∑

v=2

(bv − av)tvkv

∣∣∣∣∣∣∣
≤

∞∑
v=2

|[v]q − δv,` − ([v]q + δv,`e−2iλ)eiφ|

|1 + e−2iλ|
|bv − av|

≤

∞∑
v=2

4[v]q

|1 + e−2iλ|
|bv − av|

≤
ρ|1 + e−2iλ|

4
= ρ1,

(3.9)

using (3.8) and (3.9) in (3.7), we obtain∣∣∣∣∣m(k) ∗ g(k)
k

∣∣∣∣∣ ≥ c − ρ1 > 0,

where ρ1 < c. This completes the proof. �

4. Conclusions

The centered (`, )-symmetrical functions in geometric function theory were the subject of this
work. As a new topic emerged to take a more general approach and there are numerous uses for
(`, )-symmetrical functions, including investigating fixed points, estimating the absolute values of
particular integrals, and deriving conclusions of the Cartan’s uniqueness theorem variety and motivated
by the recent applications of the q-calculus, we have applied the two concepts for classes of λ-
spirallike functions to introduce and study the classes S̃`, q (λ) and T `, 

q (λ). We investigate a convolution
conditions and coefficient estimates. Furthermore, these results are used to find sufficient condition,
coefficient estimates investigate related neighborhood results. The idea used in this paper can easily
be implemented to define several classes with different image domains. The opportunities for research
using symmetric q-calculus, Janowski class or the basic q-hypergeometric functions in several diverse
areas.
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