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1. Introduction

By R we denote the set of real numbers, by R+ the interval [0,+∞), the space of continuous
functions on a set Ω we denote by C(Ω), whereas the space of continuously differentiable functions
on Ω we denote by C1(Ω). A vector (x1, . . . , xn) ∈ Rn we denote by x. If c ∈ R, then by c⃗ we denote
the vector (c, c, . . . , c) (for example, 1⃗ = (1, . . . , 1)). By ⟨x, y⟩ we denote the Euclidean inner product
of vectors x, y ∈ Rn, that is, ⟨x, y⟩ =

∑n
j=1 x jy j. The Lebesgue measure on Rn we denote by dV(x),

whereas by dσ(ζ) we denote the surface measure on the unit sphere S ⊂ Rn. A function w : Ω → R is
called a weight function or simply weight if it is positive and continuous. The class of all weights on
Ω we denote by W(Ω).

Let w ∈ W(Ω). The weighted-type space Cw(Ω) consists of all f ∈ C(Ω) such that

∥ f ∥w := sup
t∈Ω

w(t)| f (t)| < +∞. (1.1)

By using a standard argument, which is applied to the space C(Ω), it is shown that Cw(Ω) is a Banach
space. Various weighted-type spaces of continuous or analytic functions and operators on them have
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been investigated considerably for several decades (see, e.g., [1,2,12,19,25,32–35,38,42,43,48,50,51]
and the related references therein).

Let Lp
w(Rn) = Lp

w, where p ≥ 1 and w ∈ W(Rn), be the weighted Lp space consisting of all
measurable functions f such that

∥ f ∥Lp
w

:=
(∫
Rn
| f (x)|pw(x)dV(x)

)1/p

< +∞.

With the norm ∥ · ∥Lp
w

the space Lp
w is Banach.

Let X and Y be normed spaces, and L : X → Y be a linear operator. We say that the operator is
bounded if there is M ≥ 0, such that

∥Lx∥Y ≤ M∥x∥X,

for every x ∈ X ( [6, 26, 27, 44, 45]).
Norm of the operator is defined by

∥L∥X→Y = sup
x∈BX

∥Lx∥Y ,

where BX denotes the unit ball in the space X.
Finding norms of linear operators is one of the basic problems in operator theory. Many classical

results can be found in books and surveys on functional analysis, operator theory and inequalities (see,
for example, [6, 7, 9, 10, 16, 23, 26, 27, 44, 45]; see also some of the original sources [13, 14, 28]). For
some recent results in the topic, including some on multi-linear operators (for the definition and some
examples see [52, p. 51–55]), see, for example, [4,9,11,20,33–36,38,40–42] and the related references
therein.

Let u be a function defined on Ω. Then by Mu we denote the multiplication operator

Mu( f )(t) = u(t) f (t), t ∈ Ω, (1.2)

where f is a function on Ω.
There has been some interest in the multiplication operators on spaces of functions [35, 49].

Motivated by some of our previous results on calculating and estimating norms of concrete operators
and a problem in [45], here we present some formulas for norms of the multiplication and several
integral-type operators between weighted-type spaces. We also calculate norm of an integral-type
operator on some subspaces of Lp

w(Rn) space. For various integral-type operators see,
e.g., [3–5, 7–10, 16, 19–22, 24, 29–32, 37, 39–43, 46, 47]. Some of the formulas we have got long time
ago, but have never published them. Some of the formulas could be matters of folklore, but we could
not found references.

2. Main results

This section presents our main results and some analyses.

AIMS Mathematics Volume 8, Issue 2, 4022–4041.



4024

2.1. Multiplication operator between weighted-type spaces

The following result is a simple and basic one, and should be a matter of folklore. However, it is
useful and instructive, because of which we give a proof.

Theorem 1. Let w1,w2 ∈ W(Ω). Then the operator Mu : Cw1(Ω)→ Cw1w2(Ω) is bounded if and only if

u ∈ Cw2(Ω). (2.1)

Moreover, if (2.1) holds then

∥Mu∥Cw1 (Ω)→Cw1w2 (Ω) = ∥u∥w2 . (2.2)

Proof. First, assume that condition (2.1) holds, that is, that

∥u∥w2 < +∞. (2.3)

Then, we have

∥Mu( f )∥w1w2 = sup
t∈Ω

w1(t)w2(t)|u(t) f (t)| ≤ sup
t∈Ω

w2(t)|u(t)| sup
t∈Ω

w1(t)| f (t)| = ∥u∥w2∥ f ∥w1

from which by taking the supremum over the ball BCw1 (Ω) we get

∥Mu∥Cw1 (Ω)→Cw1w2 (Ω) ≤ ∥u∥w2 . (2.4)

From (2.3) and (2.4) the boundedness of the operator Mu : Cw1(Ω)→ Cw1w2(Ω) follows.
Now assume that the operator Mu : Cw1(Ω) → Cw1w2(Ω) is bounded. Since w1 is a positive

continuous function we see that 1/w1 is also such a function. Note that

∥1/w1∥w1 = sup
t∈Ω

w1(t) ·
1

w1(t)
= 1. (2.5)

Further, we have

∥Mu(1/w1)∥w1w2 = sup
t∈Ω

w1(t)w2(t)
∣∣∣∣∣u(t)

1
w1(t)

∣∣∣∣∣ = ∥u∥w2 . (2.6)

From (2.5), (2.6) and the boundedness of the operator Mu : Cw1(Ω)→ Cw1w2(Ω) it follows that

∥u∥w2 ≤ ∥Mu∥Cw1 (Ω)→Cw1w2 (Ω) < +∞, (2.7)

which means that (2.1) holds.
If condition (2.1) holds, then from the inequalities in (2.4) and (2.7), we immediately obtain

formula (2.2). □

Remark 1. Note that the simple fact in (2.5) plays one of the decisive roles in finding the norm of the
operator Mu : Cw1(Ω)→ Cw1w2(Ω). Related facts are very useful in finding norms of concrete operators
acting from weighted-type spaces and will be also used further in this paper.
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2.2. Appearance of an integral-type operator in differential equations

Consider the initial value problem

y′(t) = −β(t)y(t) + f (t), (2.8)

y(0) = 0, (2.9)

where f , β ∈ C(R+).
By using the Euler multiplier e

∫ t
0 β(ζ)dζ from (2.8) we have(

y(t)e
∫ t

0 β(ζ)dζ
)′
= f (t)e

∫ t
0 β(ζ)dζ .

By integrating the last relation and using condition (2.9), after some calculation, we obtain

y(t) =
∫ t

0
e
∫ s

t β(ζ)dζ f (s)ds. (2.10)

Note that formula (2.10) presents a linear operator, say, L which is defined as follows

y(t) = L( f )(t), t ∈ R+,

and acts from C(R+) into the subspace of C1(R+) consisting of all g ∈ C1(R+) such that g(0) = 0.
Consider the operator from Cw1(R+) to Cw2(R+). Using the definitions of the spaces Cw1(R+) and

Cw2(R+), we have

∥L( f )∥w2 = sup
t∈R+

w2(t)

∣∣∣∣∣∣
∫ t

0
e
∫ s

t β(ζ)dζ f (s)ds

∣∣∣∣∣∣
≤∥ f ∥w1 sup

t∈R+
w2(t)

∫ t

0
e
∫ s

t β(ζ)dζ
ds

w1(s)
,

from which it follows that

∥L∥Cw1 (R+)→Cw2 (R+) ≤ sup
t∈R+

w2(t)
∫ t

0
e
∫ s

t β(ζ)dζ
ds

w1(s)
. (2.11)

From (2.5) and since

∥L(1/w1)∥w2 = sup
t∈R+

w2(t)
∫ t

0
e
∫ s

t β(ζ)dζ
ds

w1(s)
,

we have

∥L∥Cw1 (R+)→Cw2 (R+) ≥ sup
t∈R+

w2(t)
∫ t

0
e
∫ s

t β(ζ)dζ
ds

w1(s)
. (2.12)

From (2.11) and (2.12) we obtain

∥L∥Cw1 (R+)→Cw2 (R+) = sup
t∈R+

w2(t)
∫ t

0
e
∫ s

t β(ζ)dζ
ds

w1(s)
. (2.13)

AIMS Mathematics Volume 8, Issue 2, 4022–4041.



4026

From the analysis that we have just conduced it follows that the following result holds.

Theorem 2. Let w1,w2 ∈ W(R+), β ∈ C(R+) and

L( f )(t) =
∫ t

0
e
∫ s

t β(ζ)dζ f (s)ds. (2.14)

Then the operator L : Cw1(R+)→ Cw2(R+) is bounded if and only if

M := sup
t∈R+

w2(t)
∫ t

0
e
∫ s

t β(ζ)dζ
ds

w1(s)
< +∞. (2.15)

Moreover, if the operator is bounded then

∥L∥Cw1 (R+)→Cw2 (R+) = M.

Let
∥ f ∥δ := sup

t∈R+
eδt| f (t)|,

where δ ∈ R+, and let
Cδ(R+) = { f ∈ C(R+) : ∥ f ∥δ < +∞}.

The following example shows that for some functions w1,w2 and β the norm of the operator
L : Cw1(R+)→ Cw2(R+) can be explicitly calculated ( [45, Problem 7.31]).

Corollary 1. Let w1(t) = eαt, α ≥ 0, w2(t) = eγt, β(t) = β, and β > α ≥ γ. Then the operator
L : Cα(R+)→ Cγ(R+) is bounded and the following statements hold.

(a) If α = γ, then

∥L∥Cα(R+)→Cα(R+) =
1
β − α

. (2.16)

(b) If α > γ, then

∥L∥Cα(R+)→Cγ(R+) =

(
(α − γ)α−γ

(β − γ)β−γ

) 1
β−α

. (2.17)

Proof. By Theorem 2, we have that formula (2.15) holds with w1(t) = eαt, w2(t) = eγt and β(t) = β,
that is,

∥L∥Cα(R+)→Cγ(R+) = sup
t∈R+

eγt
∫ t

0
eβ(s−t)e−αsds. (2.18)

(a) Since α = γ from (2.18) we have

∥L∥Cα(R+)→Cα(R+) = sup
t∈R+

e(α−β)t
∫ t

0
e(β−α)sds = sup

t∈R+

1 − e−(β−α)t

β − α
=

1
β − α

.
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(b) In this case from (2.18) we have

∥L∥Cα(R+)→Cγ(R+) = sup
t∈R+

e(γ−β)t
∫ t

0
e(β−α)sds = sup

t∈R+

e(γ−α)t − e(γ−β)t

β − α
. (2.19)

Let g(t) := e(γ−α)t − e(γ−β)t, then we have g(0) = 0, limt→+∞ g(t) = 0 (since γ < α < β), and
g(t) = e(γ−β)t(e(β−α)t − 1) ≥ 0, t ∈ R+. Since

g′(t) = (γ − α)e(γ−α)t − (γ − β)e(γ−β)t

we have that g′(t) = 0 if and only if

et =

(
α − γ

β − γ

) 1
α−β

.

Hence,

sup
t∈R+

(e(γ−α)t − e(γ−β)t) =
(
α − γ

β − γ

) γ−α
α−β

−

(
α − γ

β − γ

) γ−β
α−β

=
β − α

β − γ

(
α − γ

β − γ

) α−γ
β−α

from which together with (2.19) and some calculation, formula (2.17) follows. □

2.3. An extension of Theorem 2 and its corollaries

Let

L( f )(t) = h(t)
∫ t1

0
· · ·

∫ tn

0
g(s) f (s)ds1 · · · dsn, (2.20)

where t = (t1, . . . , tn), s = (s1, . . . , sn), s j, t j ∈ R+, j = 1, n, and g, h ∈ C(Rn
+).

The following theorem is an extension of Theorem 2.

Theorem 3. Let v,w, h, g ∈ W(Rn
+) and operator L be given in (2.20). Then the operator L : Cw(Rn

+)→
Cv(Rn

+) is bounded if and only if

M̃ := sup
t∈Rn
+

v(t)h(t)
∫ t1

0
· · ·

∫ tn

0

g(s)
w(s)

ds1 · · · dsn < +∞, (2.21)

and if it is bounded then the norm of the operator is equal to M̃.

Proof. Assume that (2.21) holds. Then we have

∥L( f )∥v = sup
t∈Rn
+

v(t)h(t)

∣∣∣∣∣∣
∫ t1

0
· · ·

∫ tn

0
g(s) f (s)ds1 · · · dsn

∣∣∣∣∣∣
≤∥ f ∥w sup

t∈Rn
+

v(t)h(t)

∣∣∣∣∣∣
∫ t1

0
· · ·

∫ tn

0

g(s)
w(s)

ds1 · · · dsn

∣∣∣∣∣∣
from which along with (2.21) the boundedness of the operator L : Cw(Rn

+) → Cv(Rn
+) follows.

Moreover, we have

∥L∥Cw(Rn
+)→Cv(Rn

+) ≤ M̃. (2.22)
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If the operator L : Cw(Rn
+) → Cv(Rn

+) is bounded, then since the function f0(t) = 1
w(t) belongs to

Cw(Rn
+) and ∥ f0∥w = 1, we have

∥L∥Cw(Rn
+)→Cv(Rn

+) ≥ ∥L( f0)∥v = sup
t∈Rn
+

v(t)h(t)

∣∣∣∣∣∣
∫ t1

0
· · ·

∫ tn

0

g(s)
w(s)

ds1 · · · dsn

∣∣∣∣∣∣ , (2.23)

from which together with the boundedness of the operator L : Cw(Rn
+) → Cv(Rn

+) and positivity of
functions g and w we obtain (2.21). From (2.22) and (2.23) we obtain

∥L∥Cw(Rn
+)→Cv(Rn

+) = M̃,

completing the proof. □

The following corollary is an extension of Corollary 1.

Corollary 2. Let v,w ∈ W(Rn
+), j = 1, n, β j ∈ C(R+), j = 1, n, and

L( f )(t) =
∫ t1

0
· · ·

∫ tn

0
e
∑n

j=1

∫ s j
t j
β j(ζ j)dζ j f (s)ds1 · · · dsn. (2.24)

Then the operator L : Cw(Rn
+)→ Cv(Rn

+) is bounded if and only if

M̂ := sup
t∈Rn
+

v(t)
∫ t1

0
· · ·

∫ tn

0
e
∑n

j=1

∫ s j
t j
β j(ζ j)dζ j ds1 · · · dsn

w(s)
< +∞. (2.25)

Moreover, if the operator is bounded then

∥L∥Cw(Rn
+)→Cv(Rn

+) = M̂.

The following integral-type operator is a special case of operator (2.24)

L̃( f )(t) =
∫ t1

0
· · ·

∫ tn

0
e
∑n

j=1 β j(s j−t j) f (s)ds1 · · · dsn. (2.26)

Let Cδ⃗, δ j ≥ 0, j = 1, n, be the class of all f ∈ C(Rn
+) such that

∥ f ∥δ⃗ = sup
t∈Rn
+

e
∑n

j=1 δ jt j | f (t)| = sup
t∈Rn
+

e⟨t,⃗δ⟩| f (t)| < +∞. (2.27)

The following consequence of Corollary 2 is an ultimate extension of Corollary 1.

Corollary 3. Let w j(t) = eα jt j , β j(t) = β j, and β j > α j ≥ γ j, j = 1, n. Then the operator L̃ : Cα⃗(Rn
+) →

Cγ⃗(Rn
+) is bounded and

∥L̃∥Cα⃗(Rn
+)→Cγ⃗(Rn

+) =
∏
α j,γ j

(
(α j − γ j)α j−γ j

(β j − γ j)β j−γ j

) 1
β j−α j ∏

α j=γ j

(
1

β j − α j

)
. (2.28)
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Proof. By using (2.26), (2.27), Corollary 1 and Corollary 2, we have

∥L̃∥Cα⃗(Rn
+)→Cγ⃗(Rn

+) = sup
t∈Rn
+

e
∑n

j=1 γ jt j

∣∣∣∣∣∣
∫ t1

0
· · ·

∫ tn

0
e
∑n

j=1 β j(s j−t j) ds1 · · · dsn∏n
j=1 eα j s j

∣∣∣∣∣∣
=

n∏
j=1

sup
t j∈R+

e(γ j−β j)t j

∫ t j

0
e(β j−α j)s jds j

=
∏
α j,γ j

(
(α j − γ j)α j−γ j

(β j − γ j)β j−γ j

) 1
β j−α j ∏

α j=γ j

(
1

β j − α j

)
,

as desired. □

Remark 2. The norm in formula (2.28) is achieved for the function

fα⃗(t) := e−⟨t,α⃗⟩.

Indeed, we have fα⃗ ∈ C(Rn
+),

∥ fα⃗∥α⃗ = 1, (2.29)

and

∥L̃( fα⃗)∥ =
n∏

j=1

sup
t j∈R+

e(γ j−β j)t j

∫ t j

0
e(β j−α j)s jds j

=
∏
α j,γ j

(
(α j − γ j)α j−γ j

(β j − γ j)β j−γ j

) 1
β j−α j ∏

α j=γ j

(
1

β j − α j

)
, (2.30)

From (2.28)–(2.30) the claim follows.

2.4. An integral-type operator between weighted-type spaces

Let g ∈ C([0, 1)n) and

Tg( f )(x) =
n∏

j=1

x j

∫ 1

0
· · ·

∫ 1

0
f (t1x1, . . . , tnxn)g(t1x1, . . . , tnxn)

n∏
j=1

dt j, (2.31)

where x ∈ [0, 1)n. The operator on the polydisk was studied in [32].
From now on, for the operator in (2.31) we use the notation

Tg( f )(x) =
n∏

j=1

x j

∫ 1

0
· · ·

∫ 1

0
f (t · x)g(t · x)

n∏
j=1

dt j.

By Qγ⃗ we denote the space of all f ∈ C([0, 1)n) such that

∥ f ∥Qγ⃗ = sup
x∈[0,1)n

n∏
j=1

(1 − x j)γ j | f (x)| < +∞,
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where γ⃗ = (γ1, . . . , γn) is such that γ j > 0, j = 1, n. The quantity ∥ · ∥Qγ⃗ is a norm on the space.
In the theorem which follows we estimate norm of the operator Tg : Qα⃗ → Qα⃗+β⃗−1⃗, under some

conditions posed on the vectors α⃗ and β⃗, and calculate it for a concrete function g.

Theorem 4. Let α⃗, β⃗ ∈ Rn
+ be such that α j + β j > 1, j = 1, n, and

∥g∥Q
β⃗
< +∞. (2.32)

Then the operator Tg : Qα⃗ → Qα⃗+β⃗−1⃗ is bounded and

∥Tg∥Qα⃗→Qα⃗+β⃗−1⃗
≤

∥g∥Q
β⃗∏n

j=1(α j + β j − 1)
. (2.33)

If additionally

g(x) =
n∏

j=1

1
(1 − x j)β j

(2.34)

then

∥Tg∥Qα⃗→Qα⃗+β⃗−1⃗
=

1∏n
j=1(α j + β j − 1)

. (2.35)

Proof. Suppose that relation (2.32) holds. Let f be an arbitrary function in Qα⃗ and x be an arbitrary
point in the cube [0, 1)n. Then by using the definition of the spacesQα⃗ andQβ⃗, some known inequalities,
as well as some calculations it follows that

|Tg f (x)| ≤
n∏

j=1

x j

∫ 1

0
· · ·

∫ 1

0
| f (t · x)g(t · x)|

n∏
j=1

dt j

≤

n∏
j=1

x j

∫ 1

0
· · ·

∫ 1

0

| f (t · x)|
∏n

j=1(1 − t j x j)α j∏n
j=1(1 − t j x j)α j+β j

|g(t · x)|
n∏

j=1

(1 − t jx j)β jdt j

≤∥ f ∥Qα⃗∥g∥Qβ⃗

n∏
j=1

x j

∫ 1

0
· · ·

∫ 1

0

dt1 · · · dtn∏n
j=1(1 − t j x j)α j+β j

=∥ f ∥Qα⃗∥g∥Qβ⃗

n∏
j=1

∫ 1

0

x jdt j

(1 − t jx j)α j+β j

=
∥ f ∥Qα⃗∥g∥Qβ⃗∏n

j=1(α j + β j − 1)

n∏
j=1

1 − (1 − x j)α j+β j−1

(1 − x j)α j+β j−1 ,

from which it follows that
n∏

j=1

(1 − x j)α j+β j−1|Tg f (x)| ≤ ∥ f ∥Qα⃗∥g∥Qβ⃗

n∏
j=1

1 − (1 − x j)α j+β j−1

α j + β j − 1
, (2.36)
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for every x ∈ [0, 1)n and f ∈ Qα⃗.
By taking the supremum in (2.36) over the set [0, 1)n, it follows that the following inequality holds

∥Tg( f )∥Q
α⃗+β⃗−1⃗
≤

∥g∥Q
β⃗∏n

j=1(α j + β j − 1)
∥ f ∥Qα⃗ , (2.37)

for every f ∈ Qα⃗.
By taking the supremum in (2.37) over the unit ball BQ

β⃗
the boundedness of the operator Tg : Qα⃗ →

Qα⃗+β⃗−1⃗ follows.
Moreover, from inequality (2.37) we obtain the following estimate for the norm of the operator

∥Tg∥Qα⃗→Qα⃗+β⃗−1⃗
≤

∥g∥Q
β⃗∏n

j=1(α j + β j − 1)
. (2.38)

Now, assume that the operator Tg : Qα⃗ → Qα⃗+β⃗−1⃗ is bounded and that function g is defined as
in (2.34).

Let

f0(x) =
1∏n

j=1(1 − x j)α j
, (2.39)

then

∥ f0∥Qα⃗ = 1. (2.40)

By using (2.34), (2.39) and (2.40), as well as some standard calculations it follows that

∥Tg∥Qα⃗→Qα⃗+β⃗−1⃗
≥ ∥Tg( f0)∥Q

α⃗+β⃗−1⃗

= sup
x∈[0,1)n

n∏
j=1

x j(1 − x j)α j+β j−1
∣∣∣∣∣ ∫ 1

0
· · ·

∫ 1

0

g(t · x)∏n
j=1(1 − t jx j)α j

n∏
j=1

dt j

∣∣∣∣∣
= sup

x∈[0,1)n

n∏
j=1

(1 − x j)α j+β j−1
∫ 1

0

x jdt j

(1 − t jx j)α j+β j

= sup
x∈[0,1)n

n∏
j=1

1 − (1 − x j)α j+β j−1

α j + β j − 1

=

n∏
j=1

1
α j + β j − 1

. (2.41)

From (2.38), (2.41), and since in this case ∥g∥Q
β⃗
= 1, we have

∥Tg∥Qα⃗→Qα⃗+β⃗−1⃗
=

1∏n
j=1(α j + β j − 1)

,

finishing the proof of the theorem. □
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Generally speaking operator (2.31) can be considered on functions defined on any set of the form

n∏
j=1

[0, c j) or
n∏

j=1

[0, c j], (2.42)

where c j ∈ [0,+∞], j = 1, n, and where we exclude the case
∏n

j=1[0,+∞].

Our next result considers the boundedness of operator (2.31) between such spaces.

Theorem 5. Let u, v,w ∈ W(I), g ∈ Cv(I), where the set I has one of the forms in (2.42). If

sup
x∈I

u(x)
∫ x1

0
· · ·

∫ xn

0

ds1 · · · dsn

w(s)v(s)
< +∞, (2.43)

then the operator Tg : Cw(I)→ Cu(I) is bounded.
If additionally

g(x) =
1

v(x)
(2.44)

then

∥T1/v∥Cw(I)→Cu(I) = sup
x∈I

u(x)
∫ x1

0
· · ·

∫ xn

0

ds1 · · · dsn

w(s)v(s)
. (2.45)

Proof. Using the definitions of the spaces Cw(I) and Cu(I), and the change of variables s j = x jt j,
j = 1, n, we have

|Tg f (x)| =

∣∣∣∣∣∣∣
n∏

j=1

x j

∫ 1

0
· · ·

∫ 1

0
f (t · x)g(t · x)

n∏
j=1

dt j

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
n∏

j=1

x j

∫ 1

0
· · ·

∫ 1

0

w(t · x) f (t · x)v(t · x)g(t · x)
w(t · x)v(t · x)

n∏
j=1

dt j

∣∣∣∣∣∣∣
≤

n∏
j=1

x j

∫ 1

0
· · ·

∫ 1

0

∥ f ∥w∥g∥v
w(t · x)v(t · x)

n∏
j=1

dt j

=

∫ x1

0
· · ·

∫ xn

0

∥ f ∥w∥g∥v
w(s)v(s)

n∏
j=1

ds j, (2.46)

for every x ∈ I and f ∈ Cw(I).
Multiplying (2.46) by u(x), then taking the supremum over the set I we have

sup
x∈I

u(x)|Tg f (x)| ≤ ∥ f ∥w∥g∥v sup
x∈I

u(x)
∫ x1

0
· · ·

∫ xn

0

ds1 · · · dsn

w(s)v(s)

from which it follows that

∥Tg∥Cw(I)→Cu(I) ≤ ∥g∥v sup
x∈I

u(x)
∫ x1

0
· · ·

∫ xn

0

ds1 · · · dsn

w(s)v(s)
. (2.47)
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Using the assumption g ∈ Cv(I), (2.43) and (2.47) the boundedness of Tg : Cw(I)→ Cu(I) follows.
If (2.44) holds, then

∥g∥v = 1. (2.48)

Now, note that for f̃0(x) = 1
w(x) we have

∥ f̃0∥w = 1. (2.49)

Further, we have

∥T1/v( f̃0)∥u = sup
x∈I

u(x)|T1/v( f̃0)(x)|

= sup
x∈I

u(x)

∣∣∣∣∣∣∣
n∏

j=1

x j

∫ 1

0
· · ·

∫ 1

0
f̃0(t · x)g(t · x)

n∏
j=1

dt j

∣∣∣∣∣∣∣
= sup

x∈I
u(x)

∣∣∣∣∣∣∣
n∏

j=1

x j

∫ 1

0
· · ·

∫ 1

0

dt1 · · · dtn

w(t · x)v(t · x)

∣∣∣∣∣∣∣
= sup

x∈I
u(x)

∫ x1

0
· · ·

∫ xn

0

ds1 . . . dsn

w(s)v(s)
. (2.50)

From (2.49) and (2.50) we obtain

sup
x∈I

u(x)
∫ x1

0
· · ·

∫ xn

0

ds1 . . . dsn

w(s)v(s)
≤ ∥T1/v∥Cw(I)→Cu(I). (2.51)

Combining (2.47), (2.48) and (2.50) we get (2.45). □

Remark 3. Note that in the case

w(x) = e⟨x,α⃗⟩ and v(x) = e⟨x,β⃗⟩,

we have

|Tg f (x)| =

∣∣∣∣∣∣∣
n∏

j=1

x j

∫ 1

0
· · ·

∫ 1

0
f (t · x)g(t · x)

n∏
j=1

dt j

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
n∏

j=1

x j

∫ 1

0
· · ·

∫ 1

0

e⟨t·x,α⃗⟩ f (t · x)e⟨t·x,β⃗⟩g(t · x)

e⟨t·x,α⃗⟩e⟨t·x,β⃗⟩

n∏
j=1

dt j

∣∣∣∣∣∣∣
≤

n∏
j=1

x j

∫ 1

0
· · ·

∫ 1

0

∥ f ∥α⃗∥g∥β⃗
e⟨t·x,α⃗+β⃗⟩

n∏
j=1

dt j

=∥ f ∥α⃗∥g∥β⃗

n∏
j=1

∫ x j

0
e−(α j+β j)s jds j

=∥ f ∥α⃗∥g∥β⃗

n∏
j=1

1 − e−(α j+β j)x j

α j + β j
, (2.52)
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from which by taking the supremum in (2.52) over the set Rn
+ it follows that

∥Tg f ∥∞ ≤ ∥ f ∥α⃗∥g∥β⃗.

Here, as usual
∥h∥∞ = sup

x∈Rn
+

|h(x)|,

the standard supremum norm.

2.5. Another integral-type operator between weighted-type spaces

Let g ∈ C([0, 1)n) and

T̂g( f )(x) =
∫ 1

0
· · ·

∫ 1

0
f (t1x1, . . . , tnxn)g(t1, . . . , tn)

n∏
j=1

dt j, (2.53)

where x ∈ Rn. From now on, for the operator in (2.53) we use the notation

T̂g( f )(x) =
∫ 1

0
· · ·

∫ 1

0
f (t · x)g(t)

n∏
j=1

dt j.

Let u ∈ W(Rn) and
∥ f ∥u = sup

x∈Rn
u(x)| f (x)|.

The following theorem holds.

Theorem 6. Let g ∈ C([0, 1)n), g(x) ≥ 0, x ∈ Rn, u, v ∈ W(Rn), such that

u(t · x) =
n∏

j=1

tα j

j u(x), (2.54)

for some α j ∈ R+, j = 1, n.
Then the operator T̂g : Cu(Rn)→ Cv(Rn) is bounded if and only if

sup
x∈Rn\{0⃗}

v(x)
u(x)

∫ 1

0
· · ·

∫ 1

0

g(t)∏n
j=1 tα j

j

n∏
j=1

dt j < ∞. (2.55)

Moreover, if the operator T̂g : Cu(Rn)→ Cv(Rn) is bounded then

∥T̂g∥Cu(Rn)→Cv(Rn) = sup
x∈Rn\{0⃗}

v(x)
u(x)

∫ 1

0
· · ·

∫ 1

0

g(t)∏n
j=1 tα j

j

n∏
j=1

dt j. (2.56)
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Proof. Assume that (2.55) holds. Let f ∈ Cu(Rn). Then by using the definition of the norm in Cu(Rn)
and (2.54) we have

|T̂g f (x)| ≤
∫ 1

0
· · ·

∫ 1

0
| f (t · x)g(t)|

n∏
j=1

dt j

≤∥ f ∥u

∫ 1

0
· · ·

∫ 1

0

g(t)
u(t · x)

n∏
j=1

dt j

=
∥ f ∥u
u(x)

∫ 1

0
· · ·

∫ 1

0

g(t)∏n
j=1 tα j

j

n∏
j=1

dt j,

from which it follows that

v(x)|T̂g f (x)| ≤ ∥ f ∥u
v(x)
u(x)

∫ 1

0
· · ·

∫ 1

0

g(t)∏n
j=1 tα j

j

n∏
j=1

dt j. (2.57)

By taking the supremum in (2.57) over the set Rn \ {0⃗}, it follows that the following inequality holds

∥T̂g( f )∥v ≤ ∥ f ∥u sup
x∈Rn\{0⃗}

v(x)
u(x)

∫ 1

0
· · ·

∫ 1

0

g(t)∏n
j=1 tα j

j

n∏
j=1

dt j. (2.58)

By taking the supremum in (2.58) over the unit ball BCu(Rn) the boundedness of the operator T̂g :
Cu(Rn)→ Cv(Rn) follows. Moreover, we have

∥T̂g∥Cu(Rn)→Cv(Rn) ≤ sup
x∈Rn\{0⃗}

v(x)
u(x)

∫ 1

0
· · ·

∫ 1

0

g(t)∏n
j=1 tα j

j

n∏
j=1

dt j. (2.59)

Now assume that the operator T̂g : Cu(Rn)→ Cv(Rn) is bounded. Let

f̂0(x) =
1

u(x)
. (2.60)

Then

∥ f̂0∥u = 1. (2.61)

By using (2.54), (2.60) and (2.61), as well as some standard calculations it follows that

∥T̂g∥Cu(Rn)→Cv(Rn) ≥∥T̂g( f̂0)∥v

= sup
x∈Rn\{0⃗}

v(x)
∣∣∣∣∣ ∫ 1

0
· · ·

∫ 1

0

g(t)
u(x · t)

n∏
j=1

dt j

∣∣∣∣∣
= sup

x∈Rn\{0⃗}

v(x)
u(x)

∫ 1

0
· · ·

∫ 1

0

g(t)∏n
j=1 tα j

j

n∏
j=1

dt j, (2.62)

from which (2.55) follows.
If the operator T̂g : Cu(Rn)→ Cv(Rn) is bounded then from (2.59) and (2.62) we get (2.56), finishing

the proof of the theorem. □
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The following theorem is proved similar to Theorem 6, so we omit the proof.

Theorem 7. Let g ∈ C[0, 1), g(t) ≥ 0, t ∈ R, u, v ∈ W(Rn), such that

u(tx) = tαu(x), (2.63)

for some α > 0 and every t ∈ [0, 1) and x ∈ Rn, and

L̂g( f )(x) =
∫ 1

0
f (tx)g(t)dt. (2.64)

Then the operator L̂g : Cu(Rn)→ Cv(Rn) is bounded if and only if

sup
x∈Rn\{0⃗}

v(x)
u(x)

∫ 1

0

g(t)
tα
< +∞. (2.65)

Moreover, if the operator L̂g : Cu(Rn)→ Cv(Rn) is bounded then

∥L̂g∥Cu→Cv = sup
x∈Rn\{0⃗}

v(x)
u(x)

∫ 1

0

g(t)
tα
.

Example 1. Let
u(x) = ∥x∥p and v(x) = ∥x∥q,

where 1 ≤ min{p, q} ≤ max{p, q} < +∞ and for r ≥ 1

∥x∥r =

 n∑
j=1

|x j|
r


1/r

.

Since all the norms on a finite-dimensional linear space are equivalent (here the linear space is Rn), we
have that there are positive constants C1 and C2 such that

C1∥x∥q ≤ ∥x∥p ≤ C2∥x∥q.

Hence, we have

sup
x∈Rn\{0⃗}

v(x)
u(x)

≤
1

C1
< +∞.

Note also that in this case we have
u(tx) = tu(x).

Hence, to guaranty the boundedness of the operator L̂g : Cu(Rn) → Cv(Rn) in this case, the
corresponding condition in (2.65) holds if the function g satisfies the condition∫ 1

0

g(t)
t

dt < +∞.
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2.6. On a Hardy integral operator

Let L̂p
w(Rn) = L̂p

w be a linear subspace of Lp
w containing constant functions, and such that the

integral means

Mp
p( f , r) =

∫
S

| f (rζ)|pdσ(ζ)

are non-increasing for each f ∈ L̂p
w.

Example 2. An example of such a space consists of all harmonic functions on Rn [18, 31], for which
the integral means are nondecreasing functions (see, e.g., [17]; for one-dimensional case see [26]).

Theorem 8. Let µ be a nonnegative Borel measure on the interval [0, 1], w ∈ W(Rn) be a radial
function such that ∫

Rn
w(x)dV(x) = 1, (2.66)

and

Lµ( f )(x) =
∫ 1

0
f (tx)dµ(t). (2.67)

Then the operator Lµ : L̂p
w(Rn)→ L̂p

w(Rn) is bounded if and only if∫ 1

0
dµ(t) < +∞. (2.68)

Moreover, if the operator Lµ : L̂p
w(Rn)→ L̂p

w(Rn) is bounded then

∥Lµ∥L̂p
w(Rn)→L̂p

w(Rn) =

∫ 1

0
dµ(t). (2.69)

Proof. First assume that (2.68) holds. By using Minkowski’s integral inequality (see, e.g., [16, 30]),
polar coordinates (see, e.g., [18] or [26, p.150]), the assumption that w is radial, i.e., w(rζ) = w(r),
x = rζ ∈ Rn, and the monotonicity of the integral means, we have

∥Lµ( f )∥
L̂

p
w
=

(∫
Rn

∣∣∣∣∣∣
∫ 1

0
f (tx)dµ(t)

∣∣∣∣∣∣p w(x)dV(x)
)1/p

≤

∫ 1

0

(∫
Rn
| f (tx)|pw(x)dV(x)

)1/p

dµ(t)

=

∫ 1

0

(∫ +∞

0

∫
S

| f (trζ)|pdσ(ζ)w(r)rn−1dr
)1/p

dµ(t)

≤

∫ 1

0

(∫ +∞

0

∫
S

| f (rζ)|pdσ(ζ)w(r)rn−1dr
)1/p

dµ(t)

=∥ f ∥
L̂

p
w

∫ 1

0
dµ(t),
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from which it follows that

∥Lµ∥L̂p
w→L̂

p
w
≤

∫ 1

0
dµ(t). (2.70)

Now, assume that the operator Lµ : L̂p
w(Rn)→ L̂p

w(Rn) is bounded. Note that from (2.66) we have

∥1∥
L̂

p
w
= 1.

On the other hand, by the definition of the space L̂p
w, we have f̂0(x) ≡ 1 ∈ L̂p

w. From this and since

∥Lµ( f̂0)∥
L̂

p
w
=

∫ 1

0
dµ(t)

we get ∫ 1

0
dµ(t) ≤ ∥Lµ∥L̂p

w→L̂
p
w
. (2.71)

If the operator Lµ : L̂p
w(Rn)→ L̂p

w(Rn) is bounded, then from (2.70) and (2.71) we get (2.69). □

Remark 4. The operator in (2.67) is a Hardy integral-type operator [15].

3. Conclusions

Here we calculate the norms of several concrete operators between weighted-type spaces of
continuous functions on several domains, as well as the norm of an integral-type operator on some
subspaces of the weighted Lebesgue spaces. Several methods, ideas and tricks, which could be used
in some other settings, are presented.
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36. S. Stević, Norms of some operators on bounded symmetric domains, Appl. Math. Comput., 216
(2010), 187–191. https://doi.org/10.1016/j.amc.2010.01.030
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