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Abstract: We are concerned in this paper with the finite-time synchronization problem for fuzzy
bi-directional associative memory neural networks with Markovian switching, discrete-time delay in
leakage terms, continuous-time and infinitely distributed delays in transmission terms. After detailed
analysis, we come up with an intermittent quantized control for the concerned bi-directional associative
memory neural network. By designing an elaborate Lyapunov-Krasovskii functional, we prove under
certain additional conditions that the controlled network is stochastically synchronizable in finite time:
The 1st moment of every trajectory of the error network system associated to the concerned controlled
network tends to zero as time approaches a finite instant (the settling time) which is given explicitly,
and remains to be zero constantly thereupon. In the meantime, we present a numerical example to
illustrate that the synchronization control designed in this paper is indeed effective. Since the concerned
fuzzy network includes Markovian jumping and several types of delays simultaneously, and it can be
synchronized in finite time by our suggested control, as well as the suggested intermittent control is
quantized which could reduce significantly the control cost, the theoretical results in this paper are rich
in mathematical implication and have wide potential applicability in the real world.
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1. Introduction

With a desire to generalize a single-layer auto-associative Hebbian correlator to a two-layer
pattern-matched hetero-associative circuits, Kosko designed the celebrated bi-directional associative
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memory neural networks (BAMNSs); see [1-6]. In last several decades, BAMNs have been applied
successfully in classification, associative memory, parallel computation, combinatorial optimization,
signal processing, pattern recognization, image processing, etc.; see [S—7]. Successful application of
BAMN:Ss in such wide areas relies essentially on their stability or synchronizability. And therefore,
extensive attensions have been paid to the study of stability, synchronizability and other dynamics of
various BAMNS; see [6—14] and the vast references therein. In this paper, we shall investigate further
the synchronization problem associated to BAMNS.

Since it would cost time to communicate information between neurons, time delays are inevitable
in neural network models originated from real world applications. As pointed in [14, 15], delays
could change the stability of dynamical systems, render dynamical systems to produce periodic
oscillations or chaotic phenomenon, and so on. This makes it more challenging and interesting to
study stabilization/synchronization problem for BAMNSs with delays. Cao and Wan [11] exploited the
so-called matrix measure technique to obtain a synchronization criterion for an inertial BAMN with
time delays. Inspired partially by results in [11], Li and Li [12] obtained some new results concerning
the synchronization problem for a time-delayed BAMN which is not inertial. Sader, Abdurahman
and Jiang [13] designed a nonlinear feedback control for a special class of BAMNs, and proved
that these controlled BAMNSs are synchronizable at a general decay rate. For more inspiring results
concerning stability of time-delayed BAMN:Ss, the interested readers could consult [8,16-20] as well as
the references therein.

In the real world, uncertainty is unavoidable in the transmission of information through neural
nodes. By reading [21] and the related references therein, we can conclude that fuzzy logic could
play important roles in dealing with uncertainty. Zhang and Wu [21] investigated the finite time
synchronization problem for a class of Takagi-Sugeno fuzzy complex networks. Except for Takagi-
Sugeno logic, there is another fuzzy logic which is widely used in constructing neural network models,
namely, the fuzzy “AND” (A) and “OR” (V) operation reasoning. Under certain conditions, experts
proved that fuzzy neural networks could approximate a large collection of nonlinear functions to any
desired degree of accuracy; see [22]. In the last two decades, fuzzy BAMNSs have also been well
studied for their synchronizability, and a large number of papers on synchronization problem for fuzzy
BAMNSs have been published in recent years. Among the vast references in this respect, we would
like to share [23], in which a class of BAMNSs including fuzzy logic was investigated and interesting
synchronization results on the concerning BAMNSs were obtained via using the LMI (linear matrix
inequalities) approach.

As indicated in [15, 24], the synaptic transmission in nervous systems can be considered as a noisy
process brought on by random fluctuations from the release of neurotransmitters or other probabilistic
factors. In other words, here is, aside from fuzzy uncertainty, some other uncertainty occurring in the
transmission of information through neural nodes that can be modeled by special stochastic process,
such as (time homogeneous/inhomogeneous) Markovian chain, Wiener process (Brownian motion),
Lévy process, and so forth. Compared with other frequently used stochastic process, Markovian chain
has, in a certain sense, the simplest structure. And therefore, many interesting synchronization criterion
have been presented for Markovian switched neural networks (including BAMNS) in recent years;
see [21,25-27] and the references therein.

Thanks to the wide applicability, it is a hot topic to design control to synchronize neural networks
in finite time in recent years; see [20, 21, 25, 27-31] and the references therein. Jia et al. [29]

AIMS Mathematics Volume 8, Issue 2, 4098—4125.



4100

designed adaptive sliding mode control for a class of uncertain fractional-order delayed memristive
neural networks, and proved that the obtained controlled networks are synchronizable in finite time.
Cheng et al. [30] proved that delayed memristive neural networks can be finite-time synchronized via
adaptive aperiodically intermittent adjustment strategy. By reviewing the afore-mentioned references,
we are inspired by the results to be interested in designing control to synchronize, in finite time, fuzzy
BAMNSs with Markovian jumping and several types of time delays. To improve the applicability of
our theoretical results and inspired by [25, 32], we seek to design appropriate intermittent quantized
control for our concerned network. As indicated in [25], it would certainly cut down the control cost
and communication resources by using intermittent quantized control to synchronize neural networks
in finite time. The idea to realize our goal in this paper is enlightened by the the afore-mentioned
references, besides, [33—-38] and the references therein help us a lot to find the appropriate way to
prove rigrously the suggested control is indeed effective in synchronizing our concerned network in
finite time. Zhai et al. [33] shared intermittent control which can synchronize a class of stochastic
complex networks with delays. Zhou et al. [34] and Liu et al. [35] provided two types of self-
triggered intermittent control to synchronize complex network and hybrid delayed multi-links systems,
respectively. In [36,37], the author group developed quantized control to synchronize a variety of
inertial neural networks. Our contributions in this paper are summarized as follows:

(i) Intermittent quantized control is first designed successfully and proved to synchronize effectively
in finite time fuzzy BAMNs with Markovian jumping, discrete-time delay in leakage terms,
continuous-time and infinitely distributed delays in transmission terms. In comparison with
[11-13,17,18,20,28], our concerned network includes simultaneously fuzzy uncertainty, random
uncertainty and a variety of time delays of different nature and thus has wider potential
applicability. The idea of applying intermittent quantized control would contribute towards
cutting down control cost and communication resources in the real world.

(i1) Several novel criteria are established to guarantee the finite-time synchronizability of our
concerned fuzzy network, and the convergence settling time is computed explicitly. Additionally,
an illustrative example is solved numerically to justify the effectiveness of the suggested
synchronization control and the correctness of the criteria established to guarantee the finite-time
synchronizability. The main tool used in proving our main results is a Lyapunov-Krasovskii
functional, which differs dramatically from the ones utilized in [25,32]. As in [25], the 1st
moment of trajectories of the error network system associated to our concerned network is chosen
in proving the correctness of the criteria established to guarantee the finite-time synchronizability.
As alluded in [25], this could reduce in a certain degree the conservatism of our finite-time
synchronization criteria.

Notational conventions: Throughout this paper, R, R* and R~ denotes the totality of real numbers,
the interval [0, +c0) and the interval (—co, 0], respectively; D* f denotes the right upper Dini derivative
of the given function f with respect to the independent variable #; (R, ., dt) denotes the usual Lebesgue
measure space; (Q, .7, F,P) (or (Q,.%#,F,dP) ) denotes a complete filtered probability space, in which
the filtration F = {¥;; t € R*} is assumed to satisfy the usual condition: ¥, contains all P-null sets in
% ; and F is right-continuous in the sense that N, %; = F;, t € R*; “P almost surely” is abbreviated as
P-a.s.; EX denotes the mathematical expectation of X, where X is an arbitrarily given random variable
on Q; (2 xXR,.Z ® .%,dP x dt) denotes the product measure space of (R,.Z, dt) and (Q,.#, dP); For
every pair A, B € .%, P(B|A) designates the conditional probability of the event B given the event A;
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{v:}:er+ denotes an F-adapted time homogeneous Markovian chain whose state space = is finite and
whose infinitesimal generator is denoted by 17 = (7r), that is, for every pair &, S in =, it holds that

P(yrear = Elye = &) = P(yar = Elyo = &) = 6z + mzAt + 0(AD), as At — 0%, V1 € R,

where 6, is the celebrated Kronecker delta symbol, more precisely, 6 = 1 if £ coincides with £, and
0z = 0, otherwise. By definition, I7 = (rz) is required to satisfy m;z > O whenever & # £, and

Mg = Z 7T§E>O, erﬂ
Eell\{¢)

2. Formulation of the problem and the main results

We are concerned with in this paper the following class of fuzzy BAMNs with several types of time
delays in both leakage terms and transmission terms:

AIMS Mathematics

Xi(t) = = Lyxi(t — 71;) + Z ay,11if11;(y;(1))
=)

+ E ,amzijflzj(yj(t —o(1))
J=1

* \/ Ay13ij f Ki1(t = 5) f13;(vj(s))ds
j=1 —00

n ¢
+ /\ ay,14ijf K12j(t = ) f14;(y;(8))ds
=1 o

+Xi(?), teR*, P-as., i=1,...,m,

Vi) = = Lyt —12;) + Z ay1jif21i(xi(1))

i=1

+ Dty frai(xilt = (1))
i=1

+ \/ ay,23jif Ky1i(t = 5) f3i(xi(5))d s
i=1 -0

m t
+ /\ ay,24jif Koi(t = 5) fr4i(xi(5))d s
i=1 —e0

+Y(t), teR", P-as., j=1,...,n,

(2.1
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where the stochastic processes {X;(7)} and {Y;(#)}, required to be F-adapted, are given by

Xi(t) =Ii(1) + Z Ki1ij(Owi15(2) + v K12ij(D)W12i (1)

=1 j=1

=1
Yi(t) =J() + Z K1 ji(D)wa (1) + v K22 ji(D)Wa2i(1)
P

i=1

i=1

n
+ /\K13ij(t)wl3ij(t), teRY, Pas., i=1,...,m,

+ [\ Kesji(OWsij(0), 1 €RY, Pras., j=1,...,m.

(2.2)

In (2.1) and (2.2), I;; > 0, [; > 0, 7;; > 0 and 75; > 0 are constants; x;(f) and y;(7), required to
be F-adapted and P almost surely continuous in ¢, are called state trajectories of BAMNSs (2.1); the
connection coefficients (or connection weights) a,,i1ij, Gy, 12ij> Ay,13ijs Qy14ij> Qy21jis Ay22jis Gy23ji and
ay,4ji are real constants; the activation functions fi1;(u), fi2;(w), fi3;(W), fiaj(w), f1:(w), fooi(u), fr3:(u)
and f54;(u) are Lipschitz continuous real-valued functions on R; the delay kernels K1 (7), Ki2;(1), K>1;(¢)
and Ky;(t) are nonnegative-valued functions which are locally Lebesgue integrable in R*; X;(¢) and

Y;(t) could be viewed as disturbances; i =1,...,m, j=1,...,n.
The response system controlled by U;(7) and V() reads:

Xi() = = L%t —11;) + Z ay,11iif11;(5(1))
=
+ Z ay,12ijf12jV (t — 01(2)))
=
+ \/ ay,l3ijf Ky1(t = 5) f13;(5;(s))ds
=1 >

n 1
+ /\ay,14ijf Ki2i(t = ) f14j(F;(8))ds
=1 >
+X:(t)-Ui(t), teR", P-as., i=1,...,m,

Yi(t) = = Lyt —12)) + Z ay1jif211(%i(1))
P
+ Z Ay,22ji f22i(Xi(t — 02i(1)))
i=1
+ v ay,23jif Kt = ) f23:(Xi(5))d s
i=1 -

m f
+ /\ Ay,04ji f Kyi(t — 5) frai(Xi(5))ds
i=1 o0

+Y;(t)- VD), teR", P-as, j=1,...,n

(2.3)
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Proposition 2.1. Let x;,yjo : 2 X (=0,0] = R be F ® £ measurable, and suppose that x,(t) and
vjo(t) are F#, measurable for all t € (—o0,0] and assume

sup Elxjo(#)] < +o0,
te(—00,0]

sup Elyjo(?)] < +oo,
te(—0,0]

i=1,...,m, j=1,...,n Then, (2.1) admits a unique state trajectory
(xX1(®)s -+ s X (@ Y1(D), - -+, (D))
satisfying the initial condition

X; =Xjp, dP X dt-a.e. in 2 X (—00,0], i=1,...,m,
Yj =yjo, dP X dt-a.e. in QX (=00,0], j=1,...,n.

Remark 2.1. By Proposition 2.1, for the given initial data X (t) and yjo(t) (i=1,...,m, j=1,...,n),
the response network system (2.3) subsequent by

X =X, dP X dt-a.e. in QX (—00,0], i=1,...,m,
2.5

Vi =YV, dP X dt-a.e. in QX (-00,0], j=1,...,n,
admits a unique state trajectory

(il(t)’ cee jm(t)’j}l(t)’ v ,5’;1([)),

where the initial data Xo(t) and ¥ jo(t) satisfy the same conditions as that obeyed by xo(t) and yjo(t) in
Proposition 2.1, i=1,...,m, j=1,...,n

Definition 2.1. The drive network system (2.1) and the response network system (2.3) are said to be
synchronized in finite time provided that there exists a T > 0 such that

lim E|x;(r) — Xi()| = 0,
=T i=1,...,m,
xi(t) = X;(t), t € [T, +0), P-a.s.
.( ) = Xi(1) ‘ [ ) (2.6)
lim Ely;(®) — y;(0] = 0,
=T j=1,...,n.
yit) =y,(1), t € [T, +00), P-a.s.

Now we are in a position to introduce the intermittent quantized controls that would be used to
synchronize the drive-response network system (2.1)—(2.3). Let {f;};7 , be a strictly increasing sequence
in R* such that 7y = 0 and that

lim #;, = +o0.
k—co
The controls U;(¢) and V(¢) are required to satisfy: For every k € N,
Ui(t) = Vj([) =0, 1 € [taks1, Iois2), P-a.s., 2.7)
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Ui(t) = —k(0(x,(1) = Xi(0)) — T sgn(q(xi(1) — Xi(1))), t € [tox, ta1), P-as., (2.8)

Vit) = =k j(0)(yi(1) — 5i(1)) — T sgn(q(yi(1) — Ji(1)), t € [tk, toks1), P-as., (2.9)

kii(0) = k11 + kii(0), 1 € [t 1), P-as., (2.10)

kaj() = ko j(1 + kaj(D), t € [tk taas1)s P-as., (2.11)

in which ¢ is the so-called logarithmic quantizer, that is, an odd function mapping R into A obeying
the rule g(v) = 8y = Nopr if v € (1%’ INT"H] for a certain k € Z, where 6 = :%ﬁ, No is a sufficiently large

positive number to be specified later, and
A = {£85; Ny = Koo, ke Z);

T >0, kyii > 0, kya; > 0, kii(0) € [<6,0), koj(0) € [=60,0); i = 1,...,m, j=1,...,n.
To summarize, for every k € Ny,

Ui(t) = —kyi(1 + k(D) (xi(t) — %i(t)) = T sgn(q(xi(0) — X)), 1 € [tag, tas1), P-ass., (2.12)

Vilt) = ~ky (1 + ke (0)ilt) = 5i(D) = T sgn(qQi(t) = Fit)), 1 € [t 1), Pras. (2.13)
We are now ready to record some results which is necessary in the proof of our main results.
Definition 2.2. Let N be a positive integer. Given V(x) : RY — R. V(x) is said to be a C-regular

function provided that (i) V(x) is regular in RV (ii) V(x) is positive definite in RN: V(0) = 0, V(x) > 0
for all x € RN \ {0}, and (iii) V(x) is coercive in the sense that

lim f(x) = +oo.

|x|—>+00

Lemma 2.1. (See [25]) Let V(x) : RN — R be a C-regular function, and x(t) : I — RY be absolutely
continuous where I is an interval (bounded or unbounded). Then V(x(t)) is absolutely continuous in
I and it holds that: For every selection n(t) in dV(x(t)), the Clarke generalized gradient of V(x(t)) at
x(t), it holds that

D™V (x(2)) = n(t)x'(t), t € I\ {sup I}.

Remark 2.2. It is ready to verify that the well-known absolute value function V(x) = |x|, x € R, is
C-regular, and to check that in this situation

(-1} = —1 ifx e (~,0),
oV(x)=<[-1,1] ifx=0,
{1} =1 if x € (0, +00).
In the sequel, we denote €(x) = dV(x), x € R, in which V(x) = |x|.

Lemma 2.2. (See [25]) Let ¥ : R* — R* be a continuous function. Suppose that ¥ (0) > 0 and that
either
DY) < Y1) -«

holds if t € [ty, taxs1) for some k € Ny, or

DTP(t) < n¥(1)

AIMS Mathematics Volume 8, Issue 2, 4098—4125.
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holds if t € [ty+1,txs2) for some k € Ny, where a, B and n are all given positive constants. If y, > 1
holds for all k € Ny, then

lir%l PYt)=0

t—>T-

and
P(t)=0, Vte|[T,+00),

where
B(tog+1 — tax)

k= N(taksa = tos1)
20 oo
T =typ+ B [ln(ﬁT() +1) —,3;(1 - E)(lzmz - fz;m)] ,

BY¥(0)

[0

k-1

N 1

% = max {k € Ny; In( +1) —52(1 - )7)@2,-+2 — tyin1) > 0}.
i=0 !

Assumption 2.1. 0 < Lllj’ L12j’ L13j, L14j, L21i’ L22i, L23,', L24i < 400 with

lfnj(u) = fi;(v) lflzj(u) = fi2;(v)

L= l, Lipj = l,
u#v, u,veR u-—-v u#v, u,veR u-—-v
Si3j(w) = fi3;(v) Siaj(w) = fia;(v)
Ly = | l, Lisj= sup | l, (2.14)
u#v, u,veR u-—-v u#v, u,veR u-—-v
_ J21:() = fo1:(v) _ J2i(u) = f22i(v)
Ly = | l, Lypj= sup | l,
u#v, u,veR u-—-v u#v, u,veR u-—-v
Sa3i(u) = f23:(v) Joai(u) = fo4i(v)
Ly = B —|, Ly = sup [|— —, (2.15)
u#v, u,veR u-—-v u#v, u,veR u-—-v

i=1,....m, j=1,...,n.

Assumption 2.2. o () and o;(?) are absolutely continuous, and 0 < o ;(?), o2i(t) < t, 0 < 7y},
09 < 400, 0 < 6'1j, 07; < 1 with

6'1]' = sup O'lj(t), (216)
teR*

02 = sup 02(1), (2.17)
teR*

01j = esssup o (1), (2.18)
teR*

G = esssup (1), (2.19)
teR*

i=1,....m,j=1,...,n.

Assumption 2.3. There exists a 8* > 0 such that for every f € (~0, "), it holds that 0 < Ky, Ky
Iv{BZIja kﬁzz j < +oo where

_ +00 _ +00
Kpij = f K1 j(t)dt, Kgioj = f Kg12j(t)dt,
0 0

_ +00 _ +00
Kﬁzljzj(; Kg» j(D)dt, Kﬁ22j:£ Ko i(D)dt,
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with 5 5
Kpi1(t) = Kllj(l)eﬂt, Kpi2j(1) = K12j(t)eﬁt7

kﬂﬂj(t) = K21j(t)eﬁt, kﬂﬂj(t) = Kzzj(t)eﬁt,
teRYi=1,....m,j=1,...,n.

Theorem 2.1. Suppose that Assumptions 2.1-2.3 hold true. If there exists a B € (0,8%) (see 2.3), a
p €(0,1), a T and some p; along with pgj, such that

Mg +Bpai <0, i=1,...,m, £ €ZF, (2.20)

Mgzj +ﬁp52‘,~ <0, j: 1,...,n, fEE, (221)

Pl — )

= > 1, k € Ny, (2.22)
N(taks2 = tak+1) 0

Xk

then the drive-response network system (2.1)—(2.3) is synchronizable in finite time. More precisely, for
every state trajectory (xi(t), ..., Xu(2); y1(1), . .., yu(2)) of the drive network system (2.1) and every state
trajectory (X((t), ..., Xn(); 1(2), ..., .(t)) of the response network system (2.3), the assertion (2.6) in
Definition 2.1 holds with

a= Trgg(z; Deti + Z Dé2j)s (223)
i= =
Hons Z meepi + pailie” + Z Pajlailag il
EEE o
O Pejlagillanid®™ ¢ ;
+ + Naens il BoniLos;
; 1 =& ;p§21| e23il KgariLo
- Z PerjlaguilKpniLlas — peiike(1 - 6), (2.24)

J=1

m
Mg; = Z TeeDaj + Peajlaje®™ + Z PaiLajlagil

£eE i=1

m 51 m

Peilagiaijl Lo P .

+ Z + Z Petilagizijl KpiijLs;
i=1

1- <A71j —
+ Z p§1i|a§14ij|f([312jll14j — parjkei(1-6), (2.25)
i=1
1| e oo

T =ty + 2 [IN(= 4+ 1) =) (1= =)t = o) (2.26)

B @ e Xk

,8 k-1 1
k= max ke Nos In(= + 1) = (1= —)(tais2 = tais1) > O 2.27)

a Py Xi
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Pailxi(0) = BO) + ) persly;(0) = 5;(0)]

m
-1 j=1

1

m 0
+ 3 palue™ [ & lxi(s) - Ki(s)lds
i=1

—Tli

n 0
+ 3 paib™ | lyils) - Fi(9)lds
j=1

= -T3j
m n B0 0
PerjlagnjilLaie N
sy Y e xi(s) — Xi(s)ldss
=4S I =0y —24(0)
n m 5o 0
Perilagij|Li2je” -
DD &y i(s) = F(s)lds
J=1 =1 —01j -01(0)
m n +00 0
+ Z Z p§2j|a§23ji|L23if KﬁZli(s)f &1x:(3) — %(3)|d3ds
i=1 j=1 0 -

m n +00 0
+ D) Pojlaguillas fo Ksoi(s) f (@) — T(@dsds

i=1 j=1

n m +00 0
+ D) palacisilLis; fo Kgi1j(s) f WD) =5 F)Ndsds

J=1 =1

n m +00 0
+ p§1i|a§14ij|Ll4jf KBIZj(S)f eﬁsb’j(@ —)7]'(5)|d§dsa (2.28)
J=1 i=1 0 =
m Mgu n Mg2j
7 = max(max max ——, max max ), (2.29)

n
Mgy = Z TezDE1i + peril €™ + Z Pejlailagy il

£eE j=1
n G2 n
PerjlagnjilLaieP o
+ Z = + Z Pe2jlagsilKpariLosi
- 1 =6 -
J=1 j=1
n —
+ Z Pejlacsjil Kpoiloai, (2.30)
=

m
Mg; = Z TeeDaj + Peajlaje®™ + Z PeaiLajlagil

£eE i=1

m 5—1. m

Perilagioi|Li2 €7 S

+ Z + Z Petilagizijl KpiijLs;
i=1

1 — O_lj P
m -
+ Z Perilazi4ij| Kgi2jLyaj, (2.31)
i=1
.Ln EEE
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3. Proof of the main results

Lemma 3.1. Let N be a given positive integer and let (uy, o, ..., uy)" € RN. Then for every pair
(x1, X2, ..., x3)" and (y1,y2,...,yn)" of vectors in RN | it holds that

N N

N
| \/ﬂkxk - \/ﬂk)’k| < el xe — Yl
k=1 k=1 =1

N N
| A\ et = /\ vl < ledlee = il
k=1 k=1 k=1

Proof of Theorem 2.1. 1t is readily to see that the synchronizability of the drive-response network
system (2.1)—(2.3) is equivalent to the stability of the error network system

(1) = = hii(t = 71) + ) aynighuvi0) + D ayiifiaj(v,t = o10))

J=1 J=1

+ \/ ay,13ijf Ki1j(t = 5) f13;(V;(s) + v;(s))ds
=1 —

- \/ ay,13ijf K1t — $) f13;(;(5))ds
=1 oo

+ /\ ay,l4ijf Kioj(t = 5) f14j(V;(s) + v;(s))ds
=1 —o0

n f
- /\ay,l4ijf Ky2j(t = ) f14j(F;(8))ds
=1 o
+ Ul(t), t € R+, P'a.s., l = 1, oo ,m, (3 1)

Vi(t) = = hLjvi(t — 1)) + Z ay,zljilei(ui(f)) + Z ay,22ji]?22i(ui(t — 02i(1)))
i=1

i=1

+

a0 f Kot = ) fosi((s) + (5))dls

(o)

=

1

1

ay,Z?ajif Ko1i(t — ) f3i(%i(5))ds

(%)

<=

1

Ay,24ji f Kyi(t = 8) f4i(Xi(8) + ui(s))dss

(o9

>

1

Ay, 24ji f Kyi(t = 5) f4i(Xi(5))d s

(o)

~.

Il
—_

+ Vi), teRY, P-as., j=1,...,n,

in which
ui(t) = x;(t) — xi(0), (3.2)
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vi(1) = yi(1) = §,(0),

i) =fi1,,1(0) = fir(5())
=f11;3;(0) +vi(D) = f11;F;()),

ﬁzj(vj(f —01j(0) =f12;(yj(t — 01;(1)) = f12,(F(t — 01 (1)))

=f12;(Pj(t — o1j(0) + vt — 01j(1)) = f12;F;(t — 01(2))),

i) = for(Fi0) + ui(0) = for(Fi(0))
=f21i(xi(2)) = f21:(Xi(2)),

fzzi(ui(f — 02i(1))) =f22i(xi(t = 02i(1))) — fo2u(Xi(t — 02i(1)))
= f22i(Xi(t — 072i(0)) + ui(t — 02i(2))) — fo2u (X (¥ — 02i(1))),

i=1,....m, j=1,...,n
Let us write
V() =EV, (1), te R",

(Vf(t) = (Vgl(t) + (Vé:z(t) + (V§3(t) + (V§4(t), re R+, P-a.s., é: € 5,

Ver(1) = Zpgl,m(t)uzpﬁ,wr» teR, Pas, £€3,

i=1

Verlt) = Z perilie”™ f P u(s)lds

-7

+ Z Pl ™ e‘ﬁ(’_s)lvj(s)lds, te R, P-as., £€ 5,
j=1

1-T2;

m n ﬁ&Zi !
ParilagjilLoie Bl
Vo =), ) =" e uy(s)lds
— 072 1—02i(t)

i=1 j=1

pailagoifL; e (" g s =
+ Z Z e [vi(s)lds, t e R™, P-ass., £ € &,
1- O-]J t=01(t)

j=1 i=1
m n +00 !
Veu(t) Z P52]|a§23ﬂ|L23,f [V(ﬁzli(s)f e P INuy(3)|d3ds
=1 j= 0 t—s
m n +00 !
+ZZP§2j|a§24ji|L24i‘[(; kﬁ22i(s)f e P uy(3)|d3ds
-5

i=1 j=1

n m

+00 !
+ Z Z pfll|a§l3lj|Ll3]‘fo‘ Kgi1;(s) LS e PN (3)|d5ds

j=1 i=1

n

m —+00 !
+ prlilanij'LMjf K,Ble(S)f e PNy (3)Id5ds,
0 t—s

j=1 =l

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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t € R",P-ass., & € Z. Asin [25,32], we introduce the weak infinitesimal operator £ for every stochastic
process X(¢) (having actually certain regularity in time variable ¢) defined in an interval /:

ELX(t) = D'EX(¢), t € I \ {sup I}.

In light of (3.8), we have
D'V(t) =ELYV, (1), t e R".

Thanks to Lemma 2.1, Remark 2.2, and the definition (3.10) of V¢ (), we have

LVa@) = Z Pe1ifl, (D (1) + Z Z ez ilui(0)]

tlge_

+ Z Pea i, (09,(1) + Z D mepa Vi)

J=1 Eez
m

= Z Z Tzl (0] + Z Z Tz jlv (o)

i=l Zem j=1 Ee=

perihiin (it = 717) + Z Peri (t) Z aenijfin(v(0)

! “Ms

Peritu (1) Z a1aij froj (vt = 1 (8))

._.

i=

+ ey () + T () - Z pevikeri(1+ Fas(0)ma, (Oui(0)

i=1

— 1) peritt (1) sgn(q@ut)) = " peajlajit (Dt = T2))

i=1 j=1

+ Z Pe2jmy; (1) Z aflei]?Zli(ui(t))

+ Z Pe i, (1) Z Qi fooi(t = 2i(1)))

j=1
+ L (1) + Lo (2) — Z prjI%ij(l + lvfzj(f))mj(f)vj(f)
=
- szgzjﬂvj(f) sgn(q(vj(1))), t € [tu, trr1], P-as., E€E, (3.14)
=

in which n,,(¢) is an arbitrarily given selection in €(u;()), and n,,(¢) is an arbitrarily given selection
in €v;(®)),i=1,...,m, j = 1,...,n; see Remark 2.2 for the precise definition of the multi-valued
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function C(-); and Il (1), Iz12(1), 111 (1) as well as T1g)(1) is

Il (1) = Z Pe1ifu, () \/ agnuf Ki1j(t = ) f13;(F;(s) + v;(s))ds
i=1 =1 e

m n

!
- Z Petiflu, (1) \/ a§13ijf K1 j(t = $)fi3;,3,(s))ds, t e RY, P-as.,
i=1 =1 -

o0

L 5(1) = Z Pe1ifu, () /\ a§14ijf Kij(t = ) f14;(F;(s) + v;(s))ds
P —o0

J=1

m n !
- prlinui(t) /\ a§]4l~jf K]zj(t - S)f]4j(57j(S))dS, te R+, P-a.s.,
i=1 j=1 oo

Il (1) = Z Pe2jmy;(0) \/ a§23jif Ky1i(t = ) fo3i(%i(s) + ui(s))ds
=y i=1 00

n m !
- Z Pe2jiv (1) \/ agzwf Ko1i(t = 5) fo3:(%i(s))ds, t € R, P-as.,
= i=1 —o0

(1) = Z Pe2jy (1) /\ a§24jif Kyi(t = 5) fr4i(Xi(s) + u;(s))ds
i=1 —oo

=1

- anpgzmvj(l) /m\ Ae24ji ft Ki(t = 5) frai(Fi(5))ds, t € R, P-as.
=1 i=1 o
By the definition of the logarithmic quantizer g, we have
sgn(g(x)) = sgn(x), x € R.
By the definition of €(-) (see Remark 2.2 for the details), we have
e Ou; () = lu; ()], t e R, P-as., i=1,...,m,

and
m,Ovi(t) = v, t R, P-as., j=1,...,n.
This, together (3.19) and (3.20) implies
1 (1) sgn(q(u; (1)) =n,,(¢) sgn(u;(1))

=1,(1) sgn(q(v(1)))
=1,,(t) sgn(v(n) = 1

whenever u;(H)v;(t) #0,i=1,...,m, j=1,...,n.

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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Thanks to the definition of €(-) (see Remark 2.2), we have by using direct computation

m

- Z Periliinu, (Oui(t — 71;)

Ms

Periliilui(t — 71l
T

! !
Petil1i (eﬁr”lui(f)l - eﬂT“DJrf e P Nuy(s)lds — B f
-7 t

—T1i

e (’_S)Iui(S)IdS)

1

1

perihie” lui(1)] - szgl,lheﬁ e lu(slds

=711

,BZ peril ™ f e PNy (s)ds, t e RY, P-as., i=1,...,m. (3.23)
-7y

i=

I
—_

[§

Mimick the steps in (3.23), to obtain

Zp§2112]n\/,(l)vj(t T2])
Z p52112]€ﬂT2l|V](I)| - L Z p§2]lljeﬂ 2 f _B(I_S)lvj(s)lds
J 1 =73

,BZ Perjlrje®™ f e PNy i(s)lds, t e RY, P-as., j=1,...,n. (3.24)
j=1 =

T2j

Thanks to the definition of €(-) (see Remark 2.2), (3.4), and Assumption 2.1 (especially (2.14)), we
have by

INgE

pfllnu,(t) Z dg) lzjfl lj(vj(t))

1 j=1

peti Z A G)
1 j=1

n
peti ) Luijlagnijllvi(@)l
1 =

I

Ms

7

N
Ms

£

s

Ms

peailiijlagillvi(ol, t € R, P-a.s. (3.25)
=1 i

Owing to (3.6) and Assumption 2.1 (especially (2.15)), take similar steps as in (3.25), to obtain

~
Il
—

Z Pea,l, () Z a1 i fori(u(1)

n

j=1
<> > pajlalag (o), t € R, P-ass. (3.26)

i=1 j=1

AIMS Mathematics Volume 8, Issue 2, 4098—4125.



4113

Utilize the definition of €(-) (see Remark 2.2), Assumption 2.1 (especially (2.14)), Assumption 2.2

(especially (2.16) and (2.18)), and some routine but tedious calculations, to arrive at

Z Peri (1) Z a1 froj(v,(t = (1))

j=1

n m
< Z Z PetilagioijlLiojlvi(t — o1 (D)
=1 =1
n m B0 t
Perilag2ij|Li2j€” " B
<) vl - D* eIy (s)lds
j=1 i=1 01 1—071()
!
- ﬁf _ﬁ(t_s)|vj(s)|d5)
1= O—IJ(I)
N PetilagnnijiLin €7
=2 v,
=1 =1 AV
noJn Bt
peiilagioij|lLy2 € —Bl1—
£ Z §LilME12i) J e B(t s)lvj(s)|ds
v 1 =6, 1,0

n m

vilagiijlLi; 7 [ —Bt-s
B Z Pe1ilAg12ij J e Pl .S)lvj(s)|ds, te R+, P-a.s.
0—|_](t)

1 -6y
]= i=1 lj

(3.27)

In view of Assumption 2.1 (especially (2.15)) and Assumption 2.2 (especially (2.17) and (2.19)), we

have immediately by mimicking steps in (3.27)

Z Perjin, (1) Z aeri it = (1))

& P52J|61522]z| 20;€P7
<> Z (o)

i=1 j=1

m.on BO2i ¢
DerjlagnjilLaie 8
-L E E e = e PO\ yy(s)ld s
I =6 =02 (1)

i=1 j=1

m n ﬁ&Zi f
Pejlagjillaie o
—BZ Z e e PNu(s)lds, t € RY, P-as.
=0 =2i(1)

i=1 j=1
By Lemma 3.1, we have directly

n

\/ a§13ijf Ki1j(t = ) f13;(F(s) + vi(s))ds

j=1 -

I (2) < Z Peti
i=1

B \/ af”"ff Ky j(t = 9) f13;(5(s))ds

<Zp§112|aml,u f K1t = $)fi3j(vi(s)dsl, 1 € RY, Pas., £ € Z,

i=

(3.28)

(3.29)

AIMS Mathematics Volume 8, Issue 2, 4098—4125.
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where

Fisjvj(8)) = fis;(5,(s) + vi(s)) — fi3;,(3(5)), t €R, P-as., j=1,...,n,
which, together with Assumption 2.1 (especially (2.14)), implies
1fi3;(v ()| < Lizjlvi(s)l, t €R, P-as., j=1,...,n

This, together with Assumption 2.3 and some tedious computations, implies

!
| f Ki1j(t = ) fi3,(v;(s))ds]
!
<L, f Kot = v (s)lds
o
“Ls, f Ko (vt — s)lds
O+oo
=L3, f Kgi1j(s)e P vt — s)lds
0 +00 +00 !
:LBJ( f Kg11(s)ds|v(t) — D* f Kg11i(s) f e PO i(5)|d5ds
0+00 ) 0 t—s
—Bf Ivf/snj(s)f e_ﬁ(t_§)|vj(§)|d5ds)
:Llsj(lv(ﬁuj|vj(f)|—£j; Iv(ﬁllj(s)f e PNy (3)|d5ds
t—s

+00 !
-B f Kp11(5) f e-ﬁ<f—§>|vj(§)|d§ds), teR', Pas., j=1,...,n.
0 t—s

This, together with (3.29), implies

m n _ +00 t _
Iz (2) < Z Deli Z lag13ijlL13; (Kﬁ11j|vj(t)| - -l:f Kﬂllj(s)f e PNy (3)|d5ds
-1 =1 0 t—s

+00 !
-8 f Kg11i(s) f e-ﬁ<’-f>|vj(§)|d§ds)
0 t—s

n m
= Z Z Detilag3ijl KgiiiLizjlv (0]

j=1 =1

n m -+ 00 !
-L Z Z p§1i|a§13ij|Ll3j‘£ Kpi1;(s) j;s e PN (3)|d5dss

j=1 i=1

n m +00 t
-B Z Z p§1i|a§13ij|Ll3jf Kg11i(s) f e PO (3)|d5ds, (3.30)
0 t—s

j=1 =l
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t € R*, P-as., & € 5. By analogy with (3.30), we can prove also

I 5(1) < Z Z Perileiaifl KgioiLigjlv (0|

=1 =1

n m —+00 t
—LZZ PerilagiaijflLia; fo Kp12/(s) j:_ S e PN (3)|d3ds

=1

m —+00 !
-B Zpgli|a§14ij|L14jf Kﬁle(S)f e POy (S)Id3ds,
0 t—s

J =

:K

(3.31)

t € R*, P-as., £ € Z. By using Lemma 3.1, combining Assumption 2.1 (especially (2.15)) along with

Assumption 2.3, and mimicking the steps in proving (3.30) and (3.31), we can prove

I (1) < Z Z Perjlags jil KgoriLosilui(1)]

i=1 j=I

+00
- LZ przj|agzsﬂ|L23zf0 K,BZI;(S)f e P VNuy(3)\d3ds

i=1 j=1

m n +00
IBZ przj|ag23ﬂ|L23zf K (S)f e P Vuy(3)\d3ds,
J=

i=

t € R*, P-as., & € 5. Taking similar steps in proving (3.32), we can prove

m

I (1) < Z Z P52J|0524JI|K[3221L241|M )l

=l j=

m n !
-L Z PejlagzajilLosi f Kgi(s) f e P Nuy(3)|d3d s
0 t—s

i=1

m n + 00 !
-B Z Perjlagajil Lo f Kg5i(s) e P INuy(3)\d3dss,
0 t—s

i=1 j=1

t € R, P-as., & € 5. Plug (3.23)—(3.28) and (3.30)—(3.33) into (3.14), to yield
LV (1) < Z M lui(0)] + Z Mealv(0)

- L Z peile”™ | P lu(s)lds

-7y

—/J’ZpgnlheB “f e Nuy(s)lds

-7y

vilagioi|Lin @7 (-
-y, ), bkl eI (s)ds
— 0y 1=01 (1)

j=1 i=1

(3.32)

(3.33)
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n m oAt !
PerilagiaijILip ;P Bl
DI e eIl (s
=1 =1 Y 0
n m —+00 !
- L) pailacsijiLis; f Kp11(s) f PNy (5)\dsds
j=1 =1 0 t=s
n m —+00 !
=B D pailacnsijlLis; f Ru1,(5) f eIy (3)|d5ds
j=1 =1 0 t=s
n m —+00 !
- 1:2 Z p$1i|a§14ij|L14jf KBIZj(S)f e PNy (3)|d5ds
j=1 i=1 0 t=s
n m +00 !
—,BZ Z p§1i|a§14ij|Ll4jf Kﬁle(S)f e PN i(3)|d5ds
j=1 =1 0 t=s

n t
-L Z Perjlaje’™ f eIy (s)lds
=1 '

T2

t

—B Y pahie™ | el (s)lds
j=1

=T

m n 0 f
silagan jilLonieP i
LY P
i=1 j=1 oi !

—o2i(t)

m n 02 t
silagan jilLonieP”? i
Y0 A 5)ds
i=1 =1 02 '

—02i(t)

m n —+00 t

-L Z Z PerjlagjilLas f K,BZI[(S)f e POy (3)|d3ds
i=1 j=1 0 -5
m n +00 . t B

-B Z Z PerjlagsjilLas f KﬁZli(S)f e POuy(3)|d3ds
i=l j=1 0 t—s

m n +00 f
-L Z Z PerjlagajilLoa Kpoi(s) e POuy(3)|d3ds
=1 j=1 0 t=s

1

m n

+00 A
—ﬁz p§2j|a§24ji|L24if Kﬁ22i(s)f e PIu(5)\d3ds
. 1 0 t—s

i=1 j=
m n

B T(Z Peii + Zp&j)’ t € [tor, togs1], P-as.,

i=1 j=1

or equivalently, to yield

LVa(t) <D Madu®dl + Y Meajlv;(0)]
i=1 j=1

— L(Ver(t) + Ves(t) + Veu(1)
—ﬁ((V‘fz(l‘) + (V§3(t) + (V§4(t)) —a, t € [ty, tas1], P-a.s., (3.34)
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where @, Mg, Mgj, Va(t), Vea(t) and Veu(r) are given by (2.23), (2.24), (2.25), (3.11), (3.12)

—

and (3.13), respectively; i = 1,...,m, j = 1,...,n, & € 5. Thanks to (2.20) and (2.21), in view
of (3.9), we deduce from (3.34) that

LYVe(t) < —BVe(t) —a, t € [tn, tys1], k € Ny, P-ass.
This, together with (3.8), implies immediately
D*V(t) < =BV(1) — a, 1 € [ty tys1], k € Np. (3.35)
Taking similar steps as in deriving (3.34), we could get
LVe(0) < Z M§1i|ui(f)| + Z M§2j|Vj(l)|

i=1 =1

= B(Ver(t) + Ves(t) + Veu(1)), t € [fars1, Lars2], P-ass,,
which, together with some tedious calculations, implies

LV <Y, peails®l + Y pervi() < nVe®), 1 € [, b, k € N, P-as.,
i=1 =1

where 7, A7[§1,~ and Mgzj are given as in (2.29), (2.30) and (2.31), respectively; i =1,...,m, j=1,...,n,
¢ € 5. This, together with (3.8), implies

D*V(t) < nV(1), t € [tags1, tars], k € Ny. (3.36)
In light of (3.35), (3.36) and (2.22), we deduce by applying Lemma 2.2 that
LACEL
and

Vi) =0, Yt e [T, +),

where T is given by (2.26) alongside with (2.27) and (2.28). But in light of (3.2), (3.3) and (3.8)—(3.13),
we have

min_ pey Z] Elu() = (01 + _min_ pe, Z] Ely;(1) - 5,00
i= Jj=

£eE, 1<i<m

Praili(®) = H(O1+ B )" pyaily i) = 3,(0)

J=1

<E

1

<V(1), t € R*.

m
=1

This, together with  min ps; > 0and min pg; > 0 which follow from the related assumption,
ey ¢ = . &2j
&€&, 1<i<m (el 1<j<n

implies immediately that the proof is complete. O
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4. An illustrative example

In this section, we shall conduct numerical simulations to show the validity of the synchronization
criteria (see Theorem 2.1) of this paper. We consider here the following BAMN:

ay, 11111 () + 1] = [y (1) — 1)
<(7) = — 1. -1 n
x(1) 5508x(r— 1) + 100

N ay12(y2(0) + 1] = |y2 (1) — 1)
100

Ay, 1212 !

ay1211
r— r—
100 '3 00 2T 217

a : ! _ s a 12 ! — —s
+( i(1)3011 ‘[me 100(¢ )y1(S)dS)V(% ‘[we 100(: >y2(s)ds)

aypan (7 ~100(r—s) Ay, 1412 f ' ~100(1—s)
e d —n d
( o [ o) \ (S [t @1

+sint, t € RY, P-as.,
x(®)+ 1] —|x() -1 a t
v (|x(@) + 1] = |x() — 1) N y’mlx(t— )
100 100 2+t

!
f e ' 9x(s)ds + sin2t, t € R*, P-as.,

)+

$1(1) = — 0.7879y, (1 = 2) + =

ay2311

100
H+1—|x(t)-1 t

ay2121(|x(2) + 1] = [x(2) — 1) ay,2221x(t_ )

() = — 1.5708ys(f — 1
¥2(0) na(f =D+ 100 " 7100 2+1

!
% j:w e ' x(5)ds + sin 3¢, t € R, P-a.s.,
in which
8 6 2 9
(ailllj) =13 7|, (ai121j): 3 41,
25 8 1
2 7 7 8
(anzj) =13 5|, (ans1j) =12 9],
8 4 6 1
1 95 325
(apj) =5 2 3|, (app) =19 7 1].
8 6 4 4 6 8

We assume here that the Markovian chain y, takes & = {I,2,3} as its state space, and takes the
following Metzler matrix as its infinitesimal generator:

-5 1 4
) =|6 -8 2|
7 3 -10
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By utilizaing MATLAB, we can simulate numerically the trajectory, denoted by (x(¢), yi(¢), y2(?))
henceforth, of network system (4.1) supplemented by

x(t) = €', dP X dt-a.e. in Q X (—00,0],
yi(t) = €, dP x dt-a.e. in Q X (=0, 0],
yo(t) = €, dP x dt-a.e. in Q X (=0, 0].
As the simulation result (see Figure 1) indicates, the network system (4.1) itself lacks stable equilibrium
points, periodic trajectories and general trajectories (see especially y;(#) and the phase portrait)

r

=
o

f \ I | \ ‘ W‘
\ . \
N \H M |

il M ‘”“ \\

w il
: I

50

= 0

&
n

[
L
100

200

300

b. x component of the state trajectory (x(t), yvi(2), yz(t)) of the network system (4.1)

y(t)

& .la .'— _=

j wm““\‘ }\}\ M, |
M H M(H ‘H‘W / HH / \u
I ‘H I

\ h
50 100

150

0

200 250 300
Time ¢

c. y; component of the state tra]ectory (x(t), Vi (t), yz(t)) of the network system (4.1)

’ W \U H\‘ ‘\ wp
= HH ‘ H‘ m
| /

\ ‘ ‘
ZT?Z t M

0

00

300
Time ¢

d. y, component of the state trajectory (x(z), y1(t), y»(¢)) of the network system (4.1)

Figure 1. Numerical simulation of dynamics of the network system (4.1)
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This means that: For two different trajectories (a(¢), by (), bo(¢)) and (a(z), b,(7), by (1)), there exists no
0 < T < +00 such that

lim E(la(#) = &(#)] + [01(t) = Bi(D)] + [b2(t) = bo(1)]) = 0, if T = oo,
a(f) = &(1), by(1) = Bi(0), ba(r) = By(1), £ > T, P-as., if T € (0, +00).

Actually, we conduct numerically, by using MATLAB, comparison between the trajectory
(x(1), y1(1), y2(2)) and the trajectory (%(¢), ¥ (), ¥2(¢)) of the network system (4.1) supplemented by

X(r) = =10 — cost, dP x dt-a.e. in 2 X (=0, 0],
$1(t) = =10 — cos 5¢, dP x dt-a.e. in Q X (—00,0],
$2(r) = =10 — cos 2¢t, dP X dt-a.e. in £ X (=00, 0].

The simulation result (see Figure 2) reveals that: The trajectory (X(¢), y1(¢), ¥»(¢)) does not approach the
trajectory (x(t), y1(#), y»(#)) as time ¢ tends to a finite/infinite time instant.
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c. Evolution of y,(¢) and the uncontrolled y,(¢) with respect to time ¢

Figure 2. Comparison of two different state trajectories of the network system (4.1) (the solid
curves representing (x(), y;(t), y2(¢)), while the dashed curves representing (X(¢), ¥ (), y,())).

[lluminated by the results in Theorem 2.1, to design control to synchronize the network system (4.1),
we introduce an infinite sequence {z,}> , in R* by

[41-1 |
1 1+ (D)

t, = - + D , n € Ny, 4.2)
= 1651+ 1)
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where [x] denotes, here and hereafter, the greatest integer which does not exceed x, x € R. After careful
analysis, we can conclude that: The sequence {z,};" , is strictly increasing, and satisfies the following
properties:

=~

-1

1
:Z, 1forkeNo,
o/t
k-1
2 1
t by + =t for k € Ny,
2k+1 = JZ:]+1 3(k+l) 32k 32k+2 or 0
t -1 1
to =0, lim £, = +00, —*L 2 — _ for k € N,,.
n—00 b2 — s 2

Enlightened by Theorem 2.1, we choose the control (2.12) and (2.13) as the candidate synchronization
control for the network system (4.1). Numerical simulation based on MATLAB yields: The the
control (2.12) and (2.13), with keyy = ki = ko = 17.3914 (¢ = 1,2,3) and T = 25.9463, can render
the trajectory (X(t), y1(?), ¥2(¢)) to “arrive at” the trajectory (x(),y;(), y,(¢)) before the time instant
T = 1.9167, and to coincide with (x(), y; (), y»(¢)) thereupon; see Figure 3.
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Figure 3. Comparison of two different state trajectories of the drive network (4.1)
and the controlled response network system (the solid curves representing the trajectory
(x(2), y1(1), y2(¢)) of the drive network system (4.1), the two-dashed curves representing
the trajectory (X(¢), 1(¢), y2(t)) of the response network, and the vertical straight lines
representing the instants that the control is paused).
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5. Conclusions

We addressed the synchronization problem for a class of fuzzy BAMNs with Markovian switching
in this paper. In comparision with the studies in the existing references, the concerned BAMNSs in
our paper include simultaneously discrete-time delay in leakage (in other words, forgetting) terms,
continuous-time and infinitely distributed delays, fuzzy logic, as well as Markovian jumping in
transmission terms (see (2.1) for the detailed information). This certainly provides more realistic
models in applications, but brings us more difficulties in designing control to synchronize the concerned
network system (2.1) in finite time. For the network system (2.1), we designed an intermittent
quantized control. By coming up with a clever Lyapunov-Krasovskii functional, we proved under
certain conditions that the controlled network system is stochastically synchronizable in finite time,
more precisely, the 1st moments of trajectories of the error network system (3.1) of the drive network
system (2.1) and the response network system (2.3) approach zero at finite time and remain to be zero
thereupon. The main ingredient in proving our main results is a novel Lyapunov-Krasovskii functional,
which can be adapted to deal with finite-time synchronization problem for BAMNSs with time-varying
leakage coeflicients and transmission coefficients which generalize slightly our concerned network
system (2.1).
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