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Abstract: The notion of the bipolar complex fuzzy set (BCFS) is a fundamental notion to be
considered for tackling tricky and intricate information. Here, in this study, we want to expand the
notion of BCFS by giving a general algebraic structure for tackling bipolar complex fuzzy (BCF) data
by fusing the conception of BCFS and semigroup. Firstly, we investigate the bipolar complex fuzzy
(BCF) sub-semigroups, BCF left ideal (BCFLI), BCF right ideal (BCFRI), BCF two-sided ideal
(BCFTSI) over semigroups. We also introduce bipolar complex characteristic function, positive
(w,n)-cut, negative (p,0)-cut, positive and ((a),n), (o, 0))-cut. Further, we study the algebraic
structure of semigroups by employing the most significant concept of BCF set theory. Also, we
investigate numerous classes of semigroups such as right regular, left regular, intra-regular, and semi-
simple, by the features of the bipolar complex fuzzy ideals. After that, these classes are interpreted
concerning BCF left ideals, BCF right ideals, and BCF two-sided ideals. Thus, in this analysis, we
portray that for a semigroup $ and for each BCFLI M; = ()\p_Ml,}\N_Ml) = ()\RP_Ml +
L Apomys Agn—m, T LAv—m,) and BCFRI M, = (Ap_m,, Ay-m,) = (Arpom, + t Arpomys Arn—m, +
L}LIN_MZ) over S, M; N M, =M; @ M, if and only if S is a regular semigroup. At last, we
introduce regular, intra-regular semigroups and show that M; N M, < M; ® M, for each BCFLI
M, = (7\P—M1,7\N—M1) = (kRP_M1 + 1 Apmy Ajv-m, T L?\,N_Ml) and for each BCFRI M, =
(AP_MZ,AN_MZ) = (ARP_MZ + tApMy Agn-m, T L)\,N_Mz) over $ if and only if a semigroup S is
regular and intra-regular.
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1. Introduction

With the advancement of the world, the ambiguity and uncertainty in the life of human beings
were increasing and an expert or decision-analyst couldn't handle such sort of ambiguities and
uncertainties by employing the theory of crisp set. Thus, Zadeh [1] diagnosed the fuzzy set theory
(FST) and its elementary results in 1965 to cope with such sort of ambiguities and uncertainties by
changing the two-point set {0,1} to the unit interval [0, 1]. The FST holds a supportive grade which
contains in [0, 1]. The FST attracted numerous scholars from almost every field of science and they
did research and utilized the FST in their respective fields. Rosenfeld [2] firstly employed the FST in
the environment of groups to structured fuzzy groups. Kuroki [3—6] interpreted fuzzy semigroups
(FSG), bi-ideal in semigroups, and fuzzy ideal. The fuzzy ideals and bi-ideals in FSGs were also
presented by Dib and Galhum [7]. The fuzzy identities with application to FSGs were established by
Budimirovic et al. [8]. The generalized fuzzy interior ideals and fuzzy regular sub-semigroup were
given in [9,10] respectively. The fuzzy bi-ideals, fuzzy radicals, and fuzzy prime ideals of ordered
semigroups are presented in [11,12]. Kehayopulu and Tsingelis [13] and Xie and Tang [14] presented
the concept of regular and intra-regular ordered semigroups. Khan et al. [15] explored certain
characterizations of intra-regular semigroups. Jaradat and Al-Husban [16] investigated multi-fuzzy
group spaces.

The conception of bipolar fuzzy (BF) set is one of the generalizations of FST, as FST is unable to
cover the negative opinion or negative supportive grade of human beings. Thus, Zhang [17] initiated
the BF set theory (BFST) to cover both positive and negative opinions of human beings by enlarging
the range of FST ([0, 1]) to the BFST ([0, 1],[—1, 0]). The BFST holds a positive supportive grade
(PSG) which contains in [0, 1] and negative supportive grade (NSG) which contains in [—1,0].
Kim et al. [18] initiated BCFST in semigroups. Kang and Kang [19] explored BFST applied to
sub-semigroups with the operations of semigroups. BFST in I'-semigroups was interpreted by
Majumder [20]. The certain properties of BF sub-semigroups of a semigroup are presented in [21,22].
Chinnadurai and Arulmozhi [23] described the characterization of BF ideals in ordered I'-semigroups.
BF abundant semigroups by Li et al. [24]. Ban et al. [25] initiated BF ideals with operation in
semigroups. Gaketem and Khamrot [26] presented BF weakly interior ideals. The generalized BF
interior ideals in ordered semigroups were interpreted by Ibrar et al. [27]. The BF graph was discussed
in [28-30]. Mahmood [31] diagnosed a new approach to the bipolar soft set. Akram et al. [32] presented
a characterization of BF soft I'-semigroups. Deli and Karaaslan [33] defined bipolar FPSS theory.
Various researchers expand the conception of BFS such as Deli et al. [34] investigated bipolar
neutrosophic sets (BNS), Deli and Subas [35] introduced bipolar neutrosophic refined sets, Ali et al. [46]
investigated bipolar neutrosophic soft sets.

The FST and BFST merely cope with the ambiguities and uncertainties which are in one
dimension but unable to cope with 2" dimension which is the phase term. Thus, Ramot et al. [37]
diagnosed the theory of complex FS (CFS) by transforming the range of FST ([0, 1]) to the unit circle
in a complex plane. In the CFS theory (CFST) Ramot et al. [37] added the phase term in the supportive
grade. After that, Tamir et al. [38] diagnosed the CFST in the cartesian structure by transforming the
range from the unit circle to the unit square of the complex plane. Al-Husban and Salleh [39] presented
complex fuzzy (CF) groups that rely on CF space. Alolaiyan et al. [40] the conception of CF subgroups.
The above-discussed theories have their drawbacks, for instance, FST can’t cover the negative opinion,
BFST can’t cover the 2" dimension and CFST can’t cover the negative opinion. Thus to cover all these

AIMS Mathematics Volume 8, Issue 2, 3997-4021.



3999

drawbacks Mahmood and Ur Rehman [41] introduced the theory of the BCF set. BCF set covers the
PSG which contains in [0, 1] + ¢ [0, 1] (real part contains in [0, 1] and unreal part containsin [0, 1])
and NSG which contains in [—1,0] +¢[—1,0] (real part contains in [—1,0] and unreal part
contains in [—1, 0]). The theory of the BCF set has a great mathematical structure that generalizes the
FST, BFST, and CFST, for example, a CEO of a company wants to install a new air conditioning
system in a company’s head office. For this he has to observe four aspects i.e., positive effect on the
office’s environment, the positive response of the employees, the extra burden on the company
expenditures, and the negative response of the employees. No prevailing theories except the BCF set
can model such kinds of information. A lot of researchers worked on the theory of BCF set for instance
Al-Husban et al. [42] investigated the properties for BCFS. Mahmood et al. [43] diagnosed Hamacher
aggregation operators (AOs), Mahmood and Ur Rehman [44] explored Dombi AOs, Mahmood et al. [45]
AOs. The BCF soft set was diagnosed by Mahmood et al. [46].

The conception of a semigroup is a prosperous area of modern algebra. It is obvious from the
name that semigroup is the modification of the conception of the group, since a semigroup not requires
to contain elements that have inverses. In the earlier stages, a lot of researchers work on semigroup
from the perspective of ring and group. The conception of semigroup may be assumed as the effective
offspring of ring theory because the ring theory provides some insight into how to create the notion of
ideals in the semigroup. Moreover, the conception of a semigroup is an influential approach and has
been utilized by numerous scholars and employed in various areas such as mathematical biology,
control theory, nonlinear dynamical systems, stochastic processes, etc. Because of the importance
of semigroup, various scholars modified this concept to introduce novel notions such as fuzzy
semigroup [3—6], intuitionistic fuzzy semigroup [47], bipolar fuzzy semigroup [19], etc. The concept
of fuzzy semigroup has various application such as fuzzy languages, theory fuzzy coding, etc., that
shows the importance of fuzzy algebraic structure and their modifications. In recent years, numerous
authors generalized the conception of fuzzy algebraic structures and employed genuine-life dilemmas
in various areas of science. What would happen if someone working on automata theory and trying to
solve a problem and for that he/she needs a BCF algebraic structure (i.e., BCF semigroup) but until
now there is no such structure in the literature. Therefore inspired by this here in this analysis we
employ the theory of the BCF set to the algebraic structures of semigroups:

e To describe BCF sub-semigroup, BCFLI, BCFRI, and BCFTSI.

e To introduce numerous classes of semigroups for instance, right regular, left regular, intra-
regular, and semi-simple, by the features of the bipolar complex fuzzy ideals. In addition, these
classes are interpreted in relation to BCFLIs, BCFRIs, and BCFTSIs.

e To show that, for a semigroup S§ and for each BCFLI M; = ()\p_Ml,}\N_Ml) = ()\RP_Ml +
L Ap—my Arn—m, F Ao, ) and BCFRI M, = (Ap—m,  Av-m,) = (Agp-m, +
LArp—mys Arn-M, t L)\,N_Mz) over S, M; N M, =M; @M, if and only if § is a regular
semigroup.

e To interpret regular, intra-regular semigroups and show that M; N M, < M; @ M, for each
BCFLI M, = (}\P—Mli}\N—Ml) = ()\RP_Ml + t Aip—my Arn-m, T L)\,N_Ml) and for each
BCFRI M, = (Ap_m, Av—m,) = (Arp-m, + t Aipop,, Agwm, + L Ay—ym,) oOver $ if and
only if a semigroup $ is regular and intra-regular.

The introduced conceptions are an advancement of the fuzzy set (FS), bipolar fuzzy set (BFS),
and complex FS (CFS) in the environment of semigroups and from the introduced notions we can
easily achieve these conceptions in the environment of FS, BFS, and CFS.
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The quick assessment of the composition of this analysis: In Section 2, we studied, the
fundamental concepts such as FS, fuzzy sub-semigroup, BF set, BF set sub-semigroup, BCF set and
its related concepts In Section 3, we introduced the BCF sub-semigroup, BCFLI, BCFRI, BCFTSI,
bipolar complex characteristic function, positive (w,n) -cut, negative (g, o) -cut, positive and
((a),n), (o, a))—cut. Further, we also discuss their related theorems. In Section 4, we provided the
characterizations of various categories of semigroups such as semi-simple, intra-regular, left, right
ideals, and regular by the properties of BCF ideals (BCFIs). Additionally, we describe these in terms
of BCFLIs, and BCFRIs. The conclusion is presented in Section 5.

2. Preliminaries

The fundamental concepts such as FS, fuzzy sub-semigroup, BF set, BF set sub-semigroup, BCF
set, and its related concepts are reviewed in this section. we will take S as a semigroup in this analysis.
Definition 1. [1] A mathematical shape

M= {(x2u®x)|x € X}

is known as FS on X. Seemingly, Ay(x): ¥ = [0, 1] called the supportive grade.
Definition 2. [3] Suppose an FS M = Ay(x) over S, then M is said to be a fuzzy sub-semigroup of

Sif VX y€S§,
Au(xy) = min{Ay (%), Ay ()}

Definition 3. [3] Suppose an FS M = Ay(x) over S, then M is said to be fuzzy left (right) ideal of
SIfVXy€ES,

M) = ) A = ().

M is said to be a two-sided ideal if it is both fuzzy left ideal and fuzzy right ideal.
Definition 4. [17] A mathematical shape

M = {(%Ap_u (), Ay-u (X)) | x € X}

is known as the BF set. Seemingly, Ap_y(x): X — [0,1] and Ay_y(X): X — [0, 1], called the positive
supportive grade and the negative supportive grade.

Definition 5. [18] Suppose a BF set M = (Ap_p, Ay_m) over S, then M is said to be BF sub-
semigroup of $ if Vx,¥ €S,

(1) Ap_m(xy) = min{Ap_y (%), Ap_m ()},

(2) Av-m(x¥) < max{Ap_y (%), Ap_m ()}

Definition 6. [18] Suppose a BF set M = (Ap_y, Ay_m) over S, then M is said to be BF left (right)
ideal of S if VX, ¥ €S,

(D) oo = Ap_m (D Ap_m(x3) = Ap_u (X)),

(2) Av-m () < Ay-m (D Ay-m x5 < Ay-n(®)).

Definition 7. [41] A mathematical shape

M = {(%,Ap_m(x), Ay_u (X)) | x € X}.

BCF seton X is known as BCF set. Seemingly, Ap_y(X) = Agp_m(X) + t Ajp_m(X) and Ay_y(x) =
Arv-m(X) + t A y_m(X), called the positive supportive grade and negative supportive grade with
Arp—m(X), Ap—m(X) € [0,1] and Agy_m(X), A;y—m(X) € [—1, 0]. In this analysis, the structure of the
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BCF set will be considered as M = (Ap_y, Ay—m) = Arp_m + t Ap—yi Arv—m + L A n—m)-
Definition 8. [41] For two BCF set M1 = (}\p_Ml,}\N_Ml) = ()\RP—Ml + l}\IP—Mli}\RN—Ml + l}\lN_Ml)
and Mz = ()\P—MZ’)\N—MZ) = (}\RP—MZ + l}\IP—MZ’}\RN—MZ + l}\IN_MZ), we have

(1) M§ = (1 — Agp—m, 1 (1 - }\RP—Ml)f —1 = Agy-m, 1 (—1 - 7\1N—M1)),

)M, UM, = (ma.-x()\RP—le)\RP—MZ) l ma-X()\IP—le)\IP—MZ)')
min(Agy-wm,, Arn-m,) + ¢ Min(Ay_m,, Av-m,)

(3) M, A M, = (min(?\RP_Ml,)\RP_MZ) +1 min()\,P_Ml,)\,P_MZ),)
max(Agy-m,> Arn-m,) + ¢ Max(Ay_m,, Av-m,)

3. BCF sub-semigroups and ideals

In this section, we are going to introduce the BCF sub-semigroup, BCFLI, BCFRI, BCFTSI, bipolar
complex characteristic function, positive (w,n)-cut, negative (g, o)-cut, positive and ((a), n), (o, 0'))—
cut. Further, we also discuss their related theorems. Throughout this analysis, for two BCF set M; =
(Apomyr Avom,) = (Arpomy + L Apomys Arvom, + L Ainom,) and M, = (Ap—m, An-m,) =
(?\RP_MZ + tAip_M,» Arn—M, +L?\,N_M2), M; S My if Ap_y, < Ap_y, and Ay_y, = Ay_y, that is,
Arp—M; < Agp-m,> Mipom, < Ajpom, and Agy_m, = Agyomys Aivem, = Aiv—m,-

Definition 8. Suppose a BCF set M = (Ap_y, Ay—m) = Agp—m + t Ajp—my Agy—m + L Ajy—m) OVver S,
then M is known as BCF sub-semigroup of S if V X, € S,

(1) Ap—m(xy) = min{Ap_y (%), Ap_nu ()} = Agp—m(xy) = min{Agp_y (%), Agp-m ()} and
Aip-m(x¥) = min{A;p_y(x), Ap_m ()},
(2) Ay—m(xy) < max{Ap_y(X), Ap_u ()} = Agnv-m(x¥) < max{Agy_m(x), Agy-m(»}  and

An-m(xy) < max{A;y-m(X), Ay-m ()}
Example 1. Suppose a semigroup S = {e, X3, X, X3, X4} interpreted as Table 1:

Table 1. The Cayley table of § of Example 1.

e X1 X2 X3 Xy
e e e ¢
X1 ¢ ¢
X2 € ¢ Xp X3 X4
X3 ¢ ¢ X, X3 X4
Xg € € Xy X3 X4

Next, define a BCF subset M = (Ap_p, Ay—m) = (Agp—m + t Ajp—my Agy—m + L Ajy—p) oOVver S as
(e,(0.9+:0.87,-0.23 —10.25)), (x4, (0.7 +10.75,-0.33 —10.36)),
M={ (x2(0.5+10.62,-0.6 —10.3)),(x3, (0.5 +10.62,-0.6 —10.3)),
(x4, (0.5 +10.62,-0.6 —10.3)),
then, for ¢,x € S we have
(1) We have
Arp-m(exy) = Agp_m(e) = 0.9 and min{Agp_p(e), Agp_m(x1)} = min{0.9,0.7} = 0.7

= Arp-m(eX1) = min{Agp_p(e), Agp_m(X1)},
Ap—m(ex1) = Ap_y(e) = 0.87 and min{A;p_y(e), Ajp_um(X1)} = min{0.87,0.75} = 0.75

= Ap-m(exq) = min{A;p_y(e), Ajp_ym (%)} = Ap_m(exq) = min{Ap_y(e), Ap_y (X))}
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(2) Next,
Agn-m(exy) = Agy_m(e) = —0.23 and max{Agy_m(e), Agy—m(X1)} =
max{—0.23,—0.33} = —0.23
= Agn-m(ex1) < max{Agy_m(e), Agy-m(x1)},
Ain-m(exy) = Ay_m(e) = —0.25 and max{A;y_m(), Ajy-m(X1)} =
max{—0.25,—0.36} = —0.25
= Ay-m(exy) < max{A;y_m(e), Ajp-m(x1)} = Ay-_m(exy) < max{Ay_m(e), Ay_m(x1)}:
The remaining elements of § can verify similarly. Thus M is a BCF sub-semigroup.
Definition 9. Suppose two BCF sets M; = ()\P—er}\N—Ml) = (}\Rp_Ml + tAip—my Arn-m, T
L}\IN—Ml) and Mz = ()\P_MZ,AN_MZ) = (}\RP_MZ + LAIP—MZFARN—MZ + lxIN—MZ) over S, then the
product of M; @ M, is described as

M; @M, = (7\13—M1 °© Ap_M, An-M, © }\N—Mz)
= (Arp=m, © Arp—m, + L Arp_w, © Apom, » Arw—m, © Arn—m, T L Aiv—m, © Aivm,)

where,

T e e

0 otherwise

(Arp=m, © Aip—w, )(X) = {ig_yg {min (}\’P‘Ml(y)'}"P‘MZ (Z))} [ % =yz for somey,z € S,

0 otherwise

inf {max {Agw- » Arn-m, (Z if x =z for somey,z €
(}\RN_Ml °7\RN—M2)(X) = {x=yz{ ( ’N-M; (), Agn—m, ( ))} fx=¥zf ¥ S’

0 otherwise

X=¥2

inf {max ( A;y_ A v-m. (Z if X = vz for some y,7 €
()\IN—Ml °7\1N—M2)(X) — {1 { x( IN Ml(y) IN Mz( ))} fx=vyzf ¥ 5'
0 otherwise

Remark 1. Clearly, the operation “(®)” is associative.

Theorem 1. Suppose that M = (Ap_y, Ay—m) = Agp—m + t A;p—m Agy—m + t A;y—m) is a BCF set
over S, then M = (Ap_m, Ay_m) = Qgrp_m + t Ajp_m, Agv—m + L A;y—m) 1s said to be BCF sub-
semigroup of § ifand only if M@ M < M.

Proof. Suppose that M = Ap_m, Av—m) = Qrp_m + t Aip—my Agy—m + L A;y—m) is a BCF sub-
semigroup over S and x € S, if Agp_m o Arp—m = 0, A;p_m © Arp—m = 0, Agy_m © Agy—m = 0, and
Anv-m ° Mv—m = 0, then clearly, M @ M < M. Otherwise there are elements ¥,z €S s.t x = yz,
then

(Arp—m © Agp_m)(X) = Sup{min()\RP—M(y);)\RP—M(Z))}
X=y7

< sup{Agp_m(¥2)} = Agp_m(X)
X=yZ

and

Arp-m ° Apo) () = Sup{min()\lP—M(y)'}\IP—M(Z))}
X=y7

< sup{Ap-m(2)} = Appou(X).
X=¥Z
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Next,
-t © Agn-w) ) = inf {max(Aey—u G, Aew-u(2))]
2 Inf{Aen-m(y2)} = Aen-m(x)
and
Qun-w © M) () = Inf {max(Aiy-m G A ()]
2 Inf{An-u(2)} = Av-u®).

Thus, (Arp-m © Agp-M)(X) < Agp-m(X) »  Ap—m © Ap-m)(X) < Ajp_m(X) = Ap_ym o Ap_m)(X) <
Ap_m(x)  and  (Agy—m © Arn-m) (X)) = Agy-m(X) ,  Qyuv—m o An-m) (X)) = Ay_m(x) = Ay-m ©
Av-m)(X) = Ay_m(x). Consequently, M@ M < M.

Conversely, let M = (Ap_y, Av—m) = Arp—m + t Ajp—ms Agn—m + t A;y—m) 1s @ BCF set over S such
that M@ M <M and x,% 2z € $ such that X = yz. Then

Ap—m(¥2) = Ap_m(X) = Agp_m(X) + tA;p_m(X).

Now take
Arp-M(X) = (Agp_pm © Agp_m)(X) = Sup{min(}\RP—M(y)iARP—M(Z))}
X=¥Z
> min(Agp—m (), Arp-u(2))
and
Ap—m () = Aypop © Ap—m) () = sup{min(A;p_m ), Ap_m(2))}
X=y7
= min()\IP—M(Y)r}\IP—M(Z))
= Apom(¥2) = min(Ap_y (%), Ap_u(2)),
similarly,
An-mF2) = Ay_m(X) = Agy—m(X) + t A;y_m(X).
Now take
Arn-m(X) < Agry-m © Arm-m) (%) = ggyg{maX(ARN—M(Y)'ARN—M(Z))}
< max(Agy-m (), Agn-m(2)),
and

An-m(X) < Ayy-m © Agm-m) (X) = }ggyi;{max(}\IN—M(y): Anv-m(2))}

< max()\IN—M(y)' }\IN—M(Z))
= Ay-m(¥2) < max(Ay_u (), Ay-m(2)).

This implies that M is a BCF sub-semigroup over S.
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Following we are going to describe the BCF left (right) ideal.
Definition 10. Suppose a BCF set M = (Ap_y, Av—m) = Agp—m + t Ajp—ms Agn—m + L Ajy—pm) overS,
then
(1) M is known as BCF left ideal (BCFLI) of § if VX,¥ €S
D) Ap_m(x¥) = 2pm() = Agp-m(x¥) = Agp_m(¥) and A;p_y(xy) = Ap_m();
2) Aoy S Avom®) = Agv-m(x¥) < Ay (@) and Ay (x5 < Ay (@).
(2) M is known as the BCF right ideal (BCFRI) of S if VX, € S
D) Apom(xy) = Apm(®) = Agpm(xy) = Agp_m(X) and Ap_y(xy) = Ap_m(X);
2) Aoy < Ao = Agv-m () < Ay () and Ay m(x5) < Ay_m(X).
(3) M is known as BCF two-sided ideal (BCFTSI) (BCF ideal) if it is both BCFLI and BCFRI.
Remark 2. It is evident that each BCFLI, BCFRI, and BCFTSI over S is a BCF sub-semigroup. But
the converse is not valid.
Example 2.
(1) The BCF sub-semigroup M = (Ap_p, An—m) = Arp—m + t Ajp—my Agy—m + L Ajy—p) oOver S in
Example 1 is not a BCFLI, because

Arn-m(eX1) = Agy_m(e) = —0.23 and Agy_m(x;) = —0.33,
thus,

Arn-m(eX1) £ Apy-m(X1) = Ay_m(exg) £ Ay_m(X1),
and not BCFRI because

Arn-m(X18) = Agy_m(e) = —0.23 and Agy_pm(x;) = —0.33,
thus,

Arn-m(%18) £ Apy-m(X1) = Ay_m(xge) £ Ay_m(X1).

Hence, M is also not a BCFTSI.
(2) Consider the semigroup S of Example 1 and a BCF subset M = (Ap_p, Ay—m) = Agp_m +
L A\p—wm> Arv—m F L A;y_pm) Over S as

(e,(0.9+:0.87,-0.6 —10.3)),(x1, (0.7 +1:0.75,-0.33 —10.36)),
M = {(x (0.5 +10.62,-0.23 —10.25)), (x5, (0.5 +10.62,—-0.23 —10.25)),
(x4, (0.5 +1:0.62,—-0.23 —10.25))

then, M is BCFLI, BCFRI, and BCFTSI over S.
The below-given theorem explains that the BCF set M = Ap_p,Ay_m) = Qgp_m +
LA\p—ms Arv—m F t A;y—pm) of Sis a BCFLI (BCFRI) over S ifandonlyif S@M <M (M©® S < M).
Theorem 2. Suppose that M = (Ap_y, Ay—m) = Agp—m + t Aip—ms Agy—m + t A;y—m) is a BCF set
over S, then
(HM=Qp_m, An-m) = Qrp_m + t Ap—my Agy—m + t A;y—m) isaBCFLIover S ifand onlyif S ©
M<M;

)M = Qp_m Av-m) = Qrp_m + t Ap—my Agv—m + t A;v—m) is @ BCFRI over §S if and only if
M@S<M;

B)M = Qp_m, Av-m) = Qrp_m + t Ap—my Agv—m + t A;v—m) is @ BCFTSI over S if and only if
SOMS<Mand MES <M,

holds.
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Proof. 1. Suppose that M = (Ap_p, Ay—m) = Qrp—m + t Ap—my Agy—m + t A;y—m) is a BCFLI over S
and X €5, if Agp_goAgp_m = 0,Ap_g0oAp_y = 0,Agy—_s°Agy-m =0, and Ajy_goA;y_y =0,
then clearly, S @ M < M. Otherwise there are elements ¥,z € S s.t x = yz, then
(Arp—s © Agp_m)(X) = sup {min ()‘RP—S(y):)\RP—M(Z))} = sup{min(1,Azp_u(2))}
X=¥2

X=¥7

= sup{Agp_m(2)} < sup{Agp_m(¥2)} = Arp_m (%),

X=yz X=yz
and
(Arp—s © Aip—m) (%) = §S£ {min (Azp—s(y)' }\IP—M(Z))} = illyg{min(l,llp_M(z))}
= sup{A;p_m(2)} < sup{A;p_n(¥2)} = Ap_m(X).
X=yz X=yz
Next,
(A= © An-u) GO = inf {max (Apy—s(), Apn-u(@) )} = inf {max(~1, Apy-u(2))

= ggyf;{}\RN—M(Z)} 2 xiilyfz{)\RN—M(yz)} = Agn-m (X,

and

(7\1N—$ ° }\IN—M)(X‘) = Xiilyfz {max ()‘IN—S(Y)')\IN—M(Z))} = xillyfz{max(_l')‘IN—M(z))}

= xiilyfz{}\IN—M(Z)} 2 gByE{AIN—M(yZ)} = An-m ().

Thus,

(7\RP—$ ° )\RP—M)(X) < Agp-m(X), (7\1P—5 ° AIP—M)(X) < Ap_m(x)

= (Apos o Apm)(®) < Apw(®)  and  (Agy—s © Agn—m) (®) = Aen-m(®) 5 (Aw—s © Ay—m) (X) =
Ay-m®) = (}‘N—S o AN_M)(X,) > Ay—m(x). Consequently, S@ M < M.

Conversely, let M = (Ap_m, Av—m) = Qrp_m + t Aip—my Agv—m + L A;y—m) is @ BCF setover S such
that S@ M <M and x,% 2z € S such that x = yz. Then

Ap—m(¥2) = Ap_m(X) = Agp—m(X) + t Ajp_m(X).

Now take
Ane- () = (e Ap-) () = sup {min (e 55 Mnp- ()
= gyg{min(l,xm_m))} > min(1, Agp—u(2)) = Agp_u (@)
= Agp-m(¥2) = Agp_m(2)
and

Ap-m(x) = (7\113—5 ° }\IP—M)(X) = sup {min ()\IP—S(y)r}\IP—M(Z))}

X=y7

= Sup{min(l'}\lP—M(Z))} = min(l'}\lP—M(Z)) = Ap-m(2)
X=Yy2
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= Ap-m(¥2) = Ajp_nm(2),

similarly,
Av-m(32) = Ay_m(X) = Agy—m(x) + t Ay-m(x).
Now take
Ary-m(x) < (ARN—S ° 7\RN—M)(X) = ggyfz {max (ARN—S(.V):)\RN—M(Z))}
= X‘igyfz{max(_l'}\RN—M(Z))} < maX(_lr}\RN—M(Z)) = Arn-m(2)
= Aen-m(F2) < Agy-m(2)
and

An-mX) < (7\11\1—5 ° )\IN—M)(X.) = xlgyfz {max (}\IN—s(y)'}\lN—M(Z))}
= )gilyfz{max(—l, }\IN—M(Z))} < max(—l, )\IN—M(Z)) = An-m(2)

= An-m(¥2) < Ay-m(2).

This implies that M is a BCFLI over S.

The proof of 2 and 3 is likewise the proof of 1, so we are omitting the proof here.

Definition 11. Suppose a BCF set M = (Ap_m, Ay_m) = Qrp_m + t Ap—my Agy—m + L Ajy—m) over S,

then

(1) Foreach w,n € [0,1] theset P(Ap_y, (0,1)) ={X € S: Agp_y = w and A;p_y =7} is known
as positive (w,n)-cut of M.

(2) For each g,0 € [-1,0] the set N(Ay_m, (0,0)) = {X € S: Agy_m < 0and Ajy_y < 0} s
known as negative (o, 0)-cut of M.

(3) The set PN (M, ((w,n), (o, a))) = LP()\P_M, (w,n)) N N(?\N_M, (Q,a)) is known as the

((w,m), (0,0))-cut of M.
Theorem 3. Suppose a BCF set M = (Ap_p, Av—m) = Qrp_m + t Apms Arv—m + L Ay—m) over S,
then

(1) For each w,n € [0,1], 9,0 € [—1,0], the non-empty set PN (M, ((w,n), (o, J))) is a sub-
semigroup of § if and only if M = (Ap_pm, Ay—m) = Arp—m + t Ajp—my Agy—m F+ L A;y—m) 1S @
BCF sub-semigroup over §;

(2) For each w,n €[0,1], 0,0 € [—1,0], the non-empty set PN (M, ((a),n), (o, 0))) is a left
ideal of S if and Only if M= ()\p_M, }\N—M) = (}\RP—M + l}\lp_M, )LRN_M +1 )\IN—M) is a BCFLI
over S;

(3) For each w,n €[0,1], 0,0 € [—1,0], the non-empty set PN (M, ((a),n), (o, a))) is a right
ideal of § ifand only if M = Ap_m, Ay—m) = Arp—m + t Ap—m Agny—m + L Ay—m) 1s @ BCFRI
over S;

(4) For each w,n € [0,1], 0,0 € [—1,0], the non-empty set PN (M, ((w,n), (Q,a))) is a two-
sided ideal of § if and only if M = (Ap_m, Ay_m) = Qgp_m + L Aip_my Agvem + L A;vm) 1S @
BCFTSI over §$,

holds.
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Proof. 1. Suppose that PN (M, ((a),n), (o, 0'))) is a sub-semigroup over S, x,¥ €S, and w =

min()\RP—M(X‘)r)\RP—M(Y)) and 1= min()\IP—M(X)r}\IP—M(y)) . Evidently, Agp_m(x) =
min(}\RP—M(X.)'}\RP—M(Y)) =w , Agp-w(® = min(}\RP—M(X.)'}\RP—M(Y)) =0 , Apu® =
min(AIP—M(X‘)'}\IP—M(y)) =7 and Ap_u(y) = min()\IP—M(X‘)'AIP—M(Y)) = 1. Similarly, suppose
0 = max(Agy-m(X), Aey-m(¥)) and o = max(Ay_m(x), Av-m(®)) . Evidently, Agy_m(x) <
max()\RN—M(X)r}\RN—M(y)) =0 , Agn-m(® = max()\RN—M(X)r)\RN—M(y)) =0 , Ay-m® =<
max(Ay_m(®), Ay-m () = 0 and Ay_m(¥) < max(Ay_m(X), Av_m(¥)) = o which implies that
X, ¥ € PN (M, ((w,n), (o, a))).As PN (M, ((w,n), (Q,a))) is a sub-semigroup over S, so x¥ €
PN (M; ((w,m), (o, U)))- Thus, Agp_n(x¥) = @ = min(Agp_u(X), Aep-u (), Ap_u(xy) =1 =
min(Ap_m (), Ap-m () » Arw-mx) < 0 = max(Agy_mX), Agn-m(®) . Ay_u(xy) <0 =
max(A;y_w (%), Ay_m(3)). Consequently, M = (Ap_y, Ay_p) is @ BCF sub-semigroup over S.
Conversely, let M = (Ap_y,Ay—m) is a BCF sub-semigroup over $ and X,y € S such that x,¥ €
PN (M, ((w,m), (o, J))) Vw,n€l0,1], 0,0 € [—1,0]. Since Agp_m(X) = 0, Agp_u(¥) = w
Ap—m®) =1, Apow(®) =1, Agyou®) < 0, Agv-m(®) <0, Ly-u(x) <0, and Ay_y(¥) < 0.
Hence, Agp_y(x¥) = min(Agp_m(x), Aep-mu () = @, Ap_u(x¥) = min(Ap_u(x), Ap-u () =1,
Arn-m(x¥) < max(Agy-m(®), Agn-m(3)) < @, and Apy_m(xy) < max(Ay-—w (), Aw-u()) < 0.
Thus, xy € PN (M, ((w,n), (o, 0))) and PN (M, ((w,n), (o, 0))) is a sub-semigroup of S.
The rest are the same as 1.

Definition 12. The bipolar complex characteristic function of a subset Q of §, is indicated by M¥ =
(Ap_m= Ay_me) and demonstrated as

(141 ifx e Q
Ap_p2(x) = {() +10, otherwise ’

_(-1-:1 ifx € Q
Ay-na (%) = {O +10, otherwise

Remark 3. We observe that $ can be taken as a BCF set of itself and write A,_ye(X) = Ap_g(x) and

Ayoan (%) = Ay_s(0).

Theorem 4. Suppose that M¥ = (}\P_MD, )\N_Ma) is a bipolar complex characteristic function over S,

then

(1) MR = ()\P_MD,}\N_MD) is a BCF sub-semigroup over S if and only if Q is a sub-semigroup of
S5

(2) MR = ()LP_MD,)\N_MD) isa BCFLI over § ifand only if Q is a left idea of S;

(3) M® = (Ap_ya,Ay_yo) isa BCFRIover § ifand only if Q is a right ideal of S;

(4) MR = (}\P_MD,}\N_MD) isa BCFTSI over S if and only if Q is a two-sided ideal of §,

holds.

Proof. Suppose that Q is a sub-semigroup of S and let x,¥ € Q, then

Ap_yo(X) =1+11=2A,_ya(y¥) and Ay_po(®) =—-1—11=2Ay_ya(¥)

as xy € Q, thus,

Ap_ya(xy) =1+11=min(1+:1,1+¢1) = min (AP_Mn(x),AP_MQ(y))

and
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Ay_me(xy) =—1—-11=max(-1-1:1,—-1—-11) = max ()LN_MD(X),)LN_MD(y)).

Nextif x € Q or ¥ € Q then
Ap_y2(®) =0+4+10 or Ap_yo() =0+1:0 and Ay_pya(x) =0+1t0 or Ay_ya(¥) =0+10

Ap_ye () 2 0+ 10 = min (Ap_yo (), Ap_ye(3))
and
Ay_wa(x5) < 0+ 10 = max (Ay_ys (), Ay_ya(3))-

Thus, M® = (Ap_y2,Ay_y2) is a BCF sub-semigroup over §.

Conversely, let M® = (}\P_MD,}\N_MD) is a BCF sub-semigroup over § and x € $ such that x € Q.

Thus we have

Ap_ye(x) =1+11 andAy_ye(x) =—-1-—11

= xePN (M, ((1,1),(-1,-1))). Let y €S such that y € PNV (M, ((1,1),(~1,-1))). This

shows that App_y2(X) 21, Ajp_ya(x) =1 and Apy_yo(®X) < -1, Ay_y2(®) < —1,andso y € Q.

Hence Q = PN (M, ((1, 1), (-1, —1))). By Theorem 3 we obtained that Q is a sub-semigroup of S.

Lemma 1. For two BCF set M® = (}\P_MD,}\N_MD) and M® = ()‘P—M‘B'}‘N—M‘B) over S, then

(1) M® n M* = MR%;

(2) MR @ M® = M¥¥,

holds

Proof. Omitted.

Theorem 5. Suppose that M; = (}\P—Mli}\N—Ml) = (7\RP—M1 + t Aip—my Arn-m, T L)\,N_Ml) and

M, = (7\P—M2'7\N—Mz) = (ARP_MZ + t Ajp—m,s Agn—m, + LX,N_MZ) are two BCF sets over §, then

(1) Assume that M; = (Ap_pm, Av—m,) = (Agpom, + L Aipomy Arwvom, + tAv—m,) and M, =
(AP_MZ,AN_MZ) = (ARP_MZ + tApmy Ajv—m, T L)\,N_MZ) are two BCF sub-semigroup over S,
then M; N M, is a BCF sub-semigroup over S;

(2) Assume that M; = (Ap_pm, Av—m,) = (Agpom, + L Aipomy Arwvom, + tAv—m,) and M, =
(AP_MZ,AN_MZ) = (ARP_MZ + tApmy Ajv—m, T L?\,N_MZ) are two BCFLIs over S, then M; N
M, is a BCFLI over §;

(3) Assume that M; = (Ap_pm, Av-m,) = (Agpom, + L Aipomy Arwvom, + tAv—m,) and M, =
(AP_MZ,AN_MZ) = (ARP_MZ + tApmy Ajv—m, T L?\,N_MZ) are two BCFRIs over S, then M; N
M, is a BCFRI over S;

(4) Assume that M; = (Ap_m,, Av—m,) = (Arpom, + L Aipomy Arwom, + tAv—m,) and M, =
(AP_MZ,AN_MZ) = (ARP_MZ + tApmy Ajv—m, T L?\,N_MZ) are two BCFTSIs over §, then M; N
M, is a BCFTSI over S,

holds.

Proof. 1. For any X,y € S, we have

(Ap—m, N Ap_y,)(x¥) = min (}\RP—Ml(Xy)'}\RP—MZ (X&‘)) + ¢ min ()\IP—Ml(Xy):}\IP—MZ (X&‘))-

Now take
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min (}\RP—Ml (x¥), Arp—m, (XY))
n ()\RP—Ml (x), )\RP—Ml (y)) , min (7\RP—M2 (x), )\RP—MZ (Y)))

n (7\RP—M1 (%), Arp—m, (X)) , min (}\RP—Ml (), Arp -, (y)))

= min ((}\RP—Ml N Agpom,) (X), (Arp—m, N }\RP—MZ)(y))a

v

min (mi
min (mi

and
min (A;p -y, (59), A, (559 ) = min (min (Ap_pe, (), Ao, (), min (Ao, 60, Aipoy, 39)) )
= min (min (Arp-, (), Asp-y, (), min (Arp-i, (), -, )
= min ((7\,,,_M1 N Arpom,) (), (Agpy, N 7\1P-M2)(y))
= (Apopy N Apoaa, )09 = min ((Apopa, 0 Appt, )X, (Ao, 0 Ao, )3)).
Similarly,
(Awv=nty 0 Avwa, ) 07) = max (A, (5), Arw-sa, (%) ) + ¢ max (A, G5, A, G559 ).

Now take

max (AR,\,_M1 (X¥), Arn—m, (Xé"))
< max (max ()\RN—Ml (x), AN, (y)) , max (7\RN—M2 (), Arn-m, (Y)))

= max (max (Aew-u, (0, Aen-w, (), max (Aew-p, 3), Aew-ri, )
= max ((Aawv-w, 0 Aew-w,) GO, (Raw-w, 0 Aa-u,)(3) ).
and
max (Ay-u, 69, v, ()
< max (max (-, G, M-, ) ), max (M-, (0, Aw-nt, 3)))
= max (max (A, 6 Ay-w, () ), max (Ao, ), Arw-nt, ) ))
= max (M-, 0 Awvan, ) GO (i, 0 Ay, ) 3))

= (7\1\1—M1 n AN—MZ)(X&‘) < max ((7\1\1—M1 n AN—MZ)(X)r (7\1\1—M1 n }\N—Mz)(y))-

Thus, M; N M, is a BCF sub-semigroup over $.

The proofs of parts 2—4 are likewise part 1.

Theorem 6. Suppose a BCFRI M = (Ap_y, Av—m) = Agp—m + t Ajp—ms Agy—m + L Ajy—m) Over S,
then MU (S © M) is a BCFTSI over S.

Proof. As S is a BCFLI, so
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SEOMU(SEOM))=EOMUEOSOM)

SEOMUEOM=5@M<MUEOM).
This shows that M U (S @ M) is a BCFLI over S. Now

(Mu(sOM))Os=MONUEOMOS)

<SMU (S O@M).

This shows that M U (S @ M) isa BCFRI over S. Thus M U (S ® M) is a BCFTSI over §S.
Corollary 1. Suppose a BCFLI M = (Ap_ym, Ay—m) = Agp—m + t Ajp—my Agy—m + L A y—p) Over S,
then MU (M ® S) is a BCFTSI over S.

4. Describing regular semigroups

Here, we provide the characterizations of various categories of semigroups such as semi-simple,
intra-regular, left, right ideals, and regular by the properties of BCF ideals (BCFIs). We also describe
these in terms of BCFLIs, and BCFRIs. For better understanding, remember that an element x € S
is known as regular if 3 an element ¥ € § s.t x = xyx. If each element of § is regular then S is
known as regular semigroup. An element e € S is known as idempotent if e.e = e.

Theorem 7. Each BCFI over a regular semigroup $ is idempotent.
Proof. Assume that M = (Ap_m, Ay—m) = Qgp—m + t Ajp—my Agv—m + t A;y—m) is a BCFI over
regular semigroup S, then by employing Theorem (2 part (3)), we get

MEMSSOM<M
Now let x € S. Then as § is a regular semigroup, 3 an element ¥ € S s.t x = xyx, hence
(Arp-m © Arp-m)(X) = Su%{min(}\RP—M(a)’)\RP—M(b))}
X=a

= min(}\RP—M(xy)'ARP—M(X))
> min(}\Rp_M(X):}\RP—M(X)) = Agp-m(%)
and

(Arp—m © Ap—m) (%) = sup{min(2;p_yn(a), A;p_u(D))}

x=ab

= min(A;p_m (x5, Arp-m (X))
= min(Ap_u (), Ap-u (X)) = Ap_u ().
This means that (Ap_p © Ap_y)(X) = Ap_p(X). Next,
(e © Aey-w) () = inf {max(Aey (@), Aey-m(®)))
< max(Ary—u (x5, Aen-n (X))
< max(Agy-m(x), Aen-m (X)) = Agy_u ()
and
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Av-m ° An-m)(X) = Xillafb{max()\m—m(a): Anv-m(®)}

< maX(}\IN—M(Xy): 7\1N—M(X))
< max(?\,N_M(x),}\IN_M(X.)) = Anv-m(X).

This means that (Ay_p © Ay_m)(X) < Ay_m(X). Hence, M@ M =M, thus M = (Ap_p, Ay_pm) is

idempotent.

Theorem 8. For a semigroup S,

(1) S is a regular semigroup;

(2) For each BCFLI M; = (Ap_y,, Ax—m,) = (Agp—m, + t Aip—m,» Arn—m, + tA;y—m,) and BCFRI
M, = (AP—Mzi}\N—MZ) = (ARP—MZ + tApmy Agn—m, T 17\1N—M2) over §, M; N M, =M; @ M,,

are equivalent.

Proof. 1 = 2. Suppose that M; = (}\P_Ml,)\N_Ml) = (ARP_M1 + t Ap—my s Agn-m, + ‘7\1N—M1) and

M, = (AP_MZ,AN_MZ) = (ARP_MZ + tApmy Ajv—m, T L?\,N_MZ) are BCFLI and BCFRI over §

respectively, then by employing Theorem (2 part (3)), we have that

M@OM,<M,®M, and M; ® M, < M; ©® S < M4,
S0,
M; ® M, < M; N M,.
Next, assume that x € S and as S is regular semigroup, 3 ¥ € § s.t x = xyx. Therefore we have
(Arp-m © Agp—m) (X) = igg){min(}‘RP—M(Q)’)\RP—M(b))}

= min(}\RP—M(xy)'ARP—M(X))
= min(}\RP—M(X)r}\RP—M(X)) = Agp-m(X)
and

Ap—m ° Ap-m) (X) = Sgg{min(}\lP—M(a)')‘IP—M(b))}

> min(A;p_m (x5, Ap-m (X))
= min(Ap_u (), Ap-u (X)) = Ap_u ().
This means that (Ap_p © Ap_p)(X) = Ap_p(X). Next,
(e © Agy-w)(0) = inf {max(Aey (@), Aey-m(®)))
< max(Ary—u (35, Aen-n (X))
< max(Agy-m(x), Aen-m (X)) = Agy_u ()
and

Av—m ° Av-m)(X) = Xillafb{max()\m—m(a): Anv-m(®))}
< maX(AIN—M(Xy)J)\IN—M(X.))
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= maX(}VN—M(X):}\IN—M(X‘)) = An-m(X).

Thus, M; ® M, > M; and consequently, M; N M, = M; (® M,.

2 = 1. Suppose that U; is any left ideal of S and U, is any right ideal of S, then by employing
Theorem 4, we get that MW = (XP_Mul,AN_Mul) be a BCFRI and M¥z = (AP_MuZ,XN_MuZ) be a
BCFLI over S. Now by employing Lemma 1, we get

()‘P—MuluZ)(X') = ()‘P—Mul ° )‘P—MuZ)(X.)
= (Ap_pps AAp_yz)(X) = (Ap_ppuny ) () = 1+ ¢ 1.

Thus, x € U; U, and hence U; N U, € U, U,. Consequently, U; N U, = U U,.

Before going to the next result, we recall that S is known as left (right) zero if VX, ¥ €S, xy =

X, (xy=¥).

Theorem 9. Suppose that S is a regular semigroup, then

(1) The family W(S) of all idempotents of S makes a left (right) zero sub-semigroup of S,

(2) For each BCFLI (BCFRI) M = (Ap_m, Ay—m) = Qrp—m + t Ajp—my Agy—m + L Ajy—m) oOver S,
Ap_m(®) = Ap_m () = Agp_m(®) = Agp_m(¥) and Ap_m(x) =Ap_u() , and Ay_y(x) =
A (@) = Ay (®) = Agy-m(¥) and Ay_m(x) = An-u®) VX, ¥ €S

are equivalent.

Proof. 1 = 2. Suppose that M = (Ap_m, Ay—m) = Qrp—m + t Ap—my Agy—m + t A;v—m) is a BCFLI

on S and x,¥ € S such that x,¥ € W(S), then as 1 holds so we have that xy = x and yx = ¥ and

Arp-m(X) = Agp_m(X¥) = Agp_m(¥)

and,

Arp—m(¥) = Agp_m(FX) = Agp_m(X).

Next, we have

Aip-m(®) = Ap_m(x¥) = Ap_m ()

and,

Aip-m() = Ap_m(3X) = Apm(X).

This implies that Ap_y(x) = Ap_m(¥). Likewise one can show that Ay_y(X) = Ay_m ().

2= 1.As § isaregular semigroup and W(S) is non-empty. Hence by utilizing Theorem (4 part (2))

we get that bipolar complex characteristic function M% = (?\P_Msy,AN_Msy) of the left ideal §, isa

BCFLI on S. Consequently, ()\N_Msy)(x‘) = ()\N_Msy)(y) =—1—11 and so X € §,. Therefore, for

some a €S, X = ay = a(¥¥) = (ay)y = xy. Consequently, W(S) is a left zero sub-semigroup on S.

Likewise one can prove for right zero.

Before going to the next result, we recall that, if for every x € S 3 y € S such that x = x?y then §

is known as right (left) regular.

Theorem 10. Suppose a semigroup S, then

(1) S 1s left (right) regular;

(2) For each BCFRI (BCFLI) M = (Ap_pm, Ay—m) = Agrp—m + tA;p—my Agy—m + L A;y_m) oOver S,
Ap—m(X) = Ap_m(x?) = Agp_m(X) = Agp-m(x?) and Ap_n(X) = Ap_m(x?), and Ay_y(x) =
Av-m(x?) = Agy-m(X) = Agy-m(x?) and Ay_y(x) = Ay-m(x*) VX ES,

are equivalent.
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Proof. 1 = 2. Assume that M = ()\P—M'}\N—M) = ()\RP—M + l}\IP—M’}\RN—M + ¢ )\IN—M) 1s a BCFLI
over S and X € S, then as we know that § is left regular, so 3 y € S such that x = yx2. Thus,

Arp-m(X) = Agp_m(¥%*) = Agp_m(x?)

and,

Arp—m(X?) = Agp_u(X).

Next, we have

Ap—m () = Ap_m(7x2) = App_p(x2)

and,

AIP—M(XZ) = Apm(%).

This implies that Ap_p(x) = Ap_pm(x2). Likewise one can show that Ay_y(X) = Ay_m(x3).
2 = 1. Suppose x € S, then by Theorem (4 part (2)), we have that bipolar complex characteristic
function MX°USX* = ()\P_szUSXZ,AN_Mqusxz) of left ideal x? U Sx? of S is a BCFLI over §. As
X2 EXPUSKE, 50 A, euse(®) = A, ewse(3?) = —1-11=>x€x?USx® and so, § is left-
regular. One can prove likewise for right regular.

Before discussing the next definition we recall that a subset Q # @ of $ is known as semiprime
if YXESX2EQ=>XEQ
Definition 13. A BCF set M = (Ap_m, Ay—m) = Qrp—m + t Ajp—py Agy—m + L A;y—m) OvVer S is
known as BCF semiprime if VX€S Ap_m(X) = Ap_m(x2) = Agp_m(X) = Agp_y(x?) and
Mp-m(®) = Apom(x?) , and Ay_y(x) < Ay-n(x?) = Agy-m(X) < Agy-m(x?) and Ay_n(x) <
Anv-m(x2).
Theorem 11. Suppose Q # @ is a subset of $, then
(1) Q is semiprime;
(2) The bipolar complex characteristic function MY = (}\P_MD,}\N_MD) of Q isa BCF semiprime set,
are equivalent.
Proof. 1=2. Let x€S. If xX?€Q, = Xx€Q. Then, A,_ya(x) =1+11=24,_yo(x?) and
Ayoye®) =—1—11 =2 _yox?) . If x*€Q, then Ap_ya(x*) =0+10<A,_yo(x) and
Ap_ya(x2) = 0410 > Ay_ya(x). Consequently, M® = (Ap_y0,Ay_y=) is a BCFSP set.
2=1. Suppose X €S such that x2€ Q. As M® = (Ap_ye,Ay_yo) is a BCFSP set, so
Ayvome®) < Ay_ya(x®) =—1—11 and Ay_ye(x) =—1—-11, ie. x € Q. Therefore, Q is a
semiprime.
Theorem 12. For a BCF sub-semigroup M = (Ap_y, Av—m) = Arp_m + t Ap—ys Arv—m + L Aiy—m)
over S the following
(HM=Qp_mAv-m) = Qrp_m + t Aip—my Agy—m + t A;y—m) is BCFSPset on S.
(2) For each X €S, Ap_y(X) = Ap_m(X?) = Agp_m(X) = Agp_u(x?) and Ajp_n(X) = Ap_n(x?),

and Ay_m(X) < Ay-m(x?) = Agy-m(®) < Agy-m(x?) and Ay_m(x) < Ay_m(x?).

Proof. 1 = 2. Suppose that M = Ap_y, Ay—m) = Arp—m + t Ajp—m, Agy—m + t A;y—p) is a BCF
semiprime seton $ and X € S, then we get that

Ap-m(X) = Ap_m(x2) = Agp_m(X) = Agp_m(x?) and App_ym(x) = App_m(x2),

and
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Ao () < Ay-m(x?) = Agy-u(X) < Agy-m(x?) and Ay_p(x) < Ay-m(x?)

thus,
Ap—m(x2) = min(Ap_y (x), Ap_m(X)) = Ap_w(X)
= Agp-m(x?) = min(Agp_m(X), Agp_m (X)) = Agp_m(x) and
Ap-m(x2) = min(Agp_p (), Apu (X)) = Ap_m(X),
and

Av-u(x?) < max(}\N—M(X‘):}\N—M(X)) =Ay-m(®)
= Aey-u(x?) < maX(ARN—M(X):)‘RN—M(X)) = Arn-m(x) and
Av-m(x?) < max()\IN—M(X):)\IN—M(X)) = Anv-m(X).

Consequently, 2 holds. 2 = 1 is obvious.
Before going to describe the next theorem, we recall the definition of intra-regular. If for every x € S

3 ¥,,¥, €S such that X = y;x%y,.

Theorem 13. For S, the following

(1) S is intra-regular;

(2) Each BCFTSI over § is BCF semiprime,

are equivalent.

Proof. 1 = 2. Assume that M = (Ap_p, Ay—m) = Qrp—m + L Ajp—viy Arv—m + t A;nv—m) is a BCFTSI
over $ and X € S.As § is intra-regular, so 3 ¥,,¥, € S such that x = y;x?y,. Thus, we get

Ap_m(X) = Ap_m (31 X2¥2) = Arp-m(X) = Arpom (F1X%%2) = Agp_m(X°¥2) = Agp_m (x?).
And Ap_m(¥) = Apon(Fx?52) = Apom(xP¥2) = Apoy(x?), thus
Apm(®) = Ap_y(x?)
and
Av-m(R) = Av-m(F1X°¥2) = Arw-m(R) = Arw-m (71%°¥2) < Apw-m (X%¥%2) < Apy-m(x?).
And Ay_m(®) = yom(x2¥2) < Avem(32y2) < Ayvom(x?), thus
Av-m(®) < Ay-m(x?).
It follows that Ap_y(X) = Ap_y(x?) and Ay_y(X) = Ay_pm(x2).
2 = 1. As 1 holds, so by Theorem (4 part (4)), we have that bipolar complex characteristic function
M3 = (AP—MS[XZ]'AN—MS[XZ] of principal ideal J[x?] =x2USx?Ux2SUx2Sx? of § is a
BCFTSI over §. As x? € 3[x?], so Ay sl () = A i) x?)=-1—-11=>x€Ex*>USx*U
x2S U x2Sx2. § is intra-regular. This completes the proof.
Theorem 14. For S, the following
(1) S is intra-regular;
(2) Ml N MZ < M1 @ MZ for each BCFLI Ml = (}\P_Ml,}\N_Ml) = (}\RP—Ml + l}\IP_Ml,}\RN_Ml +
l)\IN—Ml) and for each BCFRI MZ = (}\p_MZ,)\N_MZ) = (}\RP—MZ + l)\[p_Mz,)\RN_MZ + l}\IN—Mz)

over S,
are equivalent.
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Proof. 1 = 2. Suppose that Ml = ()\p_Ml,}\N_Ml) = (}\RP—Ml + l}\IP—Mll}\RN—Ml + l)LIN—Ml) is a
BCFLI and MZ = ()\P_MZ,AN_MZ) = (}\RP_MZ + LAIP—MZFARN—MZ + lxIN—MZ) 1s a BCFRI over S
and X € S, thenas S is intra-regular so 3 ¥,,¥, € S such that x = ¥;x2y,. Thus,

()\RP—Ml ° }\RP—MZ)(X) = sup {min ()\RP—Ml (Zl)'}\RP—MZ (Zz))}

X=2%173

= min ()\RP_M1 C229] )\RP—MZ (XZZ))

= min (}\RP—Ml (), Arp—m, (X)) = (Arp-m, A }\RP—MZ)(X)

and
()\IP—Ml ° }\IP—MZ)(X) = sup {min (7\119—M1 (Z1):7\1P—M2 (Zz))}
X=2%173
= min (?\,p_Ml(ylx), 7\1P—M2 (XZ»Z))
= min (7\11>—M1 (x), Arp—m, (X)) = ()‘IP—Ml A }‘IP—Mz)(X')'
Next,
(Mezv—M1 ° }\RN—MZ)(X) = x=i£1f22 {max (7\RN—M1 (%1), ARN—MZ (Zz))}
< max (7\RN—M1 (¥1X), Arn—M, (X.Zz))
< max (7\RN—M1 (X')'}\RN—MZ (X)) = ()‘RN—M1 v )‘RN—Mz)(X')
and

(7\1N—M1 ° }\IN—MZ)(X') = . infz {max (7\1N—M1 (z1), Ain-m, (Zz))}

=%1Z
< max (7\11\1—M1 (¥1X), Ain-m, (XZZ))

< max (7\1N—M1 (%), }\IN—MZ (X‘)) = ()‘IN—M1 v )‘IN—Mz)(X)'

Thus, we have M; N M, < M; @ M,.

2 = 1. Suppose that U; is any left ideal of S and U, is any right ideal of S, and x € S such that
X €U, NU,, then x €U; and X € U,, by Theorem 4 MY = (KP_Mul,AN_Mul) is a BCFLI and
MY = ()\P_Mul, KN_Mul) is a BCFRI over S. Now by Lemma 1, we obtain

(AN_Muluz)(X) = (}\N—Mul ° }\N_Muz)(X)

< Av-m A Ay (®) = (KN_Mulnuz)(X) =-1-'1
Thus, we have x € U;U, and we get that U; N U, € U, U,. Consequently, S is intra-regular.

Theorem 15. For Sk, the following
(1) S is regular and intra-regular;
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Q)M; NM, < (M; ®©M)n (M, @ M;) for each BCFRI M; = (Ap_y,, Av—m,) = (Agp—m, +
L Ap—my Arn—m, F L Ao, ) and BCFRI M, = (Ap—m,» An-m,) = (Agp—m, +
t Ap—Myp ArN-M, F L Ay—m,) OVer S,

are equivalent.

Proof. 1 = 2. Suppose that M; = (AP_Ml,AN_Ml) = (?\RP_Ml + tApm, Arv—my +L7\,N_M1) is a

BCFRI and M; = (Ap—m,, Av-m,) = (Arp-m, + t Aip—m,» Arn—-m, + L Aiy—m,) is @ BCFLI over §,

then by employing Theorems 8 and 14 we have that

M;NnM,=M,NnM; <M, ®M; and M; N M, < M; @ M,.

Thus,

M;NM, < (M; © M) n (M, ® My).

2=>1. SuppOSC that Ml = (}\p_Ml,)\N_Ml) = (}\RP—Ml + L}\IP—Mll)\RN—Ml + L)\IN—Ml) is a BCFRI
and MZ = ()\p_MZ,)\N_MZ) = (}\RP—MZ + l)\IP—MZI}\RN—MZ + l}\IN—Mz) is a BCFLI over S, then

M;NM, S M;nM, < (M; ® M) n(M; @ My) S M; ® M;.
Therefore, by employing Theorem 14 we get that $ is intra-regular. Next,
M; ©OM))SSOM; <M, and (M; © M) S M; ©§ < My,

which implies that M; @ M, < M; N M, and it always holds that M; "M, < M; @ M, = M; N

M, = M; © M,. Consequently, S is a regular semigroup.

Now we recall the conception of semi-simple before discussing the next theorem. If every two-sided

ideal of S is idempotent then S is known as semi-simple.

Theorem 16. For Sk, the following

(1) S is semi-simple,

(2) Each BCFTSI on § is idempotent,

BG)M;NM, xM; ©®M, for each BCFTSIs M; = (Ap—my Av-m,) = (Agp—m, +
(Apomp Ajv-m, +tAw-m,)  and My = (Apomy, Avom,) = (Arpom, + t Arpomy, Arn—m, +
LA,N_MZ) over S,

are equivalent.

Proof. 1 = 2. Suppose that M; = ()\P_Ml,?\N_Ml) = (ARP_M1 + tApomy ARn—m, T L)\,N_Ml) and

M, = (}\P_MZ,AN_MZ) = ()\RP_MZ + t Ap—m,, Agn—m, + LA,N_MZ) are two BCFTSIs over S, by

assumption

M; OM))SSOM; <M, and (M; © M) S M; @ §< My,

which implies that M; @ M, < M; N M, . Next, let X€S and as $ is semi-simple so 3
¥1,¥2, %1, %2 € $ such that X = (¥;Xy,)(21X2,), thus

(Arp—m © Agp_m)(X) = Sgg{min(}\RP—M(Q)’)\RP—M(b))}
> min(Agp_m(F1%X¥2), Arp—m(21X27))
= min()\RP—M(XyZ)'}\RP—M(XZZ))

> min(Agp-m (%), Arp-m (%)) = Arp—m A Agp_m) (X)

and
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Ap—m ° Ap-m) (X)) = Sgg{min(}\IP—M(a)')\IP—M(b))}

> min(Ap_u F1%52), Aip-m (21%X22))
> min(Ap_m(x52), Aip—u (x22))
> min(Asp- (0, Aap-(9) = O Adup 1) (.
Thus, (Ap_m © Ap_m) (%) = (Ap_m A Ap_m)(X). Next,
O @ M) (9 = I (A3 (@), A (0))}

< max(lRN—M(hX&‘z). }\RN—M(Z&XZZ))
< max(Agy-m (x52), Apn—m (%22))
< max()\RN—M(X')')\RN—M(X‘)) = Agn-m V Agy-m) X)
and

Av—m © Av-m)(X) = )Egaff){max(AIN—M(a)» )\IN—M(b))}

< maX(AIN—M(ﬁX.Vz),7\1N—M(31XZ2))
< max(A;y—u (x52), iy —m (x22))
< max()L,N_M(x),A,N_M(X)) = My-m V n-m) (X).

Thus, M; ©@ M, < M; N M, andso M; @ M, = M; N M,.

3 = 2 is obvious.

2 = 1. Suppose that x € S, then by employing Theorem (4 part (4)), we have that bipolar complex
characteristic function M3 = ()‘P—MS[X]')‘N—MS[X]) of principal ideal J[x] of S is a BCFTSI over
S. By Lemma 1 we obtain

(A _ybastd ) (%) = (A _ysta © Ay _pysia) (X)
< (Ay_pstad A Ayt ) () = (A _ppstansia ) (®) = =1 — ¢ 1.
Since, x € J[x]J[x]I[x], we have

X € (XU SX U XS USXS) (XU SXUXSUSXS)(x U Sx UXS U SXS) € (Sx5)(Sx9).

Therefore, S is semi-simple.

5. Conclusions

The conception of a semigroup is an influential approach and has been utilized by numerous
scholars and employed in various areas. Due to the great significance of semigroup, numerous authors
modified this concept to introduce novel notions such as fuzzy semigroup, bipolar fuzzy semigroup,
etc. The concept of fuzzy semigroup has various applications such as fuzzy languages, theory fuzzy
coding, etc. In recent years, numerous authors generalized the conception of fuzzy algebraic structures
and employed genuine-life dilemmas in various areas of science. To keep in mind all this, and the
research gap, in this analysis we investigated the algebraic structure of semigroups by employing the
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BCEF set. Firstly, we established BCF sub-semigroup, BCFLI, BCFRI, and BCFTSI over S and then
initiated their related theorem with proof. Further, we diagnosed bipolar complex characteristic
function, positive (w,n) -cut, negative (p,0) -cut, positive and ((a),n), (o, 0')) -cut and their
associated results with proof. Secondly, we established various classes of semigroups such as intra-
regular, left regular, right regular, and semi-simple, by the features of the BCF ideals and proved their
related results. Also, these classes are interpreted in terms of BCFLIs, BCFRIs, and BCFTSIs. In this
regard, we showed that, for a semigroup S, $ is a regular semigroup if and only if for each BCFLI
M; = (Apomy Av-m,) = (Arpom, + t Apomy Arv—m, + L Anvom,) and BCFRI M, =
(Ap—my Anv-m,) = (Arpom, + L Aipomy Ajvom, + EAnom,)  OVEr $ . MyNM, =M; ®M,
Furthermore, we construed regular, intra-regular semigroup and showed that a semigroup S is regular
and intra-regular iff M; N M, < M; @ M, for each BCFLI M; = (}\P—Mli}\N—Ml) = (7\RP—M1 +
tAp_my Arv—m, +tAy-m,) and for each BCFRI M, = (Ap_y,, Av-m,) = (Agp—m, +
LArp_my) ARN—M, +L7\,N_M2) over S. The introduced combination of BCFS and semigroup is the
generalization of the fuzzy set (FS), bipolar fuzzy set (BFS), and complex FS (CFS) in the environment
of semigroups and from the introduced notions we can easily achieve these conceptions.

In the future, we want to expand this research to BCF bi-ideals, BCF quasi-ideals, and BCF
interior ideals. Further, we would like to review numerous notions like BCF soft sets [46], interval-
valued neutrosophic SSs [48], and bipolar complex intuitionistic FS [49] and would try to fuse them
with the notion of the semigroup.
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