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involved in the problem at hand.

Keywords: (k, ¢)-Hilfer fractional derivative; Riemann-Liouville fractional derivative; Caputo
fractional derivative; existence; uniqueness; fixed point theorems
Mathematics Subject Classification: 34A08, 34B10

1. Introduction

Fractional differential systems appear in the mathematical models associated with several physical
phenomena such as synchronization of chaotic systems [1-3], BAM neural networks with time
varying delays [4], HIV-immune system with memory [5], anomalous diffusion [6], ecological
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effects [7], co-infection of malaria and HIV/AIDS [8], etc. One can find some theoretical results on
fractional differential equations involving Riemann—-Liouville, Caputo, Hadamard, and Hilfer type
fractional derivative operators in the articles [9—18] and the references cited therein. For a detailed
update on fractional calculus, we refer the reader to the books [19-27]. More recently, the concept
of (k,¢)-Hilfer fractional derivative operator was introduced in [28], which received significant
attention as it specializes in some known fractional derivative operators under a suitable choice of the
parameters involved in its definition. In [29], the authors discussed the existence of solutions for
a (k,p)-Hilfer fractional boundary value problem with nonlocal integro-multi-point boundary
conditions. A nonlocal coupled system for (k, ¢)-Hilfer fractional differential equations with nonlocal
multi-point boundary conditions were studied in [30].

In this paper, we introduce and study a new coupled system of (k, ¢)-Hilfer fractional differential
equations supplemented with nonlocal integral multi-point coupled boundary conditions given by

CHEDOBe(t) = £t x(0), ¥(1), t € (a,b),
B pePey (1) = g(t, x(1), (1), t € (a, b,

b m
x@ﬂ,fMMMFZm@, (1.1)
a jzl

b n
@ =0 [ FGmisds =Y 0t
a i=1

where ©f D¢ kHpabi¢ denote the (k, ¢)-Hilfer fractional derivative operators of orders @y, a, €
(1,2), and parameters 51,3, € [0, 1], respectively, f, g : [a,b] X R X R — R are continuous functions,
n,0 € R,a<é,z:<b,j=1,2,...,mi=1,2,...,kand ¢ is an increasing function with ¢’(¢) # 0
for all ¢ € [a, b].

Here we emphasize that the importance of nonlocal conditions can be understood in the sense that
such conditions are used to model the peculiarities occurring inside the domain of physical and
chemical processes as the classical initial and boundary conditions fail to cater to this situation. The
present problem is motivated by useful applications of nonlocal boundary data in petroleum
exploitation, thermodynamics, elasticity, wave propagation, etc., for instance, see [31, 32] and the
details therein. For some recent theoretical works on nonlocal integral boundary value problems, we
refer the reader to the articles [33-35].

The objective of the present research is to develop the existence theory for a class of nonlocal
integral multi-point coupled boundary value problems involving (k, ¢)-Hilfer fractional differential
operators of different orders with the aid of the standard tools of the fixed point theory. The proposed
study is important and useful in view of the wider scope of the (k, ¢)-Hilfer fractional operators. It is
imperative to mention that the (k,)-Hilfer fractional differential system considered in the
problem (1.1) is of more general form and takes some special forms by fixing the values of ¢ and
Bi,i = 1,2. For instance the (k, ¢)-Hilfer fractional differential system in (1.1) corresponds to (i)
(k, ¢)-Riemann-Liouville fractional differential system for §; = 0 = (,; (ii) k-Riemann-Liouville
fractional differential system for ¢(#) = ¢; (iii) k-Hilfer-Katugampola fractional differential system for
o) = t; (iv) k-Katugampola fractional differential system for () = #* and g1 = 0 = B; (V)
k-Caputo-Katugampola fractional differential system when @(f) = , By = 1 = f; (Vi)
k-Hilfer-Hadamard fractional differential system for ¢(f) = log#; (vii) k-Hadamard fractional
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differential system for ¢(f) = logt, 81 = 0 = ,; and (viii) k-Caputo-Hadamard fractional differential
system for ¢(¢) = logt, 51 = 1 = B,. For further details, see the paper [36].

The structure of the rest of the paper is as follows. Some definitions and lemmas are outlined in
Section 2. An auxiliary result is also proved, which is used to transform the given nonlinear system into
a fixed point problem. The main results, based on Banach’s contraction mapping principle, the Leray-
Schauder alternative, and Krasnosel’skii’s fixed-point theorem, are presented in Section 3. Section 4
contains the numerical examples illustrating our theoretical results.

2. Preliminaries

Definition 2.1. [37] Let h € L'([a,b],R), k > 0 and ¢ : [a,b] — R is an increasing function with
¢'(t) # 0 forall t € [a, b]. Then the (k,)-Riemann-Liouville fractional integral of order @ > 0 (@ € R)
of the function f is given by

. 1 0 .
%ﬁﬂ0=ﬁﬂahﬂg%Mﬂ0—ﬂﬂﬁ”ﬂ®w-

Definition 2.2. [28] Let a,k € R* = (0,), B8 € [0, 1], ¢ is an increasing function such that ¢ €
C"([a,b],R), ¢'(t) # 0,t € [a,b] and f € C"([a,b],R). Then the (k,p)-Hilfer fractional derivative of
the function h of order a and type B, is defined by

. . kK d\' . a
kH nya.,B:¢ Bnk—a),p k y(1=-B)(nk—a)p
D H=1r —_— I ), n=|—|.
f( ) a+ ( ,(t) lt) a+ f( ) [ k -|

Lemma 2.1. 28] (i) Let 1,k € R* and n = [%|. Assume that f € C"([a,b].R) and *I;s"“h €

C"(la, b],R). Then
ko d\"™ e

o(t) — pla))i
Li(u — jk + k)

t=a

kW%”%W%v»:ﬂn—if
j=1

(ii) Let a1,k € R* with ay < k, 81 € [a,b] and p = a| + B1(k — ;). Then
kpie (k,RLDp;wf) (1) = k1™ (kyHD“l:BU‘Pf) (), fe€C'(a,b],R).

Now, we prove an auxiliary result concerning a linear variant of the system (1.1).

Lemma 2.2. Leta < b,k>01<a,a; < 2,,81,,82 S [0, 1], p=a +ﬁ1(2k—a1), q=a +ﬁ2(2k—a’2),
f € C*([a,b],R) and A # 0. Then, the unique solution of the nonlocal (k, ¢)-Hilfer integro-multi-point
system

CHDMPE (1) = (1), t € (a,b],

CHDPy(t) = y(1), 1 € (a,b),

b m
x@=&f¢®mm=2mﬁﬂ @1

J=1

b n
Y@ =0. [ s =Y o
a i=1
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is given by
— o(a)F! L b
) = k101;¢h1(t)+(9"(t)ArZ(;‘)” [Az [Z 0 1y () — f &(s) kl“”’hz(s)dsJ
m b
+A, (Z n; "I hy(&)) — f ¢'(5) kl“l;sahl(s)ds]], (2.2)
Jj=1 a
and
o («p(r)—so(a))i-‘[ [ Cran f", ra ]
yt) = KI%hy(1) + A 0, *Ihi(z)) — | ' (s) I hy(s)ds
? AT4(q) : Z : . ?
m b
+A; [Z n; "I hy (&) — f ¢'(5) "I“Whl(sws)], (2.3)
Jj=1 a
where
(p(b) — p(a))F B (@E) — @)ttt
A T AZ‘;’” L
S (p(z0) = pla)F! (p(b) - ()t
A; = ) 6 . Ap=k— 2.4
DI e N TPEYS .
with
A=A A — AA;. (2.5)

Proof. Let (x,y) be a solution of the system (2.1). Operating fractional integral operators /91 and
k1% on both sides of the first and second equations in (2.1) respectively, and using Lemma 2.1, we

obtain , ,
(p(1) — p(a))®! N (p(1) — p(a))F?

x(t) = 1R (1) + ¢ T ) TRV (2.6)
and
_ 11 _ )
y(t) — klaz;<ﬂh2(t) + d() (SD(I) st(pq(;l)) + dl (¢(?k(q¢fa£; : (27)
where
o= [(i i) x| e = [P
(}0’(1‘) dt t=a’ t=a’
k d . .
b =|(Fga) Tl a=[T0),

Combining the conditions x(a) = 0 and y(a) = 0 with (2.6) and (2.7), we get ¢; = 0 and d; = 0, since
. ... b, m b,

-2 < 0and -2 < 0. Using the conditions [ ¢'(s)x(s)ds = X', njy(&)), and [ ¢'(s)y(s)ds =

2im 0ix(z;) in (2.6) and (2.7) after inserting ¢; = 0 and d;, = 0, we get

b b B -
f ¢'(5) "I hy(s)ds + co f o (5) ED =D
“ a Fk(p)
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i (&) — ga)i™!

2 )+ do Q=
k

J=1 =

b b B 41
f @' () "I hy(s)d's + dy f o (5) B P
“ a Fk(q)

L o, (9(@) = pla)f!
= ;91 I Sohl(Zl)"'cOi:ZlGl Fk(p) .

In view of the notation (2.4), the above system of equations takes the form:

m b
Arco—Axdy = Z nj klawhz(é:j) - f @'(s) “I7%hy (s)ds,
J=1 ¢
n b
—Asco + Aydy = Z 0; K197 (z;) - f @' (8) "I hy(s)ds. (2.8)
i=1 a

Solving the system (2.8) for ¢y and dy, we find that

1 - . b .
co = Z[Az(;Qikl(ll’¢h1(Zi)—L SD(S)kIaz’whz(S)dS]
m b
A Dy ey - f @' () I Iy (s)d's ]
= “
1 D b f s
dy = Z[Al ;Qi ]m,sahl(zl,)_\[a‘ @' (5) "I"*hy(s)ds

< b
+A3 (Z n; klaz;cph2(§:j) _ f QDI(S) k]m:‘ﬁhl(s)ds] ]
J=1 a

Replacing ¢, ¢y, dy, and d; by their respective values (found above) in (2.6) and (2.7), we obtain the
solution (2.2) and (2.3). The converse follows by direct computation. Hence the proof is complete.

Finally, we summarize the fixed point theorems used to prove the main results in this paper. X is a
Banach space in each theorem.

Lemma 2.3. (Banach fixed point theorem [38]). Let D be a closed setin X and T : D — D satisfies
|[Tu—Tv| < Au—v|, forsome A € (0,1), and for all u,v € D.

Then T admits one fixed point in D.

Lemma 2.4. (Leray-Schauder alternative [39]). Let the set C be closed bounded convex in X and O
an open set contained in Q with 0 € O. Then, for the continuous and compact T : U — Q, either:

(a) T admits a fixed point in U, or
(aa) There exists uw € AU and u € (0, 1) with u = uT (u).
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Lemma 2.5. (Krasnosel’skii fixed point theorem [40]). Let M be a closed, bounded, convex and
nonempty subset of a Banach space X. Let A, B be operators such that (i) Ax+ By € M where x,y € M,
(ii) A is compact and continuous and (iii) B is a contraction mapping. Then there exists z € M such
that 7 = Az + Bz.

3. Existence and uniqueness results

For a Banach space X = C([a, b],R) endowed with the norm ||x|]| = max{|x(¢)|,t € [a,b]}, it is
well-known that the product space (X X X, [|(x, y)|]) is a Banach space with norm ||(x, y)|| = [|x|| + ||yl].
In view of Lemma 2.2, we define an operator 7 : X X X — X X X by

3.1

) - ( T1(x,)(0) )

T2(x, y)(1)

where

(1) — p(a)) k!
ATl'w(p)

TIEN@O = I f( (), y(0) + [Az( D041 f (21, x(@), ¥(@)
i=1

b m
- f ¢ (5) 17 g(5, x(5), Y(5))ds) + Aa( D" 1 “Ig(&), x(€)), Y(€))

J=1

b
—f ¢'(s) "I"““"f(s, x(s),y(s))ds) , t€la,b], (3.2)

and

() — p(a)i~!

k17 g1, x(1), y(1)) + Al (q)

T2(x, y)(1)

[Al( Z 6 "I f(zi, x(2:), ¥(2))
i=1

b m
- f ¢ (5) 17 g s, x(s), y(s))ds) + As( )" 1 I g(€ s, x(E)), ¥(ED)

=

b
- f ¢'(s) kI“““’f(s,x(s),y(s))ds)] 1 € [a,b]. (3.3)

For computational convenience, we introduce the notation:

@) - @)t e - p@)t (e - pan?
SRS VY s S VT W7 (AZ;'Q"' T +5)

(@(b) — pla)) ! )

+Ay
I (aq + 2k)

(@(b) — p@)F™' [ (p(b) — p(a)) T! U (&) - ela) T
= (" T s 20 +A4; W )
0 - (o)~ o(a)7 , (@0 — gyt ( (o) - o(a)) T+

> T Ty k) ATx(q) U T + 26
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5 (&) - pa)t
+A; JZ_; |7l @y + 6 ),

(@) = @)t~ < (@) — @)t () — p(a) T
= AT () (A‘;le"l Ti(a; + k) tA () + 2k) )
Do e —e@) () —e@) T
S e S R SRS 4

In the following theorem, we prove the existence of a unique solution to the nonlocal (k, ¢)-Hilfer
fractional system (1.1) via Banach’s contraction mapping principle (Lemma 2.3).

Theorem 3.1. Assume that
(Hy) There exist constants m;,n;,i = 1,2 such that, for all t € [a,b] and u;,v; e R,i = 1,2,
|f(tur, up) — f(t,vi,vo)l < myluy — vi| + moluy — val,
lg(t, ur, uz) — g(t,vi, v2)|l < myluy — vil + naluy — vol.
Then, the nonlocal (k, ¢)-Hilfer fractional system (1.1) has a unique solution on |a, b], provided that

(Ql + Q4)(m1 + WZQ) + (Qz + Q3)(I’ll + I’lz) <1, (35)

where Q;,i =1,2,3,4 are given in (3.4).

Proof. Let us verify the hypothesis of Banach’s contraction mapping principle [38] in the following
two steps:

(i) 7 B, C B,, where the operator 7 is defined by (3.1) and B, = {(x,y) € X X X : ||(x, y)|| < r} with

(1 + Qy)N; + (£ + Q3)N,
[(Q1 + Qq)(my + my) + (Q + Q3)(ny + m2)]’

>
I"_l_

N1 = 8up,epup f(5,0,0) < 0o, Ny = sup,q, 4 8(2,0,0) < oco.
(i1) The operator 7" is a contraction.

To establish (i), let (x,y) € B,. Then, we have

DOl € I £ 300, 50) — £(1.0,0)] + 1£(2.0,0))
(@)
Skt 200 |A421MNPWﬂﬂ@x@mﬂa»—ﬂ@0ﬁn
i=1

|AIL(p)

b
+|f(zi,0,0)|)+f ¢'(s) kl"z;“’(lg(s,X(S),y(S))—g(s,O,O)I+|g(s,0,0)|)dS)

+A4( Z |77]| klﬂz;w(|g(§j, x(é:j)’ y(fj)) - g(gp 0’ 0)' + |g(‘§]’ O’ O)l)
j=1

b
+f ¢'(s) kl‘“;“’(lf(s,X(S),y(S))—f(s,0,0)|+If(s,O,O)I)dS)]
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IA

IA

<

I (my ||d) + mollyll + Ny)

(p(t) — p(a))F ! n o
A [Az(;'e"' 17 (ma |l + mallyll + No)(@)

b
+f @' (5) *I° (ny ||xl| + malyll + Nz)ds)

+A D il Gl + el + Na)(E))
=1

b
+ f @ (8) 17 (my | x| + malyll + N, >ds)]
(@(b) — pla)*

T sl + malyl + M)
(¢(b) = pla))t! (so(z) ¢(a))%
ARG [ (Z 104 s (my||xl + mallyll + Ny)
b) - p(a)?
+(¢(Fz(az¢-(ka2)3c) (mlxl] + nallyll + Nz)ds)
A Y Tl
Jj=1

(@(b) — pla)) T+

(mulld] + mallyll + Nods)

Fk(a/l + 2k)
B — ol@n?
(mi ¥l + mall] + M){“"(Fk)( 1¢+(Czl<)))
(@(b) — p(a))i~! (0(z) — @) (p(b) — pla)) !
ARG ( Z' @ +b M Tim + 200 )}
_ -1 b) — 2+l
it o 0=

(9(&) — pla) T
A“Z' M @+ 0 )}
(m1||x|| + mollyll + NQy + (ny[|x]] + nallyll + N2),

(M1 + n Q)||x]| + (M2 + na )Yl + Qi Ny + QN
(lel + I’llgz + szl + I’lez)r + QlNl + QzNQ.

Similarly, one can obtain that

T2, (O] < (m1Q24 + 113 + ma€y + nQ3)r + Q4N + Q3N,.

Consequently, using the preceding inequalities, we have

7 Gl =

AIMS Mathematics
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sup [71(x, )@ + sup [72(x, y)(@)|

te[a,b] tela,b]
< Q) + Qu)(my + my) + (Qy + Q3)(ny + 1) r + (Q) + Q)N + (£ + Q3)N,
<

which implies that 7 B, C B, as (x,y) € B, is an arbitrary element.
Next, we prove (ii). For (x1,y1), (x2,y2) € X X X, and for any ¢ € [a, b], we get

IA

IA

[T1(x2, y2)(@) — T1(x1, y (D)
I £ (2, x0(8), ya2(0) = f(2, x1(8), yi(D))]

Col@)t [
@%wﬁg) P%gymwmvawnnm»—ﬂ@m@mm@m

b
+f ¢'(s) klaz;“’lg(s,Xz(S),yz(S))—g(s,xl(S),yl(S))ldS)

+A4( Z )| “1%%1g(&, x2(€)), y2(&)) — &(&j X1 (ED)y 1 (ED)
=

b
+f ¢'(s) kl"““’lf(s,Xz(S),yz(S))—f(s,X1(S),y1(S))|dS)]

(@(b) — p(@) *

(mullxz = x1l| + mally> — )’1||){

Fk(aq + k)
(@) — @)t < (0@) = @) (eb) = @) !
AL (A2 Z‘ @+ M Tim 20 )}

_ P-1 _ 2+l
(p(b) — p(a)) ( A (p(b) — ¢(a)) s

+(nillxz = x1l + n2lly2 —y1||){ ACL(p) To(a + 2K)
k kK 2

I (@) - ela) T
+A4 ; ml To(a + k) )}

(myllxz = x1l| + mally2 — y1lD€ + (rllxz — x11| + n2lly2 — y1l)€2
(m Q) + nQ)llxz — x1|l + (ML) + n2)lly2 — yills

and consequently we obtain

177 (x2, y2) = Th(x, yOIl < (121 + 1y Qp + maQ2y + 12 ) ([[x2 — X1l + [[y2 — y1lD)-

Similarly, one can find that

172(x2,¥2) = Talx1, y)Il < (M1 + 11 Q3 + maQy + n2Q3)([[x2 — x4 + [[y2 — »1lD)-

From (3.6) and (3.7), it follows that

T (x2, y2)() = T (x1, yDIl £ (1 + Q4)(my + my) + (s + Q3)(n + 1)) (Ilx2 — x1ll + |[y2 = wilD),

(3.6)

(3.7

which shows that the operator 7 is a contraction by virtue of the condition (3.5). Therefore, the
conclusion of Banach’s contraction mapping principle applies and hence the nonlocal (k, ¢)-Hilfer
fractional system (1.1) has a unique solution on [a, b].

AIMS Mathematics
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Now, we prove two existence results for the nonlocal (k, ¢)-Hilfer fractional system (1.1) by using
Leray-Schauder alternative (Lemma 2.4) and Kraslosel’skii’s fixed point (Lemma 2.5).

Theorem 3.2. Let us assume that the continuous functions f, g : [a, b] x R?> — R satisfy the following
condition:

(H,) There exist real constants k;, v; >0(@{ =1,2) and kg > 0,vy > 0 such thatVw; e R (i = 1,2),
|f(t,wi, wo)| < ko + ki|lwi| + kalwal, |g(t, wi, wo)| < vo + vilwi| + valwsl. (3.8)

Then, there exists at least one solution for the nonlocal (k, ¢)-Hilfer fractional system (1.1) on [a, b], if
(Q + Qky +(Q + Q3)vy <1 and (Qq + Qpks + (Qy + Q3)v, < 1,

where Q;,i = 1,2,3,4 are given in (3.4).

Proof. Observe that continuity of f and g implies that of the operator 7. Next we show that the
operator 7~ is uniformly bounded. Let E C X X X be any bounded set. Then, there exist positive
constants L; and L, such that

lf (&, x(0), y®O < L, [, x(0), y(®)| < Lp, ¥(x,y) € E.

Then, for any (x,y) € E, we have

[T, @ < { Tu(a; + k) IAIC«(p) () + k)

(@(b) — pa) 7!
Fk(al + 2k) )}Ll
. {(so(b) — p(a))F! ( (@) - p(a)) T+
AT (p) 2 Ty + 2k)

+Aq Z Injl W) = elalT )}Lz,
j=1

(eb) = plan®  (g(b) - p(a)t! (4. A e(a)*
i=1

+Ay

Fk(a2 + k)

which yields
1710, DI < Q1 Ly + QL.

Likewise, one can get
1T2(x, I < Q3L + QyLs.

Therefore, from the foregoing inequalities, we have
T e DI = 1T DI+ T2 I < Q1 + Q3)Ly + (2 + Q4) Lo,

which shows that the operator 7 is uniformly bounded.
To establish that the operator 7~ is equicontinuous, we take #,#, € [a, b] with #; < f,. Then we have

1T1(x(£2), y(12)) = T1(x(11), y(11))]

AIMS Mathematics Volume 8, Issue 2, 4079-4097.
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< bf @' ((p(t2) — p(N T = (@(t1) — () T 1f (s, x(5), y(5))ds
l—‘k(a/l) a

+ f & (8)(@(12) = @(8)) " f(5. X(5), y(5))ds

L (#1) — @) - (p(t) - p(a))!
Al'v(p)

n b
Az (Z 16,1 171 f (2, x(22), y(z)] + f @' (5) "1"¥|g(s, X(S),y(S))IdS)
i=1 a

X

m b
+A{§]mﬁﬂwmaw@mﬂam+jﬁwuﬁﬂwmxﬂwyumwn

IA

[2(¢(t2) = (1) * +1(p(12) = @(@) T = ((tr) = @(@) T |

(e + k)
, (1) — p(@)f™! ~ (pt) ~ pla)t™!
|AIC(p)
S @) @)t () — @) !
XA4ZM|UWWH b nm+%)LJ
((p(é‘:]) SD(a))" (Qo(b)—¢(a))a71+1
St e, )|

which is independent of (x,y) and tends to zero as t, — t; — 0. Therefore, 77(x, y) is equicontinuous.
Analogously, we can prove that 7,(x,y) is equicontinuous. Consequently the operator 7 (x,y) is
completely continuous.

Lastly, it will be shown that the set & = {(x,y) € X X X : (x,y) = AT (x,y),0 < A < 1} is bounded.
For this, let (x,y) € &, then (x,y) = A7 (x,y). For any ¢ € [a, b], we have

x(2) = AT1(x, y)(@),  y() = AT2(x, y)(@).
Then

(@(b) — (@) T (p(b) — p(a))f! (@(z) — pla)*
Ol < {Ixm+m AN (4 Zh'lum+m

(@(b) — pla)) !
A rmh+%))}@+mmumm

+(ﬂ@—ﬂ@ﬂ”@(ﬂw—ﬂ@ﬁ”
2
AIT(p) Ti(a; + 2k)

I (pE) - pla) T
+Ay ]Z:; |77j| Fi(az Py )}(vo + villx]] + vallylD),

and

(@(b) = @) (p(b) — @)t~ [ (p(b) = g(a) T
Ol = { D'i(@ + k) * AT'w(q) (Al (s, + 2k)
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I (@) - pla) T
+A5 ]Z_; |7l r}i(a@ e )}(Vo + vi|lx]| + valiyll)

(@b) — @)t N (p() — pla) T
+{ AT(@) (A‘;'Hf' T + 6

(@(b) — pla)) T+
I (aq + 2k)

)}(ko + kalld] + 1D

Consequently, we get

llxll < (ko + kyllxll + [IyIDLR1 + (o + villxll + vallylDEo,
VIl < (ko + Ky llxl + lIyID€24 + (vo + villxll + v2llylID€2s,

and hence

lxll + [Iyll < (1 + Qa)ko + (€ + Q3)vp + () + Qa)ky + (L + Q3)vy)|[x]|
+(Q + Qa)ky + (Qy + Q3)vo)||yll.
Therefore,
() + Qu)ko + (2 + Q3)vp
M, ’

I Il <
where M, is defined by
My = min{l — [(Q; + Qoky + (2 + Q31 ], 1 = [(Q1 + Qpky + (2 + Q3)v,]} > 0,

which leads to the fact that & is bounded. Thus, by Leray-Schauder alternative [39], the nonlocal
(k, ¢)-Hilfer fractional system (1.1) has at least one solution on [a, b]. The proof is complete.

Our next result is based on Krasnosel’skii’s fixed point theorem [40].
Theorem 3.3. Suppose that (H,) and the following condition hold:
(H3) There exist continuous nonnegative functions P and Q € C([a, b], R*) satisfying
lf @, x, 0 < P(0), 18t x,y)| < Q@), foreach (1,x,y) € [a,b] X R X R.
Then, the nonlocal (k, p)-Hilfer fractional system (1.1) has at least one solution on [a, b], if
(Q] + Qu)(my +my) + (Qy + Q) () +ny) < 1, (3.9

where ;i = 2,4 and Q,i = 1,3 are given in (3.4).

Proof. We decompose the operator 7 defined by (3.1) into four operators 771,712,721 and 7, as
follows:

T, = I f@ x(0),y(1), t€la,bl,

() — p(a)) ! [ O s
T12(x, y)(2) A 0; "1 f(zi, x(2:), ¥(2:))
2 ATi(p) Z(Z
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b
- f &' () "1 g s, x<s>,y<s>)ds)

+A4( D1 (€, X(E), ¥EN)
j=1

b
- f ¢(s) "If“;%”f(s,x<s>,y<s>>ds)], € la,bl,

Toa(x, @) = *1%g(t, x(1),y(t)), 1€ [a,bl,
() — pla))i! S s
Ta20x,9)(@) = AT(q) [Al(;@ 1% f(zi, X(2:), ¥(20))

b
— f (PI(S) k1d2§‘ﬁg(s, X(S),y(s))ds)

+As( Y1 (€ X(ED, YE)
j=1

b
~ f ga'(s)"I“Wf(s,x(s),y(s))ds)], 1 € [a,b].

Itis clear that 7y = 71 + 712, T2 = 721 + T22. Let us introduce the closed ball: B, = {(x,y) €
XXX :|l(x, )l < p} with p > (Q + Q3)||P|| + (s + Q||Q||. For any x = (x1,x2),y = (y1,¥2) € By,
working as in Theorem 3.2, we have

[T71,1(x1, y2)(@) + T12(1, y2) (O] < Q||P|| + ][O

Similarly, one can get

[T2,1(x1, y2)() + T22(1, y2) (O] < Q|| P|| + 4] O|l.
Thus, we obtain
171 + Toyll < (1 + Q)||P|| + (2 + Q)OI < p,

which shows that 7x + 72y € B,.
To establish that the operator (77,,7>>) is a contraction, let (x1, x2), (y1,y2) € B,. Then, as in the
proof of Theorem (3.1), we can get

|771.20x2, y2)(®) = T12(x1, y1)()]
(p(b) — p(a))F!

< (mullx = x| + mallys - yl”){

AIT(p)
g (@) —e@)t L (pb) — p@)F !
X(A2 ’Zl: T ha@n TN @ v )}

(p(b) — p(a))i! ( PRCORTI0)

+ - + -
(nillx = x1ll + nally2 )’1”){ IAICL(p) (s + 2Kk)

=1

[(as + k)
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(myllxz = x|l + mally, = y1IDRQ] + (millx2 = x11| + nally2 — y1lDR:
= (mQ] + mQy)llxz — x1]| + (M2 Q] + 2 W)lly; — yall, (3.10)

and
[T220x1, 1)) = T22(x2, y2)(@)] < (m1Q4 + 01 )X — X1 + (124 + 12 Q3)|[y2 = il (3.11)
From (3.10) and (3.11), we have

(T 12, T22)(x1, y1) = (T 12, T2.2) (X2, y2)lI
< @ + Qmy +ma) + (Q + Q) +n)lxy = xall + Ilyr = yal),

which shows that (775, 7>>) is a contraction by means of the condition (3.9). Notice that the operator
(71.1,72.1) is continuous since the functions f and g are continuous. Further, (77,1,75,1) is uniformly
bounded on B,, since

(@(b) — pla)*

<
711G Il < Ta + 6

I1PIl,

and )
((b) — p(a) T

T2, Yl <
72,1 (x Yl @+ 0

1QIl.

Hence, we obtain

(eb) — gant L (o0) — g(@)?

T2, <
[(VARWERY ER)] Tu(p + k) (s + k)

1Qll,

which implies that the set (771, 7,1)B, is uniformly bounded. Next, it will be shown that that the set
(71,1, 72,1)B, 1s equicontinuous. For any (x,y) € B, and 1,1, € [a, b] with t; < #,, we have

171,106 )(82) = T (e, (@)
f ¢ S@t) — ()T = (1) — () T £ (5. x(s), y(5))ds

IA

[i(ay)

+ f & (5)(p(t2) — () T f (5, x(5), y())ds

51

P o o o
< P o) — o) +16(t) — p(@)™ = (etr) — plan 1l

Fk(al + k)
which tends to zero as #; — 1, independently of (x,y) € B,. Similarly, one can find that
[T2106, () — T, y) ()] — 0 as t; — t, independently of (x,y) € B,. Thus,
(711, T2, y)(02) — (T11, T2.)(x, ¥)(#1)] tends to zero, as #; — 1, and hence (711,721) 1s
equicontinuous. Consequently, the operator (77,,75,;) is compact on B,, by the Arzela-Ascoli
theorem. Hence, the nonlocal (k, ¢)-Hilfer fractional system (1.1) has at least one solution on [a, b] by
Krasnosel’skii’s fixed point theorem.
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4. Illustrative examples

In this section, we present examples illustrating the applicability of our main results.
Consider the following nonlocal coupled system of (k, ¢)-Hilfer fractional differential equations:

5 3 1. 17
DTS (1) = f(t, x(1), y(8)), te(
S o5 2.3 1 17
PHDSSC () = g(t, x(2), y(0)), te( ;
- (4.1)
1 1 (2\ 1 1 (5
x(§)=°’ J; ‘“”“”"S‘ﬁy(9)+ﬁy(§) ()
1 v 1 (7\ 1 (8) 1 (11
y(§):0 f; sD(S)y(S)a’s—EX(9) ﬁx(g) 6" (9)

where k = 5/4, a; = 3/2, 81 = 1/3, a, = 5/3, 8, = 2/3, ¢(t) = e, a =1/9,b = 17/9, m = 3,
m=1/11,n,=1/13,13 = 1/15,&, =2/9,& =4/9,& =5/9,n=3,60,=1/12,0, = 1/14,65 = 1/16,
21 =17/9, 20 = 8/9, zz = 11/9. Then, with the aid of the given data, we find that p = 11/6, g = 20/9,
F%(p) ~ 0.9828090918, F%(q) ~ 1.101113581, A; ~ 0.5933053129, A, ~ 0.01904961698, A; ~
0.1295611400, A4 ~ 0.4002998007, A ~ 0.2350319084, F%(ozl +5/4) ~ 1.440110329, Fz(az +5/4) ~
1.603221698, Q; ~ 1.171782826, Q, ~ 0.02369021066, Q3 ~ 1.158588899, Q4 ~ 0.2282160746,
Q] ~ 0.4623382179, Q] ~ 0.5198025994.

Illustration of Theorem 3.1.

Consider the nonlinear unbounded functions f, g : [1/9,17/9] x R? — R given by

-1 (.2 -1
fexy) = = (xl iiﬁd) ¥ t9a(rtl+ Ily)l " %t’ *+2)
et x,y) = Sinzs(m) tan" x| + 9(9tl+ 3 (yl 2:|'yy||) + %zz. 4.3)
It is easy to find that
£, 31,30) = £, 32,321 < 3oy = 3l + 5l = ol (44
and ) ]
l8(#, x1,y1) — &(t, X2, y2)| < §|X1 — x| + §|)’1 - yal, 4.5)

for all xy, x2,y1,y» € R. Choosing my = 1/7, m, = 1/10, ny = 1/5 and n, = 1/9, we get (Q; +
Qp(my + my) + (Qy + Q3)(ny + ny) = 0.7078199005 < 1. Thus, by Theorem 3.1, we conclude that
the nonlocal coupled system of (k, ¢)-Hilfer fractional differential equations (4.1) with f and g defined
in (4.4) and (4.5) respectively, has a unique solution on [1/9, 17/9].
Illustration of Theorem 3.2.

Let the nonlinear functions f, g : [1/9,17/9] x R> — R be defined by

1 I x* [yl
f(l, x,y) = o+ 1 + ge t(rlp) + — COS |X| (46)
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1 1 4
ot x,y) = tan~! || + ~e (179 (y—) . 4.7)

+
18+1 9r+10 4 L+ P

Then we have

1 1 1 1 1 1
LX< =+ <X+ = d Lx, VI < =+ —x|+ =]yl
Lf (2, x, ¥l > 8Iacl 3Iyl and |g(z, x,y)| 3 11Iacl 4Iyl

Setting k() = 1/2, k1 = 1/8, k2 = 1/3, Vo = 1/3, vy = 1/11, Vy = 1/4, we have (Ql + Q3)k1 +
(Q; + Qu)vy = 0.3141970370 < 1 and (Q; + Q3)k; + (Qy + Qy)v, = 0.8397671463 < 1. Therefore, by
Theorem 3.2, the nonlocal coupled system of (k, ¢)-Hilfer fractional differential equations (4.1) with f
and g given by (4.6) and (4.7) respectively, has at least one solution on [1/9,17/9].

Ilustration of Theorem 3.3.
Consider the nonlinear bounded functions f, g : [1/9,17/9] x R? — R represented by

sinzt [ |x] cos’ly| 1
t, x, = + + -, 4.8
ftx.5) 5 (1+|x|) O+ 1?6 (48)
1 (|x|cos*nt) tan7'ly] 1
t, X, = = + + —. 4.9
8(t%.5) 3( 1+ ) or+3 11 *43)
Note that f and g are bounded as
1 1 1 1, 11
t,x,y)| < = sinnxt + + -, Lx,y)| < = 1+ + —.
eyl s gsinat+ Gy t g 8wl < geosiat+ g+

Also, we have that

£, 31,30) = £, 32,321 < gy = 3l + b = vl
and | |

lg(2, x1,y1) — &(t, x2, y2)| < §|x1 — Xo| + Zlyl = yal.

Letting m; = 1/5, my = 1/4, ny = 1/3 and n, = 1/4, we find that (Q] + 4)((1/5) + (1/4)) +
(€ + Q)((1/3) + (1/4)) = 0.6277869041 < 1. Therefore, by Theorem 3.3, the nonlocal coupled
system for (k, ¢)-Hilfer fractional differential equations (4.1) with f and g defined by (4.8) and (4.9)
respectively, has at least one solution on [1/9,17/9].

5. Conclusions

In this paper, we have presented the existence and uniqueness criteria for the solutions of a coupled
system of (k,p)-Hilfer fractional differential equations complemented with nonlocal coupled
integro-multi-point boundary conditions. We established the desired results by means of the standard
fixed point theorems after converting the given nonlinear problem into a fixed point problem. We also
demonstrated the application of the obtained results by providing some numerical examples. It is
imperative to note that our results are of more general nature and produce some new results as special
cases. For example, the results for a coupled system of (k,¢)-Riemann-Liouville fractional
differential equations follow by fixing 8; = 0,7 = 1,2 in the obtained results. On the other hand, by
taking g; = 1,i = 1,2 in the results of this paper, we obtain the ones for a coupled
system (k, ¢)-Caputo fractional differential equations. Moreover, our results reduce to the ones for a
system involving k-Hilfer-Hadamard fractional derivative operators and k-Hilfer-Katugampola
fractional derivative operators by letting ¢(7) = logt and ¢(¢) = °, respectively.
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